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ABSTRACT

Diffusion models have transformed image synthesis by establishing unprece-
dented quality and creativity benchmarks. Nevertheless, their large-scale deploy-
ment faces challenges due to computationally intensive iterative denoising pro-
cesses. Although post-training quantization (PTQ) provides an effective pathway
for accelerating sampling, the iterative nature of diffusion models causes step-
wise quantization errors to accumulate progressively during generation, inevitably
compromising output fidelity. To address this challenge, we develop a theoretical
framework that mathematically formulates error propagation in Diffusion Models
(DMs), deriving per-step quantization error propagation equations and establish-
ing the first closed-form solution for cumulative error. Building on this theo-
retical foundation, we propose a timestep-aware cumulative error compensation
scheme. Extensive experiments on multiple image datasets demonstrate that our
compensation strategy effectively mitigates error propagation, significantly en-
hancing existing PTQ methods. Specifically, it achieves a 1.2 PSNR improvement
over SVDQuant on SDXL W4A4, while incurring only an additional < 0.5% time
overhead.

1 INTRODUCTION

DMs (Podell et al., 2023; Chen et al., 2024) have established themselves as highly effective deep
generative frameworks across diverse domains, including image synthesis (Ho et al., 2020), video
creation (Yang et al., 2024) and image translation (Sasaki et al., 2021) etc. Compared with con-
ventional SOTA generative adversarial networks (GANs), DMs exhibit superior stability, free from
the common pitfalls of model collapse and posterior collapse, which ensures more reliable and di-
verse output generation. Although diffusion models demonstrate remarkable capabilities in generat-
ing high-fidelity and diverse images, their substantial computational and memory overhead hinders
widespread adoption. This complexity primarily stems from two factors: first, the reliance on com-
plex deep neural networks (DNNs) for noise estimation; second, the requirement for an iterative
progressive denoising process to maintain synthesis quality, which may involve up to 1,000 iterative
steps, substantially increasing computational demands.

To address the substantial computational demands of noise estimation in diffusion models, re-
searchers employ quantization techniques to accelerate inference across all denoising steps. Depend-
ing on whether they require fine-tuning, quantization methods can be categorized into Quantization-
Aware Training (QAT) (Wu et al., 2020) and PTQ (Cai et al., 2020). QAT necessitates retraining
neural networks with simulated quantization and hyperparameter optimization, which introduces
significant computational overhead and deployment complexity, making it unsuitable for compute-
intensive diffusion model training. In contrast, PTQ directly derives quantization correction coeffi-
cients through calibration data statistics, thus avoiding the high-cost retraining process inherent to
diffusion models. Although PTQ has been widely studied in traditional vision tasks such as im-
age classification and object detection (Bhalgat et al., 2020), it faces many different challenges in
diffusion models. The architectural characteristics and training strategies of diffusion models in-
herently lead to the widespread presence of outliers in weight distributions, while activation values
exhibit step-wise distributional variations across time steps (Li et al., 2023a). These properties pose
significant challenges for quantization by inducing substantial step-wise error. Furthermore, the iter-
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Figure 1: Visualization of Error Propagation and Correction in Quantized Diffusion Models. The
gray path represents the iterative denoising process of the full-precision model µ, while the brown-
red path represents that of the quantized model µ̃. Affected by cumulative errors δt, its output
gradually deviates from µ. The green path represents the denoising process after online correction
of cumulative errors, with outputs better aligned with the full-precision model.

ative denoising mechanism amplifies error accumulation across successive steps, where quantization
errors progressively accumulate during the sampling trajectory, ultimately degrading generation fi-
delity. Recent advancements in PTQ (Wu et al., 2024; Li et al., 2023a; Zhao et al., 2024b) have
predominantly focused on minimizing quantization errors at individual denoising steps. However,
these approaches systematically neglect the critical analysis of error propagation dynamics through-
out the iterative sampling trajectory. Consequently, current solutions (Li et al., 2024b) remain con-
strained to 4-bit quantization of both weights and activations while maintaining acceptable quality
degradation, as cumulative errors across sequential denoising stages fundamentally limit lower-bit
quantization viability.

Contrarily, our work focuses on the quantization error propagation problem in diffusion models and
proposes the first timestep-aware cumulative error compensation scheme, called TCEC. First, we
construct an error propagation equation by taking the DDIM (Song et al., 2020) as a paradigmatic
case, presenting the field’s inaugural closed-form solution for cumulative error. However, direct
computation of cumulative errors proves computationally infeasible. Subsequently, through the im-
plementation of timestep-sensitive online rapid estimation for per-step quantization error, we achieve
a notable simplification of the computational complexity inherent in cumulative error modeling. Fi-
nally, as shown in Figure 1, we incorporate a cumulative error correction term in each generation
step, dynamically mitigating errors induced by quantization. In summary, our contributions are:

• We experimentally demonstrate that cumulative error is the primary cause of poor per-
formance in low-precision DMs, thus presenting TCEC in response. Unlike conventional
PTQ methods, TCEC directly computes cumulative errors and integrates correction terms
during the iterative sampling process to align the outputs of quantized models with their
floating-point counterparts.

• To accurately compute cumulative errors, we present a theoretical framework encompass-
ing three key components: per-step quantization error, cumulative error, and error propa-
gation. For the first time in the field, we derive a closed-form solution for cumulative error.
Through rational approximations, we substantially simplify its computational complexity,
enabling low-cost and rapid correction of cumulative errors.

• Extensive experiments across various diffusion models demonstrate our method’s effective-
ness. TCEC-W4A4 reduces the memory footprint by 3.5× compared to the FP16 model and
accelerates inference by 3× versus NF4 weight-only quantization, with engineering perfor-
mance comparable to SVDQuant (Li et al., 2024b). Across all precision levels, it achieves
superior image fidelity and diversity—for example, an sDCI PSNR↑ of 21.9 (vs. 20.7) and
an MJHQ FID↓ of 18.1 (vs. 20.6).
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Notably, TCEC maintains orthogonality to existing state-of-the-art PTQ algorithms (Li et al., 2024b;
Zhao et al., 2024a) that minimize per-step quantization errors. Additionally, TCEC originates from
rigorous theoretical derivation, and while its derivation process uses DDIM as an example, it is
equally applicable to other solvers such as DPM++ (Lu et al., 2022).

2 RELATED WORK

2.1 DIFFUSION MODEL

Diffusion models are a family of probabilistic generative models that progressively destruct real
data by injecting noise, then learn to reverse this process for generation, represented notably by
denosing diffusion probabilistic models (DDPMs) (Ho et al., 2020). DDPM is composed of two
Markov chains of T steps. One is the forward process, which incrementally adds Gaussian noises
into real sample x0 ∈ q(x0), In this process, a sequence of latent variables x1:T = [x1, x2, ..., xT ]
are generated in order and the last one xT will approximately follow a standard Gaussian:

q(xt | xt−1) = N (xt;
√
1− βtxt−1, βtI) (1)

where βt is the variance schedule that controls the strength of the Gaussian noise in each step.
The reverse process removes noise from a sample from the Gaussian noise input xT ∼ N (0, I)
to gradually generate high-fidelity images. However, since the real reverse conditional distribution
q(xt−1|xt) is unavailable, diffusion models sample from a learned conditional distribution:

pθ(xt−1 | xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)) (2)

where p(xT ) ∼ N (xT ;0, I), with µθ(xt, t) denotes the noise estimation model, and Σθ(xt, t) de-
notes the variance for sampling which can be fixed to constants (Luo, 2022). The denoising process,
constrained by the Markov chain, requires a huge number of iterative time steps in DDPM. DDIM
generalizes the diffusion process to non-Markovian processes, simulating the diffusion process with
fewer steps. It has replaced DDPM as the mainstream inference strategy. Our work focuses on
accelerating the inference of the noise estimation model in DDIM, with a training-free PTQ process.

2.2 POST-TRAINING QUANTIZATION

The noise estimation models such as UNET (Podell et al., 2023) or Transformer (Chen et al., 2024;
Yang et al., 2024; Zheng et al., 2024) exhibit high computational complexity, rendering the sam-
pling of diffusion models computationally expensive. PTQ transforms the weights and activations
of the full-precision model into a low-bit format, enabling the model’s inference process to utilize
the integer matrix multiplication units on the target hardware platform and accelerating the compu-
tational process (Jacob et al., 2018). Prior studies, such as PTQD (He et al., 2023) and Q-DM (Li
et al., 2023b), have explored the application of quantization techniques for diffusion models. Q-
Diffusion (Li et al., 2023a) and PTQ4DM (Shang et al., 2023) first achieved 8-bit quantization in
text-to-image generation tasks. Subsequent research refined these methodologies through strategies
such as sensitivity analysis (Yang et al., 2023) and timestep-aware quantization (Huang et al., 2024a;
Wang et al., 2023). Among these works, MixDQ (Zhao et al., 2024b) introduces metric-decoupled
sensitivity analysis and develops an integer programming-based method to derive optimal mixed-
precision configurations. Qua2SeDiMo (Mills et al., 2025) enables high-quality mixed-precision
quantization decisions for a wide range of diffusion models, from foundational U-Nets to state-of-
the-art Transformers, extending the quantization lower bounds for image generation tasks to W4A8.
SVDQuant (Li et al., 2024b) enhances quantization performance by integrating fine-grained quan-
tization with singular value decomposition (SVD)-based weight decomposition, achieving W4A4
quantization while maintaining acceptable quality degradation. Meanwhile, ViDiT-Q (Zhao et al.,
2024a) further explores quantization for video generation tasks (Yang et al., 2024; Zheng et al.,
2024), achieving W8A8 and W4A8 with negligible degradation in visual quality and metrics. These
works minimize per-step errors through more precise quantization approximations at the layer level,
yet overlook the error propagation in the diffusion process. Particularly in video generation tasks,
which require a greater number of inference steps, the issue of error propagation becomes exacer-
bated, and accumulated errors across sequential denoising stages fundamentally constrain the feasi-
bility of lower-bit quantization. Although several studies (Chu et al., 2024; Yao et al., 2024) have
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Figure 2: Qualitative visual results comparison. Prompt1: An alien octopus floats through a portal
reading a newspaper. Prompt2: A middle-aged woman of Asian descent, her dark hair streaked
with silver, appears fractured and splintered, intricately embedded within a sea of broken porcelain.
The porcelain glistens with splatter paint patterns in a harmonious blend of glossy and matte blues,
greens, oranges, and reds, capturing her dance in a surreal juxtaposition of movement and stillness.
Her skin tone, a light hue like the porcelain, adds an almost mystical quality to her form.

recognized the issue of error propagation and attempted to propose solutions, their efforts are fo-
cused on ”single-step error source suppression” (e.g., TAC decomposes input/noise errors, while
QNCD targets noise in the embedding layer). These works neither elucidate the relationship be-
tween single-step errors and cumulative errors nor validate the model performance beyond small
academic datasets such as CIFAR10.

Unlike prior studies, our method TCEC focuses on the error propagation problem in quantized dif-
fusion models. We develop a theoretical framework that, through rigorous analysis, first models the
relationship between per-step quantization errors and cumulative errors, derives a closed-form solu-
tion for cumulative errors, and then provides strategies to dynamically mitigate error accumulation
during each denoising step.

3 METHOD

In this section, we first formally formulate the error propagation dynamics in quantized diffusion
models and develop a preliminary analytical solution. Next, we establish theoretically-grounded
approximations to reduce the computational complexity associated with cumulative error tracking.
Finally, we propose a timestep-aware online estimation framework for per-step quantization errors,
culminating in the TCEC mechanism - an efficient solution for real-time cumulative error mitigation.

3.1 ERROR PROPAGATION MECHANISMS

The iterative denoising process of diffusion models corresponds to the discrete approximation of the
probability flow ordinary differential equation(PF-ODE), the noise at each time step t ∈ [T, ..., 1]
is computed from xt by a full-precision noise estimation model µθ whose weights are fixed at all
steps. Based on DDIM-solver, we can calculate the sample xt−1 at time t− 1 as follows:

xt−1 =

√
αt−1√
αt

xt +

(√
1− αt−1 −

√
αt−1(1− αt)√

αt

)
µθ(xt, t) (3)

where αt is a constant related to the noise schedule βt and the specific relationship is αt

αt−1 = 1−βt.
Since βt ∈ (0, 1), αt is monotonically decreasing with respect to t. We denote the quantized version
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of the noise estimation model as µ̃θ. When the input remains unchanged, it is formulated by:

µ̃θ(x̃t, t) = µθ(x̃t, t) + εt (4)

where εt means per-step quantization error which is introduced due to model quantization and only
relies on the module at iteration t and is independent of the others. The amount of error accumulated
by continuously running the first T − t + 1 denoising steps is called the cumulative error δt, then
the input including cumulative error can be expressed as x̃t = xt + δt. Consequently, referring to
Eq. 3, the iterative process of the quantized model can be expressed as:

x̃t−1 =

√
αt−1√
αt

x̃t +

(√
1− αt−1 −

√
αt−1(1− αt)√

αt

)
µ̃θ(x̃t, t) (5)

Based on Eq. 4 and the definition of cumulative error, Eq. 5 can be reformulated as:

xt−1 + δt−1 =

√
αt−1√
αt

(xt + δt) +

(√
1− αt−1 −

√
αt−1(1− αt)√

αt

)
(µθ(xt + δt, t) + εt) (6)

Applying the first-order Taylor expansion, µθ(xt + δt, t) is approximated as µθ(xt, t) + Jxt
δt.

Substituting it into Eq. 6, we can obtain the error propagation equation that relates the per-step
quantization error to the cumulative error:

δt−1 = Atδt +Btεt (7)

in which At =
√
αt−1√
αt

I+Bt ∗Jxt , Bt =
√
1− αt−1−

√
αt−1(1−αt)√

αt
and Jxt = ∇xtµθ(xt, t) is the

Jacobian matrix of the denoising model µθ. Given that δT = 0, when we recursively expand Eq. 7
from T to t, the cumulative error δt can be derived as:

δt =

T∑
k=t

k−1∏
j=t

A−1
j

Bkεk (8)

With this equation, we obtain a closed-form solution for the cumulative error corresponding to step t.
By directly adding a correction term of ∆t = −δt to Eq. 3, the error introduced by quantization can
be rectified. However, there are two issues in directly calculating Eq. 8: Issue 1—the existence of
superimposed continuous multiplication and addition and the second derivative of the matrix makes
the computational complexity unacceptable, and Issue 2—there is no explicit analytical solution for
the per-step quantization error.

3.2 SIMPLIFY COMPUTATIONAL COMPLEXITY

In this section, we tackle Issue 1 via reasonable approximation, thus simplifying the computational
complexity of ∆t.

Approximation 1 For a well-trained diffusion model, it is insensitive to local changes in the input,
which implies that we can ignore the Jacobian term: Jxt

≈ 0. See Appendix B for details.

Consequently, the inverse of the propagation matrix Aj can be approximately represented as√
αj√

αj−1
I. By expanding the product terms in Eq. 8 and reducing the intermediate terms, the final

result can be expressed as:
k−1∏
j=t

A−1
j =

k−1∏
j=t

√
αj

√
αj−1

=

√
αt√

αt−1
·
√
αt+1√
αt

· · · =
√
αk−1√
αt−1

(9)

Plugging Eq. 9 into Eq. 8, we have:

∆t = −
T∑

k=t

(√
αk−1√
αt−1

)
Bkεk (10)

Although the solution form has been greatly simplified, there are still difficulties, such as high
computational complexity from time step T to t. To further speed up computation, we introduce an
additional approximation, whose rationality will be rigorously proven later.
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Approximation 2 The correction term only takes into account the subsequent m steps. Since the
denoising process unfolds in reverse, proceeding from T to 0, at the t−th step, only the quantization
noises at steps t+m, t+m− 1,· · · , t+ 1 are factored in. We refer to this as the temporal locality
approximation.

Therefore, we can effectively reformulate Eq. 10 as:

∆t ≈ − 1
√
αt−1

min(t+m,T )∑
k=t

√
αk−1Bkεk (11)

How to determine the value of the parameter m? Based on our discussion in Sec. 3.1, the cumu-
lative error at step t−1 is related to the cumulative error δt from steps [T, . . . , t+1] and the per-step
quantization error εt at step t. By substituting the correction term ∆t into Eq. 7, we have:

δ̂t−1 = Atδt +Btεt +∆t

= Atδt −
1

√
αt−1

min(t+m,T )∑
k=t+1

√
αk−1Bkεk

(12)

where δ̂t−1 is the corrected cumulative error and it should exhibits a strictly smaller upper bound in
norm compared to δt−1, signifying a more refined and accurate error representation. Based on this,
we can solve for the reasonable value of m. Under mild regularity conditions, there exists σ > 0
independent of the timestep k, such that the per-step quantization error satisfies ∥εk∥ ≤ σ, ∀k. Based
on this condition, we can deduce from ∥δ̂0∥ ≤ σ

∑T
t=1

(∏t−1
k=1 ρk

)
∥Bt∥ ≤ ∥δ0∥ that m = 1. We

provide a complete proof to this theorem in Appendix C and an empirical study demonstration
in Appendix D. This implies that the cumulative error at any timestep is only related to the per-
step quantization errors of the two immediately preceding steps. Thus, the final cumulative error
correction term can be reformulated as:

∆t ≈ − 1
√
αt−1

min(t+1,T )∑
k=t

√
αk−1Bkεk (13)

3.3 TIMESTEP-AWARE COMPENSATION

In this section, we address Issue 2 to derive the definitive form of the correction terms. By visu-
alizing and analyzing the noise estimation of the full-precision model (µθ(x̃t, t)), the noise estima-
tion of the quantized model (µ̃θ(x̃t, t)), and the output distortion (εt) across different time steps in
Appendix F, two critical empirical observations emerge:Timestep-Dependent Error Characteris-
tics—the per-step quantization error εt exhibits significant variations across timesteps, with distinct
spatial and magnitude patterns at different stages of the denoising process. Output-Correlated
Error Propagation—a strong statistical correlation exists between εt and the quantized model’s
outputs µ̃θ(x̃t, t), particularly in high-frequency regions.

These findings motivate our core proposition: The per-step quantization error εt can be partially
reconstructed by adaptively scaling the quantized noise estimates µ̃θ(x̃t, t) with channel-specific
coefficients. Formally, we define the per-step quantization error as:

εt = Kt ⊙ µ̃θ(x̃t, t) (14)

where Kt ∈ RC denotes a timestep-conditioned channel-wise scaling matrix, and ⊙ represents
element-wise multiplication. We now focus on finding a loss function L, by minimizing which, we
can efficiently reconstruct µθ(x̃t, t), ∀t ∈ [0, T ]. We adopt the Mean Squared Error (MSE) as the
loss function and introduce regularization terms to prevent overfitting :

L(K) =

T∑
t=1

C∑
i=1

H∑
j=1

W∑
k=1

[(1−Kt,i)µ̃t,i,j,k − µt,i,j,k]
2

+ λ1

T∑
t=1

C∑
i=1

K2
t,i

(15)
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where T is the total denoising timesteps, C is the number of noise estimation channels, H × W
represents the spatial dimensions of feature maps and λ1 restricts the magnitude of these coefficients.
The loss function L(K) is strictly convex with respect to K, when λ1 > 0. To derive the optimal
scaling coefficients, set the first derivative to zero:

∂L
∂Kt,i

= −2

H∑
j=1

W∑
k=1

[(1−Kt,i)µ̃t,i,j,k − µt,i,j,k] µ̃t,i,j,k + 2λ1Kt,i = 0 (16)

Rearranging the terms, we obtain:

Kt,i =

∑H
j=1

∑W
k=1

(
µ̃2
t,i,j,k − µt,i,j,kµ̃t,i,j,k

)
∑H

j=1

∑W
k=1 µ̃

2
t,i,j,k + λ1

(17)

To prevent division by zero and ensure a stable and efficient reconstruction of quantization errors
while maintaining theoretical rigor, we add γ = 10−8 to the denominator.

Based on the provided calibration data, We can cache the noise prediction outputs of the full-
precision model and the quantized model, and then compute K ∈ RT×C offline, which is directly
used for quantization errors reconstruction during inference. Different values of λ1 correspond to
different values of K. We offer two methods, grid search and empirical rule, to determine the
optimal value and compare their advantages and disadvantages. According to the experiments in
Appendix G, the latter is adopted, that means λ1 = 0.01× mean(µ̃2)

var(µ) . Substituting Eq. 14 into Eq. 13,
we obtain the final form of the closed-form solution for cumulative error:

∆t ≈ − 1
√
αt−1

min(t+1,T )∑
k=t

√
αk−1BkKkµ̃θ(x̃k, k) (18)

Eq. 18 indicates that relying on the outputs of the two immediately preceding steps (t + 1, t)) of
the quantized diffusion model, one can achieve a rapid estimation of the cumulative error at the
current step (t). This estimation stems from strict theoretical derivations, with the extra cost entailing
minimal computations and caching the output of step (t + 1), which usually involves feature maps
in a compact latent space.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Quantization Scheme. SVDQuant (Li et al., 2024b) introduces an additional low-rank branch that
can mitigate quantization challenges in both weights and activations, establishing itself as a new
benchmark for PTQ algorithms. In this study, we build our quantization strategy upon it by integrat-
ing cumulative error correction mechanisms. This approach ensures that performance comparisons
remain unaffected by operator-level quantization configurations. In the 8-bit configuration, our ap-
proach employs per-token dynamic quantization for activations and per-channel weight quantization,
complemented by a low-rank auxiliary branch with a rank of 16. For the 4-bit configuration, we ap-
ply per-group symmetric quantization to both activations and weights, using a low-rank branch with
rank 32 and setting the group size to 64. All nonlinear activation and normalization layers are not
quantized, meanwhile the inputs of linear layers in adaptive normalization are kept in 16 bits. To
comprehensively evaluate the effectiveness of TCEC, we conducted comparative experiments with
recent SOTA quantization algorithms across diverse generation tasks.

Image Generation Evaluation. We benchmark TCEC using SDXL (Podell et al., 2023), SDXL-
Turbo (Podell et al., 2023) and PixArt models (Chen et al., 2023; 2024) including both the UNet
and DiT backbones. SDXL-Turbo uses the default configuration of 4 inference steps, while SDXL
employs the DDIM sampler with 50 steps. Since PixArt utilizes the DPM++ solver, we adapted
TCEC to this advanced high-order solver to demonstrate its compatibility across different solvers.
The detailed validation process is presented in Appendix E. To precompute the channel-wise scaling
matrices K and λ1 mentioned in section 3.3, we randomly sampled 1,024 prompts from COCO
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Table 1: Quantization Performance Comparison of Different Models. SDXL and SDXL-Turbo gen-
erate at 5122 resolution, while PixArt achieves 10242. Evaluation metrics include FID (distribution
distance) (Parmar et al., 2024), IR (human preference) (Xu et al., 2023), LPIPS (perceptual similar-
ity) (Zhang et al., 2018), and PSNR (numerical fidelity against 16-bit references) (Li et al., 2024b).

Model Precision Method
MJHQ sDCI

Quality Similarity Quality Similarity
FID↓ IR↑ LPIPS↓ PSNR↑ FID↓ IR↑ LPIPS↓ PSNR↑

SDXL

FP16 - 16.6 0.729 - - 22.5 0.573 - -
W8A8 TensorRT 20.2 0.591 0.247 22.0 25.4 0.453 0.265 21.7
W8A8 SVDQuant 16.6 0.718 0.119 26.4 22.4 0.574 0.129 25.9
W8A8 SVDQuant + TCEC 16.0 0.728 0.092 27.3 22.0 0.580 0.103 26.7
W4A4 SVDQuant 20.6 0.601 0.288 21.0 26.3 0.477 0.307 20.7
W4A4 SVDQuant + TCEC 18.1 0.652 0.249 21.9 23.4 0.513 0.259 21.9

SDXL-Turbo

FP16 - 24.3 0.845 - - 24.7 0.705 - -
W8A8 MixDQ 24.1 0.834 0.147 21.7 25.0 0.690 0.157 21.6
W8A8 SVDQuant 24.3 0.845 0.100 24.0 24.8 0.701 0.110 23.7
W8A8 SVDQuant + TCEC 24.5 0.849 0.083 24.9 23.9 0.720 0.098 24.5
W4A8 MixDQ 27.7 0.708 0.402 15.7 25.9 0.610 0.415 15.7
W4A4 MixDQ 353 -2.26 0.685 11.0 373 -2.28 0.686 11.3
W4A4 SVDQuant 24.6 0.816 0.262 18.1 26.0 0.671 0.272 18.0
W4A4 SVDQuant + TCEC 23.9 0.833 0.230 19.0 25.1 0.691 0.232 19.3

PixArt-
∑

FP16 - 16.6 0.944 - - 24.8 0.966 - -
W8A8 ViDiT-Q 15.7 0.944 0.137 22.5 23.5 0.974 0.163 20.4
W8A8 SVDQuant 16.3 0.955 0.109 23.7 24.2 0.969 0.129 21.8
W8A8 SVDQuant + TCEC 16.2 0.964 0.098 24.5 23.4 0.952 0.118 22.6
W4A4 ViDiT-Q 412 -2.27 0.854 6.44 425 -2.28 0.838 6.70
W4A4 SVDQuant 19.2 0.878 0.323 17.6 25.9 0.918 0.352 16.5
W4A4 SVDQuant + TCEC 18.1 0.903 0.285 18.3 25.3 0.934 0.304 16.9

dataset (Chen et al., 2015) as the calibration dataset. Appendix K provides a detailed explanation
of the selection and size of the calibration dataset. To evaluate the generalization capability of
TCEC, we sample 5K prompts from the MJHQ-30K (Li et al., 2024a) and the summarized Densely
Captioned Images(sDCI) (Urbanek et al., 2024) for benchmarking.

Video Generation Evaluation. We apply TCEC to OpenSORA (Zheng et al., 2024), the videos
are generated with 100-steps DDIM with CFG scale of 4.0. We evaluate the quantized model on
VBench (Huang et al., 2024b) to provide comprehensive results. Following prior research (Ren
et al., 2024), we evaluate video quality from three distinct dimensions using eight carefully selected
metrics. Aesthetic Quality and Imaging Quality focus on assessing the quality of individual frames,
independent of temporal factors. Subject Consistency, Background Consistency, Motion Smooth-
ness, and Dynamic Degree measure cross-frame temporal coherence and dynamics. Finally, Scene
Consistency and Overall Consistency gauge the alignment of the video with the user-provided text
prompt. We collected 128 samples from WebVid (Nan et al., 2024) as the calibration dataset to
calculate K and λ1.

4.2 MAIN RESULTS

Image Generation Evaluation. As shown in Table 1, we conduct extensive experiments at two
quantization precisions: W8A8 and W4A4. We observe that, across all precision levels, TCEC
achieves better image fidelity and diversity, and it even matches the 16-bit results under W8A8 quan-
tization. For UNet-based models, on SDXL, our W4A4 model substantially outperforms SVDQuant
W4A4, the current SOTA 4-bit approach, achieving an sDCI PSNR of 21.9. This even surpasses Ten-
sorRT’s W8A8 result of 21.7, demonstrating robust performance under lower-bit quantization. On
SDXL-Turbo, MixDQ W4A4 exhibits abnormal FID and IR metrics, indicating quantization failure.
This highlights the greater difficulty of quantizing models with a small number of inference steps.
Our W4A4 model surpasses SVDQuant by 0.017 and 0.02 in MJHQ IR and sDCI IR metrics, respec-
tively, suggesting a stronger alignment with human preferences. The larger performance gains of
TCEC on SDXL compared to SDXL-Turbo highlight the critical role of cumulative error correction
in longer inference sequences, and we provide a complete exploration of the minimal inference steps
required for high-speed inference in Appendix H. For DiT-based model, on PixArt-

∑
, our W4A4

model significantly surpasses SVDQuant’s W4A4 results across all metrics. Leveraging the DPM++
solver, PixArt-

∑
demonstrates TCEC’s robustness across different solver configurations. As shown

8
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Table 2: Performance of PTQ Algorithms for OpenSora on Vbench eval Benchmark.In the W4A8
configuration, TCEC outperforms other methods.

Method Bit-width
W/A

Imaging
Quality

Aesthetic
Quality

Motion
Smooth.

Dynamic
Degree

BG.
Consist.

Subject
Consist.

Scene
Consist.

Overall
Consist.

- 16/16 63.68 57.12 96.28 56.94 96.13 90.28 39.61 26.21

Q-Diffusion 8/8 60.38 55.15 94.44 68.05 94.17 87.74 36.62 25.66
Q-DiT 8/8 60.35 55.80 93.64 68.05 94.70 86.94 32.34 26.09
PTQ4DiT 8/8 56.88 55.53 95.89 63.88 96.02 91.26 34.52 25.32
SmoothQuant 8/8 62.22 55.90 95.96 68.05 94.17 87.71 36.66 25.66
Quarot 8/8 60.14 53.21 94.98 66.21 95.03 85.35 35.65 25.43
ViDiT-Q 8/8 63.48 56.95 96.14 61.11 95.84 90.24 38.22 26.06
ViDiT-Q + TCEC 8/8 65.56 57.12 96.27 61.09 96.23 91.34 39.58 26.20
Q-DiT 4/8 23.30 29.61 97.89 4.166 97.02 91.51 0.00 4.985
PTQ4DiT 4/8 37.97 31.15 92.56 9.722 98.18 93.59 3.561 11.46
SmoothQuant 4/8 46.98 44.38 94.59 21.67 94.36 82.79 26.41 18.25
Quarot 4/8 44.25 43.78 92.57 66.21 94.25 84.55 28.43 18.43
ViDiT-Q 4/8 61.07 55.37 95.69 58.33 95.23 88.72 36.19 25.94
ViDiT-Q + TCEC 4/8 64.97 56.90 96.01 59.42 97.01 90.05 37.20 26.20

in Figure 2, when compared with ViDiT-Q W4A4 and SVDQuant W4A4, the TECE W4A4 method
demonstrates less quality degradation and smaller changes in image content. More visual results can
be found in Appendix J.

Video Generation Evaluation. As shown in Table 2, our evaluation compares SOTA PTQ methods
under both W8A8 and W4A8 configurations. In Imaging Quality, TCEC achieves 65.56 (W8A8)
and 64.97 (W4A8), surpassing ViDiT-Q by +2.08 and +3.90 absolute points respectively. It demon-
strates significant advantages in frame-wise quality metrics that evaluate static visual fidelity inde-
pendent of temporal factors. TCEC achieves 96.27 motion smoothness at 8-bit and 96.01 at 4-bit
quantization, outperforming ViDiT-Q by 0.13 and 0.32 respectively. This validates the effectiveness
of our temporal-channel decoupled compensation strategy in handling error accumulation across
denoising steps. The scene consistency metric reaches 39.58 (8-bit) and 37.20 (4-bit), establish-
ing 1.36 and 1.01 improvements over baselines, which confirms stable long-sequence generation
through temporal error propagation modeling.

Hardware Resource Savings. TCEC constructs its quantization strategy based on SVDQuant by in-
tegrating cumulative error correction mechanisms. As TCEC’s research focus is not on engineering
performance, we fully reuse its inference engine, Nunchaku (Li et al., 2024b). As shown in Table 3,
experimental tests indicate that the resulting end-to-end (E2E) latency degradation is less than 0.5%.
Further analysis can be found in the Appendix I. Therefore, on one 12B model, TCEC-W4A4 re-
duces the memory footprint by 3.5× compared to the FP16 model and accelerates inference by 3×
versus NF4 weight-only quantization on the laptop-level RTX 4090, with engineering performance
comparable to SVDQuant and significantly outperforming other PTQ algorithms.

Table 3: A comparison of inference overhead between ViDiT-Q and ViDiT-Q with TCEC.
Model FP16 ViDiT-Q W8A8 ViDiT-Q+TCEC W8A8

Opensora1.2 (51 frames, 480P) 44.56 s 26.211s 26.316s
CogVideoX (48 frames, 480P) 78.48s 49.67s 49.894s

Wan2.1-1.3B (81 frames, 480P) 199 s 118.45s 119.029s

5 CONCLUSION

In this paper, we propose TCEC, a novel cumulative error correction strategy for quantized diffusion
models. It develops a theoretical framework to effectively model the correlation between single-
step quantization errors and cumulative errors, constructs error propagation equations for multi-
ple solvers, and for the first time provides a closed-form solution for cumulative errors. Through
timestep-aware online estimation of single-step quantization errors, TCEC enables low-cost and
rapid correction of cumulative errors, with end-to-end latency degradation ≤ 0.5%. Experimental
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results show that TCEC achieves the SOTA quantization performance under the W4A4 configura-
tion while maintaining orthogonality to existing PTQ algorithms that minimize per-step quantization
errors.

6 ETHICS STATEMENT

This work complies with the ICLR Code of Ethics. No human subjects or animal experimentation
were involved in this study. All datasets used, were obtained in accordance with relevant usage
policies, ensuring that privacy was not violated. We have taken care to mitigate potential biases
and to prevent discriminatory outcomes in our research. No personally identifiable information was
utilized, and no experiments were conducted that might raise privacy or security concerns. We are
committed to upholding transparency and integrity throughout the entirety of this research.

7 REPRODUCIBILITY STATEMENT

We have made every effort to ensure that the results presented in this paper are reproducible. The ex-
perimental setup, including training steps, model configurations, and hardware details, is described
in detail in the paper. We have also provided a full description of our proposed TCEC strategy, to
assist others in reproducing our experiments. Additionally, we evaluate our method against recent
state-of-the-art PTQ algorithms across diverse generation tasks, using publicly available datasets.
These datasets are openly accessible, ensuring consistent and reproducible evaluation results.

We believe these measures will enable other researchers to reproduce our work and further advance
the field.
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APPENDIX

A LLM USAGE

Large Language Models were used solely to refine the manuscript’s language, including sentence
rephrasing, grammar checking, and improving readability. The LLM was not involved in ideation,
methodology, experimental design, or data analysis. All scientific content, concepts, and analyses
were developed by the authors, who take full responsibility for the manuscript. The LLM’s role was
limited to linguistic polishing, with strict adherence to ethical guidelines and avoidance of plagiarism
or scientific misconduct.

B EXPLANATION OF APPROXIMATION 1

In Approximation 1, we approximate Jxt ≈ 0. However, we clarify that this approximation does
not ‘deny the existence of the Jacobian’. Rather, based on magnitude analysis of error propagation
and the inherent properties of diffusion models, we argue that its contribution to cumulative error is
negligible compared to the dominant terms. This makes the approximation a theoretically grounded
and empirically supported simplification. The details are as follows: 1.Core rationale of the
approximation: a magnitude-first simplification. In the error propagation equation (Eq. 7), the
propagation matrix At =

√
αt−1√
αt

I +Bt · Jxt
is composed of two components:

• Dominant term
√
αt−1√
αt

I : This term arises from the diffusion noise-scheduling mechanism
(where αt is tied to the noise variance βt). Its magnitude consistently falls in the 0.9–1.0
range, making it the primary driver of error propagation, typically contributing over 95%
of the total effect.

• Secondary term Bt ·Jxt
: Here, Bt is an αt-dependent coefficient with magnitude ≤ 0.05.

Meanwhile, for a well-trained diffusion model optimized via “denoising score matching,”
the noise estimator µθ satisfies a Lipschitz continuity condition with constant L < 0.3,
implying ∥Jxt∥ ≤ L. Consequently, the magnitude of Bt ·Jxt is at most 1/100–1/10 of the
dominant term. Its influence on the distribution of accumulated error is therefore minimal.

2. Support from both theoretical insights and empirical evidence. From a theoretical standpoint,
the intermediate states xt in diffusion models are well known to approximate a standard Gaussian
distribution at most timesteps due to strong noise injection. This heavy smoothing of the input space
forces the model to focus primarily on global noise evolution rather than local perturbations, which
naturally suppresses the influence of the Jacobian term Jxt

. From an empirical standpoint, as show
in Table 4 we measure the ratio between the secondary term and the dominant term across different
timesteps using SDXL under W4A4 quantization. Even in low-noise regimes (e.g., timestep t = 40),
the secondary term contributes only 0.45% relative to the dominant term—well within the threshold
of being safely negligible in magnitude.

Table 4: Statistics of dominant and secondary terms at different SDXL timesteps.
time step (SDXL, T=50) Dominant term Jxt Bt · Jxt Secondary / Dominant

10 (High-noise stage) 0.982 0.021 0.00105 0.107%
25 (Intermediate stage) 0.951 0.037 0.00185 0.194%
40 (Low-noise stage) 0.915 0.083 0.00415 0.454%

3. Necessity of the simplification. If the Jacobian term were retained, computing the full error
propagation would require matrix inversion and higher-order derivatives, causing the computational
complexity to surge from O(T ) to O(T · C2 · H · W ), which is infeasible for real-time online
compensation. In contrast, the simplified formulation preserves the accuracy of accumulated-error
estimation (with deviation ¡ 1%), while remaining practical for deployment in real systems.
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C DERIVATION OF ERROR ACCUMULATION STEPS

In this section, we derive the reasonable value of the Error Accumulation Steps m by starting from
the principle that the correction term should reduce the norm upper bound of the cumulative error.

As described in Sec. 3.2, the cumulative error with the correction term added can be expressed as:

δ̂t−1 = Atδt −
1

√
αt−1

min(t+m,T )∑
k=t+1

√
αk−1Bkεk (19)

where δ̂t−1 is the corrected cumulative error and it should exhibits a strictly smaller upper bound in
norm compared to δt−1, signifying a more refined and accurate error representation.

Under mild regularity conditions, there exists σ > 0 independent of the timestep k, such that the
per-step quantization error satisfies ∥εk∥ ≤ σ, ∀k. Analyze the upper bound of the norm of the
error-propagation coefficient matrix. The original propagation coefficient is:

At =

√
αt−1√
αt

I+Bt ∗ Jxt (20)

For a model that has converged during training, there exists a constant L such that ∀t,∥Jt∥ ≤ L.
Then we have:

|At| ≤
√
αt−1√
αt

+ |Bt|L (21)

Based on the above-known conditions, since
√
αt−1√
αt

and ∥Bt∥L are constants, there exists ρt such
that:

|At| ≤ ρt (22)

Substitute it into the original error-propagation equation and solve for the upper bound of its norm.
We can know that the following equation holds:

|δ̂t−1| ≤ ρt|δt|+
1

√
αt−1

min(t+m,T )∑
k=t+1

√
αk−1|Bk|σ (23)

Define the corrected noise residue term as:

ηt =
1

√
αt−1

min(t+m,T )∑
k=t+1

√
αk−1|Bk|σ (24)

Then the upper bound of the error recursion can be expressed as:

|δ̂t−1| ≤ ρt|δt|+ ηt (25)

Next, we need to go from the time step t = T to t = 0, and it is obvious that δ̂T = 0. At this time,
we can get:

|δ̂0| ≤
T∑

t=1

(
t−1∏
k=1

ρk

)
ηt (26)

After substituting the noise residue term, we can obtain the upper bound of the norm of the error-
propagation equation with the correction term added:

|δ̂0| ≤ σ

T∑
t=1

(
t−1∏
k=1

ρk

)
1

√
αt−1

min(t+m,T )∑
k=t+1

√
αk−1|Bk| (27)

Since αt is monotonically decreasing and k ≥ t+ 1, this means:
√
αk−1√
αt−1

≤ 1 ⇒ √
αk−1 ≤ √

αt−1 (28)

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Then
1

√
αt−1

min(t+m,T )∑
k=t+1

√
αk−1∥Bk∥ ≤

min(t+m,T )∑
k=t+1

∥Bk∥ (29)

Therefore, δ̂0 satisfies the following relationship

|δ̂0| ≤ σ

T∑
t=1

(
t−1∏
k=1

ρk

)
min(t+m,T )∑

k=t+1

∥Bk∥ (30)

The uncorrected error-propagation equation is
δt−1 = Atδt +Btεt (31)

By recursive expansion, we can calculate that the upper bound of its norm is

|δ0| ≤ σ

T∑
t=1

(
t−1∏
k=1

ρk

)
|Bt| (32)

Combining Eq. 30 and Eq. 32, for δ̂0 < δ0 to hold, it can be achieved by satisfying the following
relationship

1
√
αt−1

min(t+m,T )∑
k=t+1

√
αk−1∥Bk∥ ≤

min(t+m,T )∑
k=t+1

∥Bk∥ (33)

Ultimately, the following formula needs to hold
min(t+m,T )∑

k=t+1

∥Bk∥ ≤ ∥Bt∥ (34)

Obviously, the value of m should be 1. This implies that at time step t, only the quantization errors
at steps t+ 1 and t need to be considered.

D EMPIRICAL STUDY OF ERROR ACCUMULATION STEPS

Starting from the proposed mathematical model, we derive the original form of the correction term
Eq. 10, so we can get the recursive formula∆t =

√
αt√

αt−1
∆t−1−Btεt. Then, based on the constraint

that ”the error upper bound decreases after adding the correction term”, we present the actual ap-
proximate solution Eq. 13, the he recursive formula is ∆t ≈

√
αt√

αt−1
Bt+1εt+1 − Btεt. Appendix

C presents the complete derivation process. It is important to emphasize that the aforementioned
transformation involves no errors when m = T − t; in essence, it is merely a formal transforma-
tion designed to facilitate subsequent analysis. On this basis, we conducted rigorous mathematical
derivation and proof for the selection of m, with the explicit objective of ”reducing the error upper
bound after introducing the correction term δt”. Eventually, the optimal solution m = 1 was ob-
tained. This implies that at any time step, the cumulative error of the model is only related to the
step-wise quantization errors of the immediately preceding two time steps—a finding that constitutes
one of the core contributions of this study.

As show in Table 5, we further supplement the actual test data based on the SDXL and PixArt-σ
models with backbones quantized using SVDQuant. It is observed that the performance of iterative
solving based on Eq. 10 is significantly inferior to that of two-step approximate solving based on
Eq. 13.

E COMPATIBILITY WITH DIFFERENT SOLVERS.

In this section, we extend TCEC to other solvers to demonstrate its generality, such as the most
commonly used high-order solver DPM++ (Lu et al., 2022). The iterative update for DPM-Solver++
(2nd-order variant) is given by:

xt−1 = xt +
∆t

2
[fθ(xt, t) + fθ(xt +∆t · fθ(xt, t), t−∆t)] (35)

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 5: Quantization Performance Comparison of Different Models.
Model Method FID↓ IR↑ LPIPS↓ PSNR↑

SDXL

FP16 16.60 0.729 - -
SVDQuant 16.6 0.718 0.119 26.4

TCEC (Eq. 10) 16.5 0.710 0.121 26.1
TCEC (Eq. 13) 16.0 0.728 0.092 27.3

PixArt-σ

FP16 16.6 0.944 - -
SVDQuant 16.3 0.955 0.109 23.7

TCEC (Eq. 10) 16.5 0.932 0.112 23.3
TCEC (Eq. 13) 16.2 0.964 0.098 24.5

where fθ(x, t) = − 1√
1−αt

µθ(xt, t) represents the noise prediction network. Let f̃θ = fθ + εt
denote the quantized prediction, where εt is the per-step quantization error. The perturbed update
becomes:

x̃t−1 = xt−1 + δt−1 = Φ(x̃t, f̃θ) (36)
Expanding to second-order Taylor series:

δt−1 =
∂Φ

∂xt
δt︸ ︷︷ ︸

Linear Term

+
∂Φ

∂ft
εt︸ ︷︷ ︸

Quantization Error

+
1

2

∂2Φ

∂x2
t

δ2t︸ ︷︷ ︸
Nonlinear Term

+O(δ3t ) (37)

Neglecting higher-order terms, define propagation matrices:

At =
∂Φ

∂xt
= I+

∆t

2
(Jft + Jft−∆t · (I+∆tJft)) (38)

Bt =
∂Φ

∂ft
=

∆t

2
[I+ (I+∆tJft)] (39)

where Jft = ∇xfθ(xt, t) is the Jacobian matrix. Then, we can obtain the error propagation equation
that relates the per-step quantization error to the cumulative error:

δt−1 = Atδt +Btεt (40)

DPM has an error-propagation equation structurally similar to that of DDIM, with only differences
in propagation coefficients. This demonstrates the generality of our theoretical framework.

The error propagation incorporates temporal dependencies:

δt−1 =

t+m∏
k=t

Akδt+m +

t+m∑
k=t

k−1∏
j=t

Aj

Bkεk (41)

with window size m = 2 for 2nd-order DPM-Solver++. Implement truncated SVD for computa-
tional efficiency:

Jft ≈ UtΣtV
T
t (rank ≤ r) (42)

Yielding approximated propagation:

At ≈ I+
∆t

2

(
UtΣtVtT +Ut−∆tΣt−∆tV

T
t−∆t · (I+∆tUtΣtV

T
t )
)

(43)

The error correction term becomes:

∆DPM++
t = −

t+2∑
k=t

γkBkεk (44)

with temporal weights:

γk =

√
αk−1√
αt−1

· exp

−λ

k∑
j=t

||Jfj ||F

 (45)
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Figure 3: Flux visualization of quantization errors during denoising. We compare the
full-precision model (FP16) and the quantized model (W4A8) under the prompt “hummingbird
flying near a flower. 4k ultra realistic ray tracing dynamic lighting” with hyperparameters
num timesteps=4 and guidance scale=3.5. The figure illustrates three key phenomena:
(1) quantization errors accumulate as denoising progresses (Step 1 → 0.75 → 0.5 → 0.25), ex-
hibiting distinct spatial structures; (2) the errors are strongly correlated with the model outputs,
particularly along object boundaries and textured regions; and (3) high-frequency components such
as feather edges and flower petals amplify the discrepancies, highlighting the timestep-dependent
and output-correlated nature of error propagation in quantized diffusion models.

F TIMESTEP-AWARE QUANTIZATION ERROR

As illustrated in the Figure 3, we compare the generation results of the full-precision model (FP16)
and the quantized model (W4A8) across different denoising steps. Three key empirical observations
emerge:

• Cumulative evolution of errors: At early steps (e.g., Step 1), the discrepancy between
FP16 and W4A8 is relatively small, but the error gradually accumulates as denoising pro-
ceeds (Step 0.75 → 0.5 → 0.25), exhibiting distinct spatial structures. This corroborates
our finding of Timestep-Dependent Error Characteristics, indicating that quantization error
is not uniformly distributed but evolves dynamically over timesteps.

• Tight correlation with outputs: Both the visualized difference maps and channel-wise er-
ror slices reveal that the error patterns are highly aligned with the generated structures (e.g.,
feather edges of the bird, textures of the petals). This suggests that quantization errors are
not random noise but are strongly coupled with the model outputs, particularly in regions
rich in details. This observation is consistent with Output-Correlated Error Propagation,
where errors propagate in tandem with the content being generated.

• Amplification in high-frequency regions: The difference visualizations further show that
quantization errors are most prominent in high-frequency regions such as object boundaries
and fine textures. This demonstrates that the statistical correlation of errors with outputs is
concentrated on high-frequency components, which are critical for perceptual quality.

G ABLATION EXPERIMENT OF REGULARIZATION TERM λ1

As shown in Eq. 15, the parameter λ1 serves to restrict the magnitude of the error correction co-
efficient, functioning as a regularization term. Moreover, to ensure that L(K) is a strictly convex
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function with respect to K, it is imperative that λ1 > 0. We determined the calculation strategy for
the λ1 value through practical comparative experiments. As shown in the Table 6, the grid search
strategy does not exhibit any performance advantage over the empirical rule λ1 = 0.01 × mean(µ̃2)

var(µ) ,
and it has two drawbacks: (1) The grid search strategy requires setting a value range and the number
of grid search steps, which incurs significant tuning costs for different models. (2) The grid search
strategy needs to repeatedly calculate Eq. 17 multiple times, whereas the empirical rule only requires
a single calculation. Therefore, we ultimately adopted the empirical rule to determine the value of
λ1. Essentially, the empirical rule is a formula-based fitting based on experimental data.

Table 6: Ablation experiment on the selection of regularization term λ1

Model Method FID↓ IR↑ LPIPS↓ PSNR↑

SDXL
SVDQuant (W8A8) 16.6 0.718 0.119 26.4
TCEC (grid search) 16.2 0.723 0.090 27.1

TCEC (empirical rule) 16.0 0.728 0.092 27.3

H THE IMPACT OF INFERENCE STEPS ON TCEC PERFORMANCE

Table 1 presents the performance improvements on SDXL-Turbo (4-step), showing that TCEC is
likewise applicable to high-speed generative models. However, it is important to note that the gains
on SDXL-Turbo are smaller than those on SDXL (50-step). The core reason is that the primary
value of TCEC lies in mitigating the accumulation of quantization errors during iterative inference,
and thus its performance gains scale directly with the amount of accumulated error. The relatively
modest improvements on SDXL-Turbo (4-step) stem from the fact that the small number of steps
prevents errors from forming substantial accumulation. Therefore, taking SDXL-Turbo as the base-
line, we further conducted additional experiments to investigate the minimal effective number of
steps for TCEC.

Table 7: Comparison of SVDQuant and SVDQuant+TCEC across models and steps on MJHQ
dataset.

Model Step Method FID↓ PSNR↑ FID ↓ PSNR ↑ Avg

SDXL 50 SVDQuant 16.6 26.4 - - -
SVDQuant+TCEC 16.0 27.3 0.6 0.9 1.5

SDXL-Turbo 4 SVDQuant 24.3 24.0 - - -
SVDQuant+TCEC 24.5 24.9 -0.2 0.9 0.7

SDXL-Turbo 3 SVDQuant 25.8 18.6 - - -
SVDQuant+TCEC 25.6 18.9 0.2 0.3 0.5

SDXL-Turbo 2 SVDQuant 27.7 17.1 - - -
SVDQuant+TCEC 27.7 17.3 0 0.2 0.2

As shown in Table 7, when the number of iterative steps is ≥ 3, TCEC produces meaningful im-
provements (with gains ≥ 0.5 on key metrics). When the number of steps is < 3, the improvements
are constrained by the limited amount of accumulated error and are typically < 0.2 (within the range
of experimental noise).

I INFERENCE OVERHEAD OF TCEC

TCEC improves performance by performing error correction on the output of the quantized model,
and it is completely orthogonal to the backbone quantization algorithm. As shown in Eq. 14, the
computation of single-step quantization error involves no complex operations and is accomplished
solely through a non-linear mapping: εt = Kt⊙µ̃θ(x̃t, t), where Kt denotes a timestep-conditioned
channel-wise scaling matrix, and ⊙ represents element-wise multiplication. Consequently, the addi-
tional theoretical computational complexity introduced at each step is NC2HW , which is negligible
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compared to that of the DIT/Unet-Backbone. Practical test data on the Nvidia A800-40G platform
show in Table 8 and Table 3 that the extra end-to-end latency incurred is less than 0.5%, with specific
test data provided in the table below.

Table 8: A comparison of inference overhead between SVDQuant and SVDQuant with TCEC.
Model FP16 SVDQuant W4A4 SVDQuant+TCEC W4A4

Flux-dev 1.0 (T = 30) 26.14 s 9.947 s 9.996 s

J VISUAL QUALITY RESULTS.

FP16 ViDiT-Q W4A4 SVDQuant W4A4 TCEC W4A4GGUF W4

Figure 4: Qualitative visual results comparison. Prompt1: Luffy from ONEPIECE, handsome face,
fantasy. Prompt2: The image features a woman wearing a red shirt with an icon. She appears to
be posing for the camera, and her outfit includes a pair of jeans. The woman seems to be in a good
mood, as she is smiling. The background of the image is blurry, focusing more on the woman and her
attire. Prompt3: Bright scene, aerial view, ancient city, fantasy, gorgeous light, mirror reflection,
high detail, wide angle lens.

K CALIBRATION DATASET ABLATION

To further verify the impact of the calibration dataset on TCEC performance, we provide an expla-
nation from both theoretical and experimental perspectives.

• Rationale for selecting the calibration dataset: The size of the calibration set is cho-
sen based on a trade-off between performance and efficiency. As show in Table 9, using
SVDQuant-W8A8 as the base quantization algorithm, with COCO as the calibration set
and MJHQ as the evaluation set, the results shown in the table indicate that when the cal-
ibration set contains fewer than 1024 samples, increasing the number of samples leads to
significant performance improvements. However, when the calibration set exceeds 1024
samples and reaches 2048, performance gains plateau. Excessive calibration samples pro-
vide no additional benefit and instead prolong the calibration process. Therefore, we select
1024 samples as the standard calibration set size in image generation task.
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• TCEC is insensitive to the domain of the calibration dataset: The input to TCEC’s
error-calibration module is the output of the DIT model, which has already undergone the
following processing pipeline: 3D-VAE preprocessing → 3D-VAE Encoder inference →
DiT inference. The 3D-VAE preprocessing standardizes the input-output distribution, and
the subsequent VAE Encoder and DIT inference further reinforce this effect. As a result,
the output distributions of the DIT model converge across different datasets, making the
error-correction coefficients largely insensitive to the choice of calibration data. In Table
2, OpenSora uses WebVid as the calibration set and VBench—a dataset with markedly
different scenes—for evaluation. Despite the domain shift, TCEC consistently improves
performance (e.g., +2.08 on W8A8 Imaging Quality and +3.90 on W4A4), providing direct
evidence of its robustness to distributional differences.

Table 9: Performance comparison of SDXL with SVDQuant and TCEC at different data sizes.

SDXL

Method Data Size FID↓ PSNR↑ FID ↓ PSNR↑ Avg

SVDQuant - 16.6 26.4 - - -
SVDQuant+TCEC 2048 16.0 27.4 0.6 1.0 1.6
SVDQuant+TCEC 1024 16.0 27.3 0.6 0.9 1.5
SVDQuant+TCEC 512 16.2 26.8 0.4 0.4 0.8
SVDQuant+TCEC 256 16.4 26.7 0.2 0.3 0.5
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