
Published as a conference paper at ICLR 2025

DISCOVERING CLONE NEGATIVES VIA ADAPTIVE CON-
TRASTIVE LEARNING FOR IMAGE-TEXT MATCHING

Renjie Pan, Jihao Dong, Hua Yang∗
Institute of Image Communication and Network Engineering, Shanghai Jiao Tong University
Shanghai Key Lab of Digital Media Processing and Transmission, Shanghai Jiao Tong University
{rjpan21,dongjihao,hyang}@sjtu.edu.cn

ABSTRACT

In this paper, we identify a common yet challenging issue in image-text matching,
i.e., clone negatives: negative image-text pairs that semantically resemble positive
pairs, leading to ambiguous and sub-optimal matching outcomes. To tackle this
issue, we propose Adaptive Contrastive Learning (AdaCL), which introduces two
margin parameters along with a modulating anchor to dynamically strengthen
the compactness between positives and mitigate the influence of clone negatives.
The modulating anchor is selected based on the distribution of negative samples
without the need for explicit training, allowing for progressive tuning and advanced
in-batch supervision. Extensive experiments across several tasks demonstrate the
effectiveness of AdaCL in image-text matching. Furthermore, we extend AdaCL to
weakly-supervised image-text matching by replacing human-annotated descriptions
with automatically generated captions, thereby increasing the number of potential
clone negatives. AdaCL maintains robustness in this setting, alleviating the reliance
on crowd-sourced annotations and laying a foundation for scalable vision-language
contrastive learning.

1 INTRODUCTION

Image-text matching(Fang et al., 2023; Qu et al., 2021; Huang et al., 2019; Shi et al., 2019; Chen
et al., 2021) has become de facto the most fundamental multimodal task in recent years, which
involves searching for images with text queries (text-image) and the retrieval of sentences using
images (image-text). Existing image-text matching methods usually learn a robust cross-modal
representation through various fusion paradigms, such as object-level or global-level aligning(Zhang
et al., 2022; Wang et al., 2022a; Cheng et al., 2022; Li et al., 2022b; Qu et al., 2021; Chen et al.,
2021; Wang et al., 2020a; Wu et al., 2019; Li et al., 2019; Lee et al., 2018; Dong et al., 2024; Song
et al., 2024). On the other hand, contrastive learning(Li et al., 2022a; Radford et al., 2021; He
et al., 2020; Oord et al., 2018; Zhang & Lu, 2018) has been widely adopted as the objective, which
brings similar (or positive) samples closer in the latent space while pushing dissimilar (or negative)
samples apart. Among them, Triplet ranking loss (TRL)(Wang et al., 2019; 2018; Faghri et al., 2017)
and Contrastive loss (CL)(Li et al., 2021; Radford et al., 2021; He et al., 2020) have witnessed the
success of vision-language contrastive learning. Specifically, TRL preserves the relative distance
between in-batch samples through a manually-set fixed margin. CL is defined as the cross-entropy
of the softmax-normalized similarity between each image-text pair. In self-supervised learning and
multimodal learning, InfoNCE and its variants(Oord et al., 2018; Ma & Collins, 2018; Liang et al.,
2024; Cheng et al., 2020; Zhang & Lu, 2018) are the prevalent forms of CL.

Despite these advancements, current contrastive learning for image-text matching faces an inherent
challenge: During an in-batch learning, it is common for image-text pairs to possess semantically
related text annotations and similar visual cues, thereby rendering them practically indistinguishable
(reflected by their closing similarity scores). As shown in Figure 1(a), T2 is a typical hard negative
for I1, which has been widely discussed (Pan et al., 2023a; Wang et al., 2020b; Zhang et al., 2022).
It is noteworthy that apart from the key semantic “two skyscrapers”, T3 is semantically-consistent
with I1. Although matching I1 and T3 is indeed correct, it is no doubt a sub-optimal result because
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Figure 1: (a) A case of “hard negatives” and “clone negatives”. Compared with gold label (T1), clone
negative (T3) is defined as a “sub-optimal” text sample. (b) Geometrical illustration of Adaptive
Contrastive Learning, which adaptively enlarges the distance between positives and clone negatives.

the ground-truth annotation T1 exhibits more precise and fine-grained semantics, demonstrating a
closer correspondence with I1. Different from false negatives which should be considered as “true”,
we refer to samples like T3 as clone negatives, which is quite challenging for matching in such
scenarios. Distinguishing clone negatives through cross-modal fusion is highly intractable since
clone negatives are somehow “positive”. Also, the limited prior works primarily focus on negative
mining strategies for single modality (Wang et al., 2024; Robinson et al., 2020; Yang et al., 2021), or
learning noisy correspondence (Han et al., 2024; Huang et al., 2021). Image-text matching continues
to predominantly rely on vanilla TRL or CL by setting a fixed margin during training, making it
tough to actively address the issue of clone negatives since it has already pre-defined the label of all
the image-text pairs (positive or negative).

In this work, we propose Adaptive Contrastive Learning (AdaCL) to exploit reliable clone negatives
and distinguish them effectively in image-text matching. Instead of the fixed learning pattern of
TRL and CL, we specifically add two margin parameters, serving as scaling and shifting factors, to
synchronously enhance the compactness of positives while introducing the supervision of the clone
negatives. To progressively tune the margin parameters, we propose to select a modulating anchor
from each in-batch similarity score based on Gaussian discriminant analysis without explicit training.
In this way, anchor effectively reflects the intensity of in-batch clone negatives, and imposes a
substantial penalty through the margin parameters, thereby adaptively enlarging the distance between
positives and clone negatives. Comprehensive experiments conducted on image-text matching,
noisy correspondence learning, CLIP pre-training, and text-based person search demonstrate the
effectiveness and robustness of AdaCL.

Moreover, AdaCL can be applied to weakly-supervised image-text matching with structured and
standardized text annotations. We propose to increase the number of potential clone negatives by
substituting the original textual descriptions with automatically generated captions using image
captioning methods. We verify AdaCL by four distinct captioning tools, and it is observed that
AdaCL can also learn robust cross-modal semantics. This not only demonstrates the effectiveness of
AdaCL in distinguishing clone negatives, but also mitigating the need for crowd-sourced annotations,
laying a foundation for future vision-language contrastive learning. To sum up, the main contributions
of this paper include:

• We elucidate the issue of clone negatives: semantic-consistent but suboptimal matching
candidates, and highlight the challenge they pose to existing contrastive learning for image-
text matching.

• We propose Adaptive Contrastive Learning (AdaCL), introducing two margin parameters
that dynamically propagates the semantics of clone negatives during training, enhancing the
compactness of positives and mitigating the impact of clone negatives.

• AdaCL demonstrates superiority in both various downstream tasks and our proposed weakly-
supervised image-text matching, which uses automatically generated captions as annotations.
Extensive experiments prove the robustness of AdaCL, alleviating the reliance on manual
annotations.
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2 RELATED WORK

Image-Text Matching. The general process of Image-text matching can be attributed to two
key components: (1) cross-modal feature fusion, and (2) learning objectives. The former can be
categorized to global representation fusion and region-level fragment fusion. Global representation
fusion extracts holistic feature from two modalities, and then mapping them to a joint visual-textual
alignment where the similarity is calculated(Zhang & Lu, 2018; Ma et al., 2015). Region-level
fragment fusion captures local content of two modalities to enhance the cross-modal interaction(Li
et al., 2017a; Lee et al., 2018; Cheng et al., 2022; Diao et al., 2021; Pan et al., 2021). Apart from this,
graph-structured methods (Liu et al., 2020; Wang et al., 2020a; Li et al., 2022b) also leverage nodes to
represent region-level matching, further exploiting the instance relationships. The learning objectives
of image-text matching can be categorized to contrastive loss (CL) (Li et al., 2022a; Radford et al.,
2021; He et al., 2020; Oord et al., 2018; Zhang & Lu, 2018) and triplet ranking loss (TRL) (Wang
et al., 2019; 2018). For CL, Zhang & Lu (2018); Wang et al. (2020b) proposed to minimize the
distance between the projection distributions and the normalized matching distributions together
with a classification objective. TRL is widely adpoted by existing methods (Wang et al., 2018; Pan
et al., 2023a; Qu et al., 2021). Several studies have also sought to address false negatives by reducing
sampling weights(Li et al., 2023a; Zhang et al., 2022; Li et al., 2023c), which is essentially a “passive”
approach. However, such methods cannot handle clone negatives due to the fundamental differences
between false negatives and clone negatives, as the latter are of significant learning value. Also,
both TRL and CL are inherently limited by a manully-set margin, which fails to consider the sample
discrepancy of clone negatives. To address this challenge, a pivotal solution lies in the ability to
adaptively emphasize the learning of these samples.

Contrastive Learning. Contrastive learning has emerged as a powerful paradigm in self-supervised
learning and representation learning, aiming to learn discriminative features by contrasting positive
pairs against negative pairs (Schroff et al., 2015; Oord et al., 2018; Zhang & Lu, 2018). The foundation
of contrastive learning can be traced back to metric learning, where the goal was to learn a distance
function that better represents the underlying structure of the data (Bromley et al., 1993; Taigman
et al., 2014; Wang et al., 2017; Grill et al., 2020; Caron et al., 2020). Seminal works such as SimCLR
(Chen et al., 2020b) and MoCo (He et al., 2020) established the foundation for contrastive learning in
computer vision. The former introduced a simple yet effective approach using data augmentation and
a large batch size, while the latter proposed a momentum encoder to maintain a consistent dictionary
of negative samples. In parallel to its success in computer vision, contrastive learning has also shown
promise in multimodal learning (Radford et al., 2021; Li et al., 2022a; 2021), which employed a
contrastive objective to align text and image representations in a shared latent space. By pretraining
on large-scale text-image pairs, remarkable zero-shot transfer capabilities can be achieved. Despite
its success, the requirement for high-quality datasets is still a significant hurdle for many real-world
applications(Zhang et al., 2024b; Young et al., 2014) filling with clone negatives, which hinder a
broader adoption of contrastive learning.

3 ADAPTIVE CONTRASTIVE LEARNING

Our aim is to synchronously enhance the compactness between positive samples and calibrating the
supervision of clone negatives. We begin by revisiting vanilla contrastive learning, followed by our
proposed Adaptive Contrastive Learning (AdaCL) and the anchor selection methdology. By replacing
TRL and CL with AdaCL, both the matching performance and robustness have been greatly improved,
demonstrated by supervised and weakly-supervised image-text matching on various baselines.

3.1 PRELIMINARIES

Architecture of contrastive learning. The prerequisites for vision-language contrastive learning
include textual and visual modalities. Given a text description with a words and the pairwise image,
the textual and visual backbone are denoted as Ft(·) and Fv(·). Each word vector is mapped to the
common space through a fully connected layer. Fv generates a sequence of n patches to extract visual
feature. The fine-grained representation of both modalities can be denoted as: w = Ft(T ) ∈ Ra×Dt

and v = Fv(I) ∈ Rn×Dv . The similarity score of a certain image-text pair can be denoted as
s(I, T ) = gv(v)

Tgw(w). For clarity and readability, we use gv(·) and gw(·) to represent optional

3



Published as a conference paper at ICLR 2025

sim

𝐼!
𝐼"
𝐼#
𝐼$⋯

𝐼%

𝑇! 𝑇" 𝑇# 𝑇$

⋯𝑇%

Anchor
⋯ ⋯

Adaptive Contrastive Learning

𝒈𝒗

𝒈𝒘
A group of people is 
running a race or a
marathon in the city.

s!!
s""

s##
s$$

s%%

𝑺∗: Estimated clone negatives	𝑺𝒔𝒍𝒏: Salient negatives

ℱ'

ℱ(

Sort by
Salient
Score

Min: 𝑺𝒄𝒍𝒏 𝑷 𝒔 𝓒 = 𝟏

𝑷 𝒔 𝓒 = 𝟎Max:	𝑺𝒔𝒍𝒏

GDA𝑷 𝓒 = 𝒊 𝒔

𝑺∗: {𝒔𝟏∗ , 𝒔𝟐∗ , ⋯ , 𝒔𝑷∗ }

⋯⋯

⋯

𝑺𝒄𝒍𝒏: Reference clone negatives

fusion

⋯𝑇&

Figure 2: Illustration of Adaptive Contrastive Learning (AdaCL). Salient negatives and Reference
clone negatives are selected by Salient Score (Sec. 3.3). AdaCL dynamically adjusts two introduced
margin parameters based on Gaussian discriminant analysis, facilitating the contrastive learning
process. This approach progressively tunes the margins to effectively regulate the distance between
positives and clone negatives (Sec. 3.2). Unlike vanilla CL, AdaCL adapts its parameters to the
intensity of clone negatives, enhancing robustness in challenging scenarios. Additionally, AdaCL
features a plug-and-play design, demonstrating excellent adaptability and compatibility across various
tasks (Sec. 4).

cross-modal operations (such as fusion or connector) between visual and textual representation, where
D is the dimension of the joint embedding space.

Training objective. Vanilla contrastive learning relies on a fixed learning pattern to narrow the
distance between positive samples. Specifically, the softmax normalized similarity for image I and
its corresponding text Ti can be denoted as:

pi(I) =
exp(s(I, Ti)/τ)∑M+1

j=1 exp(s(I, Tj)/τ)
, (1)

where the denominator consists of M + 1 samples, i.e., one positive and M negatives. Noted that if
momentum memory bank is not used, then M equals to the mini-batch size N . τ is a fixed temperature
parameter controlling the overall supervision. pi(I) represents the probability of assigning I to the
corresponding ground truth Ti. Then, a cross-entropy loss is adopted:

L = EI∼D [H(y(I),p(I))] = − 1

N

N∑
i=1

yi(I) log(pi(I)), (2)

where y(I) is a one-hot distribution where the ground-truth is set by 1. Equation 2 pulls positive
image-text pairs closer while pushing away the pre-defined negative pairs.

3.2 ADAPTIVE CONTRASTIVE LEARNING

Current image-text matching typically utilize TRL(Wang et al., 2019; 2018) and CL(Zhang & Lu,
2018; Wang et al., 2020b; Radford et al., 2021) during training. As mentioned before, it is highly
intractable to distinguish clone negatives, leading to insufficient representation learning. Also, the
semantic discrepancy between positives and clone negatives cannot be fully exploited. Based on
this fact, AdaCL is proposed by introducing two margin parameters that play the role of scaling and
shifting factors. The margin parameters are adaptively tuned under the supervision of potential clone
negatives selected via the distribution of in-batch similarity logits.

For simplicity, we analyze the i-th image-text pair from a mini-batch. In order to uncover and enhance
the supervision of potential clone negatives, we introduce two margin parameters to pi(I) to serve as
the scaling and shifting factors:

p̂i(I) =
exp [m1(s(I, Ti)−m2)]

exp [m1(s(I, Ti)−m2)] +
∑M+1

j=1,j ̸=i exp [s(I, Tj)]
, (3)

m1 and m2 are the tuning targets during training. For the tuning process, we strategically select a
specific anchor that embodies the characteristics of clone negatives. anchor serves as a regulation in
the overall supervision of in-batch clone negatives (details in Section 3.3). In order to compute m1

and m2 during each batch learning, two conditions are specifically analyzed. First, the probability of
anchor can be obtained using Equation 3:
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p̂u =
exp [m1(anchor −m2)]

exp [m1(anchor −m2)] +
∑

anchor
, (4)

where
∑

anchor is the simplification of
∑M+1

k=1,k ̸=u exp [s(Iu, Tk)]. Since anchor represents the en-
semble average probability of potential in-batch clone negatives, its corresponding p̂u reflects the
approximate convergence degree of the model to a large extent. Second, if we can control p̂u, then the
overall supervision within the batch are well regulated. Therefore, we propose to progressively tune
m1 and m2 based on p̂u. To achieve this, a specific boundary condition of Equation 4 is analyzed:
Since cross-entropy loss is represented as L = −log(p̂u), when the score of anchor, i.e., s(Iu, Tu)
(same as spos in Equation 11) approaches 1 (indicating a high similarity), a relative small m1 would
unnecessarily penalize the loss function for correct image-text pairs. Based on this fact, we reason
out a condition that p̂u should be as close to 1 as possible when s(Iu, Tu) approaches 1, to boost
distinguishing clone negatives. This condition can be expressed as:

lim
s(Iu,Tu)→1

p̂u ≈ 1. (5)

Combining Equation 4, we can approximate the following boundary:

exp [m1(1−m2)]

exp [m1(1−m2)] +
∑

anchor
= 1− ϵ, (6)

where ϵ is a small value added to avoid m1 reaches 0. With Equation 4 and Equation 6, we can derive
the values of m1 and m2 in Equation 3 iteratively and update Lada based on the objective format in
Equation 2 during training. In this way, Lada effectively propagates the semantics of clone negatives
via m1 and m2. The detailed derivation is in A.3 of the appendix.

3.3 ANCHOR SELECTION

As mentioned above, our aim is to select a salient anchor from the in-batch similarity scores to
control the supervision of potential clone negatives. It is intuitive that the image/text with the highest
similarity score with its positive text/image is more likely to be an salient negative, while a relatively
lower score corresponds to a potential negative which is hard to distinguish. To best quantitatively
analyze the in-batch similarity, we introduce a Salient Score for anchor selection. Specifically,
Si = {sij}M+1

j=1 refers to the similarity between each in-batch text/image and the ith image/text, and
sii is the positive. Then, the salient score of each in-batch sample is defined as the difference between
the positive and the average similarity of the negatives. Mathematically, it can be expressed as:

Salient Scorei = sii −
1

M

M+1∑
j=1,j ̸=i

sij . (7)

Compared with directly choosing the sample with the highest similarity, salient score better reflects
the “salient” extent by considering the negative similarity. The image-text pair with the highest
salient score is termed as Ssln, including 1 positive and M salient negatives. On the contrary, the
image-text pair with the lowest salient score is termed as Scln, including 1 positive and M potential
clone negatives.

To predict the potential clone negatives from each mini-batch, a straightforward and simple way
is to calculate the salient score of the rest in-batch image-text pairs. However, we found that in
contrastive learning, similarity scores typically do not exhibit significant numerical differences, thus
applying salient score to all the samples may result in over-fitting. Therefore, we revisit and propose
to leverage a classical algorithm Gaussian Discriminant Analysis (GDA) for prediction without the
need for explicit training. Specifically, the classification probability can be formulated as follows:

p (C | s) = p (s | C) p (C)
p (s | C) p (C) + p

(
s | C̄

)
p
(
C̄
) =

exp (ac)

exp (ac) + exp (ac̄)
. (8)

Here a binary classification is adopted, thus C and C̄ represent the pairwise similarity is / is not a
clone negative. s is the similarity score. The logit function is ac = log(p(s | C)p(C)). Therefore,
the classifier can be obtained by analyzing the data distribution of clone negatives and its prior
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distribution. In GDA, the features are typically assumed to follow the gaussian distribution with
identical covariance. Since the dimension of similarity score is 1, i.e., s ∈ R, the aforementioned
distribution expression can be simplified to a univariate distribution, where (s | C̄) ∼ N

(
µc̄, σ

2
c̄

)
,

and (s | C) ∼ N
(
µc, σ

2
c

)
Combining this assumption to Equation 8, we can obtain:

p (C | s) = 1

1 + πc̄

πc

σc

σc̄
exp

[
(s−µc)

2

2σ2
c

− (s−µc̄)
2

2σ2
c̄

] , (9)

where πc and πc̄ are the priors of C and C̄ respectively. Given that Ssln and Scln comprise the most
representative salient negatives and potential clone negatives within a mini-batch, we utilize the
negatives from Ssln and Scln within each mini-batch to represent the empirical means and variances
µc, µc̄, σc, and σc̄. The potential in-batch clone negatives are selected based on the criterion:

S∗ := {s | p (C | s) > p
(
C̄ | s

)
}, (10)

where S∗ is the estimated clone negative set from a mini-batch. Finally, anchor is obtained by the
median of ∆S, which is defined as:

∆S = {δ | δ = |spos − s|},∀s ∈ S∗; anchor := spos | δ = median(∆S). (11)

anchor reflects the average discrepancy between all potential clone negatives and their corresponding
positive. With anchor and adaptive contrastive learning in Section 3.2, the overall process of AdaCL
is demonstrated in Algorithm 1.

Algorithm 1 Adaptive Contrastive Learning
Input: a mini-batch of N image-text pairs, with N positives and N ·M negatives.
Output: Lada

1: for each mini-batch do
2: Select in-batch grounding salient negatives and clone negatives;

Ssln = {si+j} | j ∈ M, i+ = argmaxi Salient Scorei,
Scln = {si−j} | j ∈ M, i− = argmini Salient Scorei,

3: Sort out in-batch potential clone negatives S∗, and select anchor based on ∆S;
p (C | s) = 1/{1 + πc̄

πc

σc

σc̄
exp

[
(s−µc)

2

2σ2
c

− (s−µc̄)
2

2σ2
c̄

]
},

S∗ := {s | p (C | s) > p
(
C̄ | s

)
}, anchor := spos | δ = median(∆S),

4: Obtain the probability of anchor for tuning;
p̂u = exp[m1(anchor−m2)]

exp[m1(anchor−m2)]+
∑

anchor
,

5: Compute m1 and m2 according to Eq. 4 and Eq. 6;
m1 = log( ϵ p̂u

(1−ϵ)(1−p̂u)
)/(anchor − 1), m2 = anchor + log( 1−p̂u

p̂u
∑

anchor
)/m1;

6: Update p̂i(I) and Lada;
p̂i(I) =

exp[m1(s(I,Ti)−m2)]

exp[m1(s(I,Ti)−m2)]+
∑M+1

j=1,j ̸=i exp[s(I,Tj)]
, Lada = EI∼D [H(y(I), p̂(I))].

7: end for

3.4 WEAKLY-SUPERVISED MATCHING WITH PSEUDO CAPTIONS

Existing image-text datasets typically consist of detailed text descriptions to cover fine-grained
representations that appear in the corresponding images. However, in practical applications, image-
text pairs are mainly scraped from the Internet. These raw datasets not only contain inherent noises
but also exhibit a high degree of correlation: for two semantic-distinct images, their corresponding
text descriptions may be semantic-consistent. This intrinsic characteristic has been largely overlooked
in existing benchmarks. Moreover, research trend has recently been shifting towards prompt-based
semi-automatic annotations, which totally differs from current benchmarks.

To validate the applicability of AdaCL in a more general annotation setting, we conduct weakly-
supervised image-text matching on AdaCL by annotating images with external tools. Specifically, to
ensure the generalizability and tool-agnostic nature of AdaCL, we employ four off-the-shelf image
captioning methods (BLIP(Li et al., 2022a), GIT(Wang et al., 2022b), BLIP-2(Li et al., 2023b), and
CoCa(Yu et al., 2022)) to generate textual description for images in Flickr30K training set, termed
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Table 1: Comparisons of image-text matching. Baselines with three types of backbone are com-
pared, i.e., ResNet+BiGRU: CMPM (Zhang & Lu, 2018), VSE++(Faghri et al., 2017); Faster
R-CNN+BiGRU: SCAN(Lee et al., 2018), IMRAM(Chen et al., 2020a), CVSE(Wang et al., 2020a),
SGRAFDiao et al. (2021), CHANPan et al. (2023b); Faster R-CNN+BERT: DIME(Qu et al., 2021),
CHAN(Pan et al., 2023b), CORA(Pham et al., 2024), USER(Zhang et al., 2024a)

.
Methods

MS-COCO (5-fold 1K) MS-COCO (5K) Flickr30K
Image→Text Text→Image Image→Text Text→Image Image→Text Text→Image

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10
ResNet
+BiGRU
CMPM 56.1 86.3 92.9 44.6 78.8 89.0 31.1 60.7 73.9 22.9 50.2 63.8 49.6 76.8 86.1 37.3 65.7 75.5
AdaCL-CMPM 60.7 88.2 95.0 48.5 82.8 91.4 33.9 62.3 74.4 29.1 53.3 65.5 54.7 79.0 87.5 41.6 69.4 79.2
VSE++ 64.6 90.0 95.7 52.0 84.3 92.0 41.3 71.1 81.2 30.3 59.4 72.4 52.9 80.5 87.2 39.6 70.1 79.5
AdaCL-VSE++ 65.8 91.2 96.1 54.8 85.3 93.3 44.2 72.8 83.7 33.6 61.1 73.4 55.0 84.0 87.9 44.2 73.1 81.2
Faster R-CNN
+BiGRU
SCAN 72.7 94.8 98.4 58.8 88.4 94.8 50.4 82.2 90.0 38.6 69.3 80.4 67.4 90.3 95.8 48.6 77.7 85.2
AdaCL-SCAN 74.3 95.4 98.5 61.2 90.1 95.5 52.2 83.6 90.9 40.6 71.7 82.2 71.4 93.0 97.2 50.9 79.9 86.8
IMRAM 76.7 95.6 98.5 61.7 89.1 95.0 53.7 83.2 91.0 39.7 69.1 79.8 74.1 93.0 96.6 53.9 79.4 87.2
AdaCL-IMRAM 78.3 96.3 98.5 62.5 89.8 96.0 54.3 83.8 92.3 41.4 72.3 82.6 76.1 94.3 96.9 57.2 80.8 88.1
CVSE 78.6 95.0 97.5 66.3 91.8 96.3 - - - - - - 73.6 90.4 94.4 56.1 83.2 90.0
AdaCL-CVSE 79.1 95.6 97.7 67.4 93.2 97.4 56.3 83.8 92.8 41.1 73.9 83.0 74.5 91.0 95.2 56.9 83.7 91.0
SGRAF 79.6 96.2 98.5 63.2 90.7 96.1 57.8 - 91.6 41.9 - 81.3 77.8 94.1 97.4 58.5 83.0 88.8
AdaCL-SGRAF 80.3 96.7 98.5 64.2 91.6 96.4 56.0 85.1 92.9 42.3 74.1 82.7 78.9 95.6 97.8 58.7 83.2 89.5
CHAN 79.7 96.7 98.7 63.8 90.4 95.8 60.2 85.9 92.4 41.7 71.5 81.7 79.7 94.5 97.3 60.2 85.3 90.7
AdaCL-CHAN 80.9 97.1 98.7 64.7 90.6 96.0 60.7 86.4 93.4 43.0 73.3 83.0 80.8 95.1 98.0 62.1 86.0 92.3
Faster R-CNN
+BERT
DIME 78.8 96.3 98.7 64.8 91.5 96.5 59.3 85.4 91.9 43.1 73.0 83.1 81.0 95.9 98.4 63.6 88.1 93.0
AdaCL-DIME 80.3 96.7 99.0 65.5 91.7 96.9 60.0 85.7 92.2 44.3 73.6 83.8 82.6 96.3 98.9 63.6 88.4 93.7
CHAN 81.4 96.9 98.9 66.5 92.1 96.7 59.8 87.2 93.3 44.9 74.5 84.2 80.6 96.1 97.8 63.9 87.5 92.6
AdaCL-CHAN 82.1 97.2 98.9 67.9 92.5 97.5 61.1 87.9 93.3 46.0 75.0 85.6 82.0 96.5 98.2 65.6 88.3 93.3
CORA 82.8 97.3 99.0 67.3 92.4 96.9 64.3 87.5 93.6 45.4 74.7 84.6 83.4 95.9 98.6 64.1 88.1 93.1
AdaCL-CORA 83.3 97.3 99.2 66.9 92.6 97.2 67.2 88.8 94.2 47.4 76.1 86.6 83.9 95.9 98.6 64.7 89.1 93.6
USER 83.7 96.7 99.0 67.8 91.2 95.8 67.6 88.4 93.5 47.7 75.1 83.7 86.3 97.6 99.4 69.5 91.0 94.4
AdaCL-USER 84.9 97.1 99.1 67.6 91.5 95.7 68.1 88.2 94.1 47.3 76.7 83.7 86.4 98.2 99.4 69.9 90.8 94.6

as pseudo captions. The expression of pseudo captions is structured and standardized (typically in
a subject-verb-object order), where more potential clone negatives are included. Then we replace
the original annotations with pseudo captions and train with AdaCL separately. Despite the fact
that some pseudo captions may not perfectly match their corresponding images, we refrain from
re-correcting or modifying them, to ensure a weakly-supervised training manner. In this way, AdaCL
can be validated on a coarsely annotated dataset, maximizing the resemblance to image-text pairs
collected from the Internet. We demonstrate the results of BLIP as image captioning tool in Section
4.3. Due to the page limit, the complete results of GIT, CoCa, BLIP-2, and the format of pseudo
captions are detailed in A.1 and A.2 of the appendix.

4 EXPERIMENTS

4.1 SETUP

Datasets. We evaluate AdaCL on two image-text matching datasets, (1) Flickr30K(Young et al.,
2014) consists of 31,783 images, with a training/test/validation split of 29,783/1,000/1,000. (2)
MS-COCO(Lin et al., 2014) consists of 123,287 images, with a training/test/validation split of
113,287/5,000/5,000. The test sets are divided into MS-COCO 5-fold 1K (average results of 5 test
sets) and MS-COCO 5K (results of 5000 test images).
Architecture. For image-text matching, we use three types of backbones: (1) ResNet(He et al.,
2016)+BiGRU(Chung et al., 2014), (2) Faster R-CNN(Ren et al., 2015)+BiGRU, and (3) Faster
R-CNN+BERT(Devlin et al., 2018). For pre-training, we use CLIP (ViT-B/32), where the embedding
size is 512.
Training Details. All experiments are performed on four NVIDIA Tesla V100s. For image-text
matching, we use a mini-batch size of 64 and the Adam optimizer. The learning rate is 0.0002 and
starts decaying 15% of every 10 epochs after epoch 20. The maximum length of each sentence is
a = 32. For Faster R-CNN, the region number is n = 36. The dimension of joint embedding space D
is set to 256. We follow (He et al., 2020) to use the momentum memory bank, where the momentum
coefficient z is set to 0.99, and the size M is 4096. For AdaCL, p̂u is set to 0.03, and ϵ = e−7. m1

and m2 are initialized to 20 and 0.1 respectively for adaptive tuning.
Evaluation Protocols. Following previous works(Lee et al., 2018), we adopt Recall@K (R@K, K=1,
5, 10) as the evaluation metric: Given a query text, images are ranked based on their similarity to the
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query text, and a search is considered correct if at least one relevant image appears within the top K
positions in the ranking.

4.2 RESULTS ON IMAGE-TEXT MATCHING

Results on image-text matching baselines. We choose various competitive image-text matching
baselines, and the plug-and-play effectiveness of AdaCL is denoted as “AdaCL-Baseline”. From
Table 1, it is observed that AdaCL outperforms the original baselines across each backbone type. For
MS-COCO, AdaCL-CMPM achieves absolute improvement of (4.6%, 1.9%, 2.1%) on (R@1, R@5,
R@10) for image-text matching. For Flickr30K, AdaCL-SCAN achieves absolute improvement
of (4.0%, 2.7%, 1.4%) and (2.3%, 2.2%, 1.6%) on (R@1, R@5, R@10) for image-text and text-
image matching, demonstrating that AdaCL is applicable to a more general network architecture
without elaborate cross-modal fusion designing. In A.5 and A.6, we demonstrate AdaCL’s domain
generalization capacity in text-based person retrieval, and its robustness in noisy correspondence
learning. In A.9, the convergence efficiency of AdaCL is analyzed in detail to better verify its
robustness.

Results on CLIP pre-training. To assess the scalability, we extend the evaluation to pre-training of a
widely used contrastive learning framework CLIP, under two specific large-scale datasets Conceptual
Caption 3M (CC3M) and 12M (CC12M) (Sharma et al., 2018). We make a fair comparison by
training with 32 epochs under the same experimental settings, and validate the zero-shot image-text
retrieval on Flickr30K and MSCOCO. As illustrated in Table 2, AdaCL demonstrates significant
improvements under both pre-training datasets, indicating the potential in large-scale contrastive
learning framework. In A.7 and A.8 of the appendix, we also report results of AdaCL in zero-shot
image classification, and more fine-tuning performance of several other vision-language pre-training
methods.

Table 2: Zero-shot retrieval on Flickr30K and
MSCOCO. “Baseline” and “AdaCL” represent
“CLIP+vanilla CL” and “CLIP+AdaCL”.

Data Methods Image→Text Text→Image

R@1 R@5 R@10 R@1 R@5 R@10
(Flickr30K)

CC3M Baseline 26.6 52.5 63.2 18.1 39.4 49.7
AdaCL 39.5 60.8 73.7 25.5 46.9 54.3

CC12M Baseline 49.3 77.3 85.0 35.5 61.8 71.6
AdaCL 51.0 77.5 87.9 38.4 64.6 74.7

(MSCOCO)

CC3M Baseline 13.4 32.0 43.3 10.1 25.6 35.7
AdaCL 22.5 47.1 60.7 17.8 31.6 39.5

CC12M Baseline 29.3 54.4 65.3 19.0 41.0 52.5
AdaCL 34.0 55.6 65.9 25.1 47.3 57.4

Table 3: Effectiveness of AdaCL under weakly-
supervised matching (marked by “PC”).

Methods Image→Text Text→Image

R@1 R@5 R@10 R@1 R@5 R@10
AdaCL-CMPM 54.7 79.0 87.5 41.6 69.4 79.2
CMPM (PC) 42.1 68.8 82.5 31.6 57.9 70.2
AdaCL-CMPM (PC) 46.6 73.4 85.2 34.3 63.5 74.1
AdaCL-SCAN 71.4 93.0 97.2 50.9 79.9 86.8
SCAN (PC) 55.4 80.2 90.6 36.9 69.7 81.6
AdaCL-SCAN (PC) 59.7 86.3 94.6 41.4 73.6 84.0
AdaCL-CVSE 74.5 91.0 95.2 56.9 83.7 91.0
CVSE (PC) 58.0 80.4 87.8 41.5 69.4 81.3
AdaCL-CVSE (PC) 64.9 84.4 92.6 47.0 76.4 86.2
AdaCL-DIME 82.6 96.3 98.9 63.6 88.4 93.7
DIME (PC) 62.1 86.7 93.0 44.7 72.9 84.5
AdaCL-DIME (PC) 70.8 88.3 93.6 48.7 81.8 90.4

Table 4: Study of components. “PC” and “GT”
represent trained with pseudo captions (weakly-
supervised), and with ground truth annotations.

Modules
PC GT

Image→Text Text→Image

TRL CL AdaCL Anchor R@1 R@5 R@1 R@5
1 ✓ ✓ - 51.4 77.3 40.5 66.8
2 ✓ ✓ - 43.7 69.2 31.0 64.7
3 ✓ ✓ - 57.2 82.5 41.4 73.4
4 ✓ ✓ ✓ - 59.6 85.2 43.1 75.6
5 ✓ - ✓ 63.8 87.0 49.1 77.3
6 ✓ - ✓ 53.7 77.0 41.3 70.4
7 ✓ - ✓ 69.0 88.4 48.8 78.0
8 ✓ ✓ - ✓ 74.2 91.7 53.7 81.1

Table 5: Comparisons of different anchor se-
lection methods.

Selection
methods (on ∆S)

Image→Text Text→Image

R@1 R@5 R@1 R@5
Random 64.2 85.9 44.5 75.1
Maximum 62.7 85.1 42.7 72.9
Minimum 71.8 90.9 50.7 79.1
Ours (Median) 74.2 91.7 53.8 81.1

4.3 RESULTS ON WEAKLY-SUPERVISED IMAGE-TEXT MATCHING WITH PSEUDO CAPTIONS

To further validate the applicability of AdaCL in a general annotation setting, we conduct weakly-
supervised learning on Flickr30K by replacing the text annotations of the training set with pseudo
captions generated by BLIP(Li et al., 2022a). Table 3 demonstrate the performance of AdaCL on
several baselines. It is observed that R@10 of AdaCL (PC) is able to rival the original baselines,
indicating that AdaCL effectively distinguishes clone negatives and exhibits strong adaptability to
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(a) Visualization of 𝑚! and 𝑚" in AdaCL (b) t-SNE of Epoch 10 (CL) (c) t-SNE of Epoch 10 (AdaCL)

Figure 3: Analysis of the tuning process and comparison between AdaCL and CL.

automatically annotated text descriptions. The matching capability of AdaCL under an automated
annotation setting is in hot pursuit of the fine-grained human annotations, highlighting the potential
of AdaCL in weakly-supervised learning. In A.1 of the appendix, we also report results on three
more caption tools.

4.4 ABLATION STUDY

In this section, we conduct ablation experiments on Flickr30K to verify AdaCL. For fair comparison,
we choose Faster R-CNN + BiGRU for feature extractors, and cross attention for alignment learning
in all the ablation studies.

Verification of modules. In Table 4, we provide detailed verification by setting different learning
objectives during training. “AdaCL” in the 3rd column refers to employing AdaCL with a random
anchor selection method, and “Anchor” in 4th column refers to employing both AdaCL and our
proposed anchor selection. Meanwhile, two annotation settings, i.e., ground-truth text annotations
(GT) and pseudo captions (PC) are compared. The 1st to 4th rows showcase the results of pseudo
captions (weakly-supervised), and 5th to 8th rows are results based on the ground truth. AdaCL
surpasses both TRL and CL across all metrics by a significant margin, proving that AdaCL further
facilitates the learning of cross-modal semantics by adaptive tuning. The proposed anchor selection
provides AdaCL with absolute R@1 boost of 5.2%(i-t) and 4.9%(t-i). TRL generally exhibits better
performance than vanilla CL, suggesting that TRL is supposed to fit in well with retrieval tasks better
than vanilla CL. Meanwhile, we conduct a comprehensive ablation study on other hyper-parameters
including momentum memory bank and batch size. Due to page limit, they are demonstrated in A.10.

Analysis of anchor selection methods. To verify the rationality of the proposed anchor selection,
we compare with several canonical selection methods. The role of anchor is to guide the tuning
process of m1 and m2 by propagating the semantic of clone negatives. However, as shown in Table
5, selecting the maximum ∆S contradicts our motivation since its anchor has the lowest likelihood
of being representative of clone negatives, which naturally leads to poor matching results. On the
contrary, minimum selection aligns well with intuition, while it overlooks the possibility of erroneous
reasoning by the model itself. Therefore, an intermediary anchor, which reflects the average logit of
clone negatives, is proved to be the most effective. In addition, we provide an in-depth analysis of the
additional arguments involved in anchor selection methodology in A.11 of the appendix.

Analysis of adaptive tuning process. Figure 3(a) illustrates the change of the m1 and m2 in
AdaCL. During training, m2 gradually increases and stabilizes around 0.36, while m1 exhibits some
oscillations before reaching a stable value of approximately 38.1 around Epoch 10, which exhibits
a rapid convergence. Figure 3(b) and (c) showcase the t-SNE of the fused embedding in Epoch 10.
AdaCL exhibits a better clustering performance compared to CL, demonstrating its effectiveness in
boosting the convergence of the model during training.

4.5 QUALITATIVE ANALYSIS AND VISUALIZATION

Analysis of clone negatives. To analyze how AdaCL handles clone negatives, we rank the matching
results based on similarity logits and compared three distinct learning objectives. As illustrated in
Figure 4, the case study reveals that: (1) AdaCL demonstrates superior R@1 compared to CL and
TRL, successfully eliminating other potential negatives; (2) The learned representations of AdaCL
exhibit better performance in identifying clone negatives. For instance, the similarity logit for “A
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Image query CL

TRL

AdaCL
A crowd of people in running 
outfits runs a marathon with two 
skyscrapers in the background.

Rank 𝟏𝒔𝒕 Rank 𝟑𝒓𝒅
Matching results

Sim logit: 0.46

A large crowd of people are 
walking down the street.

A young woman is running a 
marathon in a light blue tank 
top and spandex shorts.

People happily walking along 
a street with palm trees in the 
background.

Sim logit: 0.33

A crowd of people in running 
outfits runs a marathon with two 
skyscrapers in the background.

A crowd of people in running 
outfits runs a marathon with two 
skyscrapers in the background.

A person is cartwheeling over 
another person while a third 
person runs behind them.

A group of people is running a 
race or marathon across the city.

Sim logit: 0.30

Sim logit: 0.47Sim logit: 0.51

Sim logit: 0.57 Sim logit: 0.52 Sim logit: 0.45

Sim logit: 0.44

A group of people is running 
a race or marathon across the 
city.

Figure 4: Matching results and similarity logits of clone negatives under CL, TRL, and AdaCL.

group of people running a race or marathon across the city” is merely 0.3. In contrast, both CL and
TRL learn sub-optimal similarity logits for clone negatives, despite the presence of the ground-truth.

CL TRL AdaCLImage query AdaCL (Pseudo Caption)

Q1: A crowd of people in running 
outfits runs a marathon with two 
skyscrapers in the background.

Q2: A group of people is running 
a race or marathon in the city.

Q3: A man in a blue T-shirt speaks 
into a blow horn towards a group 
of people.

Figure 5: Attention maps in early training stage (Epoch 10). Blue represents AdaCL trained with
pseudo captions.

Visualizations. We further make qualitative analysis by visualizing several cases in the early training
stage to verify the effectiveness of AdaCL in capturing visual cues among clone negatives. From
Figure 5, AdaCL are capable of exploring region-level instances together with some background
information, such as “two skycrapers” in Q1 and “blow horn” in Q3. Unexpectedly, we find that
the distinguishable features among the clone negatives are also learned by AdaCL. For instance,
the de facto distinction between Case 2 and Case 1 is the presence of audiences in Case 2. Even
though there is no related key word in Q2 such as “audience” or “spectator”, AdaCL still precisely
captures the spectators in the lower-left corner of the image. Meanwhile, despite the limited textual
contents provided by the pseudo captions, AdaCL roughly capture the presence of the crowd in Case
3, whose effectiveness is slightly better than TRL at the same training stage. Please refer to A.12 of
the appendix for more visualization and analysis.

5 CONCLUSION

Clone negatives are common but challenging in image-text matching. To mitigate this challenge,
we propose Adaptive Contrastive Learning (AdaCL) that introduces two adaptive margins and a
modulating anchor to dynamically adjust the compactness between sample pairs and propagates the
semantics of clone negatives. The modulating anchor is selected based on the distribution of negative
samples without explicit training, allowing for progressive tuning and enhanced in-batch supervision.
Furthermore, We extend AdaCL to a weakly-supervised image-text matching by substituting human-
annotations with automatically generated captions, increasing the number of potential clone negatives.
AdaCL demonstrates robustness in both supervised and weakly-supervised image-text matching. Its
superiority demonstrates the potential in alleviating the reliance on crowd-sourced annotations and
lays a foundation for vision-language contrastive learning.
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A APPENDIX

The appendix is structured as follows:
§A.1 provides experimental results on weakly-supervised image-text matching with pseudo captions
generated by GIT, CoCa, and BLIP-2.
§A.2 demonstrates the expression format of pseudo captions generated by the image captioning tools.
§A.3 provides the detailed derivation of anchor selection.
§A.4 provides the detailed derivation of Equation 9.
§A.5 provides experimental results on text-based person retrieval.
§A.6 provides experimental results on noisy correspondence learning.
§A.7 provides experimental results on zero-shot image classification of CLIP pre-training.
§A.8 provides experimental results on VLP fine-tuning.
§A.9 provides efficiency analysis of AdaCL.
§A.10 provides a comprehensive study of other hyper-parameters.
§A.11 provides an analysis on additional arguments involved in anchor selection.
§A.12 provides a more comprehensive visualization results of clone negatives.
§A.13 provides a discussion of the limitations for this work.

A.1 WEAKLY-SUPERVISED IMAGE-TEXT MATCHING

In the main manuscript, we utilize BLIP(Li et al., 2022a) to generate pseudo captions based on
Flickr30K training set. Then, the original text annotations are replaced by the pseudo captions
for training to verify the robustness of AdaCL in handling clone negatives. To mitigate concerns
about reliance on a specific captioning tool, we conduct a range of complementary experiments,
to comprehensively analyze its robustness. Specifically, four captioning tools are selected, i.e.,
GIT(Wang et al., 2022b), CoCa(Yu et al., 2022), and BLIP-2(Li et al., 2023b). GIT is a multi-modal
pre-training method that unifies vision-language tasks such as image/video captioning and question
answering. CoCa employs a unified transformer architecture to perform both image-text matching and
image captioning tasks. CoCa is trained on large-scale image-text pairs and can generate descriptive
captions for images while also understanding the relationship between visual and textual content.
BLIP-2 is an advanced vision-language model that builds upon its predecessor, BLIP. It introduces
a lightweight Querying Transformer (Q-Former) to bridge pre-trained vision and language models
efficiently.

The way of generating pseudo captions is unified, i.e., through the zero-shot image captioning results.
The maximum length of the pseudo caption is 30. Table 6 demonstrates the matching results of
different baselines with AdaCL based on pseudo captions. The experimental settings are the same
with the settings in the main manuscript.

From Table 6, we can make the following conclusions: By employing different image captioning
method, AdaCL demonstrates matching performance that are within a 3% margin. AdaCL achieves
highly competitive performance on the four annotation settings. Therefore, AdaCL is further proved
to be applicable to more general annotation settings, where the issue of clone negatives is well
mitigated. The impact of image captioning methods on AdaCL is trivial. More specifically, AdaCL-X
(BLIP) and AdaCL-X (BLIP-2) performs slightly better than AdaCL-X (GIT) and AdaCL-X (CoCa).
We speculate that this is because the pseudo captions generated by GIT and CoCa typically focus
on action and instance information of the image gallery, while the pseudo captions generated by
BLIP possess general descriptions, often consisting of a subject-verb-object structure with more
holistic-level semantics. Overall, the retrieval performance is quite comparable, further verifying the
robustness of AdaCL.

A.2 EXPRESSION FORMAT OF PSEUDO CAPTIONS

Regarding pseudo captions, we have presented a subset of caption cases generated by four distinct
captioning tools (BLIP, GIT, BLIP-2, and CoCa), as illustrated in Figure 6. Pseudo captions generally
provide a global and coarse overview of the images, encompassing more potential clone negatives.
Among the four methods, GIT produces the most concise captions, while CoCa tends to generate
more detailed descriptions. The weakly-supervised image-text matching based on pseudo captions
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Table 6: Comparisons of Image-Text Retrieval performance on Flickr30K test set with pseudo
captions generated by four distinct captioning methods. AdaCL-X (BLIP), AdaCL-X (GIT), AdaCL-
X (CoCa), and AdaCL-X (BLIP-2) represent AdaCL with respective image captioning methods.
Bold is the best performance, while red indicates the margin between the best and worst.

Methods Image→Text Text→Image

R@1 R@5 R@10 R@1 R@5 R@10
AdaCL-CMPM (BLIP) 46.3 72.9 85.8 34.1 63.6 75.0
AdaCL-CMPM (GIT) 44.5 (-1.8) 71.2 84.9 (-0.9) 32.7 (-1.8) 61.0 (-2.7) 73.7 (-1.5)
AdaCL-CMPM (CoCa) 44.8 71.0 (-2.4) 85.1 34.1 63.7 74.6
AdaCL-CMPM (BLIP-2) 45.9 73.4 85.7 34.5 63.3 75.2
AdaCL-SCAN (BLIP) 59.2 86.9 94.7 41.7 73.2 84.1
AdaCL-SCAN (GIT) 60.0 87.7 94.9 41.1 70.9 (-2.3) 83.4 (-1.6)
AdaCL-SCAN (CoCa) 58.1 (-1.9) 85.2 94.2 (-0.7) 40.2 (-2.0) 72.6 83.6
AdaCL-SCAN (BLIP-2) 58.1 85.2 (-2.5) 94.6 42.2 74.1 85.0
AdaCL-CVSE (BLIP) 64.7 82.6 92.9 47.0 77.5 88.4
AdaCL-CVSE (GIT) 63.6 (-1.9) 80.9 (-1.8) 90.9 (-2.0) 46.2 77.4 88.7
AdaCL-CVSE (CoCa) 63.8 81.4 91.5 45.3 (-1.7) 77.1 (-0.6) 88.0 (-0.7)
AdaCL-CVSE (BLIP-2) 65.5 82.7 92.3 46.3 77.7 88.2
AdaCL-DIME (BLIP) 71.3 88.3 94.9 54.7 82.8 90.4
AdaCL-DIME (GIT) 70.1 (-1.2) 88.0 94.2 55.1 82.3 90.6
AdaCL-DIME (CoCa) 70.8 87.8 (-0.5) 93.7 54.6 (-1.3) 82.0 (-1.4) 90.0 (-1.0)
AdaCL-DIME (BLIP-2) 70.4 88.3 93.7 (-1.2) 55.9 83.4 91.0

poses imposes demands for handling clone negatives, thus rendering this task more challenging. We
will release all datasets based on pseudo captions to facilitate further research in this domain.

A.3 DERIVATION OF m1 AND m2 IN ADACL

Revisiting AdaCL, our goal is to progressively tune m1 and m2 based on the anchor. Therefore,
we first copy Equation 3 in the main manuscript, i.e., softmax normalized similarity for each image I
and its corresponding text T with two margin parameters, which can be expressed as:

p̂i(I) =
exp [m1(s(I, Ti)−m2)]

exp [m1(s(I, Ti)−m2)] +
∑M+1

j−1,j ̸=i exp [s(I, Tj)]
, (12)

Lada = EI∼D [H(y(I),p(I))] = − 1

N

N∑
i=1

yi(I) log(p̂i(I)). (13)

The potential in-batch clone negatives are represented as:S∗ := {s | p (C | s) > p
(
C̄ | s

)
}, and

anchor is defined as the median of S∗. The two specific boundary functions of the anchor are defined
as:

p̂u =
exp [m1(anchor −m2)]

exp [m1(anchor −m2)] +
∑

anchor
, (14)

exp [m1(1−m2)]

exp [m1(1−m2)] +
∑

anchor
= 1− ϵ, (15)

where
∑

anchor is the simplification of
∑M+1

k=1,k ̸=u exp [s(Iu, Tk)].
∑

anchor can be obtained through
Equation 14, expressed as: ∑

anchor =
1−p̂u

p̂u
em1(anchor−m2). (16)

Combining Equation 16 and Equation 15, we have:[
em1(1−m2) +

1− p̂u
p̂u

em1(anchor−m2)

]
(1− ϵ) = em1(1−m2). (17)
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Figure 6: Cases of pseudo captions by four distinct captioning tools, i.e., BLIP, GIT, BLIP-2, and
CoCa.
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To simplify Equation 17, we have:

(1− ϵ)(1− p̂u)

p̂u
em1·anchor = ϵ · em1 . (18)

By taking the logarithm of both sides of Equation 18, we have:

m1 · anchor + log
(1− ϵ)(1− p̂u)

p̂u
= m1 + log ϵ. (19)

Then, m1 can be obtained, expressed as:

m1 = log(
ϵ p̂u

(1− ϵ)(1− p̂u)
)/(anchor − 1), (20)

which corresponds to Algorithm 1 in the manuscript. Meanwhile, by taking the logarithm of both
sides of Equation 16, we have:

log
∑

anchor = log 1−p̂u

p̂u
+m1(anchor −m2). (21)

Simplifying Equation 21, we obtain m2:

m2 = anchor + log(
1− p̂u

p̂u ·
∑

anchor
)/m1, (22)

which corresponds to Algorithm 1 in the main manuscript. With Equation 20 and Equation 22, m1

and m2 can be computed and updated during each batch training process with the supervision of
anchor, facilitating the model to exploit more distinguishable cross-modal semantics among samples
compared with the original TRL and CL.

A.4 DERIVATION OF EQUATION 9

Here we demonstrate the derivation of Equation 9. To begin with, a K-class classification probability
with Bayes’s formula can be expressed as:

p(y = i | x) = p(x | y = i)p(y = i)∑K
j=1 p(x | y = j)p(y = j)

=
exp (fi(x))∑K
j=1 exp (fj(x))

, (23)

In anchor selection of AdaCL, the input variable x (a.k.a s) is one-dimensional with a binary output
variable y ∈ 0, 1 (a.k.a C̄ and C). We aim to predict p(y = 1 | x). Since GDA assumes that for
each class y = 0 and y = 1, the input x follows a gaussian distribution. This can be expressed
as: p(x | y = 0) = N

(
x | µ0, σ

2
0

)
and p(x | y = 1) = N

(
x | µ1, σ

2
1

)
. µ0, µ1 and σ2

0 , σ2
1 are the

means and variances of distributions for classes y = 0 and y = 1, respectively. Thus, the posterior
probability can be expressed as:

p(y = 0 | x) =
N

(
x | µ0, σ

2
0

)
· π0

N (x | µ0, σ2
0) · π0 +N (x | µ1, σ2

1) · π1
, (24)

p(y = 1 | x) =
N

(
x | µ1, σ

2
1

)
· π1

N (x | µ1, σ2
1) · π1 +N (x | µ0, σ2

0) · π0
. (25)

Since N
(
x | µ1, σ

2
1

)
is the probability density function of a Gaussian distribution, we substitute

N
(
x | µ1, σ

2
1

)
= 1√

2πσ2
exp

(
− (x−µ)2

2σ2

)
into the above equations, obtaining Equation 9 in the

manuscript:

p (y = 0 | x) = 1

1 + π1

π0

σ0

σ1
exp

[
(s−µ0)

2

2σ2
0

− (s−µ1)
2

2σ2
1

] , (26)

p (y = 1 | x) = 1

1 + π0

π1

σ1

σ0
exp

[
(s−µ1)

2

2σ2
1

− (s−µ0)
2

2σ2
0

] , (27)

p (y = 0 | x) and p (y = 1 | x) represent the probability of a similarity score to be a clone negative
or not, without the need of explicit pre-processing to the dataset or training.
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Table 7: R@1 Results on text-based person search. “DG” stands for domain generalization, and “FT”
for fine-tuning on the corresponding dataset.

Method CUHK-PEDES ICFG-PEDES RSTPReid
DG FT DG FT DG FT

CL 16.3 49.3 15.8 43.5 12.7 30.1
AdaCL 30.5 56.7 27.9 49.0 23.9 41.4

A.5 DOMAIN GENERALIZATION ON TEXT-BASED PERSON RETRIEVAL

To evaluate the robustness of AdaCL as a plug-and-play module, we seek to evaluate its domain
generalization capabilities in text-based person retrieval. Specifically, we conduct training using
Flickr30K and select three mainstream text-based person retrieval datasets, CUHK-PEDES(Li et al.,
2017b), ICFG-PEDES(Ding et al., 2021), and RSTPReid(Zhu et al., 2021) for domain generalization
experiments. To ensure a fair comparison, we choose CMPM as the baseline, as the learning objective
it adopt in its paper is the closest to vanilla contrastive learning, and its original paper indeed
conducted experiments on two of the datasets. As illustrated in Table 7, it is observed that AdaCL
boosts CMPM by a large margin. Especially for DG, the results of AdaCL on each dataset improves
by over 10%.

Table 8: Fine-tuning results of AdaCL on three baselines under ICFG-PEDES.
Method Text-Image R@1 Text-Image R@5 Text-Image R@10
CMPM 43.5 65.4 74.2
AdaCL-CMPM 49.0 69.7 79.1
ViTAA 51.0 68.8 75.8
AdaCL-ViTAA 54.8 74.1 78.6
IRRA 63.5 80.3 85.8
AdaCL-IRRA 64.3 81.1 86.5

Table 9: Fine-tuning results of AdaCL on three baselines under RSTPReid.
Method Text-Image R@1 Text-Image R@5 Text-Image R@10
CMPM 30.1 38.5 59.6
AdaCL-CMPM 41.4 57.0 55.7
ViTAA 37.7 60.6 66.5
AdaCL-ViTAA 42.6 62.1 69.2
IRRA 60.2 81.3 88.2
AdaCL-IRRA 62.7 81.4 89.0

For fine-tuning, in addition to CUHK-PEDES, we also validate the performance of AdaCL on ICFG-
PEDES and RSTPReid. Three baselines are employed: CMPM(Zhang & Lu, 2018), ViTAA(Wang
et al., 2020b), and IRRA(Jiang & Ye, 2023), and compare the effectiveness of incorporating AdaCL as
a constraint. The experimental results w/ and w/o using AdaCL are presented in Table 8 and Table 9. It
is observed that AdaCL demonstrates significant improvements across the three baselines, achieving
absolute enhancements of 5.5%, 3.8%, and 0.8% in R@1, respectively. These matching results
substantiate the robustness of AdaCL in other vision-language downstream tasks, demonstrating its
insensitivity to the diverse dataset distributions (both natural images and person search images), and
the choice of baselines.

A.6 NOISY CORRESPONDENCE LEARNING

As mentioned in Section 1, noisy correspondence learning (NC) (Huang et al., 2021; Yang et al.,
2023; Ma et al., 2024; Qin et al., 2023) focuses on handling negatives by manually introducing noisy
labels. Several works classify samples into clean and noisy subsets, followed by a rectifier and triplet
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ranking loss to boost the learning of NC. We further validate AdaCL in such challenging scenarios
by plugging in AdaCL and verify its NC effectiveness on Flickr30K using the same pre-processing
strategy (by shuffling the captions of training images for a specific percentage, denoted by noise
ratio). The matching results under two noise ratio (20% and 40%) are reported in Table 10.

Table 10: Noisy correspondence learning of AdaCL. We follow (Huang et al., 2021) to shuffle the
captions of training images for a specific percentage, i.e., noise ratio.

Noise Ratio Methods Image→Text Text→Image

R@1 R@5 R@10 R@1 R@5 R@10

20%

NCR 75.0 93.9 97.5 58.3 83.0 89.0
AdaCL-NCR 75.3 93.8 97.4 61.2 84.1 89.7
BiCro 78.1 94.4 97.5 60.4 84.4 89.9
AdaCL-BiCro 79.6 95.2 97.5 62.7 85.1 91.3
CREAM 77.4 95.0 97.3 58.7 84.1 89.8
AdaCL-CREAM 80.0 95.6 97.4 61.9 86.4 91.3
CRCL 77.9 95.4 98.3 60.9 84.7 90.6
AdaCL-CRCL 81.0 96.2 98.5 62.3 84.9 91.7

40%

NCR 68.1 89.6 94.8 51.4 78.4 84.8
AdaCL-NCR 74.7 92.3 96.6 57.8 82.0 87.1
BiCro 74.6 92.7 96.2 55.5 81.1 87.4
AdaCL-BiCro 75.3 93.1 96.2 57.4 82.5 89.6
CREAM 76.3 93.4 97.1 57.0 82.6 88.7
AdaCL-CREAM 79.2 95.1 98.3 61.5 86.0 90.2
CRCL 77.8 95.2 98.0 60.0 84.0 90.2
AdaCL-CRCL 80.3 95.0 98.1 61.7 84.4 90.9

We also validate the effectiveness of AdaCL on CC152K. CC152K consists of 150,000 samples from
training split of Conceptual Captions (CC) (Sharma et al., 2018) for training, 1,000 samples from
validation split for validation, and 1,000 samples from validation split for testing. As all image-text
pairs in CC are automatically harvested from the Internet, approximately 3%–20% of the pairs in
the dataset are mismatched or weakly matched. This benchmark aligns well with the settings of NC,
making it a suitable choice for evaluating AdaCL.

From Table 10 and Table 11, it can be concluded that for a noise ratio of 20%, AdaCL achieves
notable improvements, particularly in I-T R@1 (AdaCL-CRCL improves from 77.9 to 81.0) and T-I
R@1 (AdaCL-NCR improves from 58.3 to 61.2). For a noise ratio of 40%, the trend of improvement
remains consistent, although the performance naturally decreases as noise increases. Notably, AdaCL-
CRCL demonstrates strong robustness with I-T R@1 improving from 77.8 to 80.3, even at high noise
levels. While the baseline results degrade significantly as the noise ratio increases, AdaCL exhibits
better resilience, as evidenced in AdaCL-NCR (I-T R@1 only drops from 75.3 to 74.7). AdaCL’s
robustness is particularly evident in T-I matching, where the decline in performance is less pronounced
compared to the baselines (AdaCL-CRCL achieves T-I R@5 of 84.4 at 40% noise ratio). Similar
to Flickr30K, AdaCL also demonstrates consistent improvements over the baselines on CC152K.
The performance improvements of AdaCL on both datasets further support its generalizability and
applicability in noisy correspondence learning.

Table 11: Noisy correspondence learning of AdaCL on CC152K.

Methods Image→Text Text→Image

R@1 R@5 R@10 R@1 R@5 R@10
NCR 39.5 64.5 73.5 40.3 64.6 73.2
AdaCL-NCR 43.2 66.9 74.9 42.5 69.0 76.2
BiCro 40.8 67.2 76.1 42.1 67.6 76.4
AdaCL-BiCro 42.9 66.1 76.0 42.7 68.4 78.7
CREAM 40.3 68.5 77.1 40.2 68.2 78.3
AdaCL-CREAM 43.1 69.6 77.2 42.2 70.0 80.2
CRCL 41.8 67.4 76.5 41.6 68.0 78.4
AdaCL-CRCL 42.4 68.0 77.4 41.7 69.3 80.0
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A.7 ZERO-SHOT IMAGE CLASSIFICATION OF ADACL IN CLIP PRE-TRAINING

In addition to image-text matching, we also evaluate AdaCL on other pre-training task, i.e., zero-shot
image classification. Specifically, we validate AdaCL on eight common classification benchmarks,
which can be divided into (i) general datasets: ImageNet(Deng et al., 2009), CIFAR-10(Krizhevsky
et al., 2009), CIFAR-100(Krizhevsky et al., 2009), Caltech-101(Fei-Fei et al., 2004)), and (ii)
fine-grained datasets: Food-101(Bossard et al., 2014), Flowers-102(Nilsback & Zisserman, 2008),
OxfordPets(Parkhi et al., 2012), and FGVCAircraft(Maji et al., 2013). The Top-1 accuracy results of
“CLIP + AdaCL” pretrained on CC3M and CC12M are demonstrated in Table 12:

Table 12: Zero-shot image classification of CLIP pre-training under different learning objectives.
“Baseline” represents “CLIP+vanilla contrastive learning”, and “AdaCL” represents “CLIP+AdaCL”.
Results under two pre-training settings, i.e., CC3M and CC12M are compared.
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CC3M
Baseline 17.2 71.3 32.1 50.9 10.2 10.8 12.1 1.0
AdaCL 22.0 77.1 42.2 54.8 12.6 13.3 14.9 1.7

CC12M
Baseline 32.9 72.5 38.0 74.0 26.5 25.7 46.2 2.6
AdaCL 34.8 73.4 43.3 74.7 33.1 25.4 46.7 2.8

It is observed that AdaCL outperforms CL in all the general datasets and most of the fine-grained
datasets, proving its advantage in recognition tasks. Specifically, in ImageNet, CIFAR-10, CIFAR-
100, the Top-1 accuracy of AdaCL has surpassed vanilla CL by over 5%. It is noteworthy that the
performance on fine-grained datasets further verifies AdaCL’s capacity in challenging scenarios.

A.8 VLP FINE-TUNING

Apart from CLIP pre-training, we further report the fine-tuning results of AdaCL in several Vision
Language Pre-training methods (VLP) by fine-tuning them using AdaCL on MS-COCO (5K). As
illustrated in Table 13, AdaCL facilitates matching performance across nearly all metrics under both
dual-encoder method (BEIT-3(Wang et al., 2022c)) and fusion-encoder methods (UNITER(Chen et al.,
2020c), OSCAR(Li et al., 2020), VinVL(Zhang et al., 2021)), effectively boosting the fine-tuning
process. These results further corroborate the robustness of AdaCL across multiple baselines.

Table 13: Results of AdaCL on VLP fine-tuning.

Methods Image→Text Text→Image

R@1 R@5 R@10 R@1 R@5 R@10
UNITER† 65.7 88.6 93.8 52.9 79.9 88.0
AdaCL-UNITER 67.6 89.0 94.3 55.1 81.2 88.9
OSCAR 70.0 91.1 95.5 54.0 80.8 88.5
AdaCL-OSCAR 71.0 92.7 96.3 54.0 80.6 89.1
VinVL 75.4 92.9 96.2 58.8 83.5 90.3
AdaCL-VinVL 78.7 94.4 96.8 60.4 84.2 91.1
BEIT-3 84.8 96.5 98.3 67.2 87.7 92.8
AdaCL-BEIT-3 84.4 96.9 98.3 68.6 89.1 93.7

† Evaluated by us with official repository.

A.9 EFFICIENCY ANALYSIS

Serving as a plug-and-play module, AdaCL does not increase the inference time since it is independent
of the cross-modal reasoning module. For training efficiency, we add detailed analysis on AdaCL.
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The speed of model convergence mirrors the learning efficiency of a certain constraint. As shown
in Figure 7, AdaCL brings considerable convergence efficiency and retrieval results, which even
boost CMPM and DIME to achieve their ultimate results within the first 5 epochs, demonstrating the
scalability and efficiency of AdaCL.

Figure 7: Training efficiency of AdaCL.

A.10 ABLATION STUDIES OF OTHER HYPER-PARAMETERS

A.10.1 ANALYSIS OF MOMENTUM MEMORY BANK

Since memory bank is widely adopted in vision-language contrastive learning, we further analyze
AdaCL by varying the memory bank size M , which leads to different number of negative samples.
The results in Table 14 reveal that the momentum memory bank yields a modest yet discernible
improvement: Among the sizes of 4096, 6144, and 8192, the impact of memory bank is not that
significant. This suggests that AdaCL does not excessively rely on the quantity of negative samples
for an ideal similarity distribution.

Table 14: Effect of different memory bank sizes.

Memory
Bank Size

Image→Text Text→Image

R@1 R@5 R@10 R@1 R@5 R@10
N/A 70.3 90.0 95.5 49.5 77.5 87.3
2048 71.9 90.9 96.7 51.4 78.4 87.3
4096 74.2 91.7 97.9 53.7 81.1 88.2
6144 73.7 91.9 98.2 53.2 79.6 87.8
8192 73.9 91.4 98.0 53.3 80.5 87.8

A.10.2 ANALYSIS OF MINI-BATCH SIZE

Since mini-batch size is correlated with the number of potential anchor candidates for selection, we
also investigate the impact of mini-batch size, as shown in Table 15. It can be observed that AdaCL
exhibits remarkable robustness to variations in batch size settings. Across a range of batch sizes from
16 to 128, the fluctuation in R@1 remains within a narrow margin of 4%.
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Table 15: Effect of different mini-batch sizes.
Batch
Size

Image→Text Text→Image

R@1 R@5 R@10 R@1 R@5 R@10
16 70.6 89.2 96.5 50.0 79.3 84.8
32 72.9 90.9 97.4 52.1 81.0 87.1
64 74.2 91.7 97.9 53.7 81.1 88.2

128 74.0 91.2 97.6 53.9 81.2 88.0

A.11 ADDITIONAL PARAMETERS IN ANCHOR SELECTION

Here we further analyze the anchor selection methodology. In the main manuscript, we utilize the
negatives from Ssln and Scln within each mini-batch to represent the empirical means and variances.
However, we cannot guarantee that all samples in Ssln and Scln are exclusively salient negatives
and clone negatives. Based on this speculation, we continue to select Top-K similarity scores from
Ssln and Scln as observational samples for calculating means and variances. The assumption of this
study is higher similarity scores for certain negatives correlate with an increased probability of them
being clone negatives. We set K to 32 and conduct experiments on CMPM, SCAN, and DIME under
Flickr30K, as shown in Table 16. It can be concluded that employing Top-K selection strategy does
not result in a significant improvement or deterioration in matching performance, with fluctuations
generally remaining within a 2% range. This observation contradicts our initial hypothesis and
intuition. Consequently, we can infer that AdaCL exhibits low sensitivity to the specific values of
the empirical mean and variance, which is another minor merit. Given that the Top-K selection
explicitly increase computation without yielding significant performance improvements, we have
opted to maintain the original calculation method in the main manuscript.

Table 16: Matching results of Top-K selection for empirical means and variances.

Methods Image→Text Text→Image

R@1 R@5 R@10 R@1 R@5 R@10
AdaCL-CMPM 54.7 79.0 87.5 41.6 69.4 79.2
AdaCL-CMPM † 54.2 77.8 87.1 41.8 68.1 80.0
AdaCL-SCAN 71.4 93.0 97.2 50.9 79.9 86.8
AdaCL-SCAN † 72.7 93.4 96.5 50.2 79.0 87.1
AdaCL-DIME 82.6 96.3 98.9 63.6 88.4 93.7
AdaCL-DIME † 82.4 95.3 98.7 63.7 88.2 93.0

†: Employ Top-K selection.

A.12 MORE VISUALIZATION OF ADACL

We present a more comprehensive comparison of CL, TRL, and AdaCL trained with ground-truth
annotations and pseudo captions. The visualization results of the early training stage are demonstrated
in Figure 8, which include 4 kinds of clone negatives with 11 cases. Based on the attention maps, we
can summarize the following conclusions: AdaCL captures abundant semantics on highly similar
clone negatives. Specifically, case (a) and case (b) demonstrate that AdaCL boosts the exploration of
spatial semantics among the images, such as “music being played by several individuals”, as well as
“is trying to stop a horse”, which effectively distinguishes clone negatives apart. Additionally, case (c)
demonstrates AdaCL’s ability in capturing background information such as “Asian country” and “a
city street” are crucial phrases that are reasoned through AdaCL. Case (d) showcases five examples
of urban landscape, demonstrating that AdaCL is able to discover instances that are not explicitly
described in the text query. For instance, the unique attribute “spectator” is not included in Q8, but
AdaCL facilitate learning the corresponding representation, which is highlighted in the attention map.
Also, the latent “fountain” is not included in Q11 but reasoned by AdaCL. In this way, AdaCL is
proved to achieve comprehensive cross-modal semantics with its adaptive tuning strategy even when
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the quality of textual annotations is not high. This finding presents great potential of AdaCL to handle
retrieval with low quality labels.

Furthermore, we obtain the attention maps by training with pseudo captions under AdaCL, as depicted
in the last column of Figure 8. Due to the lack of instance-level information during the training
process, we do not expect the results to surpass models trained on original annotations. However,
AdaCL (Pseudo Caption) manages to capture the approximate cross-modal semantics and pays
attention to the fine-grained representation, which outperforms CL and TRL (trained with ground-
truth) in most cases. This demonstrates the prospects of AdaCL in the vision-language contrastive
learning of automatically annotated image-text pairs.

A.13 DISCUSSION: LIMITATION

In this work, AdaCL is evaluated on (1) image-text matching under Flickr30K, MS-COCO, (2) CLIP
pre-training under CC3M and CC12M, (3) weakly-supervised image-text matching under pseudo
captions, (4) text-based person search under CUHK-PEDES, ICFG-PEDES, and RSTPReid. We have
not extended AdaCL to an all-round vision-language tasks due to time and computational limitations,
which is undoubtedly planned in our future endeavor.

Also, although AdaCL maintains high convergence efficiency, we acknowledge that AdaCL inevitably
introduces additional computation during training with a moderate computational overhead of O(N ·
M) per batch training. We believe this trade-off is acceptable given the context of contrastive learning
and pre-training. In future work, we will delve into a more lightweight vision-language learning
paradigm.
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Image QueryText Query

Q1:
A band is playing to a 
cheering concert with
many people.

Q2:
Music being played 
by several individuals 
while a crowd sits and 
listens.

Q3:
Two men who are 
riding on a horse both 
are trying to rope a 
bull in a rodeo.

Q4:
A man wearing blue
jeans is trying to stop 
a horse.

Q5:
A crowded sidewalk 
in the inner city of 
an Asian country.

Q6:
A crowd of people is 
walking down the 
middle of a city street. 

(b)

(c)

(a)

CL TRL AdaCL AdaCL (Pseudo Caption)

Q10:
Many people are 
chilling in front an old 
building.

Q11:
A group of people 
stand in the park of 
a city, with buildings 
in the background.

Q7:
A crowd of people in 
running outfits runs
a marathon with two 
skyscrapers in the 
background.

Q8:
A group of people is 
running a race or 
marathon in the city.

Q9:
A man in a blue T-
shirt speaks into a 
blow horn towards a 
group of people.

(d)

Figure 8: Attention maps of clone negative cases in early stage (Epoch 10). “CL”, “TRL”, and
“AdaCL” represent model trained with different constraints. The last column represents AdaCL
trained with pseudo captions.
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