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ABSTRACT

The widespread usage of online Large Language Models (LLMs) inference services
has raised significant privacy concerns about the potential exposure of private
information in user inputs to malicious eavesdroppers. Existing privacy protection
methods for LLMs suffer from either insufficient privacy protection, performance
degradation, or large inference time overhead. To address these limitations, we
propose PrivacyRestore, a plug-and-play method to protect the privacy of user
inputs during LLM inference. The server first trains restoration vectors for each
privacy span and then release to clients. Privacy span is defined as a contiguous
sequence of tokens within a text that contain private information. The client then
aggregate restoration vectors of all privacy spans in the input into a single meta
restoration vector which is later sent to the server side along with the input without
privacy spans. The private information is restored via activation steering during
inference. Furthermore, we prove that PrivacyRestore inherently prevents the
linear growth of the privacy budget. We create three datasets, covering medical
and legal domains, to evaluate the effectiveness of privacy preserving methods.
The experimental results show that PrivacyRestore effectively protects private
information and maintain acceptable levels of performance and inference overhead.

1 INTRODUCTION

Large Language Models (LLMs) have emerged as powerful tools in various domains, including
healthcare (Chen et al., 2023; Xu et al., 2023), law (Wu et al.; Deng et al., 2023a), and finance (Wu
et al., 2023; Xie et al., 2023). With the exception of a very small portion of users who have the
resources and expertise to deploy LLMs locally, the vast majority of users access and interact with
these powerful models through online inference services.

However, the widespread usage of online LLMs inference services has raised significant privacy
concerns, especially regarding the potential risk of private information being leaked through user
inputs when interacting with LLMs deployed on cloud platforms. User inputs often contain sensitive
information such as details in medical records and legal cases. Potential threats may arise from
eavesdropper attackers intercepting user queries during transmission to cloud platforms for malicious
purposes. For example, in sensitive domains like medical diagnosis, if a user’s input containing
personal health information, such as "I was previously diagnosed with HIV, and lately I’ve been
experiencing fever and diarrhea..." is disclosed, it may cause troubles to their life.

In this paper, we focus on protecting the private information contained in user inputs during LLM
inference stage. In this setting, the client submits inputs to the server (also known as the service
provider) and there is a risk that inputs might be disclosed by attackers. Current methods for protecting
user inputs can be categorized into two categories: Secure Multi-Party Computation (SMPC) and
Differential Privacy (DP). SMPC based methods (Hao et al., 2022b; Li et al., 2023a; Liang et al.,
2024) utilize encryption protocols and algorithms to enable collaborative computation without
revealing original data to others. However, SMPC methods have large inference time overhead,
making them impractical for real-time applications. For example, running a single pass inference
on the RoBERTa-Base (Liu et al., 2019) requires 168.43 seconds (Hao et al., 2022a). DP based
methods (Feyisetan et al., 2020; 2019; Xu et al., 2020; Bo et al., 2021) introduce the definition of
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dχ-privacy (Chatzikokolakis et al., 2013; Alvim et al., 2018) and apply a word-level text-to-text
privatization on data locally before transmitting data to the server. Nevertheless, DP based methods
inevitably degrade the performance of downstream tasks due to noise injection, which is known as the
privacy-utility trade-off. Additionally, as text length increases, the performance degradation becomes
pronounced, This phenomenon is known as the linear growth of the privacy budget Mattern et al.
(2022b) in differential privacy. Hence, there is a need to develop privacy-preserving methods which
can effectively safeguard the privacy of user inputs while maintaining high-quality outputs, without
incurring prohibitive computational costs.

We propose PrivacyRestore which directly removes privacy spans in user inputs and restores private
information via activation steering (Li et al., 2023c; Turner et al., 2023; Hernandez et al., 2023)
during model inference. Our method is based on two key assumptions: (a) Private information is
confined within specific a contiguous sequence of tokens, termed “privacy span”, rather than
being dispersed throughout the entire input. Privacy span is defined as a contiguous sequence of
tokens within a text that contain private information. The removal or proper redaction of privacy
spans significantly impedes unauthorized parties from reconstructing or inferring the underlying
private information. For instance, if privacy spans "HIV" , "fever" and "diarrhea" are removed from
a medical record "I was previously diagnosed with HIV, and lately I’ve been experiencing fever
and diarrhea...", attackers can not recover any private information. (b) In a particular domain,
the number of potential privacy spans is limited and finite. For example, in the application of
medical diagnosis, privacy spans generally pertain to symptoms and disease names, and the number of
possible symptoms and disease names is inherently limited. Moreover, although medical knowledge
and terminology inevitably evolve, the core set of symptoms and diseases remains relatively stable
and finite.

PrivacyRestore operates in two stages: the preparation stage and the inference stage. In the prepa-
ration stage, we first identifies the attention heads where the activation steering occurs. Second,
each privacy span is encoded to a vector named restoration vector. This stage is conducted on the
server side. Our method is plug-and-play, requiring only the restoration vectors to be trainable, while
keeping the LLM frozen. Once training is complete, the users keep all restoration vectors on the
client side. In the inference stage, the user construct a meta vector by first estimating the importance
of each privacy span in the input and then calculating a weighted sum of the corresponding restoration
vectors. The user then removes the privacy spans from the input and submits the remaining input
along with the meta vector to the server. The server uses the meta restoration vector to restore the
removed privacy spans through activation steering.

To prevent the leakage of privacy spans via reverse-engineering on the meta vector, the dχ-privacy
mechanism (Feyisetan et al., 2020) is applied on the meta vector before transmission on the client side.
dχ-privacy mechanism is a variant of the differential privacy mechanism (Dwork et al., 2016). By
applying dχ-privacy to the meta restoration vector instead of words, our method inherently addresses
the issue of linear growth of privacy budget (Mattern et al., 2022a) commonly encountered in dχ-
privacy and other DP variants. Experimental results demonstrate that the proposed method effectively
protects private information and maintains satisfactory performance and inference efficiency.

The contributions of our paper are summarized as follows,

• We propose a plug-and-play privacy protection method that removes privacy spans in the input
and restores private information via activation steering during inference.

• We propose Attention-aware Weighted Aggregation to construct the meta vector and apply the
dχ-privacy mechanism to the meta vector, inherently addressing the problem of the linear growth
of privacy budget.

• We construct three datasets, covering the medical and legal fields, to evaluate our method. Ex-
perimental results demonstrate its capabilities of privacy protection. It also maintains acceptable
performance and inference efficiency.

2 RELATED WORKS

In this section, we introduce the related works on user input protection methods, which are currently
divided into two categories: SMPC-based methods and DP-based methods.
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2.1 SECURE MULTI-PARTY COMPUTATION (SMPC)

Secure multi-party computation (SMPC) methods utilize multi-party encryption algorithms to enable
collaborative computation among multiple parties while protecting the privacy of their data. However,
most nonlinear operations in LLMs cannot directly support secure multi-party computation. To
address this challenge, current SMPC methods focus on two optimization directions: model structure-
oriented optimization and protocol-oriented optimization.

The model structure-oriented approach aims to replace SMPC-unfriendly nonlinear operations with
SMPC-friendly alternatives. For instance, MPC-Former (Li et al., 2023a) approximates nonlinear
operations in Transformer using polynomials and maintains performance through model distillation.
MERGER (Liang et al., 2024) integrates previous techniques to natural language generation (NLG)
tasks by bypassing embedded computation and reorganizing linear operations in Transformer modules,
further enhancing computational efficiency and model performance. In contrast, the protocol-oriented
approach focuses on designing efficient SMPC operators for nonlinear operations in LLMs while
preserving the original model structure. Recent works Hao et al. (2022b); Liu & Liu (2023); Zheng
et al. (2023b); Gupta et al. (2023) have improved the efficiency of nonlinear operations in privacy-
preserving LLMs inference by utilizing various SMPC protocols, such as confusion circuit and
function secret sharing.

Although SMPC-based methods can be applied to protect user inputs during model inference, they
still suffer from large inference time overhead. For example, inference on the RoBERTa-Base model
takes 168.43 seconds (Hao et al., 2022a), making current SMPC methods impractical for online LLM
inference services.

2.2 DIFFERENTIAL PRIVACY (DP)

Differential Privacy (DP), as introduced by Dwork et al. (2016), is designed to protect individual
privacy by preventing attackers from identifying specific participants in a dataset. Several variants
of DP have been developed to enhance privacy protection across various settings, adapting the core
principles of DP to different types of data and threat models. Notable examples include Centralized
Differential Privacy (CDP), Local Differential Privacy (LDP) and dχ-privacy.

CDP (Dwork et al., 2016) operates under the assumption that all data has been stored in a central
repository. It guarantees that attackers cannot distinguish between any two adjacent repositories based
on query results. In contrast, LDP (Duchi et al., 2013) provides a stronger guarantee, ensuring that
attackers cannot distinguish between any two adjacent inputs. Mattern et al. (2022b) and Utpala et al.
(2023) propose using paraphrasing techniques to achieve LDP on user inputs. The formal definitions
of CDP and LDP are provided in Appendix D.

LDP allocates the same privacy budget ϵ to all adjacent input pairs, regardless of their similarity.
Applying the same ϵ forces each user input to be indistinguishable from any other, which can
negatively impact data utility. However, it is sufficient for privacy protection to make each user input
indistinguishable only from its closer counterparts. To address this, dχ-privacy (Feyisetan et al.,
2019), a relaxed version of LDP, incorporates metrics that measure the similarity between inputs,
allowing for more flexible control over the privacy budget. dχ-privacy is defined as,

Definition 2.1. (dχ-privacy). A randomized mechanism M : I → O fulfills ϵ-dχ-privacy if for all
adjacent inputs I, I ′ ∈ I and all possible outputs O ⊂ O,

P (M(I) ∈ O) ≤ exp(ϵdχ(I, I
′))P (M(I ′) ∈ O) ,

where dχ is a distance function defined on I. Recent works (Feyisetan et al., 2020; Xu et al., 2020;
Li et al., 2023d; Qu et al., 2021) leverage dχ-privacy to safeguard user inputs during both inference
and fine-tuning phases. However, as noted by Mattern et al. (2022b), all of the aforementioned DP
variants suffer from the linear growth of the privacy budget. A larger privacy budget indicates weaker
privacy protection, meaning that as the input length increases, the effectiveness of privacy protection
diminishes.
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3 THREAT MODEL

We consider a threat model involving two parties: a server that holds the LLM weights and a client
holds user inputs containing privacy spans. Privacy span is defined as a contiguous sequence of
tokens within a text that contain private information. The server provides services through an
API, enabling the client to transmit inputs and receive responses while maintaining the confidentiality
of the LLM weights. The server may be vulnerable to attacks by adversaries seeking to steal privacy
information in user inputs. Our task is to protect these private spans in user inputs from being
intercepted to the adversaries, even when the adversaries can attack the server directly.

4 METHODOLOGY

To protect privacy, PrivacyRestore transmit the input with privacy spans removed instead of the entire
input text to the server. The information in the privacy spans is encrypted as a vector, which is then
injected with noise and is also sent to the server. We propose to use activation steering (Li et al.,
2023c; Turner et al., 2023; Hernandez et al., 2023) to restore privacy information. Activation steering
methods modify the activations of a language model at inference time to predictably alter its behavior.
Activation steering is widely used to truthfulness enhancement(Li et al., 2023c), LLMs detoxifying
(Li et al., 2024), and sentiment modification (Turner et al., 2023). To our best knowledge, it is first
attempt to use activation steering for privacy information restoration. We include the preliminaries of
our methodology in Appendix C.

PrivacyRestore operates in two stages, i.e., the preparation stage and the inference stage.

(1) Preparation stage: This stage takes place on the server. We first identify the edited attention heads
and train the restoration vectors for each privacy spans. After training, these vectors are released
to the clients. The preparation stage is conducted offline, prior to the server beginning to offer its
services.

(2) Inference stage: This stage involves collaboration between the client and server. The client
constructs a meta vector which is later transmitted to the server along with the input where the privacy
spans are removed. The server then performs inference on the input with privacy spans removed and
restores those privacy spans via modifying activations.

An overview of PrivacyRestore is shown in Figure 1. Detailed descriptions of the preparation stage
and the inference stage are provided in §4.1 and §4.2 respectively. The definitions of all notations
used in this paper can be found in Appendix A.

4.1 PREPARETION STAGE

Edited Heads Identification. As pointed by activation steering methods (Li et al., 2023c; Chen
et al., 2024), modifying all attention heads in LLMs will degrade overall performance. Inspired by
this, we aim to identify the attention heads most relevant to privacy spans.

As shown in upper part of Figure 1, we firstly utilize the probe technique (Alain & Bengio, 2016;
Tenney et al., 2019; Belinkov, 2022) to identify the most relevant attention heads for each privacy
span. Iall = {I1, ..., Im} represents the user inputs in the training set where m is the size of training
set. Given a privacy span s, Ys = {y1, ..., ym} represents the corresponding labels, where yi = 1
only if input Ii contains privacy span s. For each user input Ii, we record the hidden state of last
token on each attention head . We then train a binary classifier for each head, tailored to the privacy
span s, as the probe. The probe takes the hidden state of last token as input and predicts whether the
input contain the privacy span s. The probe is formulated as:

Fs
h(uh) = σ(θsh · uh), (1)

where Fs
h(·) is the probe of privacy token s on head h, uh is the hidden state of last token on head h,

θsh is parameters of the probe, and σ(·) indicates the sigmoid function. A probe Fs
h(·) with higher

accuracy indicates a stronger correlation between the head h and the privacy span s. Therefore, we
select the top K attention heads with highest accuracies for each privacy span.

Subsequently, we introduce a Top-K Heads Selector to identify the common top-K heads set Hc

from the individual top-K heads sets of each privacy span. Using different top-K head sets for
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Figure 1: The PrivacyRestore consists of two stages. (1) Preparation Stage. This stage is operated
on the server side only and is conducted offline before the server starts offering its services. This
stage aims to identify the edited heads and train the restoration vectors. (2) Inference Stage. This
stage involves the collaboration between the server and the client. The client need to construct a
meta vector by computing a weighted sum of restoration vectors for all privacy spans in the input. A
local lightweight model is used to estimate the weight of each privacy span. Then the client transmits
the meta vector and the incomplete input with privacy spans removed to the server. Using the meta
vector, the server restores the privacy information.

different privacy spans may suffer the risk of privacy leakage, as an attacker could infer the presence
of a specific privacy span based on the characteristics of top-K heads set. Hence, we propose Top-K
Heads Selector to combine all different top-K heads sets to construct a common top-K heads set Hc

as the edited heads set. To achieve this, we calculate the average score of each head across all privacy
spans, selecting the highest K heads to construct the common set. A head receives a positive score
if it appears in the top-K head set of a privacy span s. The score is related to the accuracy of probe
associated with the head. Specifically, if the probe associated with this head yields higher accuracy,
the score is higher. By iterating this process across all privacy spans, we can calculate the average
score for each head. The detailed algorithm is described in Appendix G.

Restoration Vectors Training. After identifying the edited heads set, the next step is to train the
restoration vectors for each privacy span on the server side. The training objective is to align the
predictions given the input with privacy spans removed to be the same as the predictions given an
intact input.

For each privacy span s ∈ S , there is a trainable restoration vector rhs for each head h in the common
top-K heads set Hc. Restoration vectors of all privacy spans on all heads of Hc form the only trainable
parameters Θ in our method. The LLM weights remain frozen. Our method is plug-and-play and
parameter-efficient for training. We fine-tune these restoration vectors using ORPO loss proposed by
Hong et al. (2024):

ratio(a|Î; Θ) =
P(a|Î; Θ)

1− P(a|Î; Θ)
, (2)

LORPO =
∑

Î∈Îall

− logP(a|Î; Θ)− λ log σ

(
log

ratio(a|Î; Θ)

ratio(â|Î; Θ)

)
, (3)

where Î denotes the input with privacy spans removed and Îall = {Î1, · · · , Îm} represents the
training set of incomplete inputs, a is the initial output give the complete input, â is the output given
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the incomplete input with privacy spans removed and λ represents the coefficient. The ORPO loss
encourages the model to generate the initial output a rather than the output â given the incomplete
input. After restoration vectors training, the server will release all restoration vectors to clients.

4.2 INFERENCE STAGE

Meta Vector Construction. In the inference stage, the client construct a meta vector which is later
transmitted to the server along with the input with privacy spans removed, as shown in the lower
left panel in Figure 1. These operations are conducted on the client side. Transmitting a single meta
vector instead of multiple restoration vectors reduces the communication burden and the risk of data
leakage. For instance, adversaries could easily know the number of privacy spans in the user input if
multiple restoration vectors were sent.

However, equal weighted aggregation may weaken the influence of critical spans and amplify the
effect of irrelevant ones. Therefore, we propose a novel method called Attention-aware Weighted
Aggregation (AWA) which estimates a weight for each privacy span, and then take the weighted
sum of restoration vectors as the aggregation result. This result is then added with noise for privacy
protection and transmitted to the server. Considering the limitation of computing resource, we propose
to utilize a lightweight model (e.g., BERT Devlin et al. (2019)) to estimate importance weights on the
client side. For the privacy span s in the user input I , the importance weight ws is calculated as the
average attention received by s:

ws =
1

n

1

nh

n∑
t=1

nh∑
h=1

Attnh(s, it), (4)

where n is the number of tokens in the input, nh is the number of attention heads in the lightweight
model, it is the t-th token of I , and Attnh(s, it) denotes the attention score of it attending to the
privacy span s. To simplify the problem, we first consider constructing the meta vector for a single
head h. The meta vector Rh on head h is obtained by computing the weighted sum of the restoration
vector rhs of each privacy span s on head h, normalizing the summation, and adding noise N . The
process is formulated as follows,

Zh =

∑
s∈SI

ws · rhs
||
∑

s∈SI
ws · rhs ||2

, (5)

Rh = Zh +N , (6)

where SI denotes the set of privacy spans in the input I , |SI | denotes the number of privacy spans and
Zh represents the normalization of the weighted sum on head h. The injected noise N is sampling
from the distribution p(N ) ∝ exp(−ϵ∥N∥), according to Feyisetan et al. (2020), where ϵ is the
privacy hyperparameter.

To construct the meta vector for multiple heads, we first concatenate the restoration vectors on
multiple heads. Then, we apply the weighted summary, normalization, and noise addition to the
concatenated vector, as we do for a single edited head. After construction, the meta vector, along
with the input with the privacy spans removed, are transmitted to the server for inference.

Privacy Restoration. We utilizes the meta vector to restore the missing privacy spans during
inference on the input with the privacy spans removed, as illustrated in the lower right part of Figure
1. This operation is conducted on the server side.

Following activation steering methods (Li et al., 2023c; Chen et al., 2024), we apply the meta vector
to the outputs of the edited attention heads to restore the privacy spans. Let uh represent the hidden
state of the last token on head h given the input with privacy spans removed, and Rh be the meta
vector for head h, the hidden state of the last token on head h after restoration ūh is denoted as:

ūh = uh + ||uh||2 · Rh, ∀h ∈ Hc. (7)

During inference, if a head belongs to the common top-K heads set Hc, its hidden state should be
modified using Eq 7.
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5 ANALYSIS OF PRIVACY BUDGET

In this section, we analyze the privacy budget of DP variants and PrivacyRestore.

Theorem 5.1. The DP variants including CDP, LDP and dχ-privacy are constrained by a privacy
budget that grows linearly with the length of the protected text.

The detail proof of Theorem 5.1 is presented in Appendix E. As the length of the protected text
increases, the growing privacy budget makes these DP variants more vulnerable to adversarial attacks,
thus compromising their robustness. We also provide empirical evidence demonstrating the linear
growth problem of dχ-privacy in Section 6.3. We implement two types of attack, i.e., prompt injection
attack (Perez & Ribeiro, 2022; Suo, 2024) and attribute inference attack (Li et al., 2022), across
three privacy-preserving datasets. As shown in Figure 3(a) and 3(b), attack performance increases
with the length of the protected text, highlighting the linear growth problem of the privacy budget in
dχ-privacy.

Theorem 5.2. PrivacyRestore fulfills dχ-privacy and provides a privacy budget of ϵ||Z ′ −Z||, where
ϵ denotes privacy hyperparameter, and Z ′ and Z represent any pair of normalized weighted sums of
restoration vectors concatenated across all edited heads. The privacy budget of PrivacyRestore is
independent of the length of protected text.

The detail proof of Theorem 5.2 is provided in Appendix F. The ϵ is privacy hyperparameter,
independent of the length of protected text. The ||Z ′ − Z|| represents the distance between two
vectors, also independent of the length of protected text. Since the privacy budget in PrivacyRestore
is independent of the length of the protected text, our method effectively protects privacy even with
longer protected text, inherently addressing the linear growth issue in DP variants. We also provide
empirical evidence to support the theorem. We present the attack performance of PrivacyRestore
across varying protected text lengths, as detailed in Section 6.3.

6 EXPERIMENTS

6.1 EXPERIMENTS SETUP

Datasets. We evaluate our method in medical and legal domains. However, existing benchmarks,
such as DDXPlus (Tchango et al., 2022) and NLICE (Al-Ars et al., 2023) for medical diagnosis, and
SLJA (Deng et al., 2023b) for legal judgement, do not specify privacy spans in the input. To address
this gap, we leveraged GPT-3.5 (Ouyang et al., 2022) to classify symptoms in DDXPlus/NLICE
and case details in SLJA into sensitive and non-sensitive categories, treating the sensitive data as
privacy spans. The classification prompt is shown in Appendix O.1. Based on classification results,
we curated three privacy-preserving datasets: Pri-DDXPlus, Pri-NLICE and Pri-SLJA, with 149,
64 and 142 types of privacy spans, respectively. The process of dataset construction and statistical
information can be found in Appendix B.
Metrics. The evaluation access both performance and inference efficiency. For performance
evaluation, we employ MC1 and MC2 (Lin et al., 2021) to measure the model’s accuracy in selecting
the correct answer among 4 options. Each sample in Pri-DDXPlus, Pri-NLICE, and Pri-SLJA is
assigned with 4 options, including one correct and three incorrect options. The detailed calculation
of MC1 and MC2 is outlined in Appendix J. We also evaluate the model’s generation ability using
ROUGE-L and LLM-Judge (LLM-J)(Zheng et al., 2023a). For ROUGE-L, the reference text is the
initial output produced by the backbone LLM. As ROUGE-L primarily focuses on n-gram overlap
between generated text and reference texts, which may not fully capture the semantic meaning or
overall quality of the generated content, we further use a LLM (i.e., GPT-3.5) to assess the quality of
outputs considering relevance, clarity, and accuracy. The assessment prompt is shown in Appendix
O.3. The LLM-J score ranges from 1 to 10, with higher scores indicating better quality. For inference
efficiency, we use Throughput (TP), defined as the number of tokens generated per second, to
evaluate the inference efficiency.
Compared Methods. To demonstrate the effectiveness of our method, we compare our model with
following baselines. dχ-privacy. The client applies dχ-privacy (Feyisetan et al., 2020) mechanism on
the entire input, which injects noise into tokens’ embedding and find the nearest tokens to replace the
initial tokens. dχ-privacy on privacy spans. The client employs dχ-privacy (Feyisetan et al., 2020)
mechanism on privacy spans in the input, rather than the entire input. Paraphrase. According to

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Datasets Methods MC1 ↑ MC2 ↑ ROUGE-L ↑ LLM-J ↑ TP ↑

Pri-DDXPlus

dχ-privacy 28.79±0.02 30.26±0.01 17.97±0.00 1.17±0.00 37.45±0.01
dχ-privacy on privacy spans 44.71±0.29 42.36±0.00 29.17±0.04 3.31±0.00 33.21±0.00
Paraphrase 27.92±0.56 28.56±0.07 18.04±0.01 1.23±0.00 35.42±0.67
PrivacyRestore 62.97±0.00 60.19±0.00 27.24±0.26 4.47±0.00 26.09±0.08

Pri-NLICE

dχ-privacy 29.08±0.00 29.72±0.00 15.68±0.02 1.41±0.00 38.30±0.00
dχ-privacy on privacy spans 30.00±0.09 31.46±0.00 22.97±0.00 3.01±0.00 35.73±0.57
Paraphrase 28.46±0.02 29.15±0.03 16.15±0.01 1.62±0.00 37.22±0.07
PrivacyRestore 62.23±1.70 57.94±0.09 24.42±0.81 3.67±0.01 32.33±0.01

Pri-SLJA

dχ-privacy 16.66±0.37 17.57±0.04 23.35±0.00 2.08±0.00 36.83±0.03
dχ-privacy on privacy spans 24.23±1.69 26.63±0.67 40.10±0.00 4.54±0.00 36.16±0.00
Paraphrase 16.21±0.02 17.52±0.02 24.90±0.01 2.07±0.01 31.31±0.05
PrivacyRestore 35.47±1.48 35.41±0.64 37.56±0.06 5.25±0.00 30.73±0.04

Table 1: Comparison of the performance and the inference efficiency between PrivacyRestore and
other baselines across three privacy-preserving datasets. All experiments are conducted over 3 runs,
with the average results and variances reported. The best results are highlighted in bold.

Mattern et al. (2022b); Utpala et al. (2023), clients can use generative models to paraphrase original
inputs, achieving effects similar to DP.
Implementation Details. We use Llama2-chat-7b (Touvron et al., 2023) as the LLM backbone
on the server side, and BERT-base (Devlin et al., 2019) on the client side for weight estimation, as
described in Section 4.2. For fair comparison, we utilize flan-t5-base model (Chung et al., 2024) on
the client side for paraphrasing in the Paraphrase baseline as its model size is comparable to that of
BERT-base. During restoration vector training, the LLM parameters remain fixed, and we train the
restoration vectors for 5 epochs with a batch size of 1. The optimal number of edited heads K is 175
for Pri-DDXPlus/Pri-SLJA and 125 for Pri-NLICE. The search process is shown in Section I. To
evaluate the generation capabilities, we utilize GPT-3.5 to assess the generated outputs. The prompts
are detailed in Appendix O.2. To evaluate inference efficiency, we use the greedy search decoding
strategy and set the max generation length to 256 during generation.
Settings of Privacy Hyperparameters. The hyperparameters related to privacy protection strength
are ϵ for dχ-privacy (on privacy spans) and PrivacyRestore, and τ for paraphrase. For fair comparison,
we ensure all methods under the same privacy budget. We show the calculation process of determining
values of ϵ and τ for different methods on different datasets in Appendix H. The values of ϵ and τ for
different privacy-preserving methods are shown in Table 5 in the Appendix.

6.2 MAIN RESULTS

As shown in Table 1, we evaluate the performance and inference efficiency of PrivacyRestore and
other compared methods across three privacy-preserving datasets. Compared to dχ-privacy and
paraphrase, dχ-privacy on privacy spans solely apply dχ-privacy mechanism to those privacy spans
and achieves higher scores in MC1/2, ROUGE-L and LLM-J. The possible reason for this is that
both dχ-privacy and paraphrase operate on the entire user input, instead of specific privacy spans.
Injecting noise into the entire input creates larger disturbances during inference compared to only
corrupting a limited number of privacy spans.

PrivacyRestore achieves best scores in MC1/2 and LLM-J compared to other privacy-preserving
methods. In terms of the ROUGE-L evaluation metric, PrivacyRestore achieve the best result in
Pri-NLICE while ranking second in the other two datasets. This discrepancy likely stems from
ROUGE-L’s dependence on n-gram overlap between the reference text and the generated output,
which does not fully reflect the quality of generated outputs. As demonstrated by the examples in
Figure 6 and Appendix N, PrivacyRestore often generates outputs with different sentence structures
while still providing accurate answers. Consequently, our method achieves slightly lower ROUGE-L
scores but significantly higher LLM-J scores compared to dχ-privacy on privacy spans. Furthermore,
the ROUGE-L metric displays larger variance than the LLM-J metric, potentially due to its sensitivity
to expression rather than the underlying meaning of the generated output.

As for inference efficiency, dχ-privacy achieves the highest throughput. In contrast, dχ-privacy on
privacy spans requires prior identification of privacy spans, while paraphrase necessitates rephrasing
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the user input on the client side, leading to delays. PrivacyRestore also requires additional time for
the prior identification and removal of privacy spans, along with constructing the meta vector on the
client side. However, its throughput can reach nearly 70% on Pri-DDXPlus and 80% on Pri-NLICE
and Pri-SLJA, relative to the best results.

6.3 EMPIRICAL PRIVACY PROTECTION RESULTS

We not only provide a theoretical privacy proof of our method in Section 5, but also implement two
attack methods to empirically evaluate the privacy protection capability of our approach. PrivacyRe-
store sends only the meta vector and the incomplete input with privacy spans removed. It is less
likely for adversaries to infer privacy spans from incomplete input. Adversaries can only attack by
intercepting the meta vector and inferring the corresponding privacy spans from it. Therefore, we
implement the embedding inverse attack (Li et al., 2023b; Morris et al., 2023) and attribute inference
attack (Li et al., 2022), both commonly used methods for attacking embeddings. For dχ-privacy,
dχ-privacy and paraphrase methods, we obtain the hidden state of the last token in the last layer
in Llama2-chat-7b as the embeddings. The embedding inverse attack utilizes ROUGE-L as the
evaluation metric, while the attribute inference attack employs F1 to assess attack performance.
Detailed description about both attack methods and evaluation metrics can be found in Appendix M.
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Figure 2: Results of all methods under embedding
inverse attack and attribute inference attack un-
der different privacy hyperparameters ϵ on three
datasets.

Different Privacy Hyperparameter ϵ. We
evaluate the attack performance of the embed-
ding inverse attack and attribute inference attack
for PrivacyRestore and other baselines. Addi-
tionally, we present the attack results without
any privacy protection, which serves as the up-
per bound of attack performance. The values of
ϵ on x-axis in Figure 2 represent the values used
in PrivacyRestore. Equivalent values of ϵ and τ
for other baselines are provided in the Appendix
H to ensure the same privacy budget. As shown
in Figure 2, although the privacy budget is the
same, PrivacyRestore demonstrates better pri-
vacy protection performance, evidenced by its
lower ROUGE-L and F1 scores. All privacy-preserving methods effectively protect privacy compared
to the upper bound of no protection.
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Figure 3: (a) and (b) present the results of dχ-privacy method under the prompt injection attack
and attribute inference attack under varying dχ-privacy percentages across three privacy-preserving
datasets. (c) and (d) show the results of PrivacyRestore for the embedding inverse attack and attribute
inference attack under different privacy span ratios α on the same three datasets.

Different dχ-privacy Percentage for dχ-privacy. We randomly select a proportion of tokens in
user input to protect, denoted as the dχ-privacy percentage. A larger dχ-privacy percentage indicates
a larger number of tokens being protected and a longer protected text. As illustrated in Figure 3(a) and
3(b), both prompt injection attack and attribute inference attack exhibit increased attack performance
with larger dχ-privacy percentages, as reflected by the increase of ROUGE-L and F1 scores. These
experimental results demonstrate the linear growth problem of the privacy budget in dχ-privacy, as
proved in Section 5.1. Implementation details of attacks are presented in Appendix L.1.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Different Privacy Span Ratio α for PrivacyRestore. We randomly select a proportion of privacy
spans to protect, denoted as α, where a larger α indicates a larger number of privacy spans being
protected and longer protected text. As shown in Figure 3(c) and 3(d), the ROUGE-L scores of
embedding inverse attack are stable across different α values on three datasets. Similarly, the F1
scores of attribute inference attack also keep stable. The length of the protected text does not impact
the privacy protection capability of PrivacyRestore. The stable performance in both attack settings
provides empirical evidence that our method inherently addresses the linear growth problem of
privacy budget in these DP variants, as proved in Section 5.2. The trend exhibits slight fluctuations on
both the Pri-NLICE and Pri-DDXPlus datasets. A detailed analysis of these fluctuations is provided
in Appendix L.2.

6.4 ABLATION STUDIES

Datasets Methods MC1 ↑ MC2 ↑ ROUGE-L ↑ LLM-J ↑ TP ↑

Pri-DDXPlus
Equal Weighted Aggregation 53.84 51.12 26.32 4.29 26.35

Attention-aware Weighted Aggregation 62.97 60.19 27.24 4.47 26.09

Pri-NLICE
Equal Weighted Aggregation 46.92 45.89 22.78 3.12 32.75

Attention-aware Weighted Aggregation 62.23 57.94 24.42 3.67 32.33

Pri-SLJA
Equal Weighted Aggregation 30.88 30.70 30.96 4.10 31.00

Attention-aware Weighted Aggregation 35.47 35.41 37.56 5.25 30.73

Table 2: Comparison of the performance and the inference efficiency between Equal Weighted
Aggregation and Attention-aware Weighted Aggregation. The best results are highlighted in bold.

In order to verify the effectiveness of Attention-aware Weighted Aggregation (AWA) component,
we compare the performance and the inference efficiency between equal weighted aggregation and
attention-aware weighted aggregation. Different from attention-aware weighted aggregation, equal
weighted aggregation computes the meta vector by simply summing up all restoration vectors.

As shown in Table 2, the MC1, MC2, ROUGE-L, and LLM-J scores of equal weighted aggregation
are all lower than those of attention-aware weighted aggregation, indicating that simply summing
all restoration vectors equally degrades performance. This degradation is primarily due to the equal
weights diluting the influence of critical spans while amplifying the effect of irrelevant ones. In terms
of inference efficiency, the throughput difference between Attention-Aware Weighted Aggregation
and Equal Weighted Aggregation is negligible. This suggests that the weight computation, as defined
in Eq 4, is efficient and does not significantly impact overall throughput.

6.5 ANALYSIS OF HYPERPARAMETER AND LLM BACKBONE

We analyze the performance of PrivacyRestore using different numbers of edited heads K. In addition,
we analyze the performance of PrivacyRestore using a different LLM backbone (i.e., Llama-13b-chat).
Due to space limitation, we put the analysis in the Appendix I and Appendix K.

7 CONCLUSION

We propose PrivacyRestore which protects the privacy within user inputs during inference in online
LLM inference services. PrivacyRestore achieves privacy protection by directly removing privacy
spans in the user input and then restoring these privacy spans via activation steering. PrivacyRestore
provides a practical and efficient solution for protecting privacy while maintaining satisfactory
performance and inference efficiency. We demonstrate that PrivacyRestore inherently addresses
the linear growth problem of the privacy budget found in differential privacy variants. We curate
three privacy-preserving datasets covering medical and legal fields, and PrivacyRestore achieves
strong performance and inference efficiency across all datasets. Additionally, we implemented two
types of attacks, and the experimental results demonstrate PrivacyRestore’s robust privacy protection
capabilities.
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A NOTATIONS

Here we present all notations used in our paper in Table 3.

B DATASETS

B.1 CONSTRUCTION PROCESS

We used GPT-3.5 (Ouyang et al., 2022) to classify symptoms in DDXPlus and NLICE, as well as
case details in SLJA, into five levels ranging from non-sensitive to highly sensitive. The assessment
prompt template is shown in Appendix O.1. A higher level indicates that the symptom or case detail
is more sensitive. We define all symptoms and case details with a sensitivity level greater than 3 as
privacy spans.

We assign each sample a correct answer along with three randomly selected incorrect options. For
DDXPlus and NLICE, we randomly select three diagnosis results to combine with the correct
diagnosis as the choices. In the SLJA dataset, we randomly select three legal judgments to pair with
the correct one as the options.

The initial dataset is extensive, and we observed that for most samples, removing all privacy spans
often yields outputs similar to those obtained when privacy spans are provided. Privacy preserving
for these samples is meaningless because users can directly hide those privacy spans and obtain
approximate result outputs. In real-world scenarios, sensitive privacy spans often play a crucial role in
medical diagnoses and legal judgments, making privacy preservation highly valuable. Our dataset is
designed to benchmark various privacy-preserving methods and must include samples where privacy
spans are crucial for generating outputs. We utilize the KL divergences to measure the importance
scores of samples. We calculate the KL divergence between the model output distributions with
and without the privacy symptoms included. A higher KL divergence indicates that the absence
of sensitive privacy spans may lead to different or incorrect outputs. We selected only samples
with high KL divergence to construct the privacy-preserving datasets. As a result, we curated three
privacy-preserving datasets: Pri-DDXPlus and Pri-NLICE for medical diagnosis, and Pri-SLJA for
legal judgment.

B.2 STATISTICAL INFORMATION

We show the statistics of the obtained Pri-DDXPlus, Pri-NLICE and Pri-SLJA datasets in Table 4. We
tally the number of user inputs, privacy span types, and answer types. We also compute the average
occurrence of privacy spans per instance. In Pri-DDXPlus and Pri-NLICE, the privacy spans are the
symptoms, and the answers are the diagnoses. In Pri-SLJA, the privacy spans are the case details, and
the answers are the legal judgments.

Pri-DDXPlus commonly contains more instances and more privacy symptoms types compared to
Pri-NLICE and Pri-SLJA. Each sample in Pri-DDXPlus contains an average of six privacy symptoms,
while samples in Pri-NLICE have an average of four privacy spans, and samples in Pri-SLJA have an
average of three privacy spans.

C PRELIMINARIES FOR METHODOLOGY

The dχ-privacy protection and activation steering technique are two crucial components of our method.
Here, we provide an illustration of these techniques for better understanding of our method.

C.1 dχ-PRIVACY PROTECTION

dχ-privacy (Feyisetan et al., 2019) is a variant of the differential privacy mechanism designed to
protect privacy by incorporating a distance measure into the privacy budget. Its detailed definition is
provided in Definition 2.1. Typically, to implement the dχ-privacy mechanism, noise is added to the
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Notations Definitions
s A single privacy span.
S All possible privacy spans.
SI All privacy spans in user input I .
h A single edited head.
Hc The common top-K heads set.
Ha The set of all heads.
Hs

k The top-K heads set of the privacy span s.
Lh The score list of the head h across all privacy spans.
K The number of selected edited heads.
Fs

h The probe of privacy span s on head h.
θsh The parameters of the probe Fs

h.
σ The sigmoid function.
uh The output hidden state on head h.
ūh The output hidden state after restoration on head h.
rhs The restoration vector for privacy span s on head h.
Θ All restoration vectors for all privacy spans on all edited heads.
λ The tradeoff hyperparameter of ORPO loss.
ws The weight of privacy span s.
n The number of tokens in the user input.
nh The number of heads in the lightweight model.
Attnh(x, y) The attention score of y attending to x on head h.
Zh The normalized weighted sum of restoration vectors on head h.
Zh, Z ′

h Any two normalized weighted sums.
Rh The meta vector on head h.
N The added noise on the normalized weighted sums for meta vector construction.
||x||2 The l2-normalization of x
Iall = {I1, ..., Im} All user inputs in the training set.
Ys = {y1, ..., ym} The labels indicating whether the corresponding input contains s.
m The size of training set.
I , I ′ Any two user inputs.
I = {i1, ..., in} The tokens of the input I .
it The t-th token of the user input I .
{e1, ..., en} The token embeddings of the input I .
O The possible output sets for I .
O = {o1, ..., on} The possible output sets for tokens of the input I , also represented as O.
Î The user input with all privacy spans removed.
Îall = {Î1, ..., Îm} All user inputs with privacy spans removed in the training set.
a The initial output given the complete input I .
â The output given the incomplete input with privacy spans removed Î .
Q , Q′ Any two queries to the database.
Q = {q1, ..., qn} The sub-queries of the query Q.
G The possible query result sets for Q.

G = {g1, ..., gn}
The possible result sets for sub-queries of the query Q, also represented-
as G.

ϵ The privacy hyperparameter.
τ The generation temperature.
δ The privacy hyperparameter.
nps The number of tokens associated with the privacy spans in the input.
α The proportion of privacy spans selected for protection.
dχ Any distance function used by dχ-privacy.
de The prior value of distance between token embeddings.
dz The prior value of distance between normalized weighted sums.

Table 3: Definitions of all notations used in our paper.
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Datasets Dataset Split User inputs Privacy Span Type Avg. Privacy Spans

Pri-DDXPlus

All 7759 149 5.95
Train 5901 149 6.03
Dev 309 60 5.37
Test 1549 78 5.77

Pri-NLICE

All 4062 64 4.49
Train 3282 64 4.55
Dev 130 58 4.25
Test 650 64 4.24

Pri-SLJA

All 3901 142 2.67
Train 3117 142 2.56
Dev 130 95 3.21
Test 654 142 3.09

Table 4: The statistics of Pri-DDXPlus and Pri-NLICE. Average privacy symptoms indicate the
average privacy spans occur in one query.

initial embedding or vector for privacy protection, as follows:
R = Z +N , (8)

P(N ) ∝ exp(−ϵ||N ||), (9)
where Z is the protected embedding/vector, N is the added noise, R is the protected results and ϵ is
the privacy parameter of the mechanism. According to Feyisetan et al. (2019), in order to sampling
the noise N from the distribution, we can compute as the following:

v ∈ {v ∈ Rn : ||v|| = 1} (10)

P(l) ∝ ln−1e−ϵl

Γ(n)ϵ−n
, (11)

N = l · v, (12)
where n is the size of the embedding/vector and ϵ is the privacy parameter.

C.2 ACTIVATION STEERING TECHNIQUE

Activation steering methods (Li et al., 2023c; Turner et al., 2023; Hernandez et al., 2023) control
the behavior of LLM by modifying their activations during the inference stage, without incurring
training costs. It serves as a crucial part of our methodology to restore privacy information during
LLM inference. Typically, the attention mechanism (Vaswani et al., 2017) in LLM is responsible for
capturing contextual information, and it can be expressed as:

q = Wq · i, (13)

u = Softmax(
q ·KT

√
dk

) · V, (14)

where i is the input hidden state, u is the output hidden state, Wq is the query weight matrix, K is the
key of the context and V is the value of the context and dk is the dimension of the key. Activation
steering methods add some steering vectors into the output hidden state and in our methos we add
the restoration meta vector into the output hidden state to restore privacy information, which can be
expressed as:

u = u +R, (15)
where R is the steering/restoration meta vector.

D FORMAL DEFINITIONS OF CDP AND LDP

D.1 CENTRALIZED DIFFERENTIAL PRIVACY (CDP)

CDP protects individual privacy only after data has been aggregated in a central repository, which
is defined as,
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Definition D.1. (CDP). A randomized mechanism M : Q → G fulfills (ϵ, δ)-differential privacy if
for all adjacent queries Q,Q′ ∈ Q and all possible query results G ⊂ G,

P (M(Q) ∈ G) ≤ exp(ϵ)P (M(Q′) ∈ G) + δ.

CDP (Dwork et al., 2016) ensures that adversaries cannot distinguish between Q and Q′ based on G
due to the similar probabilities, meaning the query results are probabilistically indistinguishable. This
prevents adversaries from inferring characteristics about the repository based on multiple queries and
their results.

D.2 LOCAL DIFFERENTIAL PRIVACY (LDP)

However, privacy risks can also emerge during the data collection process itself, as attackers may
intercept user inputs while they are being transmitted to the central repository. LDP (Duchi et al.,
2013) protect user inputs during transmission process by ensuring that attackers cannot distinguish
between any two adjacent inputs, which is defined as,

Definition D.2. (LDP). A randomized mechanism M : I → O fulfills (ϵ, δ)-differential privacy if
for all adjacent inputs I, I ′ ∈ I and all possible outputs O ⊂ O,

P (M(I) ∈ O) ≤ exp(ϵ)P (M(I ′) ∈ O) + δ.

The mechanism A processes the user input before transmitting it. LDP ensures that, even if attackers
intercept O, they cannot distinguish between the initial user input I and the adjacent one I ′.

E PROOF OF THEOREM 5.1

Proof of dχ-privacy. As shown in Definition 2.1, if the input length is 1, indicating a single token i1,
dχ can be:

P (M(i1) ∈ o1) ≤ exp(ϵdχ(i1, i
′
1))P (M(i′1) ∈ o1) ,

where o1 is the possible output set for M(i1) and the privacy budget is ϵdχ(i1, i′1). When the input
becomes the sequential tokens I = {i1, i2, ..., in} with corresponding output sets O = {o1, ..., on},
the LCP for the sequence of length n is:

P (M(I) ∈ O) = P (M(i1) ∈ o1) · P (M(i2) ∈ o2) · ... · P (M(in) ∈ on)

≤ [exp(ϵdχ(i1, i
′
1))P (M(i′1) ∈ o1)] · ... · [exp(ϵdχ(in, i′n))P (M(i′n) ∈ on)]

= exp[ϵ(dχ(i1, i
′
1) + ...+ dχ(in, i

′
n))]P (M(I ′) ∈ O)

= exp[ϵ

n∑
j=0

dχ(ij , i
′
j)]P (M(I ′) ∈ O) ,

where the privacy budget is ϵ
∑n

j=1 dχ(ij , i
′
j). Commonly, we use the Euclidean distance as the dχ

function and obviously
∑n

j=1 dχ(ij , i
′
j) ∝ n. Therefore, the privacy budget of LDP grows linearly

with the length n.

Proof of LDP. As stated in Definition D.2, if the length of input is 1, corresponding to a single token
i1, LDP can be expressed as:

P (M(i1) ∈ o1) ≤ exp(ϵ)P (M(i′1) ∈ o1) + δ,

where o1 is the possible output set of M(i1) and the privacy budget is controlled by (ϵ, δ). Consider-
ing the sequence tokens I = {i1, i2, ..., in} and corresponding output sets O = {o1, o2, ..., on}, the
CDP for the sequence of length n can be written as:

P (M(I) ∈ O) = P (M(i1) ∈ o1) · P (M(i2) ∈ o2) · ... · P (M(in) ∈ on)

≤ [exp(ϵ)P (M(i′1) ∈ o1) + δ] · ... · [exp(ϵ)P (M(i′n) ∈ on) + δ]

= exp(nϵ)P (M(I ′) ∈ O) + δ ·
n∑

i=1

∏
j!=i

P
(
M(i′j) ∈ oj

)
+ δ2 · ...,
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where δ is typically considered a very small value. When δ approaches 0, we consider only the first
two terms and then,

P (M(I) ∈ O) ≤ exp(nϵ)P (M(I ′) ∈ O) + δ ·
n∑

i=1

∏
j!=i

P
(
M(i′j) ∈ oj

)
,

which indicating the privacy budget becomes
(
nϵ, δ ·

∑n
i=1

∏
j!=i P

(
M(i′j) ∈ oj

) )
, according to

the Definition of LDP in Section D.2 . The first term nϵ obviously grows linearly with the length
n. The second term can be view as δ multiplied by

∑n
i=1

∏
j!=i P

(
M(i′j) ∈ oj

)
. The second

term summarizes n multiplicative terms, each bounded within (0, 1). The second term can be
approximately considered to grow linearly with n. Therefore, the privacy budget of CDP also grows
linearly with the length n.

Proof of CDP. The definition of CDP, as shown in Section D.1, is similar to LDP, with the only
difference being that CDP applies to the user query Q = {q1, q2, ..., qn} rather than the text input
I = {i1, i2, ..., in}. If we consider the token in as a sub-query qn, then similarly the definition of
CDP for sequential sub-queries Q = {q1, q2, ..., qn} can be:

P (M(Q) ∈ G) ≤ exp(nϵ)P (M(Q′) ∈ G) + δ ·
n∑

i=1

∏
j!=i

P
(
M(q′j) ∈ gj

)
,

where G = {g1, g2, ..., gn} are the possible output sets for sequence inputs Q. The privacy budget is(
nϵ, δ ·

∑n
i=1

∏
j!=i P

(
M(q′j) ∈ gj

) )
and also grows linearly with the length n.

F PROOF OF THEOREM 5.2

As shown in Figure 1, during the inference stage, only the meta vector and the query with privacy
spans removed are transmitted from the client to the server. The meta vector holds information
about all privacy spans and could be vulnerable to interception by adversaries who may attempt to
reverse-engineer these spans.

PrivacyRestore protects the meta vector by adding noise N which is sampling from the distribution
p(N ) ∝ exp(−ϵ∥N∥), before transmission, as shown in Eq 6. Firstly, to simply the question, we
only consider the situation of only one edited head h. Assume Zh represents the normalized weighted
sum of restoration vectors of all privacy spans on head h without adding noise, Rh denotes the vector
on head h after adding noise, as shown in Eq 5 and 6. The process of adding noise can be represented
by M. Then, the possibility that Zh becomes Rh after adding noise N is

P(M(Zh) = Rh) = P(Zh +N = Rh)

= P(N = Rh − Zh)

= exp(−ϵ||Rh − Zh||).
Then for any normalized weighted sums on head h, Zh and Z ′

h, we have

P[M(Zh) = Rh]

P[M(Z ′
h) = Rh]

=
exp(−ϵ||Rh − Zh||)
exp(−ϵ||Rh − Z ′

h||)
= exp(ϵ(||Rh − Z ′

h|| − ||Rh − Zh||))
≤ exp(ϵ||Z ′

h − Zh||).
According to the definition of dχ-privacy in Section 2.1, the mechanism M satisfies dχ-privacy. In
other words, by adding noise N , adversaries cannot infer Zh from Rh even if Rh is intercepted.
Moreover, the privacy budget of our methods is ϵ||Z ′

h − Zh||.
Then for multiple edited heads, the only difference is to concatenated all restoration vectors Rh to
form a single vector, as shown in Section 4.2. Then, the concatenated vector is also added with
noise to protect privacy and the privacy budget of our methods become ϵ||Z ′ − Z||, where Z ′ and
Z represent any pair of normalized weighted sums of restoration vectors concatenated across all
edited heads. It is independent of the input length n and depends on the hyperparameter ϵ the term
||Z ′ − Z||. Therefore PrivacyRestore fulfills dχ-privacy and provides a privacy budget ϵ||Z ′ − Z||
which is independent of the input length and inherently addresses the problem of the linear growth of
privacy budget.
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G TOP-K HEADS SELECTOR ALGORITHM

In the section, we present the detail implementation of Top-K Heads Selector, as shown in Algorithm
1. Firstly, we initialize an empty score list Lh for each head. Secondly, each privacy span s has its
corresponding top-K heads set Hs

k. For each head h in Hs
k, we append Score(h,Hs

k) into its score
list Lh. Score(h,Hs

k) is defined as the rank of head h among Hs
k in ascending order based on the

accuracy of the probe associated with the head h and privacy span s. Thirdly, we calculate the average
value of each score list Lh as the score of the corresponding head h. Finally, we sort all heads in the
LLM by the scores and pick up top-K heads as the common top-K heads set Hc.

Algorithm 1 Top-K Heads Selector
Input: S is the set of privacy spans; Ha is the set of all heads; Hs

k is the top-K heads set of the
privacy span s; Score(h,Hs

k) return the rank of head h among Hs
k in ascending order based on the

accuracy of the probe associated with the head h and privacy span s. The score of the head with
lowest accuracy is 1. The score of the head with highest accuracy is K.

1: Initialize an empty score list Lh = [ ] for each head h in Ha.
2: for s in S do
3: for h in Hs

k do
4: Append Score(h,Hs

k) into Lh.
5: end for
6: end for
7: for h in Ha do
7: scoreh = average(Lh)
8: end for
9: Sort Ha according to scoreh and select top K heads to obtain common top-K heads set Hc.

Output: Hc is the common top-K heads set.

H SETTINGS OF PRIVACY HYPERPARAMETER ϵ

As demonstrated in Appendix E, the privacy budget of dχ-privacy is ϵnde and the privacy budget
of dχ-privacy on privacy spans is ϵnspde, where n represents the length of user inputs, nsp denotes
the length of privacy spans, de denotes the average distance between word embeddings and ϵ is the
privacy hyperparameter. In addition, as pointed by Mattern et al. (2022b); Utpala et al. (2023), the
privacy budget of paraphrase method is 2n/τ , where τ is the generation temperature used during
paraphrasing, and n represents the average length of user inputs. To ensure same privacy budget for
fair comparison, we need to determine the values of different hyperparameters for different methods
on different datasets.

The privacy budget of PrivacyRestore is ϵdz , according to Appendix F, where dz denotes the
average distance between normalized weighted sums, computed as ||Z ′

h − Zh||. We set the privacy
hyperparameter ϵ to 75.00.

To achieve the same privacy budget when using other privacy-preserving methods, we first analyze the
distribution of users inputs lengths n, privacy spans lengths nsp, distances between word embeddings
de and distances between normalized weighted sums dz across three privacy-preserving datasets in
Figure 4. The average values of these distributions are used as prior estimates for the corresponding
parameters. We then compute the corresponding ϵ for dχ-privacy (on privacy spans) and τ for
paraphrase across different datasets. The privacy hyperparameter ϵ and τ for different baselines
across three privacy-preserving datasets are shown in Table 5.

I HYPERPARAMETER ANALYSIS

We evaluate the performance of our methods using different numbers of edited heads, K, across
the development sets of three privacy-preserving datasets. For simplicity, we compute MC2 to
represent classification performance, LLM-J to measure generation performance, and TP to indicate
inference efficiency. As shown in Table 6, according to the MC2 score, the optimal value of K is 175
for the Pri-DDXPlus and Pri-SLJA datasets, and 125 for the Pri-NLICE dataset. The performance
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Figure 4: The distributions of privacy span lengths nsp, total input lengths n, distances between
word embeddings de, and distances between normalized weighted sums dz on the dev set across all
three privacy-preserving datasets are analyzed. The average values from these distributions are used
as prior estimates for the corresponding parameters.

dχ-privacy dχ-privacy on privacy spans Paraphrase PrivacyRestore Total
Privacy
BudgetDatasets n de ϵ nsp de ϵ n τ dz ϵ

Pri-DDXPlus 69.63 1.12 0.87 20.28 1.12 3.00 69.63 2.04 0.91 75.00 68.25

Pri-NLICE 40.14 1.09 1.06 14.08 1.09 3.03 40.14 1.72 0.62 75.00 46.50

Pri-SLJA 129.76 1.15 0.54 16.33 1.15 4.35 129.76 3.17 1.09 75.00 81.75

Table 5: The settings of privacy hyperparameters for different baselines across all privacy-preserving
datasets.
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degradation as K increases can be attributed to the cumulative effect of multiple edited heads. As
more heads are modified, the activations progressively deviate from their initial values, potentially
compromising the LLM’s general capabilities. Moreover, throughput increases with larger K because
we need to inject the meta vector for each head in Hc using Eq 7 on the server. Consequently, more
heads indicate more injections, which increases the inference time on the server.

Datasets Metrics K = 75 K = 100 K = 125 K = 150 K = 175 K = 200

Pri-DDXplus
MC2 ↑ 52.20 56.17 59.39 58.96 62.95 62.64
LLM-J ↑ 4.51 4.38 4.45 4.33 4.71 4.55
TP ↑ 24.31 21.51 19.72 20.07 22.68 21.91

Pri-NLICE
MC2 ↑ 37.15 51.01 58.97 51.89 58.11 58.45
LLM-J ↑ 3.27 3.66 3.80 3.44 3.40 3.62
TP ↑ 20.05 19.14 18.23 16.08 15.89 15.48

Pri-SLJA
MC2 ↑ 28.75 30.65 35.07 32.41 35.13 32.08
LLM-J ↑ 5.21 5.41 5.00 5.33 5.15 5.28
TP ↑ 36.28 35.25 34.62 32.97 30.51 29.87

Table 6: The performance of PrivacyRestore on the development set using various numbers of edited
heads K. MC2 reflects classification capability, while LLM-J indicates generation performance. The
TP assesses inference efficiency. We report results across three datasets to identify the optimal K for
each datasets. The best results are highlighted in bold.

J CALCULATION PROCESS OF MC1 AND MC2

We evaluate the model’s classification ability using two metrics: MC1 and MC2 (Lin et al., 2021).
We assign each sample in Pri-DDXPlus, Pri-NLICE and Pri-SLJA with four options, including one
correct answer and three incorrect ones. The details of calculation process is as follows:

Calculation of MC1. For each user input, we select the option with the highest probability as the
model’s choice. MC1 is defined as the model’s accuracy, which is calculated as the proportion of
correctly answered inputs.

Calculation of MC2. For each user input, we compute the normalized probability of the correct
answer among the four options. The average of these normalized probabilities across all inputs is
calculated as the MC2 score.

K VARYING LLM BACKBONE

We evaluate the performance of PrivacyRestore and other privacy-preserving baselines on a larger
model, Llama-13b-chat. As shown in Figure 5, PrivacyRestore outperforms the other baselines in
terms of both MC2 and LLM-J values across all three privacy-preserving datasets. Notably, the
performance of all privacy-preserving methods on the larger model, Llama-13b-chat, is worse than
on the smaller model, Llama-7b-chat. This suggests that as model size increases, the model becomes
more sensitive to the injected disturbances introduced by these privacy-preserving methods, leading
to performance degradation.

L SUPPLEMENTS OF EMPIRICAL PRIVACY PROTECTION

We present empirical evidence of the privacy protection capabilities of dχ-privacy and PrivacyRestore
by implementing various attacks on these privacy-preserving methods. Lower attack performance
indicates stronger privacy protection provided by these methods.

L.1 EMPIRICAL PRIVACY PROTECTION OF dχ-PRIVACY

As presented by Feyisetan et al. (2019; 2020), the dχ-privacy mechanism protects input by injecting
noise into the token embeddings and replacing the original tokens with their nearest neighbors. To
attack the garbled text input, we implement two types of attacks: prompt injection attack (Suo, 2024)
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Figure 5: The MC2 and LLM-J results of PrivacyRestore and other privacy-preserving baselines on
larger model, Llama-13b-chat, across three datasets.

and attribute inference attack (Li et al., 2022), both commonly used for attacking text inputs. In
prompt injection attack, additional instructions are added before and after the garbled text input,
prompting the model to output the original text. The attack’s performance is measured by calculating
the ROUGE-L score between the generated text and the original input. Attribute inference attack
performs classification on the garbled text, where the target labels are the token IDs of the original
input. The attack’s performance is evaluated using the classification F1 score. The details of these
attack methods are presented in Appendix M.

L.2 EMPIRICAL PRIVACY PROTECTION OF PRIVACYRESTORE

As stated in Section 6.3, the attack object of PrivacyRestore is the meta vector and we implement
two types of attack: the embedding inverse attack (Li et al., 2023b; Morris et al., 2023) and attribute
inference attack (Li et al., 2022), both commonly used methods for attacking embeddings. Embedding
inverse attack utilizes the generative model to generate the privacy spans from the meta vector.
Embedding inverse attack measure the attack performance by computing the ROUGE-L between
the generate output and the privacy spans. Attribute inference attack performs classification on the
meta vector and the target labels are the token IDS of the privacy spans. Attribute inference attack
compute the F1 score to evaluate the attack performance. The details of these attack methods are
presented in Appendix M.

As shown in Figure 3(c) and 3(d), the ROUGE-L score for the embedding inverse attack remains
nearly stable across different α values in the Pri-SLJA and Pri-DDXPlus datasets. What’s a little
strange is the ROUGE-L score in the Pri-NLICE dataset shows a slight increase. The possible reason
is that higher ratio indicating more privacy spans consider and resulting longer reference string when
compute the ROUGE-L score. Since ROUGE-L measures the overlap between the generated output
and the reference string, a longer reference string may slightly boost the score. The F1 score for the
attribute inference attack remains stable across all three datasets. The stable performance in both
attack scenarios provides empirical support for Theorem 5.2.

M DETAILED IMPLEMENTATION OF ATTACK METHODS

M.1 PROMPT INJECTION ATTACK

dχ-privacy injects noise into the original user inputs and transmits the garbled inputs to the server to
protect the privacy spans. We employ prompt injection attack to recover the initial question from
the garbled inputs. Following Perez & Ribeiro (2022); Suo (2024), we insert additional instructions
before and after the user inputs to prompt the model to output the original user input rather than the
normal response. The template for the additional instructions is provided in Appendix O.4.

We set the maximum generation length for the prompt injection attack to 256 tokens. To evaluate
the attack’s performance, we calculate the ROUGE-L score between the generated output and the
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original user input. A higher ROUGE-L score indicates greater overlap between the recovered text
and the original input, signifying more successful attack results.

M.2 ATTRIBUTE INFERENCE ATTACK

Attribute inference attack attempts to steal user inputs by performing classification on the garbled
inputs, where the target labels correspond to the token IDs of the original inputs. Since each input
contains multiple tokens, this classification task is naturally a multi-label classification problem.
Following Li et al. (2022), we utilize a multi-layer perceptron (MLP) model as the classifier. The
input dimension is 4096 and the output dimension is the size of the whole vocabulary size. To
evaluate the attack’s performance, we calculate the F1 score of the classification, where a higher F1
score indicates a more successful attack. The attack targets can include garbled text from dχ-privacy,
paraphrased text, or the meta vector from PrivacyRestore. The implementation details for text and
vectors may vary slightly.

Attribute inference attack on meta vector. To attack the meta vector from PrivacyRestore, we can
directly use a fully-connected layer to transform the meta vector’s dimension from 128×K to the
classifier’s input dimension 4096. We then perform classification on the transformed meta vector.

Attribute inference attack on text. For garbled text from dχ-privacy or paraphrased text, we first
transform the text into a vector representation. We utilize Llama2-chat-7b to process the text input
and obtain the last token’s hidden state as the vector representation. Classification is then performed
on this hidden state.

M.3 EMBEDDING INVERSE ATTACK

Different from attribute inference attack, embedding inverse attack steal the user inputs through
the generative model to generate the original user inputs. We utilize the GPT-2 model (Radford
et al., 2019) as the generative model and set the maximum generation length to 256. We finetune the
GPT-2 model on the training set for 20 epoch using the learning rate of 1e-5. To evaluate the attack’s
performance, we compute the ROUGE-L score between the generated output of the GPT-2 model
and the original user input, where higher scores indicate better attack effectiveness. Similar to the
attribute inference attack, the implementation of the embedding inverse attack differs between text
and meta vectors.

Embedding inverse attack on meta vector. We use a fully-connected layer to transform the meta
vector’s dimension to the dimension of hidden state of GPT-2 model. Then we directly input the
transformed meta vector as the input embedding.

Embedding inverse attack on text. We use Llama-2-chat-7b to process the text input and extract
the last token’s hidden state as the vector representation. This vector is then transformed by a fully
connected layer to match the hidden state dimension of the GPT-2 model. Finally, it is fed into the
GPT-2 model as the input embedding for subsequent generation.

N EXAMPLE OUTPUTS OF PRIVACYRESTORE

We provide some example outputs of our method in Figure 6. As shown in these examples, applying
dχ-privacy to privacy spans results in outputs with higher ROUGE-L scores but lower LLM-J scores
compared to our method. After analyzing these outputs in detail, the high ROUGE-L scores from
dχ-privacy on privacy spans likely result from a greater overlap with the initial output. However,
the overlapping sections consist mainly of meaningless sentence structures and lack diagnostic
information. Moreover, the final diagnosis is incorrect, leading to lower LLM-J scores. In contrast,
PrivacyRestore generates outputs with a different structure but provides the same, correct diagnosis.
As a result, our method achieves slightly lower ROUGE-L scores but significantly higher LLM-J
scores compared to dχ-privacy on privacy spans.
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A 14-year-old woman has a history of antipsychotic medication usage, nausea, stimulant drug use. 
The 14-year-old woman presents the symptoms of involuntary eye movement, jaw pain, muscle 
spasms, muscle spasms in neck, ptosis, shortness of breath. What is the likely diagnosis?

Thank you for the question. The symptoms of muscle spasms can be caused by a variety 
of conditions. Based on the symptoms provided, the likely diagnosis for the 14-year-old 
woman with a history of nausea and muscle, including:

1. Dystonia: A movement disorder characterized by …

Initial Output

+ 𝑑𝜒-privacy on 

privacy spans

As a medical doctor, I must first acknowledge that I cannot provide a definitive diagnosis 
without conducting a thorough medical examination and reviewing the patient's 
complete medical history. However, based on the symptoms you have provided, here 
are some possible diagnoses that could be considered:

1. Hypothyroidism: The patient's symptoms of fatigue, weight gain, …

+ PrivacyRestore

LLM-J: 2
ROUGE-L: 43.37

LLM-J: 8
ROUGE-L: 21.71

As a medical doctor, I must first acknowledge that I cannot provide a definitive diagnosis 
without conducting a thorough physical examination and reviewing the patient's 
medical history. However, based on the symptoms you have provided, here are some 
possible diagnoses that could be considered:

1. Dystonia: Dystonia is a movement disorder characterized …

A 52-year-old woman has a history of active cancer, deep vein thrombosis, hormone intake, 
immobility for >3 days, surgery within last month. The 52-year-old woman presents the symptoms 
of coughing up blood, loss of consciousness, pain, shortness of breath, swelling. What is the likely 
diagnosis?

Based on the information provided, I will provide the most likely diagnosis and possible 
causes.

Likely diagnosis: Pulmonary embolism

The patient's symptoms of shortness of breath, chest pain, and swelling are consistent 
with a pulmonary embolism …

Initial Output

+ 𝑑𝜒-privacy on 

privacy spans

Thank you for the question. Based on the symptom of swelling in a 52-year-old woman, 
there are several possible diagnoses that I would consider. However, I will provide the 
most likely diagnosis based on current medical knowledge and standard practices.

The most likely diagnosis for a 52-year-old woman presenting with swelling is edema. …

+ PrivacyRestore

LLM-J: 2
ROUGE-L: 24.33

LLM-J: 8
ROUGE-L: 21.33

As a medical doctor, based on the symptoms presented by the 52-year-old woman, the 
likely diagnosis is pulmonary embolism (PE).

PE is a life-threatening condition that occurs when a blood clot (thrombus) forms in the 
lungs, …

Figure 6: Example Outputs of PrivacyRestore and dχ on privacy spans in Pri-DDXPlus dataset. Text
highlighted with a yellow background represents the privacy spans in user inputs. Text highlighted
with a green background indicates the correct diagnosis. Text highlighted with a red background
denotes the incorrect diagnosis. Underscored text marks sections that overlap with the initial output.
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O PROMPT TEMPLATE DETAILS

O.1 CLASSIFICATION OF PRIVACY SPANS.

O.1.1 MEDICAL DATASETS (PRI-DDXPLUS/PRI-NLICE).

The prompt template is for GPT and used to classify symptoms in Pri-DDXPlus/Pri-NLICE dataset
into sensitive and non-sensitive categories. GPT grades the symptoms on a scale of one to five based
on sensitivity, with levels greater than three considered private spans in the Pri-DDXPlus/Pri-NLICE
dataset.

You are a privacy expert with extensive medical knowledge. Given a potential symptom or antecedent, please categorize 

symptom or antecedent into five grades based on the level of privacy they entail.

Utilize the classification guidelines provided below to categorize the symptom or antecedent:

Degrade 1: public information, symptoms that are common, widely known, and do not reveal any personal or sensitive 

information. Examples include sneezing, headache, or minor injuries.

Degrade 2: non-sensitive personal information, symptoms that may be personal but not necessarily sensitive or revealing. 

These may include common illnesses like cold or flu, allergies, or minor digestive issues.

Degrade 3: potentially sensitive information, symptoms that could be indicative of underlying health conditions but are not 

immediately sensitive or stigmatizing. Examples include chronic conditions like diabetes, hypertension, or asthma.

Degrade 4: sensitive personal information, symptoms that may be stigmatizing or have social implications if disclosed 

publicly. This could include mental health issues like depression or anxiety, reproductive health concerns, or substance abuse.

Degrade 5: highly sensitive information, symptoms that are highly personal, stigmatizing, or potentially life-altering if 

disclosed publicly. This category includes sexually transmitted infections, HIV/AIDS, certain types of cancer, or rare and 

serious medical condition.

Output your evaluation in the following format:

#thereason: your analysis here [note: this should be step-by-step analysis following the steps: (a) Give an overview of the given 

symptom or antecedent. (b) Evaluate the degree of the given symptom or antecedent according to classification guidelines.]

#thescore: your degrade here. [note: provide your degrade in based on your analysis and the classification criteria. Please note 

that only the degrade is required to be written in here]

Symptom: [INSERT YOUR SYMPTOMS HERE].

O.1.2 LEGAL DATASET (PRI-SLJA).

The prompt template is for GPT and used to classify the case details in Pri-SLJA dataset into sensitive
and non-sensitive categories. GPT grades the symptoms on a scale of one to five based on sensitivity,
with levels greater than three considered private spans in the Pri-SLJA dataset.

You are a privacy expert with extensive legal knowledge, please categorize the given case element into five levels based on the 

degree of privacy involved.

Utilize the classification guidelines provided below to categorize the case element:

Degrade 1: public legal information: Information that is publicly available and does not reveal personal or sensitive legal 

details. Examples include general legal concepts, publicly available case laws, or minor regulatory matters.

Degrade 2: non-sensitive personal legal information: Legal information that may involve a specific individual but is not 

particularly sensitive or revealing. Examples include minor legal infractions like parking tickets, common civil disputes, or

routine contracts such as lease agreements.

Degrade 3: potentially sensitive legal information: Legal information that could imply more personal aspects but is not 

immediately sensitive or damaging. Examples include employment disputes, divorce filings, or personal injury claims without 

reputational impact.

Degrade 4: sensitive personal legal information: Information that could be stigmatizing or have significant social, financial, or 

reputational consequences. Examples include legal matters involving bankruptcy, criminal records (misdemeanors), or family 

law issues like child custody disputes.

Degrade 5: highly sensitive legal information: Legal details that are highly personal, stigmatizing, or potentially life-altering 

if disclosed. This includes serious criminal cases (e.g., felonies, sexual offenses), immigration status disputes, or legal 

proceedings involving whistleblowing or confidential corporate matters.

Output your evaluation in the following format:

#thereason: your analysis here [note: this should be step-by-step analysis following the steps: (a) Give an overview of the given 

case element. (b) Evaluate the degree of the given case element according to classification guidelines.]

#thescore: your degrade here. [note: provide your degrade in based on your analysis and the classification criteria. Please note 

that only the degrade is required to be written in here]

Case element: [INSERT CASE ELEMENTS HERE].
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O.2 GENERATION PROMPTS.

O.2.1 MEDICAL DATASETS (PRI-DDXPLUS/PRI-NLICE).

The prompt template is for Llama model and used during model generation for the Pri-DDXPlus/Pri-
NLICE datasets.

[INST] <<SYS>>

You are a medical doctor answering real-world medical entrance exam questions. Based on your understanding of basic and 

clinical science, medical knowledge, and mechanisms underlying health, disease, patient care, and modes of therapy, answer 

the following diagnosis question. Base your answer on the current and standard practices referenced in medical guidelines.

<</SYS>>

[INSERT USER INPUT HERE] [/INST]

O.2.2 LEGAL DATASET (PRI-SLJA).

The prompt template is for Llama model and used during model generation for the Pri-SLJA datasets.

[INST] <<SYS>>

You are the world’s best legal judgment machine, tasked with rendering a verdict in a legal case. Below are four paragraphs 

describing the case, though some information may be missing.

Subject refers to the individual with criminal responsibility who committed the crime;

Subjective Element consists of intention and negligence, representing the psychological state of the subject concerning the 

criminal behavior and its outcomes;

Object refers to the social relationships protected by criminal law that have been infringed upon by the criminal acts;

Objective Elements include the specific details of the crime, such as time, location, actions, and consequences.

Using these four components, generate a judgment to sentence the subject of the crime.

<</SYS>>

[INSERT USER INPUT HERE] [/INST]

O.3 EVALUATION OF GENERATED OUTPUT.

O.3.1 MEDICAL DATASETS (PRI-DDXPLUS/PRI-NLICE).

The prompt template is for GPT and evaluates the quality of generated output based on relevance,
clarity, and accuracy, for Pri-DDXPlus/Pri-NLICE dataset. Scores range from 1 to 10, with higher
values indicating better output.

You are a neutral legal evaluator. You will be provided with a legal question containing the description of a case and the AI assistant's 

judgment of the case. 

Your task is to assess whether the AI assistant's judgment is useful and accurately points out the crime. Consider factors such as the relevance, 

clarity, and accuracy of the judgment. 

Rate the response on a scale from 1 to 10, where 1 indicates poor quality and 10 indicates excellent quality. 

Start your answer with the rating score by strictly following the format: `[[rating]]`. After assigning a rating, provide a brief explanation for 

your score, justifying your evaluation.

[User Question]

[INSERT QUESTION HERE].

[The Start of Assistant Response]

[INSERT GENERATED OUTPUT HERE].

[The End of Assistant Response]

Rating: 

O.3.2 LEGAL DATASET (PRI-SLJA).

The prompt template is for GPT and evaluates the quality of generated output based on relevance,
clarity, and accuracy, for Pri-SLJA dataset. Scores range from 1 to 10, with higher values indicating
better output.
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You are a neutral medical evaluator. You will be provided with a medical question from a patient and the AI assistant's response to the question.

Your task is to assess whether the AI assistant's response is useful and accurately addresses the diagnosis. Consider factors such as the 

relevance, clarity, and accuracy of the information provided.

Rate the response on a scale from 1 to 10, where 1 indicates poor quality and 10 indicates excellent quality.

Start your answer with the rating score by strictly following the format: `[[rating]]`. After assigning a rating, provide a brief explanation for 

your score, justifying your evaluation.“

[User Question]

[INSERT QUESTION HERE].

[The Start of Assistant Response]

[INSERT GENERATED OUTPUT HERE].

[The End of Assistant Response]

Rating: 

O.4 PROMPT INJECTION ATTACK.

The prompt template is for Llama model and used to carry out a prompt injection attack, translating
the garbled text back into the original text.

INST]<<SYS>>

You are a text generating machine. Given input with garbled characters, output normal text without garbled characters. ONLY 

generate translated normal text.

<</SYS>>

[INSERT USER INPUT HERE]

Translated normal text:[/INST]
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