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Abstract

Video-quality measurement is a critical task in video processing. Nowadays,
many implementations of new encoding standards — such as AV1, VVC, and
LCEVC — use deep-learning-based decoding algorithms with perceptual metrics
that serve as optimization objectives. But investigations of the performance of
modern video- and image-quality metrics commonly employ videos compressed
using older standards, such as AVC. In this paper, we present a new benchmark for
video-quality metrics that evaluates video compression. It is based on a new dataset
consisting of about 2,500 streams encoded using different standards, including AVC,
HEVC, AV1, VP9, and VVC. Subjective scores were collected using crowdsourced
pairwise comparisons. The list of evaluated metrics includes recent ones based
on machine learning and neural networks. The results demonstrate that new no-
reference metrics exhibit high correlation with subjective quality and approach the
capability of top full-reference metrics.

1 Introduction

Video constitutes the largest part of the world’s Internet traffic, and its volume has increased because
of the Covid lockdowns. The network load has also increased, making efficient video compression
extremely important. Development and comparison of new video encoders greatly relies on quality
measurement, and many new compression standards implement machine-learning- and neural-
network-based approaches. But traditional image- and video-quality metrics, such as PSNR and
SSIM, emerged long before recent compression standards, and they did not account for neural-
network-related artifacts. VMAF [26], a well-known video-quality metric from Netflix, was also
trained using only H.264/AVC-compressed videos. Thus, quality measurement for new video-
encoding standards is even more vital. The number of new image- and video-quality metrics has
increased, and many recent algorithms employ learning-based approaches. Industry leaders have
also created their own quality metrics: Apple’s Advanced Video Quality Tool (AVQT) [2], Tencent’s
Deep Learning-Based Video Quality Assessment (DVQA) [1], and the aforementioned VMAF. Only
a few of these metrics demonstrate high performance on independent benchmarks, however, and
some new ones, including AVQT and DVQA, still await detailed analysis. A concern associated with
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Figure 1: Crops from video sequences encoded using old and new standards relative to ground truth
(GT). LCEVC employs super-resolution, which allows restoration of more details and creates new
kinds of artifacts.

metric-result reproducibility and verification is the outdated datasets for measuring video-compression
quality. Most datasets containing compressed videos and subjective scores only employ H.264/AVC
compression. In-lab tests were the source of subjective scores for many such videos. Owing to the
complexity and high cost of subjective comparisons, those tests involved a small number of viewers
and garnered only a few scores per video.

Quality-metric development seldom takes into account artifacts produced by video encoders that
implement contemporary standards. For example, super-resolution in LCEVC and in new neural-
network-based encoders yields distortions that traditional metrics are unable to handle. Fig. |
demonstrates the difference between frame crops of x265-encoded video and Iceve_x265-encoded
video: the latter contains more detail despite its lower PSNR and SSIM scores. Existing benchmarks
for image- and video-quality metrics do not consider artifacts produced by new compression standards.
Our research therefore analyzed metric performance on videos with various compression artifacts.

The goal of our investigation was to evaluate new and state-of-the-art image- and video-quality
metrics independently, using a large dataset representing diverse compression artifacts from different
video encoders. We thus propose a new dataset of 2,486 compressed videos and subjective scores
collected using a crowdsourced comparison with nearly 11,000 participants. We also present a new
benchmark” based on that dataset, which we divide into open and hidden parts. This paper provides
our assessment results for the open part as well as for the whole dataset.

2 Related Work

2.1 Video-Quality Datasets

Video-quality datasets with subjective scores break down into two types: legacy synthetically distorted
(mainly through compression and transmission distortions, capture impairments, processing artifacts,
and Gaussian blur), and authentic user-generated content (UGC). The former [43, 11,42, 7,32, 27,
37, 19] apply synthetic distortions to the original videos. The latter [14, 39, 36, 16, 44, 50] are gaining
popularity, as videos produced today by amateurs often suffer from a wide variety of distortions.
Many new video-quality metrics have undergone testing only for UGC videos. The latest studies
employ a nearly identical pool of subjective video-quality datasets, summarized in Tab. 1.

2.2 Video-Quality Benchmarks

Most comparisons of IQA and VQA have appeared in papers that present new methods and a few
benchmarks accept new methods for evaluation. Often, these comparisons either include an evaluation
using open video datasets, for which existing metrics may have been tuned, or employ just a few
methods. The authors of [39] published a comparison for a wide variety of datasets but evaluated only
four methods. In [41] the authors compared no-reference VQA models using three UGC datasets

’https://videoprocessing.ai/benchmarks/video-quality-metrics.html
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Original Average Distorted Subjective

Dataset videos  duration (s) videos Distortion framework Subjects  Answers
MCL-JCV (2016) [42] 30 5 1,560 Compression In-lab 150 78K
VideoSet (2017) [43] 220 5 45,760 Compression In-lab 800 -
UGC-VIDEO (2020) [25] 50 > 10 550 Compression In-lab 30 16.5K
CVD-2014 (2014) [36] 5 10-25 234 In-capture In-lab 210 -
LIVE-Qualcomm (2016) [14] 54 15 208 In-capture In-lab 39 8.1K
GamingVideoSET (2018) [9] 24 30 576 Compression In-lab 25 -
KUGVD (2019) [8] 6 30 144 Compression In-lab 17 -
KoNViD-1k (2017) [16] 1,200 8 1,200 In-the-wild  Crowdsource 642 205K
LIVE-VQC (2018) [39] 585 10 585 In-the-wild  Crowdsource 4,776 205K
YouTube-UGC (2019) [44] 1,500 20 1,500 In-the-wild ~ Crowdsource  >8,000 600K
LSVQ (2020) [50] 39,075 5-12 39,075 In-the-wild  Crowdsource 6,284 SM
Our dataset: open part (2022) 36 10, 15 1,022 C(ggnggfl:f)“ Crowdsource 10,800 320K
Our dataset: hidden part (2022) 36 10, 15 l464  COmPrESSIOn o qcource 10,800 446K
(51 codecs)
Our dataset (2022) 36 10, 15 2486 ComPreSsion o icource 10,800 766K
(83 codecs)
Table 1: Summary of subjective video-quality datasets and our new dataset.
Benchmark Total number Total number Total number Distortion

of videos of VQA methods  of subjects

In-the-wild videos,
Z. Sinno and A. Bovik (2018) [39] 585 4 4,776 80 mobile cameras,
18 resolutions
H.264, H.265 compression,

Y. Li et al. (2020) [24] 550 15 28 QP: 22,27, 32,37, 42
3,108
UGC-VQA (2021) [41] Y(JIIIFP; ];:);:\—]I(J)(?’C 13 >13,000 Compression, transmission
KoNViD-1k)

Compression
Our benchmark (2022) 2,486 26 10,800 (H.264, H.265,
AV1, VVC, etc.)

Table 2: Summary of video-quality-measurement benchmarks and our new benchmark.

and various experiments. They analyzed metrics applied to videos with different content types,
resolution and quality subsets, temporal pooling, and computational-complexity-evaluation methods.
Compression artifacts, however, played a minor role in that study. The main idea of [24] was to
compare full- and no-reference metrics through subjective evaluation of UGC videos transcoded using
different compression standards and levels, but this work only tested a few no-reference methods and
codecs.

3 Benchmark

3.1 List of Metrics

This study aimed to evaluate new and state-of-the-art neural-network-based video- and image-quality
metrics on a compression-oriented video dataset. We excluded several well-known metrics such as
BRISQUE [33] and VIIDEO [34] because of their low correlations in many other studies [50, 22, 24].

3.1.1 No-Reference Video-Quality Metrics

The no-reference video-quality metric VIDEVAL (2021) [4 1] chooses 60 features (related to motion,
certain distortions, and aesthetics) from previously developed quality models. It performs well on
existing UGC datasets, but it may suffer from overfitting, as users must set many of its parameters.

Most recent quality-assessment papers emphasize deep-learning-based approaches. MEON (2017)
[29] is a model consisting of two sub-networks: a distortion-identification one and a quality-prediction
one. It can also determine the distortion type.



VSFA (2019) [20] employs a pretrained ResNet-50 [15] as well as a deep content-aware feature
extractor followed by a temporal-pooling layer for temporal memory. It performed poorly in the
cross-dataset evaluation, so the authors proposed an enhanced version, MDTVSFA (2021) [22].
This enhanced version follows a mixed-dataset training strategy and may have high computational
complexity owing to recurrent layers and full-size-image inputs.

PaQ-2-PiQ (2020) [51] uses a deep region-based architecture trained on a large subjective image-
quality dataset of 40,000 pictures. KonCept512 (2020) [17] is based on InceptionResNetV2 and was
trained on the proposed KonlQ-10k dataset. SPAQ (2020) [13] implements three extra modifications
of its baseline model: EXIF-data processing (MT-E), image-attribute observation (MT-A), and obser-
vation of a scene’s high-level semantics (MT-S). The creators of Linearity (2020) [21] introduced
their own loss function, “norm-in-norm”, which converges 10 times faster than the MAE and MSE
loss functions. NIMA (2018) [40] was trained on the large-scale Aesthetic Visual Analysis (AVA)
dataset and predicts a quality-rating distribution.

3.1.2 Full-Reference Video-Quality Metrics

PSNR and SSIM [45] are among the most popular image- and video-quality metrics. We compared
variations of SSIM and MS-SSIM [46] in our benchmark; the latter is an advanced version of the
former calculated over multiple scales using subsampling.

LPIPS (2019) [52] is based on AlexNet and VGG. We chose a VGG-based version for testing
because it serves as a generalization of “perceptual loss” [18]. DISTS (2020) [12] was designed to
tolerate texture resampling and to be sensitive to structural differences. It combines structure- and
texture-similarity measurements for corresponding image embedments and is based on a pretrained
VGG network.

Tencent’s DVQA (2020) [1] is based on the C3DVQA network [49]. It uses 3D convolutional layers
to learn spatiotemporal features and 2D convolutional layers to extract spatial information.

The main feature of FovVideoVDP (2021) [31] is consideration of peripheral visual acuity. This
method models the human visual system’s response to temporal changes across the visual field. It
can estimate flickering, juddering, and other temporal distortions, as well as spatiotemporal artifacts
such as those appearing at different degrees of peripheral vision.

ST-GREED (2021) [30] can quantify reference and distorted videos of different frame rates without
temporal preprocessing. It offers two primary features: SGreed and TGreed. The latter quantifies the
statistics of temporal bandpass responses to both spatial and temporal distortions. The former obtains
spatial bandpass responses using a local filtering scheme. Calculation of the final ST- GREED value
employs the support-vector regressor.

Nowadays VMAF (2018) [26] is one of the most popular VQA metrics. It computes three base
features—the detail-loss metric (DLM) [23], visual-information fidelity (VIF) [38], and temporal
information (TI)—and combines them with a support-vector regressor. We also evaluated AVQT
(2021) [2], developed by Apple, but the company has yet to publish any technical information.

3.2 Video Dataset

To analyze the relevance of quality metrics to video compression, we collected a special dataset of
videos exhibiting various compression artifacts. For video-compression-quality measurement, the
original videos should have a high bitrate or, ideally, be uncompressed to avoid recompression artifacts.
We chose from a pool of more than 18,000 high-bitrate open-source videos from www.vimeo.com.
Our search included a variety of minor keywords to provide maximum coverage of potential results—
for example “a,” “the,” “of,” “in,” “be,” and “to.” We downloaded only videos that were available
under CC BY and CCO licenses and that had a minimum bitrate of 20 Mbps. The average bitrate of the
entire collection was 130 Mbps. We converted all videos to a YUV 4:2:0 chroma subsampling. Our
choice employed space-time-complexity clustering to obtain a representative complexity distribution.
For spatial complexity, we calculated the average size of x264-encoded I-frames normalized to the
uncompressed frame size. For temporal complexity, we calculated the average P-frame size divided
by the average I-frame size. We divided the whole collection into 36 clusters using the K-means
algorithm [28] and, for each cluster, randomly selected up to 10 candidate videos close to the cluster
center. From each cluster’s candidates we manually chose one video, attempting to include different
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Figure 2: Bitrate distribution of -
our dataset versus other video datasets.

videos in our dataset.

genres in the final dataset (sports, gaming, nature, interviews, UGC, etc.). The result was 36 FullHD
videos for further compression.

We obtained numerous coding artifacts by compressing videos through several encoders: 11
H.265/HEVC encoders, 5 AV1 encoders, 2 H.264/AVC encoders, and 4 encoders based on other
standards. To increase the diversity of coding artifacts, we also used two different presets for many
encoders: one that provides a 30 FPS encoding speed and the other that provides a 1 FPS speed and
higher quality. The list of settings for each encoder is presented in the supplementary materials. Not
all videos underwent compression using all encoders. We compressed each video at three target
bitrates — 1,000 kbps, 2,000 kbps, and 4,000 kbps — using a VBR mode (for encoders that support
it) or with corresponding QP/CRF values that produce these bitrates. Major streaming-video services
recommend at most 4,500—8,000 kbps for FullHD encoding [3, 4, 5]. We avoided higher target
bitrates because visible compression artifacts become almost unnoticeable, hindering subjective
comparisons. Fig. 2 shows the distribution of video bitrates for our dataset. The distribution differs
from the target encoding rates because we used the VBR encoding mode, but it complies with the
typical recommendations.

The dataset falls into two parts: open and hidden (40% and 60% of the entire dataset, respectively).
We employ hidden part only for testing through our benchmark to ensure a more objective comparison
of future applications. This approach may prevent learning-based methods from training on the entire
dataset, thereby avoiding overfitting and incorrect results. To divide our dataset, we split the codec
list in two; the encoded videos each reside in the part corresponding to their respective codec. We
also performed x265-lossless encoding of all compressed streams to simplify further evaluations and
avoid issues with nonstandard decoders.

Tab. 1 shows the characteristics of the final parts of the dataset. Links to source videos and additional
details about the collection process are in the supplementary materials. We also compared the
statistics of PSNR uniformity and range for our dataset using the approach in [47]. As Fig. 3 shows,
this dataset provides wide quality and compression-rate ranges.

3.3 Subjective-Score Collection

We collected subjective scores for our video dataset through the Subjectify.us crowdsourcing platform.
Subjectify.us is a service for pairwise comparisons; it employs a Bradley-Terry model to transform
the results of pairwise voting into a score for each video. A more detailed description of the method
is at www.subjectify.us.

Because the number of pairwise comparisons grows exponentially with the number of source videos,
we divided the dataset into five subsets by source videos and performed five comparisons. Each subset
contained a group of source videos and their compressed versions. Every comparison produced and
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evaluated all possible pairs of compressed videos for one source video. Thus, only videos from the
same source were in each pair. The comparison set also included source videos. Participants viewed
videos from each pair sequentially in full-screen mode. They were asked to choose the video with
the best visual quality or indicate that the two are of the same quality. They also had an option to
replay the videos. Each participant had to compare a total of 12 pairs, two of which had an obviously
higher-quality option and served as verification questions. All responses from those who failed to
correctly answer the verification questions were discarded.

To increase the relevance of the results, we solicited at least 10 responses for each pair. In total, we
collected 766,362 valid answers from nearly 11,000 individuals. After applying the Bradley-Terry
model to a table of pairwise ranks, we received subjective scores that are consistent within each group
of videos compressed from one reference video. A detailed description of the subjective-comparison
process, as well as collected statistics, is in the supplementary materials. Tab. 1 summarizes the
parameters of our dataset.

3.4 Methodology

We used public source code for all metrics without additional pretraining, and we selected the default
parameters to avoid overfitting. To get a video’s quality score using the IQA method, we compared
the given distorted sequence and the reference video frame by frame, then averaged the resulting
per-frame quality scores for each video. VQA methods generate a score for the whole distorted
sequence and require no additional averaging.

Because the subjective scores are based on pairwise comparisons of videos produced from the same
original sequence, they are comparable only within their respective groups. Each group size is three
(the number of encoding bitrates) times the number of codecs applied to the reference video. For
each reference-video/preset pair (resulting in one distorted-video group), we calculated Spearman
and Kendall correlation coefficients (SROCC and KROCC, respectively) between the metrics and
subjective scores. We then selected only those values calculated for groups whose number of samples
exceed a threshold (15 for SROCC and 6 for KROCC) to provide more-statistically-reliable results.
Our next step was to use the Fisher Z-transform [10] (inverse hyperbolic tangent) and average the
results, weighted proportionally to group size. The inverse Fisher Z-transform yielded a single
correlation for the entire dataset. We provide the link to code example in Sec. 4.

To analyze metric performance in more detail, we added a few mutually nonexclusive categories with
videos from the dataset: User-Generated Content, Shaking, Sports, Nature, Gaming / Animation,
Low Bitrate (up to 1,000 Kbps), and High Bitrate (above 6,000 Kbps). To assign each video to one of
these categories, we conducted a subjective survey of five people from our laboratory.

3.5 Results

We examined the results for the open part of the dataset as well as for the whole dataset, including
the hidden part. Tab. 3 shows the Spearman and Kendall correlation coefficients for the metrics
we analyzed, along with subjective quality scores. For the whole dataset, VMAF and its variations
calculated using different chroma-component ratios exhibited the highest correlations. VMAF was
originally to be calculated only using the luma component, but here we proved that YUV-VMAF
performs better. Also, VMAF NEG (a no-enhancement-gain version [6]) correlated less well with
subjective quality than the original version did. MDTVSFA and Linearity had the highest correlations
among no-reference methods: about 0.93, nearly matching the top results of full-reference metrics
(VMATF at 0.94). For the open dataset, SSIM and PSNR showed the highest correlations in addition
to VMAF, followed by a recently-released AVQT by Apple.

We compared metrics using different video subsets: videos with low and high bitrates; videos encoded
using HEVC/H.265, AV1, and VVC/H.266 (Tab. 4); and videos with different content types — UGC,
Shaking, Sports, Nature, and Gaming/Animation (Tab. 5).

“High bitrate” and “Low bitrate” encoding. All metrics showed their lowest correlations for videos
encoded at 6,000 Kbps or higher. The reason may be the low confidence of the subjective scores for
this category. As we described in Sec. 3.2, viewers apparently have difficulty spotting compression
artifacts in videos that employ high-quality encoding. The no-reference MDTVSFA, VSFA, and



Dataset All Dataset (Open+Hidden) Open Dataset Dataset Al Dataset (Open-+Hidden) Open Dataset

2486 videos 1022 videos 2486 videos 1022 videos
Metric SROC KROC SROC KROC Metric SROC KROC SROC KROC
Full-Reference
No-Reference FOV VIDEO 0.527 0.375 0.565 0.492
MEON [29] 0.507 0.376 0.554 B osan054)  0370,0380) (0.551,0.579)  (0.477,0.507)
(0.495, 0.518) (0.367,0.384) (0.534, 0.574) LPIPS [5] 0.749 0.567 0.787 0.667
Y-NIOE 0.599 0.421 0.701 (0.742,0.756) (0.561,0.573) (0.774,0.799)  (0.655,0.679)
-NIQE [35] (0.586, 0.611) (0.411,0.431) (0.679,0.721)  (0.541,0.573) DVQA [1] 0.763 0.579 0.774 0.683
VIDEVAL [41] 0.729 0.541 0719 0.558 . 736%24770) (0.)(7)25;7;35; (0.7827.80786) (0.6(7]062:95.
(0.719, 0.738) (0.532,0.551) (0.700,0.737)  (0.540, 0.575) GREED 30 (756, 0769) (0,58, 0.593) ©783,0797) (0,634, 0.654)
KonCept512 [17] 0.836 0.661 0.861 0.696 VoM 082 0644 0.881 0767
(0.831,0.841) (0655, 0.666) (0.853,0.868)  (0.688,0.703) -VQM 44) (0.815,0827)  (0.637,0.651) (0.870,0.890)  (0.756,0.777)
0.849 0.675 0.868 0.729 0.847 0.671 0.873 0.753
NIMA (401 (0.844, 0.854) (0.668, 0.681) (0.860, 0.875)  (0.719,0.738) DISTS 1121 gs42.0851) (0667, 0.676) (0.866,0.879)  (0.744,0.761)
g . 0.871 0.708 0.901 0.752 AVOT 0.876 0.720 0.889 0.792
PaQ-2-PiQ[51] (0.866, 0.875) (0.702, 0.714) (0.894,0.908)  (0.743,0.761) Qrer o 882é§%879) ©7 (1) 5% o 8725) (0'832[;2 9396; «0.7(:;4é gqsoo.
0.879 0.715 0.912 0.796 YUV-PSNR o 0 ) p .
SPAQMT-ATT 635 0gsa) (0709, 0.720) (0.905,0919) (0786, 0.805) O oasm 0T 0739 O %o
SPAQ BL [17] 0.880 0.711 0.912 0.789 YUV-SSIM 007 0.000) (0750, 0.761) (0.945,0.951)  (0.872,0917)
(0.875, 0.884) (0.704,0.717) (0.905,0.918)  (0.780, 0.798) V-MS-SSIM 0.909 0.756 0.946 0.841
SPAQ MT-S [13] 0.882 0.719 0.912 0.787 T [ (0,905, 0.912) (0.751, 0.760) (0.943,0.949)  (0.835, 0.847)
(0.878, 0.886) (0.713,0.724) (0.906,0.918)  (0.778, 0.796) Y-VMAF NEG [26] 0.914 0.765 0.945 0.841
VSFA [20] 0.905 0.748 0.891 0.758 o, 9(1)1;1.7917) (0.73%29769; (0.982(.)27948; 10.836(;34346)
(0.901, 0.908) (0.743,0.753) (0886.0.897)  (0.750.0.766)  YUV-VMAFNEG [20] (W00 oo (0541 0850 (0565, 0915)
Linearity [21] 0910 0.759 0.905 y 0.942 0.809 0.945 0.888
(0.907,0.913) (0.754, 0.763) (0.899,0.911)  (0.774,0.791) Y-VMAF (VO61) 201 0,0 0049y (0.805, 0.813) (0.942,0048) (0861, 0910)
0.929 0.788 0.930 0.813 0.943 0810 0.948 0.895
MDTVSFA 2] (0.927,0.931) (0.784,0.792) (0.927,0.934)  (0.806, 0.819) YUV-VMAF (v061) [26] (0.941,0.945) (0.806, 0.814) (0.945,0.951)  (0.870, 0.916)

Table 3: Results for SROCC and KROCC on the full dataset and on the open part.

Linearity metrics performed better than the full-reference alternatives. The leaders for “Low Bitrate”
remain the same as for the whole dataset supplemented by no-reference NIMA.

HEVC, AV1, and VVC encoding. Metric correlation for “H.265 encoding” is higher than for other
standards. Because H.265 is older and more popular than newer standards, quality-assessment models
may have been tuned to it. For the new VVC standard, the leaders differ relative to other encoding
standards: the best no-reference metric is Linearity and the best full-reference one is SSIM. This
result is unexpected, but SSIM’s good performance may owe to its versatility. Also, the sample for
this category is small, so further analysis of the best metrics for estimating VVC encoding quality
would likely require a larger dataset.

Leaders by video content category: “UGC”, “Shaking”, “Sports”, “Nature”, and “Gam-
ing/Animation”. VMAF retained its lead in all categories, but its original luma-only (Y-VMAF)
version performed better on “UGC” and “Shaking” content; its modified version using chroma
components (YUV-VMAPF) is the best for other categories. The no-reference MDTVSFA metric
leads in “UGC”, “Shaking” and “Nature”; Linearity is ahead in “Sports”; and VSFA is best for
“Gaming/Animation”. PaQ-2-PiQ also achieves to precisely estimate gaming-content quality.

We performed a one-sided Wilcoxon rank-sum test on SROCC, which we computed for most of the
methods in Tab. 4 and Tab. 5 using different groups of videos from our dataset to get the average
correlation value. A table of results appears in the supplementary materials. Different versions of
SPAQ (BL, MT-S, and MT-A) behaved in a statistically equal manner—except in the “Sports” and
“Low Bitrate” categories, where SPAQ BL was superior. In addition, VMAF, the top full-reference
metric in average SROCC for the full dataset, yielded to MDTVSFA, the leading no-reference metric,
only on videos encoded using AV1 and videos with a high bitrate. A rarely used encoding standard
for training quality-assessment methods, VVC was difficult for these methods to handle, and videos
encoded using it form the only part of our dataset where MDTVSFA fell short of Linearity. Among
related metrics, the test revealed that VMAF NEG and VSFA were statistically worse than or equal
to VMAF (v061) and MDTVSFA, respectively, depending on the subset. AVQT was superior to
most metrics for the “Low Bitrate” and “Shaking” categories, making it valuable when predicting
subjective quality.

Tab. 6 shows the computational complexity of the metrics we studied.

Fig. 4 shows the distribution of normalized metric scores for our dataset. Many metrics have a
nonuniform “real-life” distribution of values resulting from compression artifacts. For example, the

average SSIM is about 0.85, which corresponds with common statistics (an SSIM of 0.5 does not
mean average quality, and values below 0.5 seldom appear in real situations).



Low Bitrate High Bitrate

. . H.265 Encoding AV1 Encoding VVC Encoding
Dataset  (up to 1,000 kbps) (above 6,000 kbps) 1139 videos 482 videos 251 videos
477 videos 384 videos
Metric  sroc KROC SROC KROC SROC KROC SROC KROC SROC KROC

No-Reference

MEON [29] 0.039 0.069 0.127 0.107 0.834 0.703 0.800 0.734 0.709
(0.000,0.093)  (0.032,0.106) (0.097,0.158)  (0.089,0.125) (0.825,0.842) (0661, 0.740) (0.768,0.828)  (0.625,0.815) (0.662,0.750)
Y-NIQE [35] 0313 0.214 0.027 0.013 0.722 0.519 0.629 0.640 0.389
(0.263,0.361) (0181, 0.246) (0.000,0.063)  (0.000, 0.040) (0.706,0.736)  (0.431,0.597) (0.574,0.678) (0501, 0.747) (0.311,0.462)
VIDEVAL [41] 0.615 0.415 0.290 0.209 0.804 0.661 0.754 0.625 0.635 0.490
(0.580,0.647)  (0.387, 0.441) (0.256,0.322)  (0.189,0.229) (0.791,0.817)  (0.576,0.731) (0.707,0.794) (0596, 0.653) (0.576,0.688) (0.4, 0.533)
KonCept512[17] 0.891 0.719 0.204 0.164 0.904 0.876 0.819 0.990 0.849 0.693
(0.883,0.899)  (0.708, 0.729) (0.149,0.259)  (0.136,0.192) (0.898,0.909)  (0.837,0.907) (0.793,0.842)  (0.972,0.996) (0.819,0.874) (0658, 0.725)
NIMA [40] 0.904 0.764 0.361 0.256 0.879 0.791 0.807 0.953 0.712 0.540
(0.895,0913)  (0.751,0.776) (0.315,0.405)  (0.232, 0.280) (0.872,0.886)  (0.748, 0.828) (0.774,0.835) (0901, 0.978) (0.648.0.765) (0486, 0.589)
PaQ-2-PiQ [51] 0.880 0.689 0.402 0.291 0.911 0.861 0.870 0.978 0.888 0.749
(0.871,0.888)  (0.675, 0.703) (0.343,0457)  (0.261,0.321) (0.906,0915)  (0.823,0.891) (0.851,0.886)  (0.949,0.991) (0.865,0908)  (0.717,0.777)
SPAQ MT-A [17] 0.842 0.689 0.393 0.308 0.898 0.816 0.870 0.957 0.894 0.727
(0.835,0.849)  (0.677,0.702) (0.356,0.430)  (0.286, 0.331) (0.892,0.904)  (0.777,0.849) (0.853,0.886)  (0.909, 0.980) (0.869,0915) (0689, 0.760)
SPAQ BL [13] 0.844 0.672 0.401 0.332 0.901 0.820 0.875 0.888 0.887 0.729
(0.835,0.852)  (0.659, 0.685) (0.358,0.442)  (0.307, 0.356) (0.894,0.907)  (0.781,0.852) (0.858,0.890)  (0.812,0.935) (0.862,0.908)  (0.694, 0.760)
SPAQ MT-S [13] 0.810 0.648 0.417 0.344 0.891 0.808 0.882 0.959 0.764
(0.804,0.816)  (0.640, 0.656) (0.382,0.450)  (0.319, 0.368) (0.883,0.897)  (0.767, 0.842) (0.867,0.896)  (0.914, 0.981) (0.886,0.926)  (0.731,0.793)
VSFA [20] 0.894 0.757 0.517 0.370 0.927 0.790 0.914 0.989 0.846 0.694
(0.890,0.898)  (0.748, 0.764) (0.467,0.565)  (0.339, 0.401) 0.922,0.932) (0782, 0.799) (0.900,0.927) (0973, 0.996) (0.818,0.870) (0662, 0.723)
Linearity [1] 0.900 0.731 0.470 0.336 0.932 0.902 0.906 0.993 0.919 0.791
(0.894,0.906)  (0.721, 0.740) (0.424,0.514)  (0.311,0.361) (0.928,0.936)  (0.870,0.926) (0.892,0918)  (0.981,0.997) (0.903,0933) (0768, 0.812)
MDTVSFA 2] 0.943 0.818 0.560 0.363 0.945 0.871 0.932 0.997 0.882 0.746
“(0940,0946)  (0.811,0.824) (0511,0.606)  (0.331,0.394) (0.941,0.948)  (0.843, 0.895) (0.919,0943) (0991, 0.999) (0.859,0902)  (0.718,0.772)
Full-Reference
FOV VIDEO [31] 0.526 0.372 0.158 0.116 0.558 0.403 0.381 0.539 0.281 0.211
(0512,0539)  (0.361,0.384) (0.135,0.182)  (0.100, 0.133) (0.544,0571)  (0.393,0.413) (0.349,0.414) (0377, 0.670) (0.243,0319)  (0.185,0.238)
LPIPS [57] 0.774 0.577 0.270 0.179 0.814 0.815 0.532 0.477 0.464 0.356
(0.761,0.786) ~ (0.565, 0.589) (0.246,0.293)  (0.160, 0.198) (0.803,0.824)  (0.757, 0.860) (0.499,0.563) (0452, 0.502) (0.422,0504) (0325, 0.387)
DVQA [1] 0.781 0.584 0.103 0.100 0.786 0.828 0.458 0.466 0.503 0.366
(0.766,0.794)  (0.572, 0.596) (0.075,0.130)  (0.088,0.113) (0.775,0.797)  (0.767,0.874) (0.434,0482)  (0.435,0.495) (0.446,0.555)  (0.327, 0.403)
GREED [30] 0.823 0.642 0.210 0.145 0.805 0.808 0.593 0.682 0.593 0.448
(0.811,0.834)  (0.628, 0.656) (0.189,0.231)  (0.128,0.162) (0.796,0.815)  (0.748, 0.854) (0.562,0.621)  (0.557,0.777) (0.554,0.630)  (0.417,0.478)
Y-VQM [45] 0.752 0.586 0.265 0.149 0.842 .833 0.787 0.589 0.843 0.700
(0.721,0.779)  (0.559,0.611) (0213,0315)  (0.117,0.181) (0.833,0.851) (0780, 0.873) (0.754,0.816) (0565, 0.613) (0.804,0.874) (0656, 0.740)
DISTS [12] 0.901 0.731 0.417 0.245 0.866 0.873 0.711 0.731 0.626 0.460
(0.896,0.906)  (0.723, 0.739) (0.397,0.436)  (0.229, 0.260) (0.860,0.873)  (0.828, 0.908) (0.695,0.726)  (0.621,0.812) (0.601,0.650)  (0.440, 0.478)
AVQT 2] 0.923 0.784 0.176 0.075 0.894 0.872 0.857 0.926 0.842 0.698
(0.918,0.927)  (0.777,0.791) (0.129,0.222)  (0.042,0.107) (0.889,0.899)  (0.831,0.903) (0.833,0.877)  (0.858,0.962) (0.812,0.867) (0665, 0.728)
YUV-PSNR 0.907 0.869 0.239 0.119 0.893 0.911 0.813 0.641 0.900 0.773
(0.901,0912)  (0.814,0.908) (0.184,0.293)  (0.085,0.152) (0.886,0.898)  (0.874,0.937) (0.786,0.837) (0616, 0.664) (0.878,0919) (0743, 0.800)
YUV-SSIM 0.937 0.820 0.302 0.177 0.915 0.921 0.869 0.874 0912 0.806
(0.935,0940)  (0.813, 0.826) (0.256,0.347)  (0.144,0.209) (0.910,0.920)  (0.888, 0.944) (0.848,0.887) (0788, 0.926) (0.891,0929) (0776, 0.832)
Y-MS-SSIM [46] 0.952 0.897 0.259 0.13 0.910 0.901 0.860 0.819 0.905 0.778
(0.950,0.955)  (0.854,0.928) (0211,0306)  (0.102,0.166) (0.905,0914)  (0.864,0.928) (0.839,0.879)  (0.741,0.876) (0.882.0.923) (0747, 0.805)
Y-VMAF NEG [26] 0.946 0.823 0.268 0.163 0.910 0.902 0.863 0.957 0.880 0.731
(0.943,0948)  (0.818,0.827) (0.215,0.320)  (0.128,0.197) (0.905,0915)  (0.865,0.928) (0.842,0.881)  (0.909, 0.980) (0.855.0.900)  (0.700, 0.759)
N 0.945 0.836 0.245 0.146 0.920 0.925 0.861 0.884 0.896 0.766
YUV-VMAF NEG [26] (0.942,0.947)  (0.831,0.841) (0.196,0.293)  (0.113,0.179) (0.915,0925)  (0.894,0.947) (0.840,0.880)  (0.806, 0.933) (0.873,0915)  (0.736, 0.793)
Y-VMAF (v061) [26] 0.932 0.803 0.453 0.366 0.940 0.922 0.905 0.997 0.874 0.732
1 0928,0936)  (0.798,0.809) (0.405,0.499)  (0.337,0.394) (0.937,0944)  (0.893,0.943) (0.890,0.919) X (0.849,0.895) (0701, 0.760)
. 0.952 0.846 0.274 0.216 0.946 0.939 0.910 0.996 0.897 0.767
YUV-VMAF (v061) [26] (0.950,0954)  (0.841,0.851) (0.225,0.322) (0186, 0.246) (0.942,0949)  (0.914,0.957) (0.894,0.924)  (0.988, 0.999) (0.874,0916)  (0.737,0.794)

Table 4: Results for SROCC and KROCC on five subsets of our dataset (by encoding category).
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Figure 4: Distribution of metric scores. Each metric appears on a separate axis.

4 Conclusion

We created a new diverse dataset containing 2,486 videos compressed by various encoding standards,
including AVC, HEVC, AV1, and VVC. We used it to analyze the correlation between new learning-
based objective-quality metrics and subjective-quality scores. Our analysis revealed that some new
no-reference metrics, such as MDTVSFA, have already caught up with full-reference metrics. At
the same time, VMAF showed the highest correlation with subjective scores, making it the best
full-reference option for assessing video-compression quality. The open part of the dataset is available
publicly . The code, with an example metric launch running on that part of the dataset, is also
available .

*https://videoprocessing.ai/datasets/vqa.html
*https://github.com/msu-video-group/MSU_VQM_Compression_Benchmark
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Dataset User-Generated Content Shaking Sports Nature Gaming / Animation
: 203 videos 594 videos 582 videos 1216 videos 204 videos

Metric SROC KROC SROC KROC SROC KROC SROC KROC SROC KROC

No-Reference

MEON [29] 0.072 0.102 0.221 0.176 0.645 0.490 0.524 0.405 0.707 0.531
(0.021,0.122)  (0.061,0.143) (0.201,0241)  (0.162,0.190) (0.625,0.665)  (0.473,0.507) (0.508,0.539)  (0.393,0.416) (0.677,0.734)  (0.503,0.557)

Y-NIQE [35] 0.232 0.164 0.473 0.332 0.672 0.485 0.621 0.443 0.810 0.623
(0.148,0312) (0102, 0.223) (0.437,0507) (0305, 0.358) (0.658,0.685)  (0.474,0.496) (0.604,0.638)  (0.429,0.457) (0.794,0.826) (0602, 0.644)

VIDEVAL [41] 0.422 0.304 0.535 0.386 0.836 0.645 0.739 0.548 0.923 0.773
(0.365,0.475)  (0.260,0.346) (0.511,0.559)  (0.367, 0.406) (0.827,0.844)  (0.634,0.655) (0.726,0.751)  (0.536,0.560) 0.912,0.933)  (0.751,0.792)

KonCept512 [17] 0.789 0.629 0.833 0.651 0.843 0.669 0.809 0.642 0.755 0.565
(0.771,0805) (0612, 0.646) (0.819,0.847)  (0.634,0.666) (0.836,0.849)  (0.661,0.676) (0.802,0.816)  (0.634,0.649) (0.732,0.777)  (0.543,0.587)

NIMA [40] 0.826 0.674 0.849 0.677 0.837 0.656 0.792 0.609 0.814 0.637
(0.809,0.842)  (0.654,0.693) (0.838,0.859)  (0.664,0.689) (0.831,0.843)  (0.649, 0.664) (0.783,0.801)  (0.599,0.618) (0.804,0.823) (0628, 0.645)

PaQ-2-PiQ [51] 0.801 0.659 0.807 0.643 0.908 0.753 0.827 0.658 0.963 0.855
(0.778,0.822)  (0.637,0.679) (0.792,0.821)  (0.627,0.659) (0.903,0913)  (0.745,0.761) (0.818,0.835)  (0.648, 0.667) (0.961,0.965)  (0.851,0.860)

SPAQ MTA [13] 0.786 0.624 0.797 0.607 0.848 0.678 0.857 0.690 0.942 0.801
(0.733,0829)  (0.570,0.672) (0.776,0.816)  (0.585,0.629) (0.841,0.854)  (0.671,0.684) (0.848,0.864)  (0.680,0.700) (0.937,0947)  (0.793,0.810)

SPAQ BL [13] 0.764 0.608 0.797 0.603 0.869 0.699 0.865 0.693 0.924 0.773
(0.709,0810) (0553, 0.657) (0.773,0.818)  (0.578,0.627) (0.864,0.875)  (0.693,0.706) (0.856,0.872)  (0.683,0.704) (0.921,0.926) (0769, 0.778)

SPAQ MT-S [17] 0.780 0.619 0.756 0.568 0.890 0.72 0.863 0.693 0.954 0.830
(0.739,0.815)  (0.575,0.661) (0.735,0.776)  (0.546,0.589) (0.884,0.895)  (0.720,0.734) (0.855,0.871)  (0.683,0.703) (0.949,0.958)  (0.819, 0.839)

VSFA [20] 0.852 0.690 0.830 0.654 0.911 0.758 0.873 0.708 0.975 0.881
(0.843,0.861)  (0.678,0.702) (0.818,0.841)  (0.640,0.667) (0.905,0.916)  (0.750,0.765) (0.867,0.878)  (0.701,0.716) (0.972,0.978)  (0.873,0.889)

Linearity [21] 0.893 0.753 0.864 0.688 0.931 0.787 0.904 0.754 0.964 0.856
(0.882,0903) (0738, 0.767) (0.852,0.874)  (0.674,0.702) (0.927,0936)  (0.780,0.795) (0.899,0.909)  (0.747,0.761) (0.961,0.967)  (0.849, 0.862)

MDTVSFA 7] 0912 0.776 0.897 0.742 0.924 0.780 0.917 0.772 0.971 0.866
(0.904,0918)  (0.763,0.788) (0.888,0.905)  (0.729,0.754) (0.920,0928)  (0.773,0.787) (0.913,0921)  (0.766,0.778) (0.968,0.973)  (0.860, 0.872)

Full-Reference

FOV VIDEO [31] 0.625 0.464 0.540 0.387 0.560 0.401 0.516 0.373 0.566 0.396
(0.596,0.651)  (0.441,0.486) (0.528,0.553)  (0.378,0397) (0.546,0.574)  (0.389,0.412) (0.506,0527)  (0.365,0.380) (0.550,0.581)  (0.384,0.408)

LPIPS [52] 0.724 0.587 0.639 0.473 0.854 0.674 0.746 0.565 0.785 0.597
(0.692,0.753) (0565, 0.609) (0.617,0.660)  (0.455,0.490) (0.846,0.861)  (0.665,0.683) (0.734,0.758)  (0.554,0.576) (0.772,0.798)  (0.586. 0.608)

DVQA [1] 0.847 0.689 0.708 0.528 0.841 0.653 0.783 0.600 0.883 0.709
(0.824,0.867)  (0.664,0.711) (0.687,0.727)  (0.510,0.545) (0.832,0.849)  (0.642,0.663) (0.772,0.792)  (0.590, 0.610) (0.872,0.894)  (0.694,0.723)

GREED [30] X 72 0.726 0.551 0.805 0.640 0.748 0.580 0.828 0.643
(0.685.0.749) (0543, 0.600) (0.712,0.740)  (0.538,0.564) (0.800,0.811)  (0.634,0.645) (0.739,0.755)  (0.573,0.588) (0.812,0.842)  (0.624, 0.662)

Y-VQM [45] 0.809 0.656 0.810 0.634 0.867 0.689 0.848 0.677 0.930 0.779
(0.787,0.830)  (0.637, 0.675) (0.798,0.822)  (0.620,0.647) (0.857,0.877)  (0.675.0.702) (0.841,0.855)  (0.669, 0.685) (0.922,0.936)  (0.766,0.791)

DISTS [17] 0.854 0.694 0.794 0.613 0.893 0.726 0.834 0.657 0.896 0.727
(0.831,0.874)  (0.668,0.718) (0.780,0.807)  (0.599, 0.627) (0.888,0.898)  (0.719,0.733) (0.826,0.841)  (0.649, 0.665) (0.888,0.902)  (0.717.0.737)

AVQT [2] 0.919 0.791 0.849 0.684 0.902 0.757 0.877 0.719 0.913 0.772
(0.908,0928)  (0.774,0.807) (0.838,0.860) (0669, 0.698) (0.896,0.908) (0748, 0.765) (0.871,0.883)  (0.712,0.727) (0.910,0915) (0768, 0.776)

YUV-PSNR 0.770 0.638 0.810 0.645 0.933 0.793 0.868 0.710 0.944 0.807
(0.740,0.797)  (0.616,0.658) (0.797,0.822)  (0.632,0.658) (0.928,0.937)  (0.785,0.801) (0.860,0.876)  (0.701,0.719) (0.938,0.950)  (0.795,0.818)

YUV-SSIM 0.779 0.642 0.811 0.648 0.952 0.828 0.900 0.750 0.958 0.837
(0.750,0.805) (0618, 0.665) (0.797,0.824)  (0.633,0.663) (0.948,0957)  (0.818,0.837) (0.893,0.907)  (0.740,0.759) (0.951,0.964)  (0.823, 0.850)

Y-MS-SSIM [46] 0.895 0.746 0.851 0.680 0.942 0.808 0.901 0.746 0.955 0.832
(0.882,0907)  (0.729,0.762) (0.841,0.862) (0.6, 0.693) (0.938,0.947)  (0.800,0.817) (0.895,0.907)  (0.738,0.754) (0.950,0.960)  (0.821,0.841)

Y-VMAF NEG [26] 0916 0.779 0.861 0.688 0.945 0.810 0.909 0.757 0.960 0.841
(0.907,0.925)  (0.765,0.791) (0.851,0.870)  (0.675,0.700) (0.940,0.949)  (0.802, 0.818) (0.903,0914)  (0.749,0.765) (0.956,0.964)  (0.832,0.849)

0916 0.773 0.861 0.691 0.947 0.815 0.913 0.763 0.968 0.860
YUV-VMAFNEG 61 907 0904 (0761, 0.785) (0.851,0.870)  (0.678,0.703) (0.942,0951)  (0.807,0.823) (0.908,0918)  (0.756,0.771) (0.965,0.970)  (0.854, 0.866)

Y-VMAF (v061) [26] 0.946 0.891 0.730 0.959 0.836 0.942 0.810 0.967 0.860
(0.940,0.952) (0.882,0.900)  (0.717.0.743) (0.955,0.962)  (0.828, 0.843) (0.939,0.946)  (0.803, 0.816) (0.964,0.969) (0854, 0.866)

0.942 0.879 0.716 0.961 0.843 0.944 0.813 0.972 0.872
YUV-VMAF (v061) [26] (0.935,0948)  (0.807, 0.832) (0.870,0.888)  (0.703,0.729) (0.958,0.964)  (0.836, 0.850) (0.941,0.947)  (0.806, 0.819) (0.971,0.974)  (0.868, 0.876)

Table 5: Results for SROCC and KROCC on five subsets of our dataset (by content type).

No-Reference Metric VIDEVAL! (CPU) MEON' (CPU) Lincarity' KonCept512' SPAQMT-S'  SPAQBL' SPAQMT-A' NIMA'  MDTVSFA! VSF'A PaQ-2-PiQ' NIQE'
Computation Complexity (FPS) 0.62 227 3.41 4.18 6.48 6.49 6.66 7.24 9.12 9.26 11.10 80.00
Full-Reference Metric LPIPS! DVQA! GREED!  DISTS!  FOVVIDEO! AVQT(CPU)  VMAF'  MS-SSIM!  SSIM!  VQM'  PSNR!
Computation Complexity (FPS) 320 575 7.10 8.65 3757 37.66 52.62 99.36 16058 280.00  371.96

Table 6: FPS evaluation for videos from the dataset. The metric testing used a configuration with two
Intel Xeon Silver 4216 processors running Ubuntu 20.04 at 2.10 GHz with a Titan RTX GPU, and
another configuration with an Intel Core 19 processor running at 2.3 GHz with 16 GB of RAM and
AMD Radeon Pro 5500M 4 GB graphics card.

Our proposed dataset will be useful for researchers and developers of image- and video-quality
metrics that evaluate video-compression artifacts. It can serve in training models that assess video-
compression quality to achieve more-precise results and higher correlation with subjective scores.
Our benchmark will remain an unbiased test of compression quality for new image- and video-quality
metrics.

We are accepting new methods for evaluation using our benchmark®. During the few months since
its publication, we have already received several submissions, as well as good reviews and requests
for further development. Our plan is to further increase the number of original videos and add new
encoders. Because the subjective tests are expensive, we estimate our current dataset cost about
$15,000. We are open to collaboration and sponsorship to improve the dataset more quickly and to
provide more-reliable and more-valuable results.

Shttps://videoprocessing.ai/benchmarks/video-quality-metrics.html
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4.1 Limitations

We did not retrain the tested metrics on the open part of our dataset. We used already trained models
without tuning their parameters. This approach allowed us to prevent metrics from overfitting on
our dataset. Nevertheless, some methods are not fitted for data that was absent from the training
set (for instance, compression artifacts) or simply underwent training on small datasets. As a result,
these metrics may show weak performance on our dataset. Future work will therefore include metric
retraining on open part of the dataset and assessment of their quality on the hidden part.
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