
Centralized Reward Agent for Knowledge Sharing and
Transfer in Multi-Task Reinforcement Learning

Haozhe Ma1,2, Zhengding Luo3∗, Thanh Vinh Vo1, Kuankuan Sima4, Tze-Yun Leong1
1School of Computing, National University of Singapore

2TikTok Pte. Ltd., Singapore
3School of Electrical and Electronic Engineering, Nanyang Technological University

4Department of Electrical and Computer Engineering, National University of Singapore
{haozhe.ma, kuankuan_sima}@u.nus.edu,

{votv, leongty}@nus.edu.sg, luoz0021@e.ntu.edu.sg

Abstract

Reward shaping is effective in addressing the sparse-reward challenge in reinforce-
ment learning (RL) by providing immediate feedback through auxiliary, informative
rewards. Based on the reward shaping strategy, we propose a novel multi-task
reinforcement learning framework that integrates a centralized reward agent (CRA)
and multiple distributed policy agents. The CRA functions as a knowledge pool,
aimed at distilling knowledge from various tasks and distributing it to individual
policy agents to improve learning efficiency. Specifically, the shaped rewards serve
as a straightforward metric for encoding knowledge. This framework not only
enhances knowledge sharing across established tasks but also adapts to new tasks
by transferring meaningful reward signals. We validate the proposed method on
both discrete and continuous domains, including the representative Meta-World
benchmark, demonstrating its robustness in multi-task sparse-reward settings and
its effective transferability to unseen tasks.

1 Introduction

Reinforcement learning (RL) has made significant progress across various domains, such as
robotics [Kober et al., 2013], gaming [Lample and Chaplot, 2017], autonomous vehicles [Aradi,
2020], signal processing [Luo et al., 2024], and large language models [Shinn et al., 2023, Ouyang
et al., 2022]. However, environments with sparse and delayed rewards remain a significant challenge,
as the absence of immediate feedback hinders the agent from distinguishing the value of states and
leads to aimless exploration [Ladosz et al., 2022]. Reward Shaping (RS) has been proven to be
an effective technique for addressing this challenge by providing additional dense and informative
rewards [Sorg et al., 2010b,a]. Concurrently, multi-task reinforcement learning (MTRL) is becoming
increasingly important due to its ability to transfer knowledge across tasks. In this context, the auxil-
iary rewards infused with task-specific information in RS offer a straightforward means to distribute
knowledge among different tasks. Integrating RS techniques into MTRL is a highly promising and
intuitive direction to enhance the efficacy of multi-task learning systems.

Numerous MTRL algorithms for knowledge transfer have been developed. Policy distillation methods
identify and combine commonalities across different policies [Rusu et al., 2016, Teh et al., 2017,
Parisotto et al., 2016, Xu et al., 2024]; representation sharing methods extract and share the common
features or gradients among agents [Yang et al., 2020, D’Eramo et al., 2020, Sodhani et al., 2021];
and parameter sharing methods design architectural modules to reuse parameters or layers across
networks [Sun et al., 2022, Cheng et al., 2023]. Despite their potential, these strategies often face slow

∗Corresponding author.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

adaptation to and limited utilization of transferred knowledge. Therefore, leveraging reward shaping,
which directly adds a metric to the reward function, offers a compelling alternative to address these
limitations.

Regarding reward shaping, not all shaped rewards effectively serve as a medium for knowledge
transfer. Specifically, the intrinsic-motivation-based rewards are typically designed using heuristics to
generate task-agnostic signals. Examples include incorporating exploration bonuses [Bellemare et al.,
2016, Ostrovski et al., 2017, Devidze et al., 2022], rewarding novel states [Tang et al., 2017, Burda
et al., 2018], and encouraging curiosity-driven behaviors [Pathak et al., 2017, Mavor-Parker et al.,
2022]. Although these approaches encourage broader exploration, they are not directly related to
specific tasks and thus lack transferability. Consequently, we focus on another branch of RS methods,
task-contextual rewards, which automatically learn and encode task-specific information, such as
hidden values, states contributions, or future-oriented insights, that can be effectively shared across
various tasks [Ma et al., 2024a, 2025b,a, Mguni et al., 2023, Memarian et al., 2021].

To share task-related knowledge in MTRL via RS techniques, and inspired by the ReLara frame-
work [Ma et al., 2024a], which integrates an assistant reward agent to densify sparse environmental
rewards, we propose the Centralized Reward Agent based MTRL fRAmework (CenRA)2. The
framework consists of two main components: a centralized reward agent (CRA) and multiple dis-
tributed policy agents. Each policy agent individually learns control behaviors within its respective
tasks and shares its experiences with the CRA. The CRA extracts common knowledge from these
experiences and learns to generate dense rewards that are encoded with task-specific information.
These rewards are then distributed back to the policy agents to augment their original environmental
rewards. Additionally, given that different tasks may contribute variably to the MTRL system, we
introduce an information synchronization mechanism to further balance knowledge distribution
by considering task similarity and agent learning progress, thereby ensuring system-wide optimal
performance. The main contributions of this paper are summarized as follows:

(i) We propose the CenRA framework to address MTRL problems. It incorporates a CRA that
functions as a knowledge pool, efficiently distilling and distributing valuable information from
various tasks to policy agents while adapting to new tasks.

(ii) CenRA leverages reward shaping techniques to infuse insights via dense rewards. This approach
not only provides a direct signal for policy agents to absorb knowledge but also effectively
addresses the sparse-reward challenge.

(iii) We introduce an information synchronization mechanism that considers both task similarity
and agent learning progress to balance multi-task learning. This mechanism provides a novel
direction for maintaining system equilibrium in MTRL.

(iv) CenRA is validated in both discrete and continuous control MTRL environments with sparse
extrinsic rewards. CenRA outperforms baseline models in learning efficiency, knowledge
transferability, and system-wide performance.

2 Related Work

Multi-task reinforcement learning (MTRL) has attracted significant attention recently due to its
potential to share knowledge across multiple tasks, thereby improving learning performance [Caruana,
1993]. We discuss existing MTRL literature from three main directions:

Knowledge Transfer methods focus on identifying and transferring task-relevant features across
diverse tasks [Zeng et al., 2021]. Policy distillation [Rusu et al., 2016] is a well-studied approach to
extract and share task-specific behaviors or representations that many works are built on: Teh et al.
[2017] introduced Distral, which distills a centroid policy from multiple task-policies; Parisotto et al.
[2016] developed Actor-Mimic, where a single policy is trained to mimic several expert policies from
different tasks; while Yin and Pan [2017] incorporated hierarchical prioritized experience replay
buffer to select and learn multi-task experiences; Hessel et al. [2019] further proposed an adaptation
mechanism to equalize the impact of each task in policy distillation. Additionally, Xu et al. [2020]
explored the transfer of offline knowledge to train policies, and further leveraged online learning
for fine-tuning. Bai et al. [2023] introduced a dual-phase learning approach, optimizing individual
policies while correcting them across multiple tasks. Mysore et al. [2022] used separate critics for
each task to accompany a single actor to integrate their feedback. These methods mitigate gradient

2The source code is accessible at: https://github.com/mahaozhe/CenRA

2

https://github.com/mahaozhe/CenRA

interference to an extent, however, balancing the distribution of knowledge across tasks is crucial.
Without a careful trade-off, the performance of the entire system could be compromised.

Representation Sharing methods explore architectural solutions of reusing network modules or
representing commonalities to the MTRL problem [D’Eramo et al., 2020, Devin et al., 2017, Hong
et al., 2021, Ma et al., 2024b, 2023]. Sun et al. [2022] used a parameter compositional approach
to learn and share a subspace of parameters, allowing policies for various tasks to be interpolated
within it. Yang et al. [2020] employed soft modularization to learn foundational policies and utilized
a routing network to generate probabilities to combine them. He et al. [2024] introduced the Dynamic
Depth Routing framework, which dynamically adjusts the use of network modules in response to task
difficulty. Sodhani et al. [2021] leveraged task-related metadata to create composable representations.
Cheng et al. [2023] and Lan et al. [2023] both incorporated attention mechanisms: the former
employed attention-based mixture of experts to capture task relationships, while the latter used
Temporal Attention for contrastive learning purposes. Although these methods demonstrate efficacy
in learning shared representations, they may struggle to fully capture the complexity of highly diverse
tasks. Moreover, adapting shared structures to new tasks typically requires extra design efforts.

Single-Policy Generalization methods learn a single policy to solve multiple tasks simultaneously or
continuously, in the absence of information from prior policies or task-specific details, in which case,
the primary goal is to enhance the policy’s generalization capabilities. Model-free meta-learning
techniques have been proposed to enhance the multi-task generalization [Finn et al., 2017]. Yang et al.
[2017] designed a sharing network structure that allows an agent to learn multiple tasks concurrently.
Vuong et al. [2019] introduced a confidence-sharing agent to detect and define shared regions between
tasks to support single policy learning. Wan et al. [2020] proposed a transfer learning framework to
handle mismatches in state and action spaces. Additionally, several methods focus on overcoming
gradient interference to enhance the generalization in various tasks [Chen et al., 2018, Yu et al.,
2020a], while Ammar et al. [2014] developed a consecutive learning policy gradient approach. These
methods are efficient in saving computational resources, but the generalization ability of the policy
may be constrained when faced with out-of-distribution or previously unseen tasks.

3 Preliminaries

Markov Decision Process (MDP) models sequential decision-making problems under uncertainty.
An MDP represents the interaction between an agent and its environment as a tuple ⟨S,A, P,R, γ⟩,
where S is the state space, A is the action space, P : S × A × S → [0, 1] is the probability of
transiting from one state to another given an action, R : S × A → R is the reward function, and
γ ∈ [0, 1] is the discount factor to modulate the importance of future versus immediate reward.

Multi-Task Reinforcement Learning (MTRL) addresses the challenge of learning multiple tasks
simultaneously within an integrated model to leverage commonalities and differences across tasks.
Typically, MTRL introduces a task space T , assuming all tasks are sampled from this space and thus
follow a unique distribution. Each task is modeled as an independent MDP. An MTRL agent aims to
learn optimal policies πi : S → A for each task Ti ∼ T , to maximize their corresponding expected
cumulative rewards, or returns, denoted by Gi = E[

∑∞
t=0 γ

tRi(st, at)].

RL with an Assistant Reward Agent (ReLara) [Ma et al., 2024a] introduces a dual-agent framework
designed to tackle the challenge of sparse rewards in RL. Within this framework, the original agent is
termed as policy agent, while an assistant reward agent is integrated to enrich the feedback mechanism
by generating dense, informative rewards. The reward agent, trained as a self-contained RL agent,
autonomously extracts hidden value information from the environmental states and the actions of
the policy agent to craft meaningful reward signals. These signals significantly improve learning
efficiency by providing immediate and pertinent bonuses.

4 Methodology

We propose the Centralized Reward Agent fRAmework (CenRA) for MTRL, which incorporates a
centralized reward agent (CRA) to support multiple reinforcement learning agents across multiple
tasks. A high-level illustration of the CenRA framework is shown in Figure 1. The CRA is
responsible for extracting general task-specific knowledge from various tasks and distributing valuable
information to the policy agents by reconstructing their reward models. The detailed methodology

3

Figure 1: A high-level illustration of the CenRA framework. The centralized reward agent functions
as a knowledge repository, distilling information from various tasks and distributing it to individual
policy agents to enhance learning efficiency.

for knowledge extraction and sharing is presented in Section 4.1. Furthermore, to mitigate the
potential disparities in the information that each task contributes, which might lead to an imbalance
in knowledge distribution, we introduce an information synchronization mechanism by considering
two main factors: the similarity of the tasks and the online learning performance of the policy agents,
details given in Section 4.2. Finally, the overall framework of CenRA is presented in Section 4.3.

4.1 Knowledge Distillation and Distribution

4.1.1 Problem Formulation

We consider an MTRL setting comprising N distinct tasks {T1, T2, . . . , TN}, all executed within
the same type of environment E . We assume that the shape of state s ∈ S and action a ∈ A remain
uniform across tasks, to ensure the CRA processes consistent inputs. Despite this uniformity, each
task may feature different state spaces, action spaces, goals, and transition dynamics. For instance, a
series of mazes with the same size but varying map configurations would satisfy this condition. For
each task Ti, we denote the transition function as Pi(s

′|s, a) and the reward function as Ri(s, a).

The centralized reward agent (CRA) is denoted as Arwd and multiple policy agents are denoted
as {Apol

1 ,Apol
2 , . . . ,Apol

N }. Each policy agent Apol
i operates independently to complete its corre-

sponding task Ti, utilizing appropriate RL algorithms as backbones. For example, implement-
ing DQN [Mnih et al., 2015] for discrete control tasks, while TD3 [Fujimoto et al., 2018] or
SAC [Haarnoja et al., 2018a] for continuous control tasks. Moreover, the policy of CRA Arwd is
πrwd, and the internal policy of policy agent Apol

i is πpol
i .

4.1.2 Centralized Reward Agent

The CRA Arwd aims to extract environment-relevant knowledge and distribute it to policy agents by
generating additional dense rewards to support their original reward functions. Similar to the ReLara
framework [Ma et al., 2024a], we model the CRA as a self-contained RL agent, yet, as an extension to
ReLara, our CRA is designed to concurrently interact with multiple policy agents and their respective
tasks. The CRA’s policy πrwd generates continuous rewards given both an environmental state and a
policy agent’s behavior. Specifically, πrwd maps the Cartesian product of the state space and action
space, S ×A, to a defined reward space, which constrains the rewards to a range of real numbers,
R = [Rmin, Rmax] ⊂ R. For simplicity, we denote the observation of the CRA as srwd = (si, ai),
where si ∼ Ti and ai ∼ πpol

i (si). To distinguish from the environmental reward, the generated
reward is termed as knowledge reward, denoted as rknw.

We adopt an off-policy actor-critic algorithm to optimize the CRA [Konda and Tsitsiklis, 1999]. To
aggregate and reuse experiences from all policy agents, a concatenated replay buffer D =

⋃N
i=1Di is

4

constructed, where Di represents the replay buffer of each policy agentApol
i . Besides, each transition

is augmented with the CRA-generated knowledge reward, rknw. Specifically, the transition from
policy agent Apol

i stored in the replay buffer is defined as τ = (srwd
t , rknwt , renvt , srwd

t+1 |Ti). The
augmented transition includes all necessary information for optimizing both the CRA and each
corresponding policy agent, thus making the concatenated replay buffer a shared resource across the
entire framework and minimizing storage overhead.

The CRA’s update process involves using these stored transitions to optimize the reward-generating
actor πrwd and the value estimation critic. The objective function for the critic module is:

J(V rwd) = E
τt∼D

[δ2t], δt = renvt + γV rwd(srwd
t+1)− V rwd(srwd

t)|Ti, (1)

where τt = (srwd
t , renvt , srwd

t+1 |Ti) ∼ D. Concurrently, the actor module is updated through the
following objective function:

J(πrwd) = E
τt∼D

[
E

rknw
t ∼πrwd(·|srwd

t)

[
log πrwd(rknwt |srwd

t) · δt
]]
. (2)

4.1.3 Policy Agents with Knowledge Rewards

Each policy agent Apol
i stores the experiences in its corresponding replay buffer Di. They receive

two types of rewards: the environmental reward renvi from their respective task Ti and the knowledge
reward rknw from CRA. The augmented reward is given by:

rpoli = renvi + λrknw, rknw ∼ πrwd(·|si, ai), (3)

where λ ∈ (0, 1] is a scaling weight factor. The optimal policy πpol
i

∗
for each agent is derived by

maximizing the cumulative augmented reward:

πpol
i

∗
= argmax

πpol
i

E
(si,ai)∼πpol

i

[∞∑
t=0

γtrpoli

]
. (4)

It is worth noting that the environmental reward renvi is retrieved from the replay buffer (if adopting
an off-policy approach). Conversely, the knowledge reward rknw is computed in real-time using the
most recently updated Arwd, ensuring it reflects the latest learning advancements. Lastly, each policy
agent is able to employ any suitable RL algorithm, whether on-policy or off-policy, to best address its
specific task, which enhances the CenRA framework’s generality and flexibility.

4.2 Information Synchronization of Policy Agents

In the CenRA, the information provided by different tasks may exhibit significant disparities, poten-
tially leading to an imbalance in knowledge extraction and distribution. We introduce an information
synchronization mechanism for CenRA to maintain a balanced manner from the perspective of the
entire system. Specifically, we control the quantity of samples that CRA retrieves from each task’s
replay buffer Di by a sampling weight w, by considering two aspects: the similarity among tasks and
the real-time learning performance of the policy agents.

Similarity Weight wsim is derived from the similarity among tasks, enabling the CRA to focus on
relatively outlier tasks. To simplify computation, we use the hidden layers extracted from each policy
agent’s neural network encoders to represent the tasks’ features. To reduce randomness, we average
the hidden features of the most recent K steps. We adopt a cross-attention mechanism to calculate
the similarity weight [Vaswani et al., 2017]. Specifically, for task Ti, let Hi denote the averaged
hidden feature vector, which serves as the key, and the centroid of all tasks c acts as the query. Then,
the similarity si of task Ti to the centroid of the task cluster is calculated as:

si =
cT ·Hi√

D
, c =

1

N

N∑
k=1

Hk, (5)

where D is the dimension of the hidden feature to prevent gradient vanishing or exploding. A larger si
indicates a greater similarity between Ti and the centroid. It is worth noting that, to avoid the centroid
c approaching zero due to feature vectors Hi pointing in opposite directions, all latent representations

5

Hi in our framework are extracted from ReLU activation layers. This ensures that every element of
Hi is non-negative, effectively preventing feature cancellation and maintaining a well-defined and
numerically stable centroid c. Given our assumption is that the tasks farther from the centroid require
more attention, the similarity weight is defined as wsim = Softmax

(
[1/s1, 1/s2, . . . , 1/sN]

)
.

Performance Weight is determined by the real-time learning performance of each policy agent,
to ensure the CRA focuses more on lagging tasks. Similar to the similarity weight, we av-
erage the environmental rewards renvi from the most recent K steps, denoted as Rtail

i , to
measure the recent learning trends. The performance weight is then defined as wper =
Softmax

(
[1/Rtail

1 , 1/Rtail
2 , . . . , 1/Rtail

N]
)
.

The final sampling weight w is formulated as w = αwsim + (1− α)wper, where α is a hyperpa-
rameter to balance the two aspects. The CRA samples from each replay buffer Di according to w,
ensuring a balanced and effective knowledge extraction and learning.

4.3 Overall Framework

The overall framework of CenRA is summarized in Algorithm 1. The CRA and policy agents
are updated alternately and asynchronously, with the frequency of updating the CRA adjustable
according to the actual situation. Sampling weights are calculated in real-time, using the most recently
optimized encoders and the current learning performance, ensuring CRA continuously adjusts its
focus to optimally balance knowledge extraction across multiple tasks.

The learned CRA acts as a robust knowledge pool, which is able to support new tasks by transferring
knowledge through auxiliary reward signals. This is particularly beneficial in sparse-reward envi-
ronments, as the knowledge rewards can guide the policy agents toward the correct direction and
reduce exploration burden. Additionally, the CRA can be further optimized alongside new tasks in a
continuous learning scheme that enhances adaptability and effectiveness in dynamic settings.

Algorithm 1 Centralized Reward Agent based MTRL

Require: Multiple tasks {T1, T2, . . . , TN}.
Require: Policy agents {Apol

1 ,Apol
2 , . . . ,Apol

N }.
Require: Centralized reward agent Arwd.
Require: Concatenated replay buffer D =

⋃N
i=1Di.

1: for each iteration do
2: for each task Ti do
3: (st, at, r

env
t , st+1, at+1) ∼ Interact(Apol

i , Ti) ▷ Interact and collect one transition
4: rknwt ∼ Arwd(st, at) ▷ Sample an off-policy knowledge reward
5: srwd

t = (st, at), srwd
t+1 = (st+1, at+1)

6: Di ← Di ∪ {(srwd
t , rknwt , renvt , srwd

t+1 |Ti)} ▷ Store the transition in corresponding Di

7: Update policy agent Apol
i ▷ Update Apol

i using backbone RL algorithm
8: end for
9: w = αwsim + (1− α)wper ▷ Calculate sampling weight

10: {srwd
t , rknwt , renvt , srwd

t+1 |Ti}B ∼ D|w ▷ Draw samples based on the sampling weight
11: Update centralized reward agent Arwd

12: end for

5 Experiments

We conduct experiments in four MTRL domains as shown in Figure 2: the widely used Meta-World
benchmark (including ML10 with 10 tasks and ML50 with 50 tasks) [Yu et al., 2020b], 2DMaze,
3DPickup [Chevalier-Boisvert et al., 2024], and MujocoCar [Ji et al., 2023]. All tasks, including
those in Meta-World, are crafted to provide sparse environmental rewards, where the agent receives
a reward of 1 only upon successful completion of the final objective, and 0 otherwise. The detailed
task configurations are provided in Appendix A.

6

(a) Meta-World (ML10-sparse and ML50-sparse) (b) 2DMaze (c) 3DPickup (d) MujocoCar

Figure 2: Environments with multiple tasks. (a) Meta-World: two sparse-reward versions are used:
ML10-sparse and ML50-sparse, including diverse robotic manipulation tasks. (b) 2DMaze: 2D
maze tasks where the agent must pick up a key and then pass through a door to exit. (c) 3DPickup:
3D maze tasks where the agent aims to navigate to and pick up different target objects at different
locations. (d) MujocoCar: mujoco-based race car aims to navigate to different specified areas.

2DMaze MuJocoCar3DPick

Figure 3: Comparison of CenRA with baselines in 2DMaze, 3DPickup, and MujocoCar domains.

5.1 Comparative Evaluation in MTRL

We benchmark CenRA against several state-of-the-art baselines: (a) the backbone RL algorithms of
the policy agents: DQN [Mnih et al., 2015] for discrete control tasks and SAC [Haarnoja et al., 2018b]
for continuous control tasks; (b) the ReLara algorithm [Ma et al., 2024a], which can be regarded as
a decentralized variant of CenRA, where each policy agent is paired with a separate reward agent,
without cross-task information sharing; (c) the TD-MPC2 algorithm [Hansen et al., 2024]; (d) the
Contrastive Modules with Temporal Attention (CMTA) algorithm [Lan et al., 2023]; (e) the Policy
Optimization and Policy Correction (PiCor) algorithm [Bai et al., 2023]; (f) the Multi-Critic Actor
Learning (MCAL) algorithm [Mysore et al., 2022]; (g) the Parameter-compositional MTRL (PaCo)
algorithm [Sun et al., 2022]; (h) the Shared-Critic (SC) algorithm [Zhang et al., 2021]; and (i) the
MTRL with Soft Modularization (SoftModule) [Yang et al., 2020]. They are implemented by either
the CleanRL library [Huang et al., 2022] or official codebases. Each task is trained with 10 different
random seeds, and the average results are reported.

In the Meta-World domain, ML10-sparse provides 10 training tasks and 5 held-out test tasks, while
ML50-sparse includes 45 training tasks and 5 test tasks. For the remaining domains, each consists of
4 training tasks and 1 test task. In this section, we evaluate the final returns achieved by the trained
agents, averaged over all training tasks in each domain, as shown in Table 1. We additionally report
the episodic returns and their standard errors throughout training in the 2DMaze, 3DPickup, and
MujocoCar domains in Figure 3. To ensure a fair comparison, we adopt consistent hyperparameters
(where applicable) and identical network architectures across all experiments; detailed configurations
are provided in Appendix B.

We observe that CenRA consistently outperforms all baselines in three main aspects. First, it
achieves the highest episodic returns in all tasks, demonstrating superior learning efficiency and faster
convergence. Moreover, it demonstrates good stability and robustness, exhibiting fewer fluctuations
and oscillations, especially after convergence, compared to other models. Notably, all tasks provide
only sparse rewards, CenRA addresses this challenge through the auxiliary dense rewards with
meaningful information, effectively guiding learning. This mechanism not only distinguishes CenRA
from other structurally shared methods, but also provides a targeted solution to the sparse-reward
problem. Second, while baselines like PiCor and MCAL often show uneven progress across different

7

Table 1: Episodic returns (mean ± standard error) of all trained agents tested over 100 episodes and
averaged across all training tasks in each domain (↑ higher is better).

Algorithm ML10-sparse ML50-sparse 2DMaze 3DPickup MujocoCar

CenRA (ours) 0.875 ± 0.121 0.755 ± 0.034 0.913 ± 0.023 0.880 ± 0.060 514.875 ± 0.675
DQN/SAC 0.256 ± 0.056 0.189 ± 0.012 0.645 ± 0.070 0.243 ± 0.048 198.000 ± 0.453

ReLara 0.674 ± 0.105 0.541 ± 0.057 0.803 ± 0.065 0.565 ± 0.088 429.800 ± 0.655
TD-MPC2 0.823 ± 0.091 0.608 ± 0.032 0.884 ± 0.046 0.712 ± 0.051 505.341 ± 0.712

CMTA 0.787 ± 0.076 0.603 ± 0.026 0.753 ± 0.037 0.695 ± 0.043 480.187 ± 0.623
PiCor 0.865 ± 0.230 0.672 ± 0.123 0.818 ± 0.053 0.438 ± 0.085 437.550 ± 0.663

MCAL 0.842 ± 0.067 0.605 ± 0.055 0.885 ± 0.080 0.548 ± 0.068 369.200 ± 0.595
PaCo 0.854 ± 0.045 0.582 ± 0.022 0.834 ± 0.057 0.557 ± 0.072 421.210 ± 0.635
SC 0.556 ± 0.063 0.354 ± 0.023 0.798 ± 0.052 0.687 ± 0.038 400.254 ± 0.518

SoftModule 0.630 ± 0.042 0.423 ± 0.057 0.822 ± 0.076 0.486 ± 0.055 355.125 ± 0.594

0 50 100 150 200

Steps (in thousands)

0.0

0.2

0.4

0.6

0.8

1.0

Ep
is

od
ic

 re
tu

rn
s

new 2DMaze

0 50 100 150 200

Steps (in thousands)

0.0

0.2

0.4

0.6

0.8

1.0

new 3DPickup

0 20 40 60 80 100

Steps (in thousands)

0

200

400

600

800

1000
new MujocoCar

DQN SAC ReLara CenRA w/o learning CenRA w/ learning

(a) Comparison of the learning performance of CenRA with the base-
lines in new tasks in the 2DMaze, 3DPickup and MujocoCar domains.

(b) Actions yielding the highest knowl-
edge rewards in a new 2DMaze task.

Figure 4: Experimental results for knowledge transfer to new tasks.

tasks within the same domain, CenRA maintains well-balanced performance by showing relatively
consistent learning progress and minimal variability across each four-task groups. This ensures that
no single task dominates or lags behind, which is crucial in multi-task learning. Third, the CRA
effectively enhances knowledge sharing among tasks. This is evident from the comparison with
ReLara, which uses independent reward agents and lacks the mechanism for knowledge exchange.
By extracting and distributing insights from one task to another, the CRA improves the learning
efficiency of individual tasks, highlighting the advantages of integrated knowledge management.

5.2 Knowledge Transfer to New Tasks

In this section, we assess the CRA’s ability to transfer previously learned knowledge to unseen tasks.
Specifically, we continue using the trained CRA model in Section 5.1, while initializing new policy
agents to tackle new tasks from the same domain. These include 5 test tasks for ML10-sparse and
ML50-sparse, and 1 test task for each of the remaining domains, none of which were encountered
during the initial training. For the CenRA, we explore two scenarios: (1) the CRA continues to be
optimized in collaboration with the new policy agent (CenRA w/ learning); and (2) only the policy
agent is updated while the CRA remains fixed, relying only on its previously acquired knowledge
(CenRA w/o learning). We compare the two settings against the backbone algorithms and ReLara. In
ReLara, the reward agent is trained anew without pre-learned knowledge. The results are presented
in Figure 4a and Table 2.

We observe that CenRA with further learning achieved rapid convergence, mainly due to the CRA’s
ability to retain previously acquired knowledge while continuing to adapt to new tasks through
ongoing optimization. Remarkably, even without any additional training, CenRA still outperforms
both ReLara, which requires training a new reward agent, and the backbone algorithms, which
lack additional information. This advantage stems from the CRA’s ability to encode and transfer
environment-relevant knowledge, which can then be directly reused by new policy agents to guide their
learning. Such knowledge transfer is particularly critical in our experiments involving challenging
sparse-reward tasks. Without any external knowledge, learning would require extensive exploration.
However, the CRA provides meaningful dense rewards that significantly accelerate the learning
process, even during the initial phases.

8

Table 2: Episodic returns (mean ± standard error) of all trained agents in the new tasks, tested over
100 episodes in each domain (↑ higher is better).

Algorithm ML10-sparse ML50-sparse 2DMaze 3DPickup MujocoCar

CenRA w/ learning 0.902 ± 0.021 0.824 ± 0.012 0.952 ± 0.010 0.963 ± 0.002 532.080 ± 1.610
CenRA w/o learning 0.887 ± 0.011 0.809 ± 0.009 0.894 ± 0.032 0.678 ± 0.003 524.727 ± 0.588

ReLara 0.702 ± 0.086 0.612 ± 0.012 0.759 ± 0.056 0.263 ± 0.002 224.648 ± 0.492
DQN/SAC 0.228 ± 0.105 0.210 ± 0.034 0.263 ± 0.084 0.158 ± 0.003 129.055 ± 0.296

Table 3: Comparison of CenRA with ablation of different batch sampling control weights.

Algo. 2DMaze Var. ↓
(×10−2)Maze #1 Maze #2 Maze #3 Maze #4

CenRA (α = 0.5) 0.893 ± 0.033 0.908 ± 0.022 0.924 ± 0.020 0.932 ± 0.020 0.021
CenRA (α = 0.25) 0.889 ± 0.031 0.901 ± 0.025 0.915 ± 0.023 0.925 ± 0.024 0.065
CenRA (α = 0.75) 0.891 ± 0.030 0.905 ± 0.024 0.918 ± 0.021 0.928 ± 0.022 0.049
w/o wsim (α = 0) 0.884 ± 0.033 0.922 ± 0.021 0.873 ± 0.041 0.820 ± 0.039 0.172
w/o wper (α = 1) 0.758 ± 0.062 0.884 ± 0.030 0.824 ± 0.052 0.867 ± 0.020 0.284

w/o both 0.632 ± 0.053 0.833 ± 0.041 0.629 ± 0.08 0.802 ± 0.054 1.235

Algo. 3DPickup Var. ↓
(×10−2)Ball Cube Key Health kit

CenRA (α = 0.5) 0.951 ± 0.020 0.683 ± 0.090 0.795 ± 0.062 0.688 ± 0.067 1.570
CenRA (α = 0.25) 0.942 ± 0.023 0.671 ± 0.091 0.782 ± 0.066 0.715 ± 0.061 1.650
CenRA (α = 0.75) 0.938 ± 0.025 0.665 ± 0.095 0.775 ± 0.069 0.702 ± 0.065 1.723
w/o wsim (α = 0) 0.822 ± 0.065 0.702 ± 0.093 0.704 ± 0.072 0.887 ± 0.038 0.892
w/o wper (α = 1) 0.779 ± 0.072 0.404 ± 0.093 0.631 ± 0.080 0.438 ± 0.102 3.051

w/o both 0.811 ± 0.073 0.457 ± 0.058 0.483 ± 0.079 0.370 ± 0.079 3.796

Algo. MujocoCar Var. ↓
(×103)Target #1 Target #2 Target #3 Target #4

CenRA (α = 0.5) 588.221 ± 0.732 549.337 ± 0.640 447.743 ± 0.672 474.320 ± 0.657 4.244
CenRA (α = 0.25) 575.153 ± 0.740 538.912 ± 0.655 439.850 ± 0.680 462.116 ± 0.665 4.871
CenRA (α = 0.75) 580.431 ± 0.735 542.765 ± 0.648 441.033 ± 0.675 468.529 ± 0.660 4.533
w/o wsim (α = 0) 319.926 ± 0.590 486.767 ± 0.712 332.506 ± 0.695 260.921 ± 0.544 9.288
w/o wper (α = 1) 320.887 ± 0.891 355.325 ± 0.677 344.145 ± 0.872 308.215 ± 0.723 0.457

w/o both 57.532 ± 0.352 257.010 ± 0.677 677.285 ± 0.540 77.635 ± 0.255 82.720

To further demonstrate CenRA’s transferability, we select the 2DMaze environment to visualize
the knowledge provided by CRA when facing an unseen task. As shown in Figure 4b, we plot the
directions of actions that yield the maximum knowledge reward at each position, categorized into two
scenarios: before and after obtaining the key. While some guidance in peripheral regions may appear
slightly misaligned, most states receive reasonable rewards that align with human understanding.
This demonstrates the effectiveness of knowledge transfer and with such dense rewards, the agent’s
adaptation to new tasks is able to be well supported. In addition, to better understand the knowledge
learned by the CRA, we provide a case study in Appendix C, where we visualize the CRA-provided
rewards. This further verifies that the CRA is capable of capturing domain-relevant, task-specific,
and semantically meaningful signals across different tasks.

5.3 Effect of Sampling Weight

We conduct experiments to understand the effects of the information synchronization mechanism
in the CenRA. Specifically, we compare the full CenRA model against five variants: (a) and (b)
CenRA with different values of the balance factor α, i.e., α = 0.25 and α = 0.75, to examine the
impact of different weight combinations; (c) CenRA without the similarity weight wsim (i.e., α = 0);
(d) CenRA without the performance weight wper (i.e., α = 1); and (e) CenRA without the entire
sampling weight. To better illustrate the differences among tasks and highlight the role of sampling

9

weights in task coordination and synchronization, we select the four-task domains, i.e., 2DMaze,
3DPickup, and MujocoCar. The results are shown in Table 3.

The results indicate that the two weights, which control the allocation of samples drawn from
each policy agent’s experiences, mainly influence the overall learning performance. Specifically,
the absence of sampling weight leads to unbalanced learning outcomes, which is observed by
the increased variance in episodic returns across four tasks. In contrast, when both weights are
incorporated, the learning process becomes notably more stable, indicating that the joint consideration
of task similarity and learning progress is essential for coordinated optimization. While the full
CenRA model does not always achieve the lowest variance, it consistently outperforms the other
three ablation models regarding overall system performance.

Both weights play essential roles in information synchronization, with the performance weight
wper having a more significant impact. It allows the CRA to focus more on policy agents that
are underperforming or progressing slowly, ensuring balanced system-wide learning. Moreover,
different choices of the balancing factor α emphasize distinct aspects of synchronization: a larger α
highlights task similarity and promotes uniformity across related tasks, whereas a smaller α prioritizes
compensating lagging tasks by amplifying the effect of wper. This flexible weighting further enhances
stability and adaptability, demonstrating that considering the overall learning performance of the
multi-task system is a central objective that CenRA seeks to achieve.

6 Discussion and Conclusion

We propose a novel framework CenRA that integrates reward shaping into multi-task reinforcement
learning. The framework shares domain knowledge across tasks to improve learning efficiency and
effectively addresses the sparse-reward challenge. Specifically, the centralized reward agent (CRA)
functions as a knowledge pool, responsible for distilling and distributing knowledge across tasks.
Furthermore, the information synchronization mechanism mitigates imbalances in knowledge distri-
bution, ensuring optimal system-wide performance. Experiments demonstrate that dense knowledge
rewards generated by the CRA effectively guide policy learning, leading to faster convergence than
baseline methods. CenRA also demonstrates superior and robust transferability to new tasks.

CenRA’s main limitation is its requirement for consistent state and action dimensions across tasks.
Future work could explore preprocessing techniques to adapt the framework to varying task structures,
broadening its applicability. Additionally, the fixed trade-off between similarity weight and perfor-
mance weight may not be ideal. A more flexible approach, such as adaptive weight regulation, could
further enhance the framework. Moreover, the performance weight might favor underperforming
tasks to achieve overall balance, but could limit the performance ceiling of high-performing tasks,
indicating the need for a more effective trade-off mechanism.

Acknowledgment

This work was supported by an Academic Research Grant MOE-T1 251RES2408 and a Research
Scholarship from the Ministry of Education, Singapore.

References
Haitham Bou Ammar, Eric Eaton, Paul Ruvolo, and Matthew Taylor. Online multi-task learning

for policy gradient methods. In International conference on machine learning, pages 1206–1214.
PMLR, 2014.

Szilárd Aradi. Survey of deep reinforcement learning for motion planning of autonomous vehicles.
IEEE Transactions on Intelligent Transportation Systems, 23(2):740–759, 2020.

Fengshuo Bai, Hongming Zhang, Tianyang Tao, Zhiheng Wu, Yanna Wang, and Bo Xu. Picor: Multi-
task deep reinforcement learning with policy correction. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 37, pages 6728–6736, 2023.

Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi Munos.
Unifying count-based exploration and intrinsic motivation. Advances in Neural Information
Processing Systems, 29, 2016.

10

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network
distillation. In International Conference on Learning Representations, 2018.

R Caruana. Multitask learning: A knowledge-based source of inductive bias1. In Proceedings of the
Tenth International Conference on Machine Learning, pages 41–48. Citeseer, 1993.

Zhao Chen, Vijay Badrinarayanan, Chen-Yu Lee, and Andrew Rabinovich. Gradnorm: Gradient
normalization for adaptive loss balancing in deep multitask networks. In International conference
on machine learning, pages 794–803. PMLR, 2018.

Guangran Cheng, Lu Dong, Wenzhe Cai, and Changyin Sun. Multi-task reinforcement learning with
attention-based mixture of experts. IEEE Robotics and Automation Letters, 8(6):3812–3819, 2023.

Maxime Chevalier-Boisvert, Bolun Dai, Mark Towers, Rodrigo Perez-Vicente, Lucas Willems, Salem
Lahlou, Suman Pal, Pablo Samuel Castro, and Jordan Terry. Minigrid & miniworld: Modular &
customizable reinforcement learning environments for goal-oriented tasks. Advances in Neural
Information Processing Systems, 36, 2024.

Carlo D’Eramo, Davide Tateo, Andrea Bonarini, Marcello Restelli, and Jan Peters. Sharing knowledge
in multi-task deep reinforcement learning. In International Conference on Learning Representa-
tions, 2020.

Rati Devidze, Parameswaran Kamalaruban, and Adish Singla. Exploration-guided reward shaping for
reinforcement learning under sparse rewards. Advances in Neural Information Processing Systems,
35:5829–5842, 2022.

Coline Devin, Abhishek Gupta, Trevor Darrell, Pieter Abbeel, and Sergey Levine. Learning modular
neural network policies for multi-task and multi-robot transfer. In 2017 IEEE international
conference on robotics and automation (ICRA), pages 2169–2176. IEEE, 2017.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of
deep networks. In International conference on machine learning, pages 1126–1135. PMLR, 2017.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International conference on machine learning, pages 1587–1596. PMLR,
2018.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International Conference
on Machine Learning, pages 1861–1870. PMLR, 2018a.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms and
applications. arXiv preprint arXiv:1812.05905, 2018b.

Nicklas Hansen, Hao Su, and Xiaolong Wang. Td-mpc2: Scalable, robust world models for continuous
control. In The Twelfth International Conference on Learning Representations, 2024.

Jinmin He, Kai Li, Yifan Zang, Haobo Fu, Qiang Fu, Junliang Xing, and Jian Cheng. Not all tasks
are equally difficult: Multi-task deep reinforcement learning with dynamic depth routing. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pages 12376–12384,
2024.

Matteo Hessel, Hubert Soyer, Lasse Espeholt, Wojciech Czarnecki, Simon Schmitt, and Hado
Van Hasselt. Multi-task deep reinforcement learning with popart. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 33, pages 3796–3803, 2019.

Sunghoon Hong, Deunsol Yoon, and Kee-Eung Kim. Structure-aware transformer policy for inhomo-
geneous multi-task reinforcement learning. In International Conference on Learning Representa-
tions, 2021.

Shengyi Huang, Rousslan Fernand Julien Dossa, Chang Ye, Jeff Braga, Dipam Chakraborty, Kinal
Mehta, and JoÃG, o GM AraÃšjo. Cleanrl: High-quality single-file implementations of deep
reinforcement learning algorithms. Journal of Machine Learning Research, 23(274):1–18, 2022.

11

Jiaming Ji, Borong Zhang, Jiayi Zhou, Xuehai Pan, Weidong Huang, Ruiyang Sun, Yiran Geng,
Yifan Zhong, Josef Dai, and Yaodong Yang. Safety gymnasium: A unified safe reinforcement
learning benchmark. Advances in Neural Information Processing Systems, 36, 2023.

Jens Kober, J Andrew Bagnell, and Jan Peters. Reinforcement learning in robotics: A survey. The
International Journal of Robotics Research, 32(11):1238–1274, 2013.

Vijay Konda and John Tsitsiklis. Actor-critic algorithms. Advances in neural information processing
systems, 12, 1999.

Pawel Ladosz, Lilian Weng, Minwoo Kim, and Hyondong Oh. Exploration in deep reinforcement
learning: A survey. Information Fusion, 85:1–22, 2022.

Guillaume Lample and Devendra Singh Chaplot. Playing fps games with deep reinforcement learning.
In Proceedings of the AAAI conference on artificial intelligence, volume 31, 2017.

Siming Lan, Rui Zhang, Qi Yi, Jiaming Guo, Shaohui Peng, Yunkai Gao, Fan Wu, Ruizhi Chen, Zi-
dong Du, Xing Hu, et al. Contrastive modules with temporal attention for multi-task reinforcement
learning. Advances in Neural Information Processing Systems, 36, 2023.

Zhengding Luo, Haozhe Ma, Dongyuan Shi, and Woon-Seng Gan. Gfanc-rl: Reinforcement learning-
based generative fixed-filter active noise control. Available at SSRN 4837239, 2024.

Haozhe Ma, Thanh Vinh Vo, and Tze-Yun Leong. Hierarchical reinforcement learning with human-ai
collaborative sub-goals optimization. In Proceedings of the 2023 international conference on
autonomous agents and multiagent systems, pages 2310–2312, 2023.

Haozhe Ma, Kuankuan Sima, Thanh Vinh Vo, Di Fu, and Tze-Yun Leong. Reward shaping for
reinforcement learning with an assistant reward agent. In Forty-first International Conference on
Machine Learning. PMLR, 2024a.

Haozhe Ma, Thanh Vinh Vo, and Tze-Yun Leong. Mixed-initiative bayesian sub-goal optimization
in hierarchical reinforcement learning. In Proceedings of the 23rd International Conference on
Autonomous Agents and Multiagent Systems, pages 1328–1336, 2024b.

Haozhe Ma, Fangling Li, Jing Yu Lim, Zhengding Luo, Thanh Vinh Vo, and Tze-Yun Leong. Catching
two birds with one stone: Reward shaping with dual random networks for balancing exploration
and exploitation. In Forty-second International Conference on Machine Learning, 2025a.

Haozhe Ma, Zhengding Luo, Thanh Vinh Vo, Kuankuan Sima, and Tze-Yun Leong. Highly efficient
self-adaptive reward shaping for reinforcement learning. In Thirteenth International Conference
on Learning Representations, 2025b.

Augustine Mavor-Parker, Kimberly Young, Caswell Barry, and Lewis Griffin. How to stay curious
while avoiding noisy tvs using aleatoric uncertainty estimation. In International Conference on
Machine Learning, pages 15220–15240. PMLR, 2022.

Farzan Memarian, Wonjoon Goo, Rudolf Lioutikov, Scott Niekum, and Ufuk Topcu. Self-supervised
online reward shaping in sparse-reward environments. In 2021 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 2369–2375. IEEE, 2021.

David Mguni, Taher Jafferjee, Jianhong Wang, Nicolas Perez-Nieves, Wenbin Song, Feifei Tong,
Matthew Taylor, Tianpei Yang, Zipeng Dai, Hui Chen, et al. Learning to shape rewards using a
game of two partners. In AAAI Conference on Artificial Intelligence, volume 37, pages 11604–
11612, 2023.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. Nature, 518(7540):529–533, 2015.

Siddharth Mysore, George Cheng, Yunqi Zhao, Kate Saenko, and Meng Wu. Multi-critic actor learn-
ing: Teaching rl policies to act with style. In International Conference on Learning Representations,
2022.

12

Georg Ostrovski, Marc G Bellemare, Aäron Oord, and Rémi Munos. Count-based exploration with
neural density models. In International Conference on Machine Learning, pages 2721–2730.
PMLR, 2017.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in neural information processing systems, 35:27730–
27744, 2022.

Emilio Parisotto, Jimmy Ba, and Ruslan Salakhutdinov. Actor-mimic: Deep multitask and transfer
reinforcement learning. In International Conference on Learning Representations, 2016.

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration by
self-supervised prediction. In International Conference on Machine Learning, pages 2778–2787.
PMLR, 2017.

Andrei A Rusu, Sergio Gomez Colmenarejo, Caglar Gulcehre, Guillaume Desjardins, James Kirk-
patrick, Razvan Pascanu, Volodymyr Mnih, Koray Kavukcuoglu, and Raia Hadsell. Policy
distillation. In International Conference on Learning Representations, 2016.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. Advances in Neural Information Processing
Systems, 36:8634–8652, 2023.

Shagun Sodhani, Amy Zhang, and Joelle Pineau. Multi-task reinforcement learning with context-
based representations. In International Conference on Machine Learning, pages 9767–9779.
PMLR, 2021.

Jonathan Sorg, Richard L Lewis, and Satinder Singh. Reward design via online gradient ascent.
Advances in Neural Information Processing Systems, 23, 2010a.

Jonathan Sorg, Satinder P Singh, and Richard L Lewis. Internal rewards mitigate agent boundedness.
In International Conference on Machine Learning, pages 1007–1014, 2010b.

Lingfeng Sun, Haichao Zhang, Wei Xu, and Masayoshi Tomizuka. Paco: Parameter-compositional
multi-task reinforcement learning. Advances in Neural Information Processing Systems, 35:
21495–21507, 2022.

Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, OpenAI Xi Chen, Yan Duan, John
Schulman, Filip DeTurck, and Pieter Abbeel. # exploration: A study of count-based exploration
for deep reinforcement learning. Advances in Neural Information Processing Systems, 30, 2017.

Yee Teh, Victor Bapst, Wojciech M Czarnecki, John Quan, James Kirkpatrick, Raia Hadsell, Nicolas
Heess, and Razvan Pascanu. Distral: Robust multitask reinforcement learning. Advances in neural
information processing systems, 30, 2017.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Tung-Long Vuong, Do-Van Nguyen, Tai-Long Nguyen, Cong-Minh Bui, Hai-Dang Kieu, Viet-Cuong
Ta, Quoc-Long Tran, and Thanh-Ha Le. Sharing experience in multitask reinforcement learning.
In International Joint Conference on Artificial Intelligence, pages 3642–3648, 2019.

Michael Wan, Tanmay Gangwani, and Jian Peng. Mutual information based knowledge transfer
under state-action dimension mismatch. In Conference on Uncertainty in Artificial Intelligence,
pages 1218–1227. PMLR, 2020.

Tengye Xu, Zihao Li, and Qinyuan Ren. Meta-reinforcement learning robust to distributional shift via
performing lifelong in-context learning. In Proceedings of the 41st International Conference on
Machine Learning, volume 235 of Proceedings of Machine Learning Research, pages 55112–55125.
PMLR, 2024.

13

Zhiyuan Xu, Kun Wu, Zhengping Che, Jian Tang, and Jieping Ye. Knowledge transfer in multi-task
deep reinforcement learning for continuous control. Advances in Neural Information Processing
Systems, 33:15146–15155, 2020.

Ruihan Yang, Huazhe Xu, Yi Wu, and Xiaolong Wang. Multi-task reinforcement learning with soft
modularization. Advances in Neural Information Processing Systems, 33:4767–4777, 2020.

Zhaoyang Yang, Kathryn E Merrick, Hussein A Abbass, and Lianwen Jin. Multi-task deep rein-
forcement learning for continuous action control. In International Joint Conference on Artificial
Intelligence, volume 17, pages 3301–3307, 2017.

Haiyan Yin and Sinno Pan. Knowledge transfer for deep reinforcement learning with hierarchical
experience replay. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 31,
2017.

Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn.
Gradient surgery for multi-task learning. Advances in Neural Information Processing Systems, 33:
5824–5836, 2020a.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey
Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning.
In Conference on robot learning, pages 1094–1100. PMLR, 2020b.

Sihan Zeng, Malik Aqeel Anwar, Thinh T Doan, Arijit Raychowdhury, and Justin Romberg. A
decentralized policy gradient approach to multi-task reinforcement learning. In Uncertainty in
Artificial Intelligence, pages 1002–1012. PMLR, 2021.

Gengzhi Zhang, Liang Feng, and Yaqing Hou. Multi-task actor-critic with knowledge transfer via a
shared critic. In Asian Conference on Machine Learning, pages 580–593. PMLR, 2021.

14

A Mutli-Task Experimental Configurations

We conduct experiments in four domains with multiple tasks: Meta-World, 2DMaze, 3DPickup, and
MujocoCar. The detailed configurations of each task are illustrated in Figure 5. The Meta-World
tasks illustration is adapted from [Yu et al., 2020b].

Maze #1 Maze #2 Maze #3 Maze #4 New 2DMaze task

Ball Cube Key Health kit New 3DPickup task

Target #1 Target #2 Target #3 Target #4 New MujocoCar task

Meta-World training and testing tasks.

Figure 5: Illustration of multiple tasks in different domains in our experiments.

B Network Structures and Hyperparameters

B.1 Network Structures

Figure 6 illustrates the structures of all networks employed in our experiments.

B.2 Hyperparameters

We have observed that CenRA demonstrated high robustness and was not sensitive to hyperparameter
choices. Table 4 shows the hyperparameters we used in all the experiments.

15

Figure 6: The structures of neural networks in our implementation.

Table 4: The hyperparameters of CenRA used in our experiments.

Module Hyperparameters Values

Centralized Reward Agent
Arwd

discounted factor γ 0.99
batch size 256

actor module learning rate 3× 10−4

critic module learning rate 1× 10−3

policy networks update frequency (steps) 2
target networks update frequency (steps) 1

target networks soft update weight τ 5× 10−3

burn-in steps 5000

Policy Agent Apol
i

(DQN Agent)

knowledge reward weight λ 0.5
discounted factor γ 0.99

replay buffer size |Di| 1× 106

batch size 128
burn-in steps 10000

Policy Agent Apol
i

(SAC Agent)

knowledge reward weight λ 0.5
discounted factor γ 0.99

replay buffer size |Di| 1× 106

batch size 256
actor module learning rate 3× 10−4

critic module learning rate 1× 10−3

SAC entropy term factor α learning rate 1× 10−4

policy networks update frequency (steps) 2
target networks update frequency (steps) 1

target networks soft update weight τ 5× 10−3

burn-in steps 10000

B.3 Computing Resources

The experiments in this paper were conducted on a computing cluster, with the detailed hardware
configurations listed in Table 5.

Table 5: The computing resources used in the experiments.

Component Specification

Operating System (OS) Ubuntu 20.04
Central Processing Unit (CPU) 2x Intel Xeon Gold 6326

Random Access Memory (RAM) 256GB
Graphics Processing Unit (GPU) 1x NVIDIA A100 20GB

Brand Supermicro 2022

16

C What Has the Centralized Reward Agent Learned?

In this section, we visualize the learned knowledge rewards by the centralized reward agent Arwd in
the 2DMaze environment. After training on the four tasks in Section 5.1 of the paper, we let the CRA
generate the knowledge rewards for each action in every state and visualize the action direction that
yields the maximum rewards, a∗ = argmaxa π

rwd∗(si, a), si ∼ S, in Figure 7.

The shaded areas in the figures represent regions within the real task that the agent cannot reach, as it
cannot access the space behind the door without picking up the key. However, we forced the agent
into these areas for evaluation. Outside the shaded regions, we observe that the CRA successfully
learned meaningful knowledge rewards. Before picking up the key, the agent received the highest
reward in the corresponding state when moving towards the key. Similarly, after picking up the
key, the agent received the highest reward when moving towards the door and the final target. This
demonstrates that in scenarios where the original environmental rewards are sparse, these detailed
knowledge rewards can effectively guide the agent to converge more quickly.

Before getting key After getting key

(a) Maze #1

After getting keyBefore getting key

(b) Maze #2

After getting keyBefore getting key

(c) Maze #3

After getting keyBefore getting key

(d) Maze #4

Figure 7: The actions yielding the maximum knowledge rewards in the four 2DMaze tasks.

17

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly state the main claims of the paper,
including the contributions made (check the last paragraph in Section 1), the theoretical and
experimental results, and the scope of generalization to other settings.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations of our work are discussed in the last paragraph of Section 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

18

Answer: [Yes]
Justification: The paper includes a full set of assumptions and complete derivations for the
theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: Answer: [Yes]
Justification: The paper provides the code with detailed instructions in the supplementary
materials. The algorithm flow is detailed in Algorithm 1, and the experimental details,
including network structures and hyperparameters, are provided in Appendix B. These
ensure that all necessary information for reproducing the main experimental results is fully
disclosed.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in

19

some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We have attached the complete code as supplementary materials, with detailed
instructions on how to use the code. We will make the complete code public after the paper
is published.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The paper specifies all the training and test details necessary to understand the
results. The complete codes are attached as supplementary materials. Detailed instructions
for using the provided code, including scripts to run the codes in one step and environment
setup instructions, are included in the supplementary materials. The experimental details,
including network structures and hyperparameters, are provided in Appendix B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: For all experiments in this paper, we run 10 different seeds and use the average
value as the result, with the standard error also included in the experimental results.

20

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The compute resources for the experiments, including the type of compute
workers (CPU or GPU), memory, and execution time, are listed in Appendix B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in this paper adheres to the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

21

https://neurips.cc/public/EthicsGuidelines

Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper does not involve the release of data or models that pose a high risk
for misuse. Therefore, no specific safeguards are necessary.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All references and codes used in the paper are open access. The creators
or original owners are properly credited, and the licenses and terms of use are explicitly
mentioned and respected. This includes citing the original papers, stating the versions of the
assets used, and including URLs where applicable.
Guidelines:

22

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The documentation for the new assets introduced in the paper is provided
alongside the supplementary material. This includes details about the codes, training
procedures, and license information.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects, so
this question is not applicable.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

23

paperswithcode.com/datasets

Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects, so
IRB approval or equivalent is not applicable.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

24

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Work
	Preliminaries
	Methodology
	Knowledge Distillation and Distribution
	Problem Formulation
	Centralized Reward Agent
	Policy Agents with Knowledge Rewards

	Information Synchronization of Policy Agents
	Overall Framework

	Experiments
	Comparative Evaluation in MTRL
	Knowledge Transfer to New Tasks
	Effect of Sampling Weight

	Discussion and Conclusion
	Mutli-Task Experimental Configurations
	Network Structures and Hyperparameters
	Network Structures
	Hyperparameters
	Computing Resources

	What Has the Centralized Reward Agent Learned?

