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ABSTRACT

In this paper, we address a key question in machine learning: How effectively can
generative data augmentation enhance image classification? We begin by ex-
amining the differences and similarities between real and synthetic data generated
by advanced text-to-image models. Through comprehensive experiments, we pro-
vide systematic insights into leveraging synthetic data for improved classification
performance. Our findings show that: 1). Generative data augmentation by models
trained solely on the internal (available training) set can effectively improve classi-
fication performance, validating the long-held hypothesis that synthesis enhances
analysis by enriching modeling capability. 2). For generative data augmentation
by models trained on both internal and external data (e.g. large-scale image-text
pairs) separately, the size of equivalent synthetic dataset augmentation can be
determined empirically. In addition to being aligned with a common intuition that
real data augmentation is always preferred, our empirical formulation also provides
a guideline for quantitatively estimating how much larger the size of generative
dataset augmentation is, over the real data augmentation, to achieve comparable
improvements. Our CIFAR-10 and ImageNet results also demonstrate its impact
w.r.t. the size of the baseline training set and the quality of generative models.

1 INTRODUCTION

We assume the task of predicting labeling y for a given input x. The analysis-by-synthesis methodol-
ogy (Yuille & Kersten| |2006)) has once been considered as one of the guiding principles for making
a variety of inferences (Cootes et al.,{1995; [Tu & Zhu, 2002} [Fergus et al., 2003)). The school of
thought in pattern theory (Grenander, [1993) considers the capability of being able to synthesize
(being generative) stands at the utmost important position for making robust, transparent, and ef-
fective analysis/inference. The analysis-by-synthesis principle would also expect having powerful
generative p(x|y) (e.g. text-to-image generation (Ramesh et al.,2021; [Rombach et al., 2022))) can
substantially improve the inference of p(y|x). For image classification, one would expect that adding
synthesized images to datasets like ImageNet (Deng et al., 2009b)) as data augmentation would lead
to an immediate improvement. However, the view of analysis-by-synthesis for visual inference has
been challenged in the big data and deep learning era (Goodfellow et al.,|2016; [LeCun et al.,|2015)).

For the sake of clarity, we define synthetic data here as images generated by statistical generative
models, distinguishing them from ‘synthetic’ data produced by graphics simulation engines (Beery
et al., [2020).

There is an explosive development with increasing level of maturity in image generation, including
generative adversarial learning (Tul 2007; |Goodfellow et al. 2014} Karras et al.,|[2018), variational
autoencoder (VAE) (Kingma, |2013), and diffusion models (Sohl-Dickstein et al., [2015; |Ho et al.,
2020a; Rombach et al., [2022; Ramesh et al., 2021)). With the increasing representation power and
photo-realism of generative modeling, especially diffusion-based models, we make a timely effort to
answer the question about the effectiveness of generative data augmentation for image classification.

Previous attempts exist to partially address the above question. For instance, studies such as (Azizi
et al., [2023} |[Fan et al.,|2024) demonstrate that the ImageNet classification accuracy can be improved
by incorporating synthetic data generated by state-of-the-art generative models, which are pre-trained
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Figure 1: The differences and equivalences between real and synthetic data: (a) Manifold Distinctions:
The manifolds of the real and the synthetic data in subspaces learned by a binary domain classifier, highlighting
their significant domain gap. (b) Feature Subspace Overlap: The top row shows manifolds for CIFAR-10 and
CIFAR-10-Internal (a synthetic dataset generated by Vanilla-DDPM trained solely on CIFAR-10 itself). The
bottom row shows similar results for CIFAR-10-External (the CIFAKE dataset [2024) generated by
Stable Diffusion 1.4 trained on a subset of LAION-5B). Both figures reveal notable overlap in feature subspaces.
(c) Performance Gains: Augmenting the real training set with high-quality synthetic data leads to evident
improvements in classification performance.

on large-scale external data and subsequently fine-tuned on the target dataset. 1). Different from all
prior works (Azizi et al., 2023}, [Fan et al., 2024) that adopt generative data augmentation by models
trained on external data, we start our investigation from the very basic problem setting of image
classification by studying generative data augmentation from models trained solely on the internal
(given training) set. 2). Next, we provide quantifiable guidance regarding the size of generative data
augmentation by internal and external data. Both aspects have been under-explored in the past.

(a) Acc on CIFAR-10 + Internal (b) Acc on ImageNet-100 + External
Mpase = 5,000 Mpase = 26,000

Suppose we are given a set of train-

ing data Spae = {(xi,0:),0 = -
1, .., Tpase }» Where x; indexes the ith
training image with its corresponding
ground-truth label y;. Let S;g,n =
{(Xg'v yj)’j = Npase T+ ]-7 vy Npase + :;m . & o

nsyn+} be an augmented training set of
synthesized images where x;- refers to
each synthesized image; let S|, =
{(X] b y] ) 9’ j = nbase + 17 A nbase + o7 10000 2000 3%00 40000 so000 O 00 20000 40800 60000 80500 100000 120000 0.6000
Nrea+ } be an augmented set of real Real Real

images. Figure 2: Equivalence curves regarding the amount of additional

real data and synthetic data at fixed npase under both internal and

We present our work, Mousterian, via oy (ernal settings.

a comprehensive study to derive key
findings that offer systematic guidance on effectively leveraging synthetic data to boost classification
performance. We report the following new findings:

* Generative data augmentation by models trained solely on the available training (internal)
set can effectively boost classification performance, validating the long-held hypothesis that
synthesis enhances analysis by enriching modeling capability.

* Given a training set Sy, (on the CIFAR-10 set) together with a generative model trained on
the Spase (internal), Gmtemal(-)ﬂ we obtain an empirical equivalence for the generative data

. . _ . . + _ .
augmentation size |S;§n| = Ngyn+| W.I.L. the real data augmentation size [S_ | = Nyears as:
n Thas Mreal+
Tyt 0.6 x 9.8T9H7 x (1.30.2'%2“ - 1) : (1)
Tlbase

* On the ImageNet dataset, let Gepternai(-) denote a cutting-edge diffusion model that is trained
on large-scale text-image pairs (external), the data augmentation size |S;§n\ = Ngyns W.IL the

!with the abuse of certain specific variations regarding e.g. the quality of the generative models
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real data augmentation size |S:ga1 = Tyeql+ can be determined as:
n. Tbase " real
Tyt 40 x 1.3759%7 (1,10.321;0 _ 1) . @)
Tlbase

Figure [2] shows the corresponding equivalence curves that give rise to Eq. [[Jand Eq. 2] Although
Eq. [T]and Eq. [2]are not directly comparable (the classification settings and generative models are
different), it is nevertheless evident that for both internal and external generative data augmentation:
1). To achieve the same level of a performance boost, the required synthetic data size is always
greater than that of the real data, meaning that having the real data is always more advantageous
than using synthetic data; 2). The required generative data augmentation goes up when the base
training set increases, meaning that it is more challenging to improve the performance when the
basic classification accuracy is already strong. Note that both Eq. [T]and Eq. 2] are meant to serve
as an empirical quantification for high-level guidance. To the best of our knowledge, this is the first
work of its kind allowing us to see the quantitative equivalence of using real vs. generative data
augmentation for image classification.

2  MOTIVATION

In this section, we will present initial observations of synthetic data, discuss the algorithms and
strategies we have tried based on these observations, and summarize our main conclusions.

2.1 INTERNAL GENERATIVE DATA AUGMENTATION

We begin by considering the internal setting, where synthetic data used for augmentation is generated
by models trained exclusively on the given training set. In this scenario, any observed distribution
gap between the real and synthetic data might be attributed to inherent limitations in the generative
model itself. To validate the existence of this gap, we employ a straightforward method to highlight
the differences between the real and synthetic data distributions. Specifically, we train a ResNet-101
model (He et al., 2016) to classify between images from these two domains on CIFAR-10. Our
results demonstrate that the binary classification accuracy using high-quality and low-quality internal
synthetic data both exceed 98% . Ideally, a generative model should produce synthetic data that is
statistically indistinguishable from real data, capturing the full complexity and diversity of the dataset.
However, these findings suggest that, due to inherent limitations of the generative model, real and
synthetic data exist on distinct manifolds, even though synthetic data may sometimes appear visually
realistic. Basically, the space of all valid images is immensely large and any existing generative
models can only cover a small subspace of the sampling space, resulting a fundamental differences in
the statistics of the image patches between synthetic and real. To further validate the distributional
differences, we visualize the feature vectors from real and synthetic domains, as shown in Figureﬂ] (a),
where the distribution gap is clearly significant. Additional experiments and analyses are provided in

Appendix

2.2 EXTERNAL GENERATIVE DATA AUGMENTATION

A more common approach is to use generative models pre-trained on large external datasets. While
these models can enhance image accuracy and diversity, they introduce another gap: the difference
between the external dataset and the given classification dataset. When combined with the
inherent limitations of the generative model mentioned earlier, the resulting synthetic data shows an
even greater distributional disparity from the given real data. Figure[I](b) presents the manifolds of
CIFAR-10 and synthetic datasets extracted by a standard image classifier trained solely on CIFAR-10.
The CIFAR-10-Internal (top row) refers to the synthetic dataset generated by a Vanilla-DDPM trained
only on CIFAR-10, which is the given data. The CIFAR-10-External (bottom row) represents the
CIFAKE dataset (Bird & Lotfi, 2024), generated by Stable Diffusion 1.4 (Rombach et al., [2022]),
which is trained on a subset of LAION-5B (Schuhmann et al., 2022}, thus incorporating external
data. While both synthetic datasets show overlaps with the real data on certain feature projections,
the overlap between CIFAR-10-Internal and CIFAR-10 is notably more pronounced.

2.3 CAN SYNTHESIZED DATA HELP WITH CLASSIFICATION?

Significant overlapping in Figure[I] (b) raises an important question: Can synthetic data improve
classification performance? To explore this, we conduct experiments on CIFAR-10 with two synthetic
datasets of different quality. As for relatively low-quality data synthesis, We utilize the synthetic
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dataset generated by Vanilla-DDPM (as previously mentioned), and for high-quality data, we employ
a diffusion model pre-trained on CIFAR-10 that utilizes advanced training and sampling techniques
introduced in EDM (Karras et al.| [2022) to generate high-quality data. A detailed comparison of data
quality is provided in Section 3.1} Next, we augment the CIFAR-10 training set with synthetic data at
different ratios. As shown in Figure[I](c), augmenting the real training set with high-quality synthetic
data results in evident improvements in classification performance. Based on this observation, we
adopt a mixed training strategy to address a fundamental question in image classification: Given a
dataset comprising a certain quantity of real images, how can generative models effectively enhance
classifier performance? Our extensive experiments lead to the following key conclusions, which hold
true for both the internal and external settings. We will now present these conclusions and explain
how they align with the formula we have proposed in Section

» Through the mixed training strategy, synthetic data can improve the performance of classifica-
tion, especially when the real data is limited.

Let the ratio of added synthetic data % be denoted as 7y, and the ratio of added real data
% be denoted as 7e,4. As shown in Eq. |1|and Eq. , when a4 18 fixed, a decrease in npase

corresponds to a decline in rgy,,, demonstrating that the benefits of synthetic data are more
pronounced when real data is scarce.

* Synthetic data tends to be less sample-efficient than real data, with a single real data point
equivalent to multiple synthetic copies.

Regardless of the fixed value of mpgse, the calculated value of ngy,, always exceeds 7yeas,
suggesting that the necessary increase in synthetic data to achieve a comparable performance
boost is greater than that required for real data. This conclusion can also be observed in the
contour plot in Figure 2] where the intersection points of each contour line with the vertical
axis are consistently higher than those with the horizontal axis.

* The performance gains from synthetic data diminish rapidly as the amount of synthetic data
increases.
From Eq. and Eq. |2} we can see that when 1 is fixed, 7'gyn4 grows exponentially with reqry.,
which indicates that when more synthetic data is added, its effectiveness will indeed reach
saturation.

3 SHAPING THE CLASSIFICATION MODELS WITH SYNTHETIC DATA BY
GENERATION

In this section, we will outline the experiments conducted to address the problem of how to use
generative models for data augmentation, accompanied by a comprehensive and various set of
conclusions. It is worth noting that the key conclusions mentioned in the last section will be revisited
later from a new experimental perspective. We first explore the effectiveness of internal and external
generative data augmentation. Subsequently, under the condition of mixed training with real and
synthetic data, we examine how factors such as the quality of S;';n, the mixing ratio npgse : Msyn+»
and the size of real data ny,s. influence improvements in classification performance.

3.1 GENERATIVE MODELS TRAINED ON INTERNAL DATA FOR CIFAR-10 CLASSIFICATION

When we have a real dataset to train a classifier, two approaches for generating synthetic data
naturally come to mind: first, training a generative model solely on the internal data (given dataset);
second, using an off-the-shelf generative model pre-trained on a large external dataset. Whether
synthetic data created by generative models trained on internal data can help boost performance is
underexplored in previous studies. Here, we investigate this scenario with the CIFAR-10 dataset
(Krizhevsky et al., 2009).

Experiment Setup To conduct our experiments, we work with the full CIFAR-10 training set
(5,000 samples per class), as well as subsets referred to as CIFAR-Half (2,500 samples per class)
and CIFAR-Small (500 samples per class). We utilize a Vanilla-DDPM trained solely on CIFAR-10
to generate synthetic data, mixing it with real data at different ratios during training. Unless specified
otherwise, we use a ResNet-110 model as our classification backbone. All evaluations are done on
the original CIFAR-10 validation set.
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Empirical equivalence We explore how many additional synthetic samples ngyn, are equivalent to a
given amount of additional real data nye,+ under a fixed npase using the data points of Vanilla-DDPM.
To be specific, we first fit the relationship between classification accuracy and the variables 7pase,
Nreal+> aNd Ngyny. The resulting contour plot at fixed 7pase of 5,000 is shown in Figure E] (a). Using the
fitted accuracy function, we then determine the synthetic data amount 7y, that achieves the same
accuracy as nyeq+ added real samples, leading to the derivation of the formula in Eq. E} The data used
for fitting is provided in Appendix [C.2]

Main Results Even with a limited amount of real data, training a generative model on it can still
improve classifier performance.

Collecting real data at scale can often be challeng- CIFAR-10, Vanilla-DDPM
ing. In this section, we explore whether generative
models can enhance classification performance when 095
the amount of the given real data is relatively limited
and no external data is utilized. We train a generative —
model on the CIFAR-Small dataset and use it to gen-
erate synthetic data, varying from one to four times
the size of the corresponding real dataset. For com-
parison, we also conduct similar experiments using 0rs
the same generation protocol on CIFAR-Half and the 8.42%
entire CIFAR-10 dataset.

Accuracy

Surprisingly, despite the very low quality of the gen-

erategi Images on .CIF.AR-Sma!l (see Figure[T4] n Ap- [ —@— CIFARSmall+ Syn —@— CIARHalf+ Syn —@— CIFAR10 + 5y }

pendix for visualization), the improvement achieved | — CIFARSmall = = CIFARHalf i

with these synthetic data is even more pronounced Fi L";""""’."""’"""’"f ”””

than that observed with CIFAR-Half and the full F8ure 5: Comparison of accuracy using syn-

CIFAR-10 dataset, as shown in Figure We hy- thetic data generated from CIFAR-Small, CIFAR-
. . . . . Half, and the full CIFAR-10 dataset.

pothesize that this is due to the strong inductive bias

of generative models. With a small amount of real data, although the generative model may not

produce perfectly accurate images, it can still capture key features such as the shape of an airplane or

the texture of a frog’s skin. This capability significantly enhances the generalization performance of

discriminative models when data is scarce.

3.2 GENERATIVE MODELS TRAINED ON EXTERNAL DATA FOR CIFAR-10 CLASSIFICATION

A prevalent approach for data augmentation is to utilize generative models that have been pre-trained
on large external datasets. While these models can provide the classifier with external knowledge,
as it has been exposed to a large amount of data unseen by the classifier, they also introduce an
additional challenge mentioned in Section [2}—the disparity between the external dataset and the
specified classification dataset. This raises important a question: Is it beneficial to train a generative
model on external data? To explore this question, we conduct the following experiments.

Experiment Setup Using the full CIFAR-10 training set as the real training data, we consider
three methods for generating synthetic data: 1). Optimize a conditional Vanilla-DDPM (Ho et al.|
2020b) on CIFAR-10 from scratch. 2). Use a diffusion model pre-trained on CIFAR-10 that employs
advanced training and sampling techniques introduced in EDM (Karras et al.| [2022) to generate
higher-quality synthetic images. 3). Utilize the synthetic data in CIFAKE dataset (Bird & Lotfil
2024)), which is generated by Stable Diffusion 1.4 (Rombach et al., 2022) trained on a subset of
LAION-5B (Schuhmann et al.| 2022), thus incorporating substantial external knowledge.

Main Results External generative data augmentation is useful, but even without it, using cutting-
edge generative models trained on internal data still has the potential to improve classification.

As shown in Tablem CIFAKE has a much higher FID score (Heusel et al.,|2017) compared to Vanilla-
DDPM when evaluated on CIFAR-10. We attribute this to the significant distribution discrepancy
between the training set of Stable Diffusion 1.4 (Rombach et al.|[2022)) and CIFAR-10. Nonetheless,
CIFAKE achieves higher classification accuracy than Vanilla-DDPM, highlighting the benefits
of substantial external knowledge. However, by employing more advanced training and sampling
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methods, such as EDM, we may generate images that are both more similar in distribution and diverse,
leading to even better classification results than CIFAKE, though without external knowledge.

Table 1: Comparison of classification accuracy with different generating methods. The real-to-syn
ratio is fixed at 1:1. FID is calculated w.r.t. the CIFAR-10 training set.

Training Dataset | Data Amount | External? | Quality | Top-1 Acc
Real Syn | Real  Syn | | FID IS |
_ 0 X — — 92.48
Vanilla-DDPM 50k X 15.51 4.69 93.08 (+0.60)
CIFAR-10- " ClFAKE S0k S0k v 2715 6.14 | 93.98 (+150)
EDM 50k X 8.33 6.23 94.83 (+2.35)

Summary Pre-trained models with external knowledge typically generate images with high recog-
nizability and diversity (reflected in the relatively high IS score (Salimans et al.,[2016) of CIFAKE).
However, they may exhibit a greater distribution shift from the real dataset. On the other hand,
generative models trained solely on internal data may show smaller distribution differences but could
be limited by the amount of available data, resulting in lower-quality images (see Figure (a) and (b)
in Appendix for qualitative results). Even with sufficient data and cutting-edge generation methods
like EDM (Karras et al.,[2022), model parameters often need to be re-adjusted for different datasets
based on factors such as dataset size and image resolution. Therefore, given the convenience of using
pre-trained models, we utilize them in the following study.

3.3 GENERATIVE MODELS TRAINED ON EXTERNAL DATA FOR IMAGENET CLASSIFICATION

In the following sections, we systematically explore the trend of how synthetic data affects classi-
fication performance. To provide a more comprehensive analysis, we conduct experiments in two
settings: supervised image classification and zero-shot image classification.

3.3.1 SUPERVISED IMAGE CLASSIFICATION

Experiment Setup The following experiments are conducted using subsets of ImageNet. Specif-
ically, we first focus on 10 random selected classes, referred to as ImageNet-10 (details can be
found in Appendix [A), to draw our primary conclusions. We then extend these observations to a
larger dataset, ImageNet-100, as introduced in (Tian et al., 2020). We use a ResNet-50 model as
the backbone architecture for all experiments in this part. We focus on external generative data
augmentation in this section.

To generate synthetic images on ImageNet-10, we employ two different generation protocols with
varying sample qualities. The first protocol uses Stable Diffusion 2 (Ramesh et al., [2022)) with a
straightforward class-conditioned prompt of the form p. = “High-quality photo of a ¢”, where ¢
represents the class name. The second protocol uses Stable Diffusion 3 (Esser et al., 2024)) with
diverse captions generated according to the method described in (Tian et al. [2024). The caption
templates include ¢ — caption, c,bg — caption, and c,rel — caption. We refer readers to the
original paper for further details on this method. Each caption generates five images, and we employ
the CLIP-Filter strategy (He et al., 2022) to exclude the bottom 20% of images based on CLIP
zero-shot classification confidence, retaining only the high-quality images. For the ImageNet-100
setting, we only use the second protocol to generate synthetic data. We denote the three generated
dataset as ImageNet-10-SD2, ImageNet-10-SD3 and ImageNet-100-SD3, respctively.

Then, we consider the following scenarios for mixed training with each synthetic dataset: 1). Fixing
the number of real samples at 65, 260, and 1,300 per class and changing the proportion of synthetic
samples from 1 : 0.1 to 1 : 100. 2). Fixing the number of synthetic samples at 1,300 per class and
varying the proportion of real samples. We conduct extensive experiments using different real and
synthetic datasets, baseline sample numbers, and mixing ratios. The complete experimental results

are in Appendix[C.3]

Empirical equivalence Similar to the experiments on internal generative data augmentation, we
analyze the relationship between accuracy and the amounts of additional real and synthetic data at
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various fixed values of np,s. A contour map is provided in Figure[Z] (b) for npae = 26,000. We then
fitted an empirical function, as shown in Eq. [2} to roughly assess the effectiveness of synthetic data
under the external setting.

Main Results  Synthetic data is much less sample-efficient than real data.

We compare the evaluation accuracy after training separately on ImageNet-100 and ImageNet-100-
SD3. With 1,300 training images per class, the former achieves an accuracy of 85.41%, while the
latter only reaches 50.93%. Further observation of Figure | reveals that when we fix 1,300 synthetic
images per class and add only 0.01 times the synthetic amount (only 13 real images per class), the
accuracy significantly improves by 7.95% while adding 0.1 times the amount of synthetic data results
in a remarkable enhancement of 22.62%. This indicates that real data is much more sample-efficient
than synthetic data.

Syn 1,300 + Real (a) Real 65 + Syn (b) Real 260 + Syn

Accuracy
Accuracy

— — sD3

1100 10111 110 150

[Er— Tt The
Real:Syn (original scale) Real:Syn (original scale)

Toor To1
SyniReal (log scale)

Figure 4: Accuracy comparison Figure 5: Accuracy relative to the synthetic data ratio at fixed real data
based on different synthetic data  quantities of 650 and 2,600. We use the original, unscaled proportions to
quality and real data ratio. illustrate the saturating effect of synthetic data.

Integrating synthetic data greatly enhances classification performance when real data is scarce, but
the benefit decreases as real data becomes more plentiful.

We explore how the accuracy curve changes when ImageNet-100 + SD3
we use different base amounts of real data and add 100
synthetic data to it, and the results are shown in Fig-
ure [/l We observe that as the amount of real data
increases, the slope of the accuracy curve with added
synthetic data diminishes rapidly. This trend is con-
sistent across ImageNet-10-SD2, ImageNet-10-SD3,
and ImageNet-100-SD3.

When the amount of real data is large and classifier ac- o7
curacy is already high, comparing absolute improve-
ments may not be sufficiently rigorous. Therefore, we
additionally compare the ratio of accuracy improve-
ments when augmenting the existing real dataset with
an equal proportion of synthetic data and real data.
We refer to this improvement ratio as IR, which can
be mathematically expressed as:

Improvement Ratio (IR)

1:0.1 1:05 11 14 110
Base Real:Added Data (log scale)

Figure 6: The improvement ratio IR with re-
spect to added data ratio r,. The values of npase
are fixed at 65 and 260 per class, respectively.

AACCsyn (nbase ) 7‘+)

IR(nbaseﬂa‘*) = AAcc 1(nb T )
real ases !+

3)

where AAccgy, and AAcceeq represent the accuracy improvement from adding synthetic and real
data to Sy, respectively, and r, denotes the ratio of the added data (real or synthetic) to 7pase.

This experiment is conducted in the ImageNet-100 setting. As shown in Figure [6] with a larger
baseline amount of real data, IR further decreases (the blue line is lower than the yellow line),
indicating the reliability of the conclusion. We attribute this to the fact that with more real data, the
model already acquires sufficient knowledge from it. Moreover, since synthetic data inherently lacks
diversity and has domain gaps, its contribution to performance improvement becomes more limited.

The performance improvement brought by synthetic data quickly diminishes as its amount increases.
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(a) ImageNet-10 + SD2

(b) ImageNet-10 + SD3

(c) ImageNet-100 + SD3

o4 ¢

.’,40’—'/4'

Accuracy

To1 105 150 1100 T01 105 150 1100 101

T T 11 T
Real:Syn (log scale) Real:Syn (log scale)

Figure 7: Accuracy curves w.r.t. three different quantities of real images on ImageNet-10 and ImageNet-100.
Synthetic images at varying ratios are added to the training set.

In Figure[5} we plot how the accuracy changes with the synthetic data ratio while keeping the real
data fixed at 65 and 260 images per class, respectively. We observe that as the amount of synthetic
data increases, the improvement in classification accuracy quickly decreases. Specifically, in the case
of Real260+Syn, adding the synthetic data from ImageNet-10-SD3 by 10 times the amount of real
data raises the accuracy from 67.83% to 89.40%, a total improvement of 21.67 % . However, further
adding 40 times the amount of real data only results in an additional 1.83% increase in accuracy.

Here, we also demonstrate the saturating effect of increasing synthetic data in terms of the improve-
ment ratio as mentioned above. As illustrated in Figure [6] both the blue and yellow lines show a
decreasing trend as more data is added. We believe this is due to insufficient diversity in the synthetic
data. When there is already a large amount of synthetic data, the high similarity within its internal
distribution leads to the synthetic data no longer offering additional information to the classifier,
resulting in only a marginal improvement in classification performance.

The quality of synthetic data matters more when there is less amount of real data.

As outlined in the experiment setup, we use different generation protocols to create two synthetic
datasets with varying data quality on ImageNet-10. We present the details of the datasets in Table
[2Jand the visualization in Figure[9] It is clear that the synthetic dataset generated by SD3 exhibits
superior quality. We fix the number of synthetic images per class at 1,300 and incrementally add
real images to the training set at different scales. As illustrated in Figure[d] when only synthetic data
is used, the model trained on the SD3-generated dataset achieves an accuracy of 71.87%, which is
12.00% higher. However, as more real data is incorporated into the training set, the accuracy gap
between the synthetic datasets gradually closes. When the amount of real data matches the synthetic
data, the difference narrows to just 0.06 %, demonstrating that the quality of synthetic data is more
critical when the quantity of real data is limited.

3.3.2 ZERO-SHOT IMAGE CLASSIFICATION

Experiment Setup In the zero-shot setting, we split Zero-shot Image Classification

ImageNet-10 and ImageNet-100 into two subsets,
each containing 5 and 50 categories, respectively. See 07 /_/
appendix [B] for a detailed description of the settings. ool

We will use ImageNet-100 as an example to introduce
the experiment setting, with ImageNet-10 following
a similar approach. The first subset of the training
set is used as the real training data, while the second
subset of the validation set is reserved for testing.
This ensures that the model is never exposed to the 02
real data from the categories in the validation set. To
incorporate synthetic data, we apply the same split
on ImageNet-100-SD3 and only retain the second
subset. This is equivalent to leveraging the generative
model to produce data for the test categories. With
SD3-generated synthetic images, we can align all
100 classes during training. We use a pre-trained and

Accuracy

1:0.5 1

1 é 1 1
Real:Syn (original scale)

Figure 8: Zero-shot classification accuracy in
terms of the synthetic data ratio on ImageNet-10
and ImageNet-100. The size of real data is fixed at
1,300.
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frozen BERT (Devlin et al},[2019) as the text encoder and train a ResNet-50 model as the image
encoder from scratch. Text and image features are projected onto a joint embedding space with
a dimension of 512. The training goal is to maximize the cosine similarity between the text and
image embeddings of the same categories. In the evaluation period, a test image is classified into the
category with the highest similarity score. We keep the number of real images fixed at 1,300 per class
and vary the proportion of synthetic data. The full experiment results are in Appendix [C.4]

Main Results The results are shown in Figure[8] We find that adding SD3-generated images for
the test categories, with just 0.1 times the amount of real data, improves accuracy by 17.54% on
ImageNet-10 and 11.99% on ImageNet-100. Moreover, the further improvement is still notable
when the synthetic data ratio reaches 1:1, demonstrating the significant potential of synthetic data in
zero-shot classification. We also observe that the quality of synthetic data plays a more crucial role
in the zero-shot setting, as SD3-generated images achieve 15.47 % higher accuracy at the ratio of
1:10. Our findings align with what has been observed when the amount of real data is minimal in the
supervised setting. We suggest that, since zero-shot classification lacks any real data from the test
categories, it can be considered a natural extension of supervised learning with diminishing real data,
which explains why these results are logical and expected.

Table 2: Detailed configurations of the synthetic datasets used for image classification on ImageNet-
10. Data quality is measured by FID (vs. ImageNet-10 training set) and Inception Score (IS).

Generative Model | Data Amount| CFG Scale | Prompt |# Classes| FID 1S
Stable Diffusion 2 130k 7.5 “High-quality photo of a ¢.” 10 40.54 1.37
Stable Diffusion 3 130k 2.0 Generated captions (Tian et al.I, 2024) 10 24.79 8.30

French Egyptian
Bulldog

Stable Diffusion 2

Stable Diffusion 3

Figure 9: Visualizations of the SD2-generated and SD3-generated synthetic dataset for ImageNet-10.
SD2-generated images are often object-centric, focusing predominantly on the object’s face. The
backgrounds, shapes, and poses are usually uniform. In contrast, SD3-generated images present a
more complete view of the objects, with diverse backgrounds and varied poses.

4 RELATED WORK

Synthetic Data Augmentation in Computer Vision The usage of synthetic data augmentation in
image classification has gained significant attention because of its potential to generate large amounts
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of data with minimal manual effort. Synthetic images have proven effective across various computer
vision tasks, including semantic image segmentation (Chen et al.,|2019; [Tritrong et al., |2021)), object
detection (Nowruzi et al.| [2019; [Fabbri et al.| [2021; [Zhang et al., 2022} |Ge et al., 2022), human
motion understanding (Guo et al.} 2022} |Varol et al.,|2017), and 3D reconstruction (Xu et al., 2024}
Zhang et al.,[2023b; [Wu* et al., [2022). Adversarial data augmentation (Xie et al., 2020) has shown to
improve image recognition. They provide diverse and comprehensive training data to improve model
generalization. Early methods primarily rely on simulation pipelines using graphics engines or 2D
renderings to generate synthetic data (Dosovitskiy et al., 20155 [2017). However, these approaches
often encounter high computational costs, which can limit their scalability.

Graphics simulations (Beery et al.l 2020) have been used to perform synthetic data augmentation for
image recognition. More recent approaches have explored the use of generative models to generate
synthetic data for image classification (Sariyildiz et al., [2023} | Zhou et al.,2023; Bansal & Grover,
2023 |Hennicke et al.l 2024; |Jung et al.| 2024])). Text-to-image diffusion models, in particular, have
gained prominence as these models can generate high-quality, large-scale curated datasets with just a
few textual descriptions. For instance, He et al.|(2022) has found that synthetic data generated by
GLIDE (Nichol et al.,2021) can readily benefit image classification in data-scarce settings. [Trabucco
et al.| (2024) proposes a data augmentation method that uses pre-trained text-to-image diffusion
models to enhance semantic diversity in images, leading to improved accuracy in few-shot image
classification tasks. |Azizi et al.|(2023)) has demonstrated that fine-tuning Imagen (Saharia et al.,[2022)
using a target dataset can improve classification accuracy. [Fan et al.|(2024) studies the scaling laws
of synthetic images generated by text-to-image diffusion models to train image classifiers.

Unlike their approach, we answer a more fundamental and overarching question: When we have a
certain amount of real data for classification, how quantitatively can synthetic data augmentation
help with image classification? How does the role of synthetic data vary under different scales of real
data?

Text-to-Image Diffusion Models Diffusion models (Ho et al.,2020b; Song et al., 2020aib) have
emerged as powerful generative models capable of producing high-quality, photo-realistic images.
Comparing with traditional generative adversarial networks (Goodfellow et al., 2014; [Tul [2007)),
diffusion models offer comparable or even superior image quality while also providing greater
training stability. Specifically, text-to-image (T2I) diffusion models enable flexible language prompts
to generate diverse and customized images. Imagen (Saharia et al.;[2022)), Stable Diffusion (Rombach
et al.,|2022), DALL-E (Ramesh et al., [2021)), Muse (Chang et al.,[2023)), and GLIDE (Nichol et al.,
2021) are notable T2I models. Additionally, ControlNet (Zhang et al.,[2023a)), T2-Adapter (Mou
et al., 2023)), UniControl (Qin et al., |2023)), and OmniControlNet (Wang et al., 2024)) demonstrate
excellent capabilities in image-conditioned text-to-image tasks.

In this work, we focus on Stable Diffusion, a latent diffusion model (LDM) that performs the diffusion
process within the latent space of the Variational AutoEncoder (Kingma, [2013;|Van Den Oord et al.,
2017). This approach significantly reduces computational demands compared to pixel-based models
while achieving superior visual fidelity and performance across various tasks.

5 CONCLUSION

In this study, we present Mousterian, an empirical study that systematically explores how synthetic
data can enhance classification models, starting from fundamental classification tasks, and identify
scenarios where synthetic data proves particularly effective. Through a series of experiments, we
demonstrate the efficacy of direct mixed training and reveal that generative models have the potential
to improve classification performance, regardless of the involvement of external datasets. Notably,
we observe a significant utility of generated data when the amount of real data is limited, alongside a
saturation trend in performance improvement as the data volume increases. Additionally, we provide
an empirical functional relationship between accuracy and the amount of real and synthetic data
added, aiming to offer researchers an intuitive understanding of this relationship. We hope that our
findings will provide valuable insights for future research on synthetic data in computer vision.

10
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A IMAGENET-10

ImageNet-10 comprises 10 classes randomly selected from the original ImageNet-1k
[20094). Each class contains roughly 1,300 images. The class labels are French bulldog, coyote,
Egyptian cat, lion, brown bear, fly, bee, hare, zebra, and pig. The visualization of ImageNet-10 is
provided in Figure [I0]

French Egyptian
Bulldog

ImageNet-10

Figure 10: Visualizations of the ImageNet-10. Ten classes are randomly selected from the original
ImageNet-1k.

B PRELIMINARIES

Zero-shot image classification Zero-shot image classification can be formalized as follows: Let
Vuain be the set of training categories, the training set Dy, consists of samples {(z;, y;)}Y,, with
x; representing an image and y; € Yy its class label. The validation set Dy includes samples
{(;, yj)}j”il, where z; is a test image, but its class label y; € Vieq is not part of the training data,
i.e., Virain N Veest = 0. During training, the class label y is first mapped to a text description M (y),
where M € M is a natural language template. Then, a text encoder T" converts M (y) into a feature
vector, which is subsequently projected onto the joint embedding space using a linear layer, resulting
in a text embedding Emby(y). For images, a visual encoder processes the image x to produce its
feature representation I(x). This feature is also projected onto the same space as the text embedding.
The training goal is to maximize the cosine similarity between Embiey (y) and Embjpaee (). In the
testing period, given a test image T, it is classified into the category gy, With the highest similarity
score. Although the categories of the test images are not seen during training, this approach enables
classification by leveraging their semantic relationships with seen classes.

In our case, by leveraging the powerful capabilities of a generative model, we can create a synthetic
dataset Dy, composed solely of images of Vies; and mix it with the original training set Dyeq, resulting
in a combined training set Dpixed = Dreat U Dyyn. In this way, Ve is included in the categories of
Dhiixed> While the classifier has only not seen the real data of V.

C ADDITION EXPERIMENTS

C.1 REAL AND SYNTHETIC DATA ARE FUNDAMENTALLY DIFFERENT

In this section, we provide more detailed information about the experiment mentioned in Section
1] To investigate the differences in data distribution, we conduct extensive experiments across
various datasets using different synthetic data generation methods. A domain classifier is trained to
distinguish between input images from the real domain and the synthetic domain. Considering both
global and local statistical differences, we evaluate two scenarios: one where the input images are
original images and another where the input images are image patches.

The real datasets include CIFAR-10, ImageNet-10, and ImageNet-100. For CIFAR-10, we utilize
datasets generated by conditional Vanilla-DDPM and EDM, as introduced in previous sections, as
synthetic datasets. Given the image resolution of these datasets is 32 x 32, we only consider scenarios
where the input images are the original images. For ImageNet-10, we employ ImageNet-10-SD2 and
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ImageNet-10-SD3 as synthetic datasets, conducting experiments on both original images and image
patches. For ImageNet-100, we use ImageNet-100-SD3. All synthetic datasets are the same size as
the corresponding real dataset. The results are presented in Figure[TT] All experiments involving
the classification of image patches achieve an accuracy greater than 90%, while those involving
the classification of full images achieve an accuracy exceeding 98%. These findings demonstrate a
fundamental difference in the distribution between real and synthetic data.

(a) Real/Syn Image Patch Domain Classification (b) Real/Syn Image Domain Classification
99.9 100
96.2
99.2
92.8
92.0

90 = Tty

BN imageNet-10+5D2 EZZA imageNet-100+SD3 [ CIFAR-10+EDM [ ImageNet-10+SD3
0 ImageNet-10+SD3 [ CIFAR-10+Vanilla-DDPM EZA 1mageNet-100+SD3

I ImageNet-10+SD2

Figure 11: Visualizations of the domain classification experiments on image patches (a) and original
images (b). The numbers in the figure are the accuracy (%).

C.2 FULL RESULTS ON CIFAR-10

We provide the results used for fitting the equivalence contour under the internal setting in Section[3.1]
as shown in Figure 3] In Section 3] all ResNet models are trained from scratch. Here, we investigate
whether synthetic data still provides benefits for classifiers pre-trained on large-scale datasets. To
explore this, we use a ViT-L/16 model pre-trained on ImageNet-21K. After fine-tuning this model on
CIFAR-10, it achieves near-SOTA performance (99.22% in our tests). We also fine-tune the model
on a mixed dataset of CIFAR-10 and CIFAKE synthetic datasets, which results in 99.23%, showing
virtually no improvement. We believe this is because the pre-trained model has already learned
extensive knowledge from large-scale real data, and factors such as the quality and distribution
differences of synthetic data limit its usefulness when fine-tuning the model.

C.3 FULL RESULTS ON SUPERVISED IMAGE CLASSIFICATION

We provide the full results of supervised image classification on different datasets, data amount, and
data ratio. Results on ImageNet-10 and two synthetic datasets with different quality (ImageNet-
10-SD2, ImageNet-10-SD3) are provided in Table[d] Results on ImageNet-100 2020)
and the corresponding synthetic dataset (ImageNet-100-SD3) are shown in Table |5} Information on
ImageNet-10 can be found in Appendix [A]

Additionally, we provide a comprehensive comparison of the impact of different real data amounts,
real-to-synthetic data ratios, and synthetic data quality on model classification performance for
ImageNet-10, as shown in Figure[I2] It can be observed that the gap between the two blue curves is
much larger than the gap between the two orange curves, which is greater than that between the red
curves. Thus, we can conclude that as the amount of real data increases, the impact of synthetic data
quality diminishes, which aligns with the conclusions drawn in Section [3.3.1}

C.4 FULL RESULTS ON ZERO-SHOT IMAGE CLASSIFICATION
We conduct zero-shot image classification experiments on ImageNet-10 and ImageNet-100 with three

synthetic datasets. The model is evaluated on the validation set of categories whose real images it
does not see during training. The results are provided in Table [6]
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Table 3: Experimental results on CIFAR-10 used for fitting the equivalence contour for internal
generative data augmentation.

Training Dataset | Data Amount | Acc
Real Syn | Real Syn Total |  Top-1
0 0 67.05

3,000 5.000 10,000 71.63
0 25,000 87.35

10,000 35,000 88.08

20,000 45.000 88.46

25,000 50,000 88.41

30,000 55.000 88.80

40.000 65.650 88.44

25,000 50,000 75,000 89.10
60.000 85,000 89.19

70.000 95,000 89.96

CIFAR-10 Vanilla-DDPM 75,000 100,000 89.15
80,000 105.000 89.41

90,000 115,000 90.03

100,000 125.000 89.51

30,000 30,000 87.65
32,500 32.500 89.3
35,000 35,000 89.64
37.500 0 37.500 89.75
40,000 40,000 91.22
42,500 42,500 91.17
45,000 45.000 91.78
47,500 47,500 92.53
0 50,000 92.48

50,000 100,000 93.08

100,000 150,000 92.64

50,000 150,000 200,000 92.92
200,000 250,000 93.05

250,000 300,000 92.76
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Table 4: Experimental details of supervised image classification on ImageNet-10. Real:Syn refers to
the ratio of the quantity of real data to synthetic data used in training.

Training Dataset | Data Amount | Real:S | Acc
Syn ' "~
Real Syn | Real Syn Total | \ Top-1
0 650 real only 45.73
65 715 1:0.1 46.20 (+0.47)
325 975 1:0.5 50.73 (+5.00)
650 650 1,300 1:1 52.20 (+6.47)
6,500 7,150 1:10 71.33 (+25.6)
32,500 33,150 1:50 81.13 (+35.40)
65,000 65,650 1:100 82.60 (+36.87)
0 2,600 real only 67.73
260 2,860 1:0.1 68.73 (+1.00)
2600 500 500 | 1 | 76730
’ , s : 73 (+9.00)
ImageNet-10  ImageNet-10-SD2 26000 28,600 1:10 | 88.13 (+2040)
130,000 132,600 1:50 89.53 (+21.80)
0 13,000 real only 91.27
1,300 14,300 1:0.1 92.67 (+1.40)
13,000 6,500 19,500 1:0.5 93.13 (+1.86)
13,000 26,000 1:1 94.07 (+2.80)
130,000 143,000 1:10 94.53 (+3.26)
0 13,000 syn only 59.87
130 13,130 1:100 68.53 (+8.66)
1,300 13,000 14,300 1:10 81.53 (+21.66)
6,500 19,500 1:2 90.60 (+30.73)
13,000 26,000 1:1 94.07 (+34.20)
0 650 real only 45.73
65 715 1:0.1 46.20 (+0.47)
325 975 1:0.5 51.80 (+6.07)
650 650 1,300 1:1 56.93 (+11.20)
6,500 7,150 1:10 75.67 (+29.94)
32,500 33,150 1:50 83.27 (+37.54)
65,000 65,650 1:100 86.13 (+40.40)
0 2,600 real only 67.73
260 2,860 1:0.1 69.47 (+1.74)
w03 | s | s
, , : .67 (+10.94)
ImageNet-10  ImageNet-10-SD3 26,000 28,600 1:10 89.40 (+21.67)
130,000 132,600 1:50 91.27 (+23.54)
0 13,000 real only 91.27
1,300 14,300 1:0.1 92.60 (+1.33)
13,000 6,500 19,500 1:0.5 93.33 (+2.06)
13,000 26,000 1:1 94.13 (+2.86)
130,000 143,000 1:10 95.00 (+3.73)
0 13,000 syn only 71.87
130 13,130 1:100 77.20 (+5.33)
1,300 13,000 14,300 1:10 82.80 (+10.93)
6,500 19,500 1:2 90.80 (+18.93)
13,000 26,000 1:1 94.13 (+22.26)
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Table 5: Performance comparison on ImageNet-100 (Tian et al., 2020).

Training Dataset | Data Amount | | Acc
Real:Syn
Real Syn | Real Syn Total | |  Top-1 Top-5
0 6,500 | real only 26.07 49.93

650 7,150 1:0.1 29.89 (+3.82)  54.29 (+4.36)
6,500 3,250 9,750 1:0.5 35.89 (+9.82) 60.22 (+10.29)
6,500 13,000 1:1 41.31 (+15.24) 66.05 (+16.12)
65,000 71,500 1:10 64.78 (+38.71) 85.83 (+35.90)

0 26,000 | real only 62.78 82.90
2,600 28,600 1:0.1 64.95 (+2.17)  84.71 (+1.81)
26,000 13,000 39,000 1:0.5 69.65 (+6.87) 88.11 (+5.21)
26,000 52,000 1:1 72.31 (+9.53)  89.81 (+6.91)
130,000 156,000 1:5 78.17 (+15.39) 93.49 (+10.59)

0 130,000 | real only 85.41 96.39
13,000 143,000| 1:0.1 85.69 (+0.28)  96.63 (+0.24)

ImageNet-100 ImageNet-100-SD3

130,000 65,000 195,000 1:0.5 86.85 (+1.44)  97.10 (+0.71)
130,000 260,000 1:1 86.91 (+1.50) 97.29 (+0.90)

0 130,000 | syn only 50.93 76.63
1,300 131,300 | 1:100 58.88 (+7.95) 82.53 (+5.90)
13,000 130,000 143,000 1:10 73.55 (+22.62) 91.07 (+14.44)
65,000 195,000 1:2 83.49 (+32.56) 95.71 (+19.08)
130,000 260,000 1:1 86.91 (+35.98) 97.29 (+20.66)

Table 6: Full experiments results of zero-shot image classification on ImageNet-10 and ImageNet-100
with corresponding synthetic datasets.

Training Dataset | Data Amount | . | Acc
Real:Syn ' .~
Real Syn | Real Syn Total | \ Top-1
0 6,500 real only 45.73
650 7,150 1:0.1 56.27 (+10.54)
ImageNet-10 ImageNet-10-SD2 6,500 3,250 9,750 1:0.5 58.93 (+13.20)
6,500 13,000 1:1 59.33 (+13.60)
65,000 71,500 1:10 61.33 (+16.60)
0 6,500 real only 45.73
650 7,150 1:0.1 62.27 (+16.54)
ImageNet-10 ImageNet-10-SD3 6,500 3,250 9,750 1:0.5 67.47 (+21.74)
6,500 13,000 1:1 68.13 (+22.40)
65,000 71,500 1:10 76.80 (+31.07)
0 130,000 | real only 8.92
13,000 143,000 1:0.1 20.91 (+11.99)
ImageNet-100  ImageNet-100-SD3 130,000 65.000 195.000 1:0.5 3429 (+25.37)
130,000 260,000 1:1 39.16 (+30.24)
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Figure 12: Classification accuracy relative to the ratio of synthetic data on ImageNet-10. Different
colors represent different baseline amounts of real data, while different levels of transparency indicate
different synthetic data quality.

D IMPLEMENTATION DETAILS

Both supervised and zero-shot image classification experiments are performed on CIFAR-10,
ImageNet-10, ImageNet-100, and various corresponding synthetic datasets. For ImageNet-10 and
ImageNet-100 experiments, we fix the number of total iterations instead of total epochs. However,
since our mixed dataset size varies significantly, ranging from 650 to 260,000, we group the total
number of iterations into different levels based on the data size, and the details are provided in Table
All images are resized to 224 x 224 for input. For data augmentation, we apply random cropping,
resizing, and random horizontal flipping.

For the CIFAR-10 experiments, we use ResNet-110 as introduced in (He et al.|[2016]) for classification,
as it is well-suited for the smaller image sizes of CIFAR-10. In the experiments on CIFAR-Half and
the full CIFAR-10, we fix the number of epochs at 160, using a multistep scheduler to decay the
learning rate by a factor of 0.1 at epochs 80 and 120. For CIFAR-Small, we fix the number of epochs
at 320, also using a multistep scheduler, with the learning rate decaying by a factor of 0.1 at epochs
160 and 240. For data augmentation, we apply random cropping and random horizontal flipping.

For the ViT-L/16 (Kolesnikov et al.||2021)) fine-tuning experiment, we fix the total iterations at 10,000
steps. The 32 x 32 CIFAR-10 images are resized to 224 x 224 for input.

For all settings mentioned above, we run 3 trials for each experiment and report the average result.
Details on other hyper-parameters are provided in Table|[§]

In our mixed training approach, we utilize PyTorch’s (Paszke et all [2019) ConcatDataset
method to combine real and synthetic data. The RandomSampler of PyTorch randomly shuffles
the combined dataset at the beginning of each epoch.

When calculating the Frechet Inception Distance (FID) score between synthetic datasets and real
datasets, we employ the official implementation of FID to PyTorch (Seitzer, [2020).

Table 7: Iterations of the ImageNet-10 and ImageNet-100 experiments with respect to data amount.

Data amount | [650, 1.3k) [1.3k, 2.6k) [2.6k, 13k) [13k, 260k]
Iterations | 10k 30k 60k 120k
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Table 8: Hyperparameters used to train ResNet-50, ResNet-110, and ViT-L/16.

Hyper-parameter | ResNet-50 ResNet-110 ViT-L/16

Batch size 192 128 512
Base Ir 0.1 0.1 0.03
Decay method cosine multistep cosine
Optimizer SGD SGD SGD
Momentum 0.9 0.9 0.9
Weight decay le-4 le-4 0
Warmup iterations 10% no warmup 5%

E ADDITION VISUALIZATIONS

E.1 VISUALIZATION: SYNTHETIC DATA FOR IMAGENET-100

We visualize the synthetic dataset for ImageNet-100, generated by Stable Diffusion 3. Ten classes
are randomly selected from the entire dataset. All example images are randomly sampled from their
respective classes without any manual curation. The visualizations are presented in Figure [I3]

Cocktail Standard Fiddler Park
Red fox Moped Boathhouse Rofisserie Goose Shaker Poodle Lorikeet Crab Bench

ImageNet-100
Stable Diffusion 3

Figure 13: Visualizations of the SD3-generated synthetic dataset for ImageNet-100.

E.2 VISUALIZATION: SYNTHETIC DATA FOR CIFAR-10

We visualize some example images of the synthetic datasets for CIFAR-10, including three datasets
generated by Vanilla-DDPM 2020D)), which is trained on CIFAR-Small, CIFAR-Half, and
the full CIFAR-10, respectively, a dataset sampled using EDM (Karras et al.} [2022)), and the synthetic
dataset from CIFAKE 2020b). The visualizations are shown in Figure

Qualitatively, both the EDM-generated dataset and CIFAKE have relatively high recognizability.
However, CIFAKE images exhibit domain shifts; for example, the ship in the third row in Figure [I4]
(d) is generated as an interior scene rather than its external form. The Vanilla-DDPM model trained
on the full CIFAR-10 produces some distorted images, such as the frog in the first row and the cat
in the third row in Figure[T4](c), which explains its significantly lower IS score. The image quality
further declines for the Vanilla-DDPM models trained on CIFAR-Half and CIFAR-Small. Certain
images, such as those of cats and dogs, become almost unrecognizable to the human eye.
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Figure 14: Visualizations of the synthetic datasets for CIFAR-10, CIFAR-Half, and CIFAR-Small.

22



	Introduction
	Motivation
	Internal Generative Data Augmentation
	External Generative Data Augmentation
	Can synthesized data help with classification?

	Shaping the Classification Models with Synthetic Data by Generation
	Generative models trained on internal data for CIFAR-10 classification
	Generative models trained on external data for CIFAR-10 classification
	Generative models trained on external data for ImageNet Classification
	Supervised image classification
	Zero-shot image classification


	Related Work
	Conclusion
	ImageNet-10
	Preliminaries
	Addition experiments
	Real and Synthetic data are fundamentally different
	Full results on CIFAR-10
	Full results on supervised image classification
	Full results on zero-shot image classification

	Implementation details
	Addition visualizations
	Visualization: synthetic data for ImageNet-100
	Visualization: synthetic data for CIFAR-10


