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Abstract

Recent years have witnessed the unprece-001
dented performance of Large Language Mod-002
els (LLMs) in various downstream tasks, where003
knowledge graph completion stands as a rep-004
resentative example. Nevertheless, despite the005
emerging explorations of utilizing LLMs for006
knowledge graph completion, most LLMs pose007
challenges in quantitative triplet score genera-008
tion. This disadvantage fundamentally conflicts009
with the inherently ranking-based nature of the010
knowledge graph completion task and its asso-011
ciated evaluation protocols. In this paper, we012
propose a novel framework KG-CF for knowl-013
edge graph completion. In particular, KG-CF014
not only harnesses the exceptional reasoning015
capabilities of LLMs through context filtering016
but also aligns with ranking-based knowledge017
graph completion tasks and the associated eval-018
uation protocols. Empirical evaluations on real-019
world datasets validate the superiority of KG-020
CF in knowledge graph completion tasks.021

1 Introduction022

Knowledge Graphs (KGs) have become ubiquitous023

in a plethora of real-world applications (Zou, 2020),024

such as recommendation systems (Bobadilla et al.,025

2013) and question answering (Yani and Krisnadhi,026

2021). Specifically, KGs are a type of relational027

data where abundant factual information can be rep-028

resented with triplets (Ji et al., 2022). Each triplet029

is formulated as (h, r, t), indicating the exis-030

tence of relation r between those two entities h and031

t, e.g. (Earth, orbits, Sun). In practice,032

KGs are inherently sparse and incomplete, and thus,033

Knowledge Graph Completion (KGC) has become034

a widely studied task. The goal of KGC is to pre-035

dict missing triplets in a KG, which helps enrich the036

KG with more comprehensive knowledge (Chen037

et al., 2020a). Traditionally, embedding-based038

methods, such as TransE (Bordes et al., 2013a),039

DistMult (Yang et al., 2015), ConvE (Dettmers040

et al., 2018), and RotatE (Sun et al., 2019), have041

been empirically proven to achieve competitive per- 042

formance in KGC. Nevertheless, these approaches 043

fail to leverage the information that goes beyond 044

the KGs, such as certain common sense that is not 045

in the KG, to perform prediction (Yao et al., 2023). 046

To address this issue, researchers have explored 047

methods for achieving better performance in KGC 048

tasks via taking advantage of the knowledge en- 049

coded in pretrained language models (PLMs) (Li 050

et al., 2022; Youn and Tagkopoulos, 2023; Yao 051

et al., 2019). Among existing PLMs, Large Lan- 052

guage Models (LLMs) naturally bear significant 053

potential owing to their exceptional reasoning and 054

generalization capabilities (Hao et al., 2023). 055

Despite the rising interest in using LLMs for 056

KGC, it remains a daunting task. Specifically, three 057

inherent limitations of LLM-based models pose key 058

challenges: 1) From the task’s perspective, exist- 059

ing LLM-based frameworks (Wang et al., 2020; 060

Chepurova et al., 2023) predominantly extract and 061

input graph contextual information (e.g., topology, 062

textual description) in the form of text. However, 063

in KGC tasks, certain contextual information is ir- 064

relevant to the given triplet. Irrelevant context may 065

introduce substantial redundancy, thereby diverting 066

the LLM’s focus from the KGC task. 2) From the 067

model’s perspective, the sequential output LLMs 068

are inherently inadaptable to numerical values (Jin 069

et al., 2024). Moreover, typical LLMs generate 070

numerical values digit by digit rather than yielding 071

these values as a whole, where errors usually accu- 072

mulate in such a sequential process (Yang, 2024). 073

Generating a ranking list directly using LLMs also 074

faces a similar challenge. 3) From the data’s per- 075

spective, the labels corresponding to all the triplets 076

for training are inherently discrete (e.g., existence 077

or not), which makes it challenging to formulate 078

proper supervision (between discrete labels and 079

digits with a varying length) to fine-tune the LLM 080

to yield quantitative measures for ranking. 081

To handle the above challenges, we propose a 082
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principled framework named KG-CF (Knowledge083

Graph Completion with Context Filtering). In this084

framework, LLMs are solely employed for filtering085

irrelevant contextual information. Specifically, for086

an arbitrary triplet (h, r, t) in a knowledge087

graph G, we employ a randomly sampled set of088

paths in G from the head entity h to the tail entity t089

as the context set C to be filtered. Then, we utilize090

an LLM to perform filtering on C according to each091

path’s relevance with (h, r, t). In fact, to re-092

duce the computational cost, we distill a smaller093

sequence classifier model sc from the LLM for094

most of the contextual information filtering in this095

task. This approach allows us to eliminate irrele-096

vant contexts and successfully address challenge 1).097

Subsequently, a smaller PLM model BERT (Devlin098

et al., 2019) is trained on the remaining context099

set C∗ to perform path scoring. During the test-100

ing phase, we also sample the corresponding C for101

each triplet and select the highest score from C as102

the triplet’s score for ranking. By refraining from103

directly utilizing the LLM for the ranking tasks,104

challenges 2) and 3) are effectively circumvented.105

Our contributions are summarized in three-fold:106

• Problem Formulation. We summarize the107

challenges related to model design and train-108

ing data for LLMs in KGC tasks. Moreover,109

we delineate a specific application (context110

filtering) of LLMs in this scenario.111

• Framework Design. We propose a princi-112

pled framework, KG-CF, which successfully113

leverages the knowledge encoded in the LLMs114

while still being able to align with the ranking-115

based tasks and evaluations in KGC.116

• Empirical Evaluation. We conduct empirical117

evaluations on real-world KG datasets. The118

experiment results validate the superiority of119

the proposed model KG-CF compared with120

other alternatives in KGC tasks.121

2 Preliminary122

Notations. We use script uppercase letters to repre-123

sent sets, the dataset (D) as well as the loss function124

(L). As for neural network models, we use Greek125

letters (e.g., θ) to represent its parameters. More-126

over, in the subscripts and superscripts used in the127

following text, ‘∗’ denotes fixed (e.g., model param-128

eters that are no longer subject to change), while ‘+’129

and ‘−’ respectively signify positive and negative.130

Bolded variable names denote the embeddings of 131

the original variables. 132

2.1 Problem Formulation 133

We denote the knowledge graph by G = {E ,R, T }, 134

whileR corresponds to the set of relation types, E 135

corresponds to the set of entities, and T consists 136

of all the triplets in G. Specifically, a triplet t in 137

T is denoted as t = (eh, r, et), where eh is the 138

head entity and et is the tail entity. In this work, 139

we focus on entity prediction, which encompasses 140

two subtasks: head prediction (Glorot et al., 2013) 141

and tail prediction (Bordes et al., 2013b). Below, 142

we provide the definition for tail prediction, noting 143

that head prediction is defined analogously. 144

Definition 1 (Tail Entity Prediction). Given a 145

query q = (eh, rq, ?) where rq is the query relation, 146

we define the completion of q by et as: 147

c(q, et) = q|?=et = (eh, rq, et), (1) 148

where c denotes the completion function. Firstly, 149

we need to identify the candidate set C for the tail: 150

C = {ei}i=1→n ⊆ E \ {eh},
s.t. ∀et ∈ C, c(q, et) /∈ T ,

(2) 151

where n is a predefined integer. Our objective is to 152

identify a ranking list A of all candidates: 153

∀i ∈ [1, n), score(Ai) ≥ score(Ai+1) (3) 154

where score is the scoring function. 155

Example. Suppose that we have a knowledge
graph that contains information about countries
and their capitals. An exemplar query in this graph
is presented as follows:

q = (Japan,Capital, ?).

We have sampled a series of tail candidates:
C = {Paris, Tokyo, Peking,Berlin,Kyoto,
London}. If there already exists a comprehensive
KGC model, the ranking list could possibly be:

A = {Tokyo,Kyoto, Peking, Paris, London}.

2.2 Pretrained KG Embedding 156

KG embeddings represent entities and relationships 157

in a knowledge graph in a numerical format, typi- 158

cally as vectors in a high-dimensional space (Chen 159

et al., 2020b). In scenarios involving non-textual 160

inputs, employing pretrained KG embeddings can 161

enhance the model’s expressive capability. In our 162

framework, we default to using KG embeddings 163

generated by TransE (Bordes et al., 2013a). 164
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Figure 1: The pipeline of KG-CF. The model operates in three primary steps: 1) Sample a small set of paths and
use LLMs to generate rationality labels for them. 2) Train our sequence classifier on the sampled path set. Then,
filter all paths using the sequence classifier, retaining only “rational” positive and “irrational” negative sample paths.
3) Feed all data, including queries, tail nodes, and inference paths, into a PLM for binary classification training. The
PLM scorer will output a number between 0 and 1 as the score for the current triplet candidate.

2.3 Encoder-only Language Models165

Unlike other models that may have both encoder166

and decoder components, an encoder-only model167

focuses solely on the embedding generation of the168

sentences (Naseem et al., 2021). Models of this169

kind, represented by Bert (Devlin et al., 2019), ex-170

cel at classification tasks. In practice, encoder-only171

models accept a single text input and prepend a172

[CLS] token at the beginning. For processing clas-173

sification tasks, we take advantage of the embed-174

ding at the [CLS] token as an aggregation of the175

textual information for the entire sentence content.176

3 Methodology177

3.1 Model Overview178

In this section, we introduce the details of our pro-179

posed principled framework KG-CF, which utilizes180

the inference capabilities of LLMs when training181

sequence classifiers for triplets scoring on the task182

of KGC. Figure 1 shows our model pipeline. Our183

model can fundamentally be bifurcated into three184

distinct stages: path labeling, sequence classifi-185

cation for filtering, and PLM scoring. Given the186

exponential increase in path quantity with the rise187

in truncation length and our assertion that paths in188

knowledge graphs can be abstracted into more gen-189

eral meta-paths, we train a new sequence classifier190

for filtering paths to reduce the computational costs 191

of LLM. 192

It is worth noting that we constrain the use 193

of LLMs to filter a small portion of the context, 194

thereby avoiding the substantial overhead associ- 195

ated with fine-tuning and inference. The paths fil- 196

tered are then used as the training set for the PLM, 197

with our ranking evaluation following thereafter be- 198

ing indistinguishable from conventional methods. 199

3.2 Path Labeling using LLM 200

Path Formulation. For a query q = (eh, rq, ?)
and a potential completion c(q, et), we can execute
a breadth-first search algorithm on the graph to
acquire a straightforward inferential path from eh
to et. Each trajectory T is formulated as a list of
triplets {ti}i=0→n that starts from eh and ends at a
potential tail entity et:

T = ((eh, r0, e1), (e1, r1, e2), ...., (en, rn, et)).

We define an inference path P as the concata- 201

tion of a trajectory Tq along with the completion 202

c(q, et) = (eh, rq, et): 203

P = ((eh, rq, et), T ). (4) 204

LLM Inference. So far, we have formalized the 205

objects that need to be filtered. Subsequently, we 206

transform the paths into character sequences to 207
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adapt the inference paths to the input of LLMs.208

Therefore, we obtain labels for all the paths associ-209

ated with c(q, et):210

Yc(q,et) = LLM(instruction⊕f(Pc(q,et))), (5)211

where ⊕ denotes the concatenation operation,212

Pc(q,et) contains all the possible paths related to213

c(q, et) and f transform the paths into texts. The214

result Yc(q,et) contains labels for paths in Pc(q,et)215

while each label is in {0, 1}. Based on this opera-216

tion, we construct a dataset Dsc for the sequence217

classifier training, and we introduce the details in218

the next section. The detailed process is presented219

in Algorithm 1.220

Note that although inverse relationships are221

permitted in the paths, in prompt generation,222

all triplets in the path are represented in the223

standard forward order. For example, triplet224

(Lakers, inv(works for), Lebron James) will225

be interpreted as “Lebron James plays for Lakers”,226

where inv() represents the function of inversing.227

Algorithm 1 Dataset for Sequence Classifer

Require: KG G = (E ,R, T ), Maximum path
length m and path numbers per relation n.

Ensure: Dataset Dsc for Sequence Classifer.
1: Dsc ← ∅
2: for all r ∈ R do
3: rcount ← 0
4: end for
5: for all triples t ∈ T do
6: eh, r, et ← t
7: if rcount > n then
8: continue
9: end if

10: P ← All simple paths from eh to et ∈
T \ {t} with up to m

11: L ← Label each path using LLM
12: Dsc ← Dsc ∪ {(P[i],L[i]) | 0 ≤ i ≤ |P|}
13: rcount ← rcount + 1
14: end for
15: return Dsc

3.3 Sequence Classifier228

In this section, we aim to obtain a sequence229

classifier Msc : P → {0, 1} that implements func-230

tionality similar to that described in Equation (5).231

We employ an LSTM (Hochreiter and Schmid-232

huber, 1997) model to implement the sequence233

classifier due to its expressiveness in modeling234

Algorithm 2 Dataset for PLM

Require: KG G = (E ,R, T ), Number of negative
instances neg_num, Threshold th, Maximum
path length m, Sequence Classifier sc.

Ensure: Dataset DPLM for PLM training.
1: DPLM ← ∅
2: for all triples t ∈ T do
3: eh, r, et ← t
4: Ppos ← All simple paths from eh to et ∈
T \ {t} with up to m

5: Ppos ← {p|p ∈ Ppos ∧ sc(p) > th}
6: Dpos ← {(p, true) | p ∈ Ppos}
7: DPLM ← DPLM ∪ Dpos

8: for i← 1 to neg_num do
9: Pick an e ∈ E\{eh} s.t. (eh, r, e) /∈ T

10: Pneg ← All simple paths from eh to
et ∈ T with up to max_hops

11: Pneg ← {p|p ∈ Pneg ∧ sc(p) < th}
12: Dneg ← {(p, false) | p ∈ Pneg}
13: DPLM ← DPLM ∪ Dneg

14: end for
15: end for
16: return DPLM

sequential information. Considering a path P = 235

((eh, rq, et), ((eh, r0, e1), ..., (en−1, rn−1, et))), 236

we have: 237

h0 = R(0, eh ⊕ r0 ⊕ e1 ⊕ rq),

hi = R(hi−1, ei ⊕ ri ⊕ ei+1 ⊕ rq), i ≤ n− 1,

ŷ = σ(fc(hn−1)),
(6) 238

where R denotes the LSTM model, ŷ is the predic- 239

tion by applying classifier layer fc and Sigmoid 240

function σ to the last hidden state hn−1. In our im- 241

plementation, we did not assign a separate, unique 242

embedding for each entity. Instead, we allowed 243

embeddings to be shared among entities within the 244

same category. Our intuition behind this approach 245

is to enable the sequence classifier to learn more 246

abstract and generalized context information. 247

Optimization. We use the cross-entropy loss to 248

train the sequence classifier model: 249

L =
N∑
i=1

[yi log(ŷi) + (1− yi) log(1− ŷi)] . (7) 250

Here, N is the number of samples, yi represents the 251

true label of the i-th sample (with a value of 0 or 252

1), and ŷi denotes the predicted probability of the 253

i-th sample being in class 1. In particular, we use 254
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the sequence classifier to filter and construct the255

dataset Dplm for PLM model training in Sec. 3.4.256

The detailed process is described in Algorithm 2.257

3.4 PLM Scoring258

In this section, we demonstrate the scoring and259

training process of our PLM scorer. Considering a260

path P = (c(q, et), T ), we generate the text repre-261

sentation and compute its score as follows:262

Ptext = text(c(q, et))⊗ text(T ), (8)263

score(P ) = ŷP = σ(PLM(Ptext)), (9)264

where text(·) stands for the textualize function, ⊗265

denotes concatenating and independently annotat-266

ing two segments of text, and ŷP is the score of the267

path P by applying the sigmoid function σ(·) on268

the outputs of the PLM model.269

Optimization. To train the PLM model, we utilize270

the same loss function as Eq. (7). It is important to271

note that although both the sequence classifier and272

the PLM model process sequential input to output273

binary results, these two models do not serve the274

same task. The sequence classifier solely focuses275

on assessing the rationality of the reasoning process276

(without considering the accuracy of the reasoning277

outcome). Hence, it uses the judgments of LLMs278

as labels. On the other hand, the PLM model is279

utilized to determine the presence of a target triplet280

candidate in the KG, thereby using the ground truth281

as labels, which indicate whether the triplet exists.282

Scoring and Ranking. To provide a basis for283

entity ranking, inspired by BERTRL (Zha et al.,284

2021), we represent the confidence score of each285

completion c(q, et) using the most rational path286

corresponding to et. Specifically, we first calculate287

the score for each path in Pc(q,et) and assign the288

highest value to c(q, et):289

score(et) = max{ŷP |P ∈ Pc(q,et)} (10)290

This score will be utilized for triplets ranking and291

metrics computation. A special case occurs when292

Pc(q,et) = ∅. In this scenario, we manually as-293

sign the lowest score to the completion. Detailed294

settings of ranking are provided in Sec. 4.3.295

4 Empirical Evaluation296

In this section, we introduce the details of experi-297

ments for evaluating our KG-CF model. Particu-298

larly, we conduct experiments on two knowledge299

graphs in the real world. We will answer the fol-300

lowing four questions through experiments: (1)301

How well can KG-CF perform in knowledge graph 302

completion tasks? (2) How do the results of path 303

filtering align with human intuition? (3) How do 304

different filtering choices contribute to the overall 305

performance of KG-CF? 306

4.1 Datasets 307

In this subsection, we provide details of the datasets 308

used in our experiments. In particular, three widely 309

used real-world knowledge graphs are utilized 310

for the evaluation: Nell-995 (Xiong et al., 2017), 311

FB15K-237 (Bordes et al., 2013c), and WN18RR 312

(Shang et al., 2018). NELL-995 and FB15K-237 313

are datasets focused on relation extraction, com- 314

posed of rigorously labeled instances derived from 315

web-sourced text, emphasizing entity and rela- 316

tionship identification. WN18RR is a benchmark 317

dataset for knowledge graph completion, derived 318

from WordNet with refined relations, emphasizing 319

the evaluation of triplet prediction methodologies. 320

To expedite training, we separately sample a sub- 321

set from each corresponding source dataset as our 322

evaluation dataset. 323

4.2 Experimental Settings 324

Dataset Configurations. When training KG-CF, 325

we extract positive and negative samples at a ratio 326

of 1:5. For path searches on all three datasets, we 327

set the truncation length of trajectories (i.e., the 328

maximum number of triplets that a trajectory can 329

contain) to 3. In addition to the traditional trans- 330

ductive scenario, we also conduct experiments on 331

inductive scenarios. Following (Teru et al., 2020), 332

we construct the inductive dataset where the en- 333

tity sets in the training graph Etrain and the testing 334

graph Etest do not completely overlap. We provide 335

the source code as well as the detailed dataset con- 336

figurations in https://anonymous.4open. 337

science/r/KG-CF. 338

Baselines. In the experimental part, we intend 339

to adopt methodologies from several pre-existing 340

works as our baselines. Among these, both the 341

rule-based method RuleN (Meilicke et al., 2018) 342

and the GNN-based method GRAIL (Teru et al., 343

2020) are applicable to both inductive and trans- 344

ductive scenarios. In contrast, the reinforcement 345

learning-based MINERVA (Das et al., 2018) and 346

the embedding-based TuckER (Balazevic et al., 347

2019) are unable to handle entities and relations 348

that were unseen during training. In addition to 349

these traditional models, we also included two 350

methods based on pretrained encoder-only lan- 351
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Table 1: Performances on transductive entity prediction of traditional methods (top) and PLM-based approaches
(bottom). Metrics contain Hits@1 and MRR. Results are in percentage, and the best ones are shown in Bold.

Datasets WN18RR FB15K-237 NELL-995

Hits@1 MRR Hits@1 MRR Hits@1 MRR

RuleN 64.6 67.1 60.2 67.5 63.6 73.7
GRAIL 64.4 67.6 49.4 59.7 61.5 72.7
MINERVA 63.2 65.6 53.4 57.2 55.3 59.2
TuckER 60.0 64.6 61.5 68.2 72.9 80.0

BERTRL 66.3 68.7 61.9 69.6 68.6 78.2
KG-CF (Ours) 67.5 70.3 62.3 70.9 73.1 82.0

Table 2: Performances on inductive entity prediction of traditional methods (top) and PLM-based approaches
(bottom). Metrics contain Hits@1 and MRR. Results are in percentage, and the best ones are shown in Bold.

Datasets WN18RR FB15K-237 NELL-995

Hits@1 MRR Hits@1 MRR Hits@1 MRR

RuleN 74.6 78.2 41.5 46.3 63.8 71.1
GRAIL 76.9 79.9 39.0 46.9 55.4 67.5

KG-BERT 43.6 57.4 34.1 50.0 24.4 41.9
BERTRL 75.3 79.5 54.1 60.6 71.7 81.0
KG-CF (Ours) 78.5 80.9 51.2 58.3 79.5 86.6

guage models: KG-BERT (Yao et al., 2019) and352

BERT-RL (Zha et al., 2021).353

Implementation Details. Our code is imple-354

mented through Python with Pytorch and Hugging-355

Face libraries. The experiments were conducted356

on a server equipped with six A6000 GPUs. We357

utilized GPT-3.5 as the LLM and employed an358

LSTM (Hochreiter and Schmidhuber, 1997) model359

to implement a sequence classifier. For the se-360

quence classifier, we train it over ten epochs with361

a learning rate of 1e-3. The PLM scorer is trained362

for two epochs with a learning rate of 1e-5. The363

threshold th in Algorithm 2 is set to be 0.1.364

4.3 Evaluation Method365

In both transductive and inductive scenarios, we366

separately evaluate our approach on two subtasks:367

tail prediction and head prediction. We then com-368

pute the average performance of two scenarios.369

General Protocol. Following GRAIL (Teru et al.,370

2020) and BERTRL (Zha et al., 2021), we se-371

lect another 49 tail entities {ti}i=1→49 for each372

test triplet (htest, rtest, ttest) and form a candi-373

date set Ttest = {ttest} ∪ {ti}i=1→49. Despite374

ttest, we make sure that for any other t ∈ T ,375

(htest, rtest, t) /∈ G. By the end, we will sort en-376

tities in T according to their scores and compute377

metrics by ranking ttest. 378

KG-CF. Noting that if there are no paths associated 379

with tail entity t during the evaluation of KG-CF, 380

we will set score(t) to be 0 (the lower bound). 381

Furthermore, if t happens to be the ttest, we will 382

set the rank(ttest) to be the median rank of all 383

tail candidates with a score of 0. Clearly, in this 384

scenario, rank(ttest) ≥ 25. Therefore, it will not 385

affect the metrics of Hits@1 or Hits@10 and is also 386

fair to other tail candidates. 387

4.4 Main Results (Question 1) 388

In this subsection, our KG-CF framework is evalu- 389

ated on three knowledge graphs in both transduc- 390

tive (Table 1) and inductive scenarios (Table 2). 391

We obtain the following observations through ex- 392

periments: 1) Our KG-CF framework outperforms 393

other baselines across most datasets and scenarios, 394

revealing the effectiveness and versatility of using 395

LLM and sequence classifiers for filtering graph 396

contextual information. 2) Compared to the in- 397

ductive scenario, KG-CF exhibits more consistent 398

performance in the transductive scenario. 3) Com- 399

pared to other baselines and datasets, our method 400

demonstrates more substantial improvements on 401

the NELL-995 dataset. While both NELL-995 and 402

FB15K-237 are comprehensive knowledge graphs 403
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concerning real-world scenarios, NELL-995 of-404

fers richer textual information about entities (e.g.,405

person mexico Ryan Whitney instead of406

merely Ryan Whitney). Intuitively, this feature407

enhances the LLM in handling rare nouns, leading408

to more accurate judgments and generations.409

4.5 Case Study (Question 2)410

Data Diversity. A meta-path (Jiao et al., 2022)411

is composed of a series of node types and edge412

types, culminating in a structured path pattern. we413

group the entities in the WN18RR dataset follow-414

ing (Lin et al., 2018). In the process of data filtering,415

while we eliminated a large number of anomalous416

positive samples, we simultaneously encountered417

the issue of insufficient coverage of meta-paths.418

To check this problem, we have also tallied the419

number of unique positive meta-paths traversed by420

the agent during the training process regarding the421

threshold value. This will measure the breadth of422

the KG context exploration. the results are shown423

in Table 3. We observe a dramatic decrease in the424

number of meta-paths at a threshold of 0.1, with425

minimal decline thereafter. This may be related to426

the sigmoid function’s characteristics. Overall, we427

filtered 80% paths and meta-paths, respectively.

Table 3: The numbers of meta-paths and paths regarding
different values of the threshold.

Threshold #Mata-Paths #Paths
0.0 66,024 257,565
0.1 13,059 52,119
0.2 12,488 50,034
0.3 12,124 48,177
0.4 11,839 47,283

428
Reasoning Path Explanation. In this section,429

we will intuitively assess the quality of reasoning430

paths at various stages within the dataset: imme-431

diately after sampling from the KG, following432

LLM filtering, and after sequence classifier433

selection. We select a triplet (person Roger434

Mudd, person leads organization,435

television network CBS) in the NELL-436

995 dataset as an example. In the initial sampling437

of paths, there exists a trajectory composed of438

a single triple, whose textual representation is:439

"person roger mudd person belongs to organization440

television network CBS. " This was labeled as true441

in the original dataset, but it is clearly not a valid442

reasoning path, as belonging to an organization443

does not necessarily mean leading an organization. 444

This issue was corrected by the LLM, which 445

reassigned it with a false label. Subsequently, the 446

sequence classifier also accurately filtered out this 447

path when preprocessing the PLM trainset. 448

Hits@1 MRR
Metrics

63

64
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67

68

69

70

71

M
et

ric
s V

al
ue

 (%
)

Ours
Ours-pf
Ours-nf
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Figure 2: Performance comparison between our ap-
proach, Ours-pf, Ours-nf, and Ours-te. Here, -pf, -nf,
-te represent positive path filtering, negative path filter-
ing, and trajectory entities being removed, respectively.

4.6 Ablation Study (Question 3) 449

We conducted an ablation study on the WN18RR 450

dataset where three components are removed sepa- 451

rately: positive path filtering (−pf ), negative path 452

filtering (−nf ), and trajectory entities in the paths 453

(−te, i.e., relation only). We present the experi- 454

mental results in Figure 2. 455

Positive Path Filtering. Under this setting, we 456

assume that all paths from eh to et in the positive 457

triplet (eh, rq, et) conform to standard reasoning 458

logic, thus preserved during the data filtering phase. 459

The results of this ablation study showed a slight 460

decline compared to the original model, indicat- 461

ing that our sequence classifier can enhance the 462

rationality of positive paths. 463

Negative Path Filtering. Within this setting, we 464

posit that for a negative triplet (eh, rq, et) /∈ T , all 465

paths from eh to et fail to validate the existence of 466

rq (owing to the incompleteness of KGs, we claim 467

this assumption to be false). This type of ablation 468

also led to a slight decrease in results, suggesting 469

that the sequence classifier can effectively elimi- 470

nate false negatives caused by KG incompleteness. 471

Conversely, the performance degradation is consid- 472

erably smaller compared to -pf. This observation 473

indicates that the irrelevant contextual information 474

from existing triplets in the KG is more extensive 475

and exerts a more pronounced negative effect on 476

performance than that from the missing triplets. 477
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Trajectory Entities. In this ablation, we replaced478

all entity names in the path trajectories with anony-479

mous names (e.g., “entity1”). However, we re-480

tained the necessary relation information within481

each path to evaluate our model’s filtering capabil-482

ity based solely on topological information. The483

objective is to investigate and avoid the presence of484

data leakage within both the LLM and pretrained485

language model, namely whether the knowledge486

stored internally in the language models confers an487

unfair advantage to performance. The significant488

performance drop indicates that the issue indeed489

exists. This also corroborates our assessment in490

Section 4.4 that textual description substantially491

impacts the performance of LLM filtering. Mean-492

while, since we still filter out a certain number493

of paths in this setting, the model endures perfor-494

mance degradation due to the reduced dataset size.495

5 Related Work496

5.1 Knowledge Graph Completion (KGC)497

In general, existing KGC methods can be approx-498

imately divided into two groups: 1) embedding-499

based Methods. These methods model entities and500

relations within a knowledge graph by mapping501

them into an embedding space. Approaches such502

as TransE (Bordes et al., 2013c), DistMult (Yang503

et al., 2015), ComplEx (Trouillon et al., 2016),504

ConvE (Dettmers et al., 2018), and RotatE (Sun505

et al., 2019) vary in handling relational seman-506

tics, with RotatE currently recognized for its507

adept handling of various relation types through508

geometric intuition, positioning it as a leading509

method in the field. 2) PLM-based method: KG-510

BERT (Yao et al., 2019) represents an early model511

in this category, leveraging the inherent knowledge512

within BERT. Subsequent advancements, such as513

BERTRL (Zha et al., 2021), have sought to im-514

prove upon this by incorporating reasoning paths515

between entities. Recent developments also in-516

clude prompt engineering and the use of LoRA517

adapters (Hu et al., 2021) for fine-tuning, alongside518

innovations like soft prompts and the Open World519

Assumption (OWA) to enhance training and eval-520

uation. Beyond the aforementioned methods, soft521

prompts (Chen et al., 2023) and OWA (Open World522

Assumption) (Lv et al., 2022) are also introduced523

for model training and evaluation. Different from524

them, we have not only leveraged the outstand-525

ing reasoning capabilities of LLMs to examine the526

context of graphs from a new perspective, but we527

have also trained a sequence classifier to learn this 528

particular ability of LLMs. 529

5.2 Reasoning with Large Language Models 530

Currently, there are primarily two strategies (Qiao 531

et al., 2023) employed to leverage LLMs for ac- 532

complishing reasoning tasks: 1) Strategy Enhanced 533

Reasoning. These approaches place a greater em- 534

phasis on enhancing the reasoning standards and 535

strategies of LLMs. Specifically, given that LLMs 536

excel at comprehending and adhering to manually 537

provided instructions (Liu et al., 2023), existing 538

works (Wei et al., 2023) attempt to boost model per- 539

formance directly through prompt engineering (Sa- 540

hoo et al., 2024). Another line of work (Zelikman 541

et al., 2022; Huang et al., 2022) focuses on optimiz- 542

ing the reasoning process through iterative methods. 543

External reasoning engines (e.g., physical simula- 544

tors, code interpreters) (Madaan et al., 2022; Lyu 545

et al., 2023) have also been introduced to assist 546

LLMs in reasoning. 2) Knowledge Enhanced Rea- 547

soning. In general, knowledge plays a vital role in 548

AI reasoning systems (Pan et al., 2024). Some ef- 549

forts (Liu et al., 2022; Fu et al., 2023) aim to mine 550

information stored internally within LLMs, while 551

other researchers endeavor to incorporate external 552

data sources (Yang et al., 2022), including Knowl- 553

edge Graphs, wiki documents, and more. In this 554

work, we mainly focus on the first approach since 555

we do not furnish LLMs with additional knowledge 556

information during each session. 557

6 Conclusion & Future Works 558

In this paper, we propose KG-CF, a pretrained lan- 559

guage model (PLM)-based knowledge graph com- 560

pletion method enhanced by the LLM-guided con- 561

text filtering. Specifically, we distilled a sequence 562

classifier from an LLM to assess the rationality of 563

reasoning paths, thereby curating high-quality KG 564

contexts for training of the Bert scorer. Experi- 565

ments results indicate that KG-CF demonstrates 566

exceptional performance across the majority of 567

datasets and scenarios. Furthermore, our approach 568

judiciously leverages generative LLMs for a reason- 569

able scope applicable to the entity ranking protocol. 570

However, the current evaluation metrics (Hits@n) 571

remain flawed: missing triplets in KGs might be 572

included as negative samples. This issue is more 573

pronounced for PLM-based methods. Employing 574

LLMs to refine the evaluation protocol represents 575

a valuable research direction. 576
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7 Limitaions577

This work mainly focuses on the problem of utiliz-578

ing LLM’s reasoning ability on knowledge graph579

completion tasks. Specifically, we exclude irra-580

tional reasoning paths by querying the LLM. We581

note that we only deploy simple reasoning paths582

as the graph context, which is not essential for583

evaluation. Therefore, new context type selection584

(e.g. ego-graph) can be a future direction that is585

worthwhile to explore.586

8 Ethics Statement587

This paper proposes a novel LLM-based frame-588

work to perform KGC tasks, which aligns with589

the inherent ranking-based nature of this task and590

the corresponding evaluation protocols. We do not591

foresee any ethical issue that needs to be specifi-592

cally highlighted here.593
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