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Abstract

Recent years have witnessed the unprece-
dented performance of Large Language Mod-
els (LLMs) in various downstream tasks, where
knowledge graph completion stands as a rep-
resentative example. Nevertheless, despite the
emerging explorations of utilizing LLMs for
knowledge graph completion, most LLMs pose
challenges in quantitative triplet score genera-
tion. This disadvantage fundamentally conflicts
with the inherently ranking-based nature of the
knowledge graph completion task and its asso-
ciated evaluation protocols. In this paper, we
propose a novel framework KG-CF for knowl-
edge graph completion. In particular, KG-CF
not only harnesses the exceptional reasoning
capabilities of LLMs through context filtering
but also aligns with ranking-based knowledge
graph completion tasks and the associated eval-
uation protocols. Empirical evaluations on real-
world datasets validate the superiority of KG-
CF in knowledge graph completion tasks.

1 Introduction

Knowledge Graphs (KGs) have become ubiquitous
in a plethora of real-world applications (Zou, 2020),
such as recommendation systems (Bobadilla et al.,
2013) and question answering (Yani and Krisnadhi,
2021). Specifically, KGs are a type of relational
data where abundant factual information can be rep-
resented with triplets (Ji et al., 2022). Each triplet
is formulated as (h, r, t), indicating the exis-
tence of relation r between those two entities h and
t,e.g. (Earth, orbits, Sun). In practice,
KGs are inherently sparse and incomplete, and thus,
Knowledge Graph Completion (KGC) has become
a widely studied task. The goal of KGC is to pre-
dict missing triplets in a KG, which helps enrich the
KG with more comprehensive knowledge (Chen
et al., 2020a). Traditionally, embedding-based
methods, such as TransE (Bordes et al., 2013a),
DistMult (Yang et al., 2015), ConvE (Dettmers
et al., 2018), and RotatE (Sun et al., 2019), have

been empirically proven to achieve competitive per-
formance in KGC. Nevertheless, these approaches
fail to leverage the information that goes beyond
the KGs, such as certain common sense that is not
in the KG, to perform prediction (Yao et al., 2023).
To address this issue, researchers have explored
methods for achieving better performance in KGC
tasks via taking advantage of the knowledge en-
coded in pretrained language models (PLMs) (Li
et al., 2022; Youn and Tagkopoulos, 2023; Yao
et al., 2019). Among existing PLMs, Large Lan-
guage Models (LLMs) naturally bear significant
potential owing to their exceptional reasoning and
generalization capabilities (Hao et al., 2023).

Despite the rising interest in using LLMs for
KGC, it remains a daunting task. Specifically, three
inherent limitations of LLM-based models pose key
challenges: 1) From the task’s perspective, exist-
ing LLM-based frameworks (Wang et al., 2020;
Chepurova et al., 2023) predominantly extract and
input graph contextual information (e.g., topology,
textual description) in the form of text. However,
in KGC tasks, certain contextual information is ir-
relevant to the given triplet. Irrelevant context may
introduce substantial redundancy, thereby diverting
the LLM’s focus from the KGC task. 2) From the
model’s perspective, the sequential output LLMs
are inherently inadaptable to numerical values (Jin
et al., 2024). Moreover, typical LLMs generate
numerical values digit by digit rather than yielding
these values as a whole, where errors usually accu-
mulate in such a sequential process (Yang, 2024).
Generating a ranking list directly using LLMs also
faces a similar challenge. 3) From the data’s per-
spective, the labels corresponding to all the triplets
for training are inherently discrete (e.g., existence
or not), which makes it challenging to formulate
proper supervision (between discrete labels and
digits with a varying length) to fine-tune the LLM
to yield quantitative measures for ranking.

To handle the above challenges, we propose a



principled framework named KG-CF (Knowledge
Graph Completion with Context Filtering). In this
framework, LLMs are solely employed for filtering
irrelevant contextual information. Specifically, for
an arbitrary triplet (h, r, t) in a knowledge
graph G, we employ a randomly sampled set of
paths in G from the head entity h to the tail entity t
as the context set C to be filtered. Then, we utilize
an LLM to perform filtering on C according to each
path’s relevance with (h, r, t). Infact, to re-
duce the computational cost, we distill a smaller
sequence classifier model sc from the LLM for
most of the contextual information filtering in this
task. This approach allows us to eliminate irrele-
vant contexts and successfully address challenge 1).
Subsequently, a smaller PLM model BERT (Devlin
et al., 2019) is trained on the remaining context
set C* to perform path scoring. During the test-
ing phase, we also sample the corresponding C for
each triplet and select the highest score from C as
the triplet’s score for ranking. By refraining from
directly utilizing the LLM for the ranking tasks,
challenges 2) and 3) are effectively circumvented.
Our contributions are summarized in three-fold:

* Problem Formulation. We summarize the
challenges related to model design and train-
ing data for LLMs in KGC tasks. Moreover,
we delineate a specific application (context
filtering) of LLMs in this scenario.

* Framework Design. We propose a princi-
pled framework, KG-CF, which successfully
leverages the knowledge encoded in the LLMs
while still being able to align with the ranking-
based tasks and evaluations in KGC.

¢ Empirical Evaluation. We conduct empirical
evaluations on real-world KG datasets. The
experiment results validate the superiority of
the proposed model KG-CF compared with
other alternatives in KGC tasks.

2 Preliminary

Notations. We use script uppercase letters to repre-
sent sets, the dataset (D) as well as the loss function
(£). As for neural network models, we use Greek
letters (e.g., 0) to represent its parameters. More-
over, in the subscripts and superscripts used in the
following text, “*’ denotes fixed (e.g., model param-
eters that are no longer subject to change), while ‘™
and ‘7’ respectively signify positive and negative.

Bolded variable names denote the embeddings of
the original variables.

2.1 Problem Formulation

We denote the knowledge graph by G = {€, R, T },
while R corresponds to the set of relation types, £
corresponds to the set of entities, and 7 consists
of all the triplets in G. Specifically, a triplet ¢ in
T is denoted as t = (ep, T, €), Where ey, is the
head entity and e; is the tail entity. In this work,
we focus on entity prediction, which encompasses
two subtasks: head prediction (Glorot et al., 2013)
and tail prediction (Bordes et al., 2013b). Below,
we provide the definition for tail prediction, noting
that head prediction is defined analogously.

Definition 1 (7ail Entity Prediction). Given a
query q = (ep,1q,7) where r is the query relation,
we define the completion of q by e; as:

C(Qa Ct) = Q|?:et - (€h7r(J7 et)a (1)

where c denotes the completion function. Firstly,
we need to identify the candidate set C for the tail:

C= {ei}izl—m ce \ {eh}ﬂ
sit.Ver € Coc(q,er) €T,

where n is a predefined integer. Our objective is to
identify a ranking list A of all candidates:

2

Vi € [1,n), score(A;) > score(Ait1) (3)

where score is the scoring function.

Example. Suppose that we have a knowledge
graph that contains information about countries
and their capitals. An exemplar query in this graph
is presented as follows:

q = (Japan, Capital,?).

We have sampled a series of tail candidates:
C = {Paris, Tokyo, Peking, Berlin, Kyoto,
London}. If there already exists a comprehensive
KGC model, the ranking list could possibly be:

A = {Tokyo, Kyoto, Peking, Paris, London}.
2.2 Pretrained KG Embedding

KG embeddings represent entities and relationships
in a knowledge graph in a numerical format, typi-
cally as vectors in a high-dimensional space (Chen
et al., 2020b). In scenarios involving non-textual
inputs, employing pretrained KG embeddings can
enhance the model’s expressive capability. In our
framework, we default to using KG embeddings
generated by TransE (Bordes et al., 2013a).
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Figure 1: The pipeline of KG-CF. The model operates in three primary steps: 1) Sample a small set of paths and
use LLMs to generate rationality labels for them. 2) Train our sequence classifier on the sampled path set. Then,
filter all paths using the sequence classifier, retaining only “rational” positive and “irrational” negative sample paths.
3) Feed all data, including queries, tail nodes, and inference paths, into a PLM for binary classification training. The
PLM scorer will output a number between 0 and 1 as the score for the current triplet candidate.

2.3 Encoder-only Language Models

Unlike other models that may have both encoder
and decoder components, an encoder-only model
focuses solely on the embedding generation of the
sentences (Naseem et al., 2021). Models of this
kind, represented by Bert (Devlin et al., 2019), ex-
cel at classification tasks. In practice, encoder-only
models accept a single text input and prepend a
[CLS] token at the beginning. For processing clas-
sification tasks, we take advantage of the embed-
ding at the [CLS] token as an aggregation of the
textual information for the entire sentence content.

3 Methodology

3.1 Model Overview

In this section, we introduce the details of our pro-
posed principled framework KG-CF, which utilizes
the inference capabilities of LLMs when training
sequence classifiers for triplets scoring on the task
of KGC. Figure 1 shows our model pipeline. Our
model can fundamentally be bifurcated into three
distinct stages: path labeling, sequence classifi-
cation for filtering, and PLM scoring. Given the
exponential increase in path quantity with the rise
in truncation length and our assertion that paths in
knowledge graphs can be abstracted into more gen-
eral meta-paths, we train a new sequence classifier

for filtering paths to reduce the computational costs
of LLM.

It is worth noting that we constrain the use
of LLMs to filter a small portion of the context,
thereby avoiding the substantial overhead associ-
ated with fine-tuning and inference. The paths fil-
tered are then used as the training set for the PLM,
with our ranking evaluation following thereafter be-
ing indistinguishable from conventional methods.

3.2 Path Labeling using LLM

Path Formulation. For a query ¢ = (ep,7q,7)
and a potential completion ¢(q, e;), we can execute
a breadth-first search algorithm on the graph to
acquire a straightforward inferential path from ey,
to e;. Each trajectory T is formulated as a list of
triplets {¢; };—0—n, that starts from ey, and ends at a
potential tail entity e;:

T = ((en,70,€1), (€1,71,€2), «eovy (Eny Ty €2)).

We define an inference path P as the concata-
tion of a trajectory 7 along with the completion

C(qaet) = (ehartpet):
P = ((eh7TQ’€t)aT)' (4)

LLM Inference. So far, we have formalized the
objects that need to be filtered. Subsequently, we
transform the paths into character sequences to



adapt the inference paths to the input of LLMs.
Therefore, we obtain labels for all the paths associ-
ated with ¢(q, e;):

Ve(qer) = LLM(z'nstruction@f(PC(q’et)))7 S

where @ denotes the concatenation operation,
Pe(q,e,) contains all the possible paths related to
¢(q, e;) and f transform the paths into texts. The
result V,.(4.¢,) contains labels for paths in Pegc,)
while each label is in {0, 1}. Based on this opera-
tion, we construct a dataset D;,. for the sequence
classifier training, and we introduce the details in
the next section. The detailed process is presented
in Algorithm 1.

Note that although inverse relationships are
permitted in the paths, in prompt generation,
all triplets in the path are represented in the
standard forward order. For example, triplet
(Lakers,inv(works for), Lebron James) will
be interpreted as “Lebron James plays for Lakers”,
where inv() represents the function of inversing.

Algorithm 1 Dataset for Sequence Classifer

Require: KG G = (£,R,T), Maximum path
length m and path numbers per relation n.
Ensure: Dataset D, for Sequence Classifer.
1: Dye 0
for all r € R do
Tcount € 0
end for
for all triples ¢t € T" do
e, T, et 1
if 7count > n then
continue
end if
P « All simple paths from e, to e; €
T\ {t} withup tom
11: L <+ Label each path using LLM
12: Dse < Ds. U{(P[i], L[i]) |0 < < |P|}
13: Tcount = Tcount + 1
14: end for
15: return Dy,

WX R R

,_
4

3.3 Sequence Classifier

In this section, we aim to obtain a sequence
classifier M, : P — {0, 1} that implements func-
tionality similar to that described in Equation (5).
We employ an LSTM (Hochreiter and Schmid-
huber, 1997) model to implement the sequence
classifier due to its expressiveness in modeling

Algorithm 2 Dataset for PLM

Require: KG G = (£,R,T), Number of negative
instances neg_num, Threshold th, Maximum
path length m, Sequence Classifier sc.

Ensure: Dataset Dpy s for PLM training.

1: Dprm U]

2: for all triples t € 7 do

3: en, T et — 1

4 Ppos < All simple paths from ey, to e; €
T\ {t} withup tom

5 Pros < {pIp € Ppos A sc(p) > th}

6: Dpos < {(p,true) | p € Ppos}

7: Dpryv < Dpry U Dpos

8

9

for : < 1 to neg_num do
Pickane € E\{en} s.t. (ep, 7€) ¢ T

10: Preg < All simple paths from e, to
et € T with up to max_hops

11: Preg  {p|p € Preg N sc(p) < th}

12: Dpeg < {(p, false) | p € Preg}

13: Dpry < Dprv U Dpey

14: end for

15: end for

16: return Dpy s

sequential information. Considering a path P =

((eha Tq, €t), ((eha To, 61)7 sy (enfla Tn—1, et)»,
we have:

ho = R(0,ep, ®To D €1 B rq),
hi=R(hi—1,e; ®r;®eiy1®rg),i <n—1,
Q = O'(fC(hn_l)),
(6)

where R denotes the LSTM model, § is the predic-
tion by applying classifier layer fc and Sigmoid
function o to the last hidden state h,,_1. In our im-
plementation, we did not assign a separate, unique
embedding for each entity. Instead, we allowed
embeddings to be shared among entities within the
same category. Our intuition behind this approach
is to enable the sequence classifier to learn more
abstract and generalized context information.
Optimization. We use the cross-entropy loss to
train the sequence classifier model:

L= Z yilog(§i) + (1 — yi) log(1 — )] . (7)
=1

Here, N is the number of samples, y; represents the
true label of the i-th sample (with a value of O or
1), and g; denotes the predicted probability of the
i-th sample being in class 1. In particular, we use



the sequence classifier to filter and construct the
dataset Dy, for PLM model training in Sec. 3.4.
The detailed process is described in Algorithm 2.

3.4 PLM Scoring

In this section, we demonstrate the scoring and
training process of our PLM scorer. Considering a
path P = (c(q,e¢), T), we generate the text repre-
sentation and compute its score as follows:

Pieyt = text(c(q,er)) @ text(T),  (8)
score(P) = gyp = o(PLM (Pyezt)), (9)

where text(-) stands for the textualize function, ®
denotes concatenating and independently annotat-
ing two segments of text, and ¢p is the score of the
path P by applying the sigmoid function o(-) on
the outputs of the PLM model.

Optimization. To train the PLM model, we utilize
the same loss function as Eq. (7). It is important to
note that although both the sequence classifier and
the PLM model process sequential input to output
binary results, these two models do not serve the
same task. The sequence classifier solely focuses
on assessing the rationality of the reasoning process
(without considering the accuracy of the reasoning
outcome). Hence, it uses the judgments of LLMs
as labels. On the other hand, the PLM model is
utilized to determine the presence of a target triplet
candidate in the KG, thereby using the ground truth
as labels, which indicate whether the triplet exists.
Scoring and Ranking. To provide a basis for
entity ranking, inspired by BERTRL (Zha et al.,
2021), we represent the confidence score of each
completion ¢(q, e;) using the most rational path
corresponding to e;. Specifically, we first calculate
the score for each path in P and assign the
highest value to ¢(q, e;):

q,et)

score(ey) = maz{Jp|P € Pyge,)} (10)

This score will be utilized for triplets ranking and
metrics computation. A special case occurs when
Pe(ger) = (. In this scenario, we manually as-
sign the lowest score to the completion. Detailed
settings of ranking are provided in Sec. 4.3.

4 Empirical Evaluation

In this section, we introduce the details of experi-
ments for evaluating our KG-CF model. Particu-
larly, we conduct experiments on two knowledge
graphs in the real world. We will answer the fol-
lowing four questions through experiments: (1)

How well can KG-CF perform in knowledge graph
completion tasks? (2) How do the results of path
filtering align with human intuition? (3) How do
different filtering choices contribute to the overall
performance of KG-CF?

4.1 Datasets

In this subsection, we provide details of the datasets
used in our experiments. In particular, three widely
used real-world knowledge graphs are utilized
for the evaluation: Nell-995 (Xiong et al., 2017),
FB15K-237 (Bordes et al., 2013c), and WN18RR
(Shang et al., 2018). NELL-995 and FB15K-237
are datasets focused on relation extraction, com-
posed of rigorously labeled instances derived from
web-sourced text, emphasizing entity and rela-
tionship identification. WN18RR is a benchmark
dataset for knowledge graph completion, derived
from WordNet with refined relations, emphasizing
the evaluation of triplet prediction methodologies.
To expedite training, we separately sample a sub-
set from each corresponding source dataset as our
evaluation dataset.

4.2 Experimental Settings

Dataset Configurations. When training KG-CF,
we extract positive and negative samples at a ratio
of 1:5. For path searches on all three datasets, we
set the truncation length of trajectories (i.e., the
maximum number of triplets that a trajectory can
contain) to 3. In addition to the traditional trans-
ductive scenario, we also conduct experiments on
inductive scenarios. Following (Teru et al., 2020),
we construct the inductive dataset where the en-
tity sets in the training graph £;-qiy, and the testing
graph &5 do not completely overlap. We provide
the source code as well as the detailed dataset con-
figurations in https://anonymous.4open.
science/r/KG-CF.

Baselines. In the experimental part, we intend
to adopt methodologies from several pre-existing
works as our baselines. Among these, both the
rule-based method RuleN (Meilicke et al., 2018)
and the GNN-based method GRAIL (Teru et al.,
2020) are applicable to both inductive and trans-
ductive scenarios. In contrast, the reinforcement
learning-based MINERVA (Das et al., 2018) and
the embedding-based TuckER (Balazevic et al.,
2019) are unable to handle entities and relations
that were unseen during training. In addition to
these traditional models, we also included two
methods based on pretrained encoder-only lan-
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Table 1: Performances on transductive entity prediction of traditional methods (top) and PLM-based approaches
(bottom). Metrics contain Hits@ 1 and MRR. Results are in percentage, and the best ones are shown in Bold.

WN18RR FB15K-237 NELL-995

Datasets

Hits@1 MRR Hits@1 MRR Hits@1 MRR
RuleN 64.6 67.1 60.2 67.5 63.6 73.7
GRAIL 64.4 67.6 494 59.7 61.5 72.7
MINERVA 63.2 65.6 53.4 57.2 55.3 59.2
TuckER 60.0 64.6 61.5 68.2 72.9 80.0
BERTRL 66.3 68.7 61.9 69.6 68.6 78.2
KG-CF (Ours) 67.5 70.3 62.3 70.9 73.1 82.0

Table 2: Performances on inductive entity prediction of traditional methods (top) and PLM-based approaches
(bottom). Metrics contain Hits@ 1 and MRR. Results are in percentage, and the best ones are shown in Bold.

WN18RR FB15K-237 NELL-995
Datasets
Hits@1 MRR Hits@1 MRR Hits@1 MRR

RuleN 74.6 78.2 41.5 46.3 63.8 71.1
GRAIL 76.9 79.9 39.0 46.9 55.4 67.5
KG-BERT 43.6 57.4 34.1 50.0 24.4 41.9
BERTRL 75.3 79.5 54.1 60.6 71.7 81.0
KG-CF (Ours) 78.5 80.9 51.2 58.3 79.5 86.6

guage models: KG-BERT (Yao et al., 2019) and
BERT-RL (Zha et al., 2021).

Implementation Details. Our code is imple-
mented through Python with Pytorch and Hugging-
Face libraries. The experiments were conducted
on a server equipped with six A6000 GPUs. We
utilized GPT-3.5 as the LLM and employed an
LSTM (Hochreiter and Schmidhuber, 1997) model
to implement a sequence classifier. For the se-
quence classifier, we train it over ten epochs with
a learning rate of 1e-3. The PLM scorer is trained
for two epochs with a learning rate of 1e-5. The
threshold ¢h in Algorithm 2 is set to be 0.1.

4.3 Evaluation Method

In both transductive and inductive scenarios, we
separately evaluate our approach on two subtasks:
tail prediction and head prediction. We then com-
pute the average performance of two scenarios.

General Protocol. Following GRAIL (Teru et al.,
2020) and BERTRL (Zha et al., 2021), we se-
lect another 49 tail entities {¢;};—1_,49 for each
test triplet (Ayest, Ttest, ttest) and form a candi-
date set Tiest = {trest} U {ti}i=1—-49. Despite
tiest, we make sure that for any other ¢t € T,
(test, Ttest, t) ¢ G. By the end, we will sort en-
tities in 7" according to their scores and compute

metrics by ranking t;eg;.

KG-CF. Noting that if there are no paths associated
with tail entity ¢ during the evaluation of KG-CF,
we will set score(t) to be O (the lower bound).
Furthermore, if ¢ happens to be the ¢;.5;, we will
set the rank(test) to be the median rank of all
tail candidates with a score of 0. Clearly, in this
scenario, rank(ties) > 25. Therefore, it will not
affect the metrics of Hits@1 or Hits@ 10 and is also
fair to other tail candidates.

4.4 Main Results (Question 1)

In this subsection, our KG-CF framework is evalu-
ated on three knowledge graphs in both transduc-
tive (Table 1) and inductive scenarios (Table 2).
We obtain the following observations through ex-
periments: 1) Our KG-CF framework outperforms
other baselines across most datasets and scenarios,
revealing the effectiveness and versatility of using
LLM and sequence classifiers for filtering graph
contextual information. 2) Compared to the in-
ductive scenario, KG-CF exhibits more consistent
performance in the transductive scenario. 3) Com-
pared to other baselines and datasets, our method
demonstrates more substantial improvements on
the NELL-995 dataset. While both NELL-995 and
FB15K-237 are comprehensive knowledge graphs



concerning real-world scenarios, NELL-995 of-
fers richer textual information about entities (e.g.,
person mexico Ryan Whitney instead of
merely Ryan Whitney). Intuitively, this feature
enhances the LLM in handling rare nouns, leading
to more accurate judgments and generations.

4.5 Case Study (Question 2)

Data Diversity. A meta-path (Jiao et al., 2022)
is composed of a series of node types and edge
types, culminating in a structured path pattern. we
group the entities in the WN18RR dataset follow-
ing (Lin et al., 2018). In the process of data filtering,
while we eliminated a large number of anomalous
positive samples, we simultaneously encountered
the issue of insufficient coverage of meta-paths.
To check this problem, we have also tallied the
number of unique positive meta-paths traversed by
the agent during the training process regarding the
threshold value. This will measure the breadth of
the KG context exploration. the results are shown
in Table 3. We observe a dramatic decrease in the
number of meta-paths at a threshold of 0.1, with
minimal decline thereafter. This may be related to
the sigmoid function’s characteristics. Overall, we
filtered 80% paths and meta-paths, respectively.

Table 3: The numbers of meta-paths and paths regarding
different values of the threshold.

Threshold #Mata-Paths #Paths
0.0 66,024 257,565
0.1 13,059 52,119
0.2 12,488 50,034
0.3 12,124 48,177
0.4 11,839 47,283

Reasoning Path Explanation. In this section,
we will intuitively assess the quality of reasoning
paths at various stages within the dataset: imme-
diately after sampling from the KG, following
LLM filtering, and after sequence classifier
selection. We select a triplet (person Roger
Mudd, person leads organization,

television network CBS) in the NELL-
995 dataset as an example. In the initial sampling
of paths, there exists a trajectory composed of
a single triple, whose textual representation is:
"person roger mudd person belongs to organization
television network CBS. " This was labeled as true
in the original dataset, but it is clearly not a valid
reasoning path, as belonging to an organization

does not necessarily mean leading an organization.
This issue was corrected by the LLM, which
reassigned it with a false label. Subsequently, the
sequence classifier also accurately filtered out this
path when preprocessing the PLM trainset.

Ours

1 W Ours-pf
691 Ours-nf
BN Ours-te

Metrics Value (%)
[=))
~J

Hits@1 MRR

Metrics
Figure 2: Performance comparison between our ap-

proach, Ours-pf, Ours-nf, and Ours-te. Here, -pf, -nf,
-te represent positive path filtering, negative path filter-
ing, and trajectory entities being removed, respectively.

4.6 Ablation Study (Question 3)

We conducted an ablation study on the WN18RR
dataset where three components are removed sepa-
rately: positive path filtering (—pf), negative path
filtering (—n f), and trajectory entities in the paths
(—te, i.e., relation only). We present the experi-
mental results in Figure 2.

Positive Path Filtering. Under this setting, we
assume that all paths from ey, to e; in the positive
triplet (ep,rq,€;) conform to standard reasoning
logic, thus preserved during the data filtering phase.
The results of this ablation study showed a slight
decline compared to the original model, indicat-
ing that our sequence classifier can enhance the
rationality of positive paths.

Negative Path Filtering. Within this setting, we
posit that for a negative triplet (ej,, rq, e;) ¢ T, all
paths from ey, to e; fail to validate the existence of
rq (owing to the incompleteness of KGs, we claim
this assumption to be false). This type of ablation
also led to a slight decrease in results, suggesting
that the sequence classifier can effectively elimi-
nate false negatives caused by KG incompleteness.
Conversely, the performance degradation is consid-
erably smaller compared to -pf. This observation
indicates that the irrelevant contextual information
from existing triplets in the KG is more extensive
and exerts a more pronounced negative effect on
performance than that from the missing triplets.



Trajectory Entities. In this ablation, we replaced
all entity names in the path trajectories with anony-
mous names (e.g., “‘entityl”). However, we re-
tained the necessary relation information within
each path to evaluate our model’s filtering capabil-
ity based solely on topological information. The
objective is to investigate and avoid the presence of
data leakage within both the LLM and pretrained
language model, namely whether the knowledge
stored internally in the language models confers an
unfair advantage to performance. The significant
performance drop indicates that the issue indeed
exists. This also corroborates our assessment in
Section 4.4 that textual description substantially
impacts the performance of LLM filtering. Mean-
while, since we still filter out a certain number
of paths in this setting, the model endures perfor-
mance degradation due to the reduced dataset size.

5 Related Work

5.1 Knowledge Graph Completion (KGC)

In general, existing KGC methods can be approx-
imately divided into two groups: 1) embedding-
based Methods. These methods model entities and
relations within a knowledge graph by mapping
them into an embedding space. Approaches such
as TransE (Bordes et al., 2013c¢), DistMult (Yang
et al., 2015), ComplEx (Trouillon et al., 2016),
ConvE (Dettmers et al., 2018), and RotatE (Sun
et al., 2019) vary in handling relational seman-
tics, with RotatE currently recognized for its
adept handling of various relation types through
geometric intuition, positioning it as a leading
method in the field. 2) PLM-based method: KG-
BERT (Yao et al., 2019) represents an early model
in this category, leveraging the inherent knowledge
within BERT. Subsequent advancements, such as
BERTRL (Zha et al., 2021), have sought to im-
prove upon this by incorporating reasoning paths
between entities. Recent developments also in-
clude prompt engineering and the use of LoRA
adapters (Hu et al., 2021) for fine-tuning, alongside
innovations like soft prompts and the Open World
Assumption (OWA) to enhance training and eval-
uation. Beyond the aforementioned methods, soft
prompts (Chen et al., 2023) and OWA (Open World
Assumption) (Lv et al., 2022) are also introduced
for model training and evaluation. Different from
them, we have not only leveraged the outstand-
ing reasoning capabilities of LLMs to examine the
context of graphs from a new perspective, but we

have also trained a sequence classifier to learn this
particular ability of LLMs.

5.2 Reasoning with Large Language Models

Currently, there are primarily two strategies (Qiao
et al., 2023) employed to leverage LLMs for ac-
complishing reasoning tasks: 1) Strategy Enhanced
Reasoning. These approaches place a greater em-
phasis on enhancing the reasoning standards and
strategies of LLMs. Specifically, given that LLMs
excel at comprehending and adhering to manually
provided instructions (Liu et al., 2023), existing
works (Wei et al., 2023) attempt to boost model per-
formance directly through prompt engineering (Sa-
hoo et al., 2024). Another line of work (Zelikman
et al., 2022; Huang et al., 2022) focuses on optimiz-
ing the reasoning process through iterative methods.
External reasoning engines (e.g., physical simula-
tors, code interpreters) (Madaan et al., 2022; Lyu
et al., 2023) have also been introduced to assist
LLMs in reasoning. 2) Knowledge Enhanced Rea-
soning. In general, knowledge plays a vital role in
Al reasoning systems (Pan et al., 2024). Some ef-
forts (Liu et al., 2022; Fu et al., 2023) aim to mine
information stored internally within LL.Ms, while
other researchers endeavor to incorporate external
data sources (Yang et al., 2022), including Knowl-
edge Graphs, wiki documents, and more. In this
work, we mainly focus on the first approach since
we do not furnish LLMs with additional knowledge
information during each session.

6 Conclusion & Future Works

In this paper, we propose KG-CF, a pretrained lan-
guage model (PLM)-based knowledge graph com-
pletion method enhanced by the LLM-guided con-
text filtering. Specifically, we distilled a sequence
classifier from an LLM to assess the rationality of
reasoning paths, thereby curating high-quality KG
contexts for training of the Bert scorer. Experi-
ments results indicate that KG-CF demonstrates
exceptional performance across the majority of
datasets and scenarios. Furthermore, our approach
judiciously leverages generative LLMs for a reason-
able scope applicable to the entity ranking protocol.
However, the current evaluation metrics (Hits@n)
remain flawed: missing triplets in KGs might be
included as negative samples. This issue is more
pronounced for PLM-based methods. Employing
LLMs to refine the evaluation protocol represents
a valuable research direction.



7 Limitaions

This work mainly focuses on the problem of utiliz-
ing LLM’s reasoning ability on knowledge graph
completion tasks. Specifically, we exclude irra-
tional reasoning paths by querying the LLM. We
note that we only deploy simple reasoning paths
as the graph context, which is not essential for
evaluation. Therefore, new context type selection
(e.g. ego-graph) can be a future direction that is
worthwhile to explore.

8 Ethics Statement

This paper proposes a novel LLM-based frame-
work to perform KGC tasks, which aligns with
the inherent ranking-based nature of this task and
the corresponding evaluation protocols. We do not
foresee any ethical issue that needs to be specifi-
cally highlighted here.
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