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Abstract

Most expressive variational families—such as normalizing flows—Ilack practical
convergence guarantees, as their theoretical assurances typically hold only at the
intractable global optimum. In this work, we present a general recipe for con-
structing tuning-free, asymptotically exact variational flows on arbitrary state
spaces from involutive MCMC kernels. The core methodological component is a
novel representation of general involutive MCMC kernels as invertible, measure-
preserving iterated random function systems, which act as the flow maps of our
variational flows. This leads to three new variational families with provable total
variation convergence. Our framework resolves key practical limitations of exist-
ing variational families with similar guarantees (e.g., MixFlows), while requiring
substantially weaker theoretical assumptions. Finally, we demonstrate the com-
petitive performance of our flows across tasks including posterior approximation,
Monte Carlo estimates, and normalization constant estimation, outperforming or
matching No-U-Turn sampler (NUTS) and black-box normalizing flows.

1 Introduction

Variational inference (VI) [1-3] is a general methodology for approximate probabilistic inference,
where the goal is to approximate a target distribution (e.g., a Bayesian posterior) within a specified
variational family. This variational family is typically chosen to be a parametric family that enables
tractable inference—allowing for i.i.d. sampling and density evaluation [2-7]. This tractability
offers key benefits: it enables the evaluation and optimization of approximation quality via unbiased
estimates of the evidence lower bound (ELBO) [3], which corresponds to the Kullback-Leibler (KL)
divergence [8] to the target distribution up to a constant. Moreover, it facilitates downstream tasks
such as importance sampling [9, 10] and normalization constant estimation.

The quality of a variational approximation is fundamentally determined by the expressiveness of
its variational family. Significant progress has been made in constructing flexible families, includ-
ing boosted mixtures [11-16] and normalizing flows [4, 6, 17-20]. These families often exhibit
universal approximation guarantees [16, 21, 22]: as the number of mixture components or flow
layers grows, the family can approximate any distribution arbitrarily well under mild assumptions.
However, a major limitation remains—theoretical guarantees pertain only to the optimal variational
approximation, which is rarely obtained in practice due to non-convex optimization. In contrast,
Markov chain Monte Carlo MCMC) [23, 24; 25, Ch. 11, 12] is asymptotically exact, meaning it is
guaranteed to produce arbitrarily accurate results given sufficient computation for any valid choice
of tuning parameters (though some values may yield higher efficiency than others).

Xu et al. [26] introduced the first asymptotically exact variational family—MixFlow—that does
not require optimal tuning. A MixFlow is constructed by averaging pushforwards of a reference
distribution under repeated application of an invertible map. When this map is both ergodic and
measure-preserving (e.m.p) with respect to the target distribution 7, MixFlows converge to 7 in to-
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tal variation as the number of steps increases, while retaining the tractability of standard variational
inference. However, its practical applicability is limited by the challenge of designing an invertible
m-e.m.p. map for general continuous targets (several solutions exist for discrete spaces [27, 28]).
The main obstacles are: (1) continuous e.m.p. maps often involve simulation of ODEs, which re-
quires discretized numerical methods that destroy the e.m.p. property; (2) exactness often requires
discrete Metropolis—Hastings (MH) corrections that are not invertible; and (3) proving ergodicity
of such maps is very challenging. For example, Xu et al. [26] proposed a map based on the uncor-
rected Hamiltonian Monte Carlo (HMC), which is neither exactly measure-preserving nor provably
ergodic. Other existing Hamiltonian-based methods [29] also suffer from discretization error and are
non-ergodic [30]. Attempts via deterministic Gibbs samplers based on measure-preserving ODEs
[31] or CDF/inverse-CDF transformations [27] are also limited by the intractability of computing
the exact transformations. MH corrections used to restore exactness [27, 32] result in non-invertible
transformations due to the accept-reject mechanism; recall that invertibility is required by varia-
tional flows to enable tractable density evaluation. To date, there is no framework for constructing
variational families whose practical implementation achieves an MCMC-like asymptotic exactness.

In this work, we address the challenges mentioned above and propose a new framework for devel-
oping practical, asymptotically exact variational flows. Rather than relying on e.m.p dynamics as in
MixFlow [26], our framework leverages iterated random functions (IRF)' [34]—a type of random
dynamical system. The main contributions of this work are as follows:

1. We develop a method for deriving exact measure-preserving transformations from general
involutive MCMC kernels [35, 36], while preserving invertibility of the transformation.

2. We introduce a more general framework for constructing asymptotically exact flows, lead-
ing to three novel variational families beyond the original MixFlow for general state spaces.

3. We establish total variation convergence guarantees for these new families under signifi-
cantly weaker assumptions than those required in MixFlow theory [26], notably relaxing
the ergodicity conditions of the flow maps.

2 Background

Throughout, let 7 be a target distribution on a measurable space (X, B) equipped with a o-finite
base measure m. All distributions are assumed to have densities with respect to the base measure on
their corresponding spaces, and we use the same symbol to denote both a distribution and its density.
Given a transformation f and a distribution p, we write f(p(x)) for the function f evaluated at p(x),
and fp(x) for the density of the pushforward distribution fp evaluated at .

2.1 Homogeneous MixFlows

A mixed variational flow (MixFlow) [26, 28] is built from a deterministic, m-ergodic (Definition D.1)
and measure-preserving (e.m.p.) diffeomorphism f2. Given such a map f and a reference distribu-
tion gop on X that enables i.i.d. sampling and density evaluation, the MixFlow density is given by
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where f'z and f!qq denote mapping z or pushing go through ¢ (¢ > 0) iterations of f. We use
the convention that gy = qo (MixFlow of length 0 is just the reference distribution ¢y). Eq. (1) is
tractable if f~! and the Jacobian J can be evaluated. To generate X ~ Gr, we first draw Xy ~
go and a flow length K ~ Unif{1,2,...,T}, and then map X, through K iterations of f, i.e.,
X = fK(Xy). Since gr is built from a time-homogeneous e.m.p dynamical system, we label
it a homogeneous MixFlow, to distinguish it from our proposed random dynamical system flows
(see Section 4). The asymptotic exactness of homogeneous MixFlows comes from the fact that
limy_,o, TV (g7, 7) = 0 regardless of the tuning of the flow map f [26, Theorem 4.2].

, J(@) =[det VF(z), (D)

In practice, the map f is typically designed to mimic familiar MCMC kernels [26, 28], so that its tra-
jectories have similar statistical behavior to the corresponding Markov chain. Despite this, general

"IRFs are also referred to as iterated function systems (IFS) in some literature, e.g., [33].
2 f is a diffeomorphism if it is continuously differentiable and has a continuously differentiable inverse.



constructions of exact e.m.p. MixFlow maps for continuous target distributions remain unavailable.
As discussed in the introduction, achieving both exact measure preservation and ergodicity is highly
non-trivial in practice. Consequently, practitioners often rely on approximate maps, leading to a gap
between theoretical guarantees and practical implementations. These approximations can introduce
numerical instability and degrade performance as 7" increases [26, 37]. In Section 4.1, we show how
to design homogeneous MixFlows that are exact in practice. Additionally, we present a refined char-
acterization of the density gr by leveraging the measure-preserving property of f, which simplifies
implementation, improves robustness, and provides a more intuitive convergence analysis.

2.2 Involutive MCMC

An involutive MCMC kernel [35, 36, 38] is a Metroplis-type Markov kernel with a deterministic
proposal defined by an involution g, i.e., a self-inverse function satisfying g = ¢~'. This framework
encompasses a broad class of MCMC algorithms, with many popular algorithms appearing as special
cases [36, 39-42] (see Appendix A.1). The detailed transition procedure of involutive MCMC is
described in Algorithm 1 of Appendix A.2. Consider an auxiliary variable v defined on a space V,
with conditional density p(v | ) given € X with respect to a base measure m,, on V, and the
augmented target density 7(x,v) := w(z)p(v|x). Let m := m x m, be the joint base measure on
X x V. For an involution g: X xV — X x )V, each transition from state x proceeds in three steps:

1. Sample an auxiliary variable v ~ p(dv | x);

2. Propose a new state (z',v’) = g(z,v);

3. Accept ' with probability min (1 Talv) g (x,v)) where J, (z,v) == 97 (2, v)>,

’ () U9 dm
An involutive Markov kernel K defined this way is reversible with respect to both the augmented
target 7(x, v) and its marginal 7(x) [38, Theorem 2].
Proposition 2.1. The involutive MCMC kernel K (x',v|x, v) (defined in Algorithm 1) satisfies that

K@ |z, 0)7(z,v) = K(z,v|l2’, 0 )7 (2", v), K(@|z)n(z) = K(z|l2')7(2)),
where K is the marginalized kernel defined as: K (2'|z) := i K@ v | z,v)p(dv|z)dv'.

2.3 Iterated random functions

An iterated random function (IRF) system [34] on X consists of a sequence of random maps:
iid
vVt e Na Xt+1 = f9t+1 (Xt)7 XO S X7 (et)tEN ~ L, (2)

where {fy : X — X : 0 € ©} is a set of parametrized functions, with each ¢ drawn randomly from
a distribution p on the parameter space ©. The above IRF induces a Markov kernel given by:

Vee X, VBeB, Pz B) ::/@]IB(fg(x))u(dG). 3)

This yields a simple characterization of the action of the Markov process P on a distribution g:

Pq(y) := /X P(x,y)q(dx) = E[foq(y)], 6~ u, foq: pushforward of ¢ under fy. (4)

Throughout this work, we focus on IRFs where the family {fy : § € O} satisfies Assumption 2.2.

Assumption 2.2. For p-a.s. all 0 € ©, fy(-) is bijective and w-measure-preserving (m-m.p.). Fur-
thermore, T is the unique invariant distribution of the Markov kernel P induced by the IRF.

Assumption 2.2 implies that the sequence of iterates X; produced by the IRF behave like a -
invariant, irreducible Markov chain. Therefore, long-run averages of IRF iterates converge to expec-
tations under 7, following the standard law of large numbers (LLN) for MCMC [43], also known
as the random Birkhoff ergodic theorem in the IRF literature [44; 45, Cor. 2.2.]. Theorem 2.3 syn-
thesizes these results under Assumption 2.2, providing a unified statement for convenient use in our
framework; proof can be found in Appendix D.1.

3For differentiable g on continuous state spaces (e.g., R%), J,(z,v) = |det Vg(x, v)| is its Jacobian deter-
minant. We adopt the measure-theoretic formulation of Tierney [38] to handle arbitrary state spaces.



Theorem 2.3. Suppose that IRF fy satisfies Assumption 2.2. Then, given ¢ € L1 (), we have that
1. for m-a.e. x € X and p-almost all (0;)ien, as T — oo:

T-1
=Y 0Us 0o fou@) —EB(X)], X~ )
t=0
2. for p-almost all (04)ien, as T — oo
T—1 )
=Y 000 (@) I EB(X), X~ (©)
t=0

Moreover, the same results hold for the inverse IRF {f@_1 10 €0}

3 Invertible measure-preserving IRF from involutive MCMC

In this section, we provide a concrete, general construction of invertible and exactly measure-
preserving IRFs based on involutive MCMC kernels. The key idea, originally developed for the MH
sampler [27, 32], is to further augment the space with two additional variables u,, € [0, 1]d, Uq €
[0,1]. The variable u, pairs with the auxiliary variable v of dimension d, and u,, encodes the ran-
domness in the accept/reject decision. Let the augmented target 7 and space S be defined as:

w(s) =7(z)p(v | Z)]l[oﬁl]d(uv)]].[al] (ug), s=(x,0,Up,uy) €S =X XV x |0, 1]d x [0, 1].

The two uniform auxiliary variables u, and u, will be refreshed with two random parameters
(0y,04) ~ p = Unif[0,1]¢ x Unif[0,1]. Without loss of generality, we describe the IRF con-
struction assuming a one-dimensional target m(x). The IRF fy(s) := fo(x, v, uy, uq) is defined by
the following steps (Algorithm 2):

1. Uniform auxiliary refreshment: u,, < (u, +6,) mod 1, wu, < (ug +0,) mod 1

2. Update (v, u,) pair via CDF/inverse-CDF of p(-|x) *: u}, <= F(jo)(v), ¥ 4 F[;.l‘m)(uv)

3. Propose and compute the MH-ratio: (z/,v') < g(z,v), 1+ ﬂéfw:g)) Jg(x,v)
4. Accept or reject: If u, > r, reject and stay at the pre-involution state s = (x, v, ul,, u,)
u

Otherwise, set u;, < “= and accept the post-involution state s = (z',v', u,, u,).

The correspondence with involutive MCMC (Algorithm 1) is: Step 2 simulates v ~ p(dv|x) via in-
verse CDF sampling, Step 3 mirrors the involution and MH ratio computation, and Step 4 performs
the accept/reject step while explicitly tracking the randomness u,, involved in the decision. Further-
more, as mentioned in Section 4.1, one can use this map in a homogeneous MixFlow by simply
fixing 6,,, 6, to some pre-specified constant values (rather than sampling from p). And finally, using
the same Jacobian computation as in [32, Eq. (25)], one can show that V6 = (0,,,6,) € O, the IRF
fo (Algorithm 2 of Appendix B) is 7-measure-preserving.

Proposition 3.1. The map given by Algorithm 2 satisfies Assumption 2.2 for T if its induced Markov
kernel P is irreducible.

One must be able to compute f, 1() if fo is to be used as a flow layer in a MixFlow. Steps 1-
3 are straightforward to invert. The main challenge lies in inverting the accept/reject Step 4—we
need to recover the accept/reject decision based solely on the output state s’. Depending on differ-
ent decisions, s’ could either be the pre-involution state (z, ¥, ul, u,) or the post-involution state

s Wy

(2,0, ul,,ul). Since the transformation u), < w,/r only present in the acceptance branch, infer-

? v a

ring the branch incorrectly would lead to the failure of recovering u, (hence the entire state s).

We address this challenge (pseudocode in Algorithm 3 of Appendix B) by exploiting the self-inverse
property of the involution g. First note that g(z,v) = (2’,v") and g(z’,v’) = (z,v). Suppose
that s’ = (2%, v#, ui, ul). {g(z?,v¥), (x#,v")} is exactly the unordered pair {(z, ), (z/,v’)}.
Then from the property of the Jacobian of g (i.e., J,(z,0) = J_!(2’,v’) and vice versa), we observe

Jy(2,0) = (

(o', ") )
7(z,v) W(.%‘/,U/)Jg( ’ )) ’

*Typically, p(v|z) lies in a simple family; for instance, in HMC with a diagonal mass matrix, p is a diagonal
Gaussian, whose CDF and inverse-CDF can be computed stably. For multidimensional v, a Gibbs-style update
on the conditionals of p(-|x) can be used.



Banana IRF invertibilty error Funnel IRF invertibilty error Cross IRF invertibilty error WarpedGaussian IRF invertibilty error

mel

Kernel
—— - v S

—

log10(Error)
log10(Error)
log10(Error)

Kernel Kernel
| —HnC |—HnC

— waLA
— RWMH

— waLa
— RWMH

log10(Error)

recthc|

15
o 250 500 750 1000 o 250 500 750 1000 o 250 500 750 1000 o 250 500 750 1000

Figure 1: Inversion error of IRFs (based on HMC, uncorrected HMC, MALA, and RWMH) over
increasing flow length T" . Verticle axis shows the 2-norm error of reconstructing s = (z, v, Uy, Uq)
(s = (x,v) for the uncorrected HMC IRF) sampled from ¢ by the composing the forward simulation
fop 00 fo, (s) and its inverse. The lines indicate the mean, and error regions indicate the standard
deviation over 32 independent initializations from q.

Hence, recomputing the MH-ratio as in Step 3 yields

_ w(a o) - 4

7= py o e Jg (g(®,07)) € {r,r~ '},
where r corresponds to the true MH-ratio as computed in the forward pass. The key observation to
infer the accept/reject decision then follows: If u* -7 < 1, then the acceptance branch was taken, so

u, = ui - 7; otherwise the move was rejected as u, cannot be larger than 1.

Fig. 1 empirically verifies that one can successfully invert the proposed IRF map for four MCMC-
based IRFs—HMC[46, 47], uncorrected HMC [48], MALA[49], and RWMH [50]—on four syn-
thetic targets defined in Appendix E. The same hyperparameters are used for every example: each
(uncorrected) HMC transition consists of 50 leapfrog steps with step size 0.02; MALA uses step size
0.25; RWMH uses step size 0.3. We evaluate the 2-norm error of reconstructing s = (x, v, Uy, Ug)
sampled from a mean-field Gaussian variational approximation gy by the composing the forward
simulation fg,. o - - o fp, (s) and its inverse. Both HMC variants and MALA remain reliably invert-
ible up to T" = 200 iterations, while the RWMH IRF remain invertible up to 7' ~ 1000 iterations.
Notably, the corrected HMC IRF is consistently more stable than its uncorrected counterpart used
in past MixFlows work; the additional MH step discards trajectories with large numerical error that
would otherwise cause the dynamics to diverge. Although Algorithm 2 and Algorithm 3 are exact
inverses in theory, floating-point round-off accumulates with 7" and exact reconstruction can fail
[26, 37]. In practice, however, the resulting statistical error in downstream variational inference is
often negligible, thanks to the shadowing property of chaotic dynamical systems [37].

4 Variational flows based on IRFs

In this section, we present a methodology that transforms any IRF system satisfying Assumption 2.2
into an asymptotically exact variational family. Alongside the exact homogeneous MixFlows derived
from IRFs and their refined analysis, we introduce three additional families—each constructed from
the same IRF but combined differently—and show that all converge to the target in total variation.
Proofs are deferred to Appendix D. For simplicity, we present the methodology and theory using
IRFs defined directly on the original space & rather than the augmented space S. We also assume
access to a reference distribution ¢ supporting i.i.d. sampling and tractable density evaluation.

4.1 Improved homogeneous MixFlows

As reviewed in Section 2.1, the homogeneous MixFlow gr is defined as gr = % Zle ftqo with the
convention gy = ¢o. Given an IRF fy satisfying Assumption 2.2, one can construct a homogeneous
flow map f by fixing the parameter 6 to a constant value 6* (e.g., 7/16), rather than sampling
from the distribution . This provides a generic way of building exact 7-m.p. flow maps. A key
property not noted in prior MixFlow work [26, 28] is a simplified expression for the density of g7 on
arbitrary state spaces, enabled by a measure-theoretic formulation of the pushforward density under
a measure-preserving map. Specifically, for any 7-m.p. bijection f, fqo(z) = m(x)%(f~'z)’, as

5 An implication of this result in continuous state space is that for any 7-m.p. diffeomorphism f, the Jacobian

determinant must Sa[isfy |det Vf_l (;p)| = 71-(7{(;;)1), as established in PI”OpOSitiOl’l C.3.



introduced in Appendix C. This yields a simplified form for the density of g (in contrast to Eq. (1)):

_ 1 a t 1 d qo —t
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In practice, this expression is particulary useful for evaluating the flow density; practitioners can
evaluate gr(z) without tracking the Jacobians of f explicitly, which simplifies implementation and
avoids numerical instability from accumulating Jacobians over long trajectories.

Moreover, the explicit expression Eq. (7) offers an intuitive understanding of why ¢ converges.
While the original convergence result in [26, Theorem 4.2] relied on general operator theory for
e.m.p. systems [51], the density-based perspective is more transparent. If f is 7w-e.m.p, the Birkhoff
ergodic theorem [52; 51, p. 212] implies that Zle D (f~*(x)) — 1. Consequently, for 7-a.c.
x € X, gr(z) — w(x) as T — oo. This enables a substantially simplified proof of the convergence
of homogeneous MixFlow. The proof of Theorem 4.1 can be found in Appendix D.2.

Theorem 4.1. Suppose that f is a w-e.m.p diffeomorphism, and qy < 7. Then, as T — o0,
gr(z) =» n(x), maexecX, and TV(Gr,m)— 0.

It is worth noting that Assumption 2.2 does not guarantee the ergodicity of a specific fy+, leaving a
gap between theory and the practical implementation of homogeneous MixFlows. In the remainder
of this section, we introduce three new MixFlow families designed to address this limitation.

4.2 1IRF MixFlows

An IRF MixFlow is a mixture of pushforwards of a reference qg through an IRF sequence:
1 X
q_qz = T Z fo, 0o+ 0 fo,q0, with the convention that % = qo,
t=1

where 60, ...,07 is a cached i.i.d. sequence drawn from p. When constructing the flow, we first
sample and freeze the random stream 61, . . ., 07, yielding an inhomogeneous sequence of T' param-
eterized bijections. Then to draw X ~ q—T> , wWe treat g7 as a mixture of 7" distributions:

K ~ Unif{1,2,...,T} Xo ~ qo X = foe 00 fo,(Xo)

Note crucially that each sample X is generated using the same frozen sequence 61,...,0p. For
density evaluation, we compute the inverse IRF fe_T Lo, fe_1 ! Because each fy is m-m.p., by
Proposition C.3, the density takes a similar form as in a homogeneous MixFlow (Eq. (7)):

T
) =7(@) 230 (f om0 [N @), Vae X,

t=1

However, note that this density requires simulating the backward process of the inverse IRF ([34])
Xi(@) = f; 0 0 fy &) forte [T,

which cannot be computed sequentially. As a result, IRF MixFlows incur a quadratic density evalu-
ation cost O(T?). Fortunately, this backward process can be computed in a parallel fashion, as the

computation of each X;(x), t € [T] is independent. We recommend deploying IRF MixFlows on
modern parallel hardware (e.g., GPUs) for efficient density evaluation.

IRF MixFlows share the total variation convergence guarantee (Theorem 4.2) of homogeneous
MixFlows. The proof (Appendix D.3.1) is similar to the original MixFlow argument [26, Theo-
rem 4.2], interpreting the IRF (Eq. (2)) as a time-homogeneous, e.m.p. dynamical system over the
joint space O x X. However, we emphasize that Assumption 2.2 is significantly weaker than the
ergodicity assumption of Theorem 4.1. See Section 4.5 for a detailed discussion.

Theorem 4.2. Let P denote the joint distribution over the i.i.d. sequence (0;)ien & . If Assump-
tion 2.2 holds and qy < T, then

TV (7. 71) —> 0 as T — oo. (8)



4.3 Backward IRF MixFlows

To address the O(T?) density cost of IRF MixFlows, we propose a simple modification: constructing
the flow from the backward process. Specifically, we define the backward IRF MixFlow as:

T
1 . .
% = T E fo, o---0 fa,qo, with the same convention that % = qo.
t=1

This construction retains O(7") complexity of sampling X ~ ﬁp via:

KNUIllf{l,Z,,T} XONQO X:fglo---OfQK(Xo),
while reducing the density computation cost to O(T'). The density of ﬁ is given by:
T
1 9 (-1 —1
%@):W(x)'fz;(fet o---ofyt(x)), VrelX. )

t=1
This mirrors the density formula of homogeneous MixFlows (Eq. (7)), enabling the use of the ran-
dom ergodic theorem (Theorem 2.3) to establish the same pointwise and total variation convergence.

Theorem 4.3. If Assumption 2.2 holds and qy < 7, then for w-a.e. x € X and p-almost all (04)en:
§r(x) — w(x) and TV(§r,7) — 0 asT — oco.

4.4 Ensemble IRF MixFlows

All MixFlow variants discussed above—including homogeneous MixFlows—are based on ergodic
averaging along the flow. This inherently limits their convergence rate to O(1/T), as the first com-
ponent always retains a 1/7" mixing weight. In contrast, MCMC methods often exhibit geometric
convergence in their marginal distributions under suitable conditions [43; 53, Ch. 15]. Motivated
by this, we propose the ensemble IRF MixFlows, which instead uses an ensemble average of the
endpoint of multiple IRF trajectories in an attempt to match 7'-step MCMC marginal distribution:

LM LM
~M) | (m
qr -:MZ;QT):Mzzlf(,;mao“'of@@%,

where each 957”), cee G(Tm) corresponds to an independent IRF realization. As in the case of the

previous MixFlows, the M streams of randomness Ot(m) are cached (i.e., frozen) when sampling and
computing densities. The resulting density of the ensemble IRF MixFlow is given by:

M
M 1 Qo [, _
B = w3 300 (koo fgh @),

whose computation costs O(TM) (or O(T') when parallelized across the M streams). Drawing
X ~ Q{TM) takes O(T" + M) operations:

KNUnif{1,2,...,M} X()NC]O X:fH’(TK)O'-'Of9§K)qO.
Intuitively, the flow length 7" controls the bias of the IRF system, while the ensemble size M controls
the variance of the Monte Carlo average. This tradeoff is formalized in the following result.
Theorem 4.4. Suppose that Assumption 2.2 holds, and that Vx € X, 2 (x) < B < oc. Then,

M 1 qo /.- - ‘
Eq |:TV (Q(T ),ﬂ'):| SWE Varg, ., |:; (f011 0--+0 fGTl(X)) | X:|
+B-E[TV(R"s5x,m)], X ~m,

where R is the Markov kernel induced by the inverse IRF fe_l, and §x is the Dirac measure at X.

In the setting where TV (RT 6x,7) = O(p™) for some p € (0, 1), the convergence rate of Z]é«jw) can
be heuristically characterized as TV (§(TM), 77) =0 (pT \% ﬁ), capturing the tradeoff between

the bias (via 7") and variance (via M). Given a fixed computational budget, choosing the balance
between flow length 7" and ensemble size M is critical. In the extreme case of M = 1, convergence
will fail entirely—any m-measure-preserving f satisfies TV(fq,7) = TV(q, ) [54, Theorem 1].
On the other hand, small 7" leads to high bias due to insufficient mixing. This tradeoff closely relates
to recent studies on parallel MCMC algorithms [55, 56].



4.5 Discussion

Relaxing ergodicity. A major advantage of IRF-based MixFlows over homogeneous MixFlows
is that IRF-based MixFlows require only that the kernel P admits a unique invariant distribution
(Assumption 2.2), a significantly weaker condition than the ergodicity assumed by homogeneous
MixFlows. In fact, whenever the set ©* := {6 : fy is m-ergodic} has positive p-measure, Assump-
tion 2.2 automatically holds [33, Corollary 3.3]. Uniqueness of the invariant distribution is also
easily verified by checking that P is irreducible [43, 53]. The IRFs we construct in Section 3 corre-
spond to involutive MCMC kernels that are known to be irreducible, whereas establishing ergodicity
in MixFlows is typically so difficult that it is assumed without proof [26, 29, 57].

Which flow to choose? All four flows are asymptotically exact, yet their density formulae reveal
different bias- Variance and cost-accuracy trade-offs. In every case the density ratio takes the form

M( )=~ Z L (T, (x)), where T;, is a composition of inverse IRF/ergodic maps, and
N can be the ﬂow 1ength or ensemble size. Hence practical convergence of each flow is dictated

by how quickly = anl 1 (T, (x)) converges to a constant. Empirically (see Appendix E.1.1) we
find that IRF MixFlows often reach a given accuracy at shorter flow lengths than homogeneous or
backward IRF MixFlows, but a full theoretical comparison study is deferred to future work.

5 Experiments

This section presents an empirical evaluation of the four proposed flows—three IRF variants and
homogeneous MixFlows (collectively referred to as “IRF flows” since homogeneous MixFlows can
be viewed as a special case). We compare them against two normalizing flows, ReaNVP [19]
and Neural Spline Flow (NSF) [58], and against the No-U-Turn Sampler (NUTS) [59]. Variational
methods are assessed by their (i) ELBO and (ii) accuracy of the importance sampling estimate of
the normalization constant log Z for the unnormalized density ~:

N

iid
Z &~ — l (Xn) ) (Xn)gzl ~ dqr, where qr S {qTa 7T7 qT,9 A(JM)} , T = l
N n=1 ar Z

and (iii) importance sampling effective sample size (ESS) [60-62]. Sampling methods are evalu-
ated via their Monte Carlo estimation error. In all cases, all flows start from the same reference
distribution go: a mean-field Gaussian trained for 10K Adam steps with batch size 10 and learning
rate 10~3. All IRF flows are evaluated with 64 i.i.d. draws, while normalizing flows use 1024. Full
experimental details appear in Appendix E.

5.1 Synthetic examples

Our synthetic experiments consist of four 2-dimensional targets used by Xu et al. [26]: the Ba-
nana [63], Neal’s funnel [64], a cross-shaped Gaussian mixture, and a warped Gaussian distribution.
Fig. 2 shows a comparison of the original Hamiltonian-MixFlow—built on an uncorrected HMC
kernel—with our corrected version including the MH step. For each target we run both flows with
identical hyper-parameters (50 leapfrog steps per transition, several step-sizes) and estimate the total-
variation (TV) distance to the ground truth using 512 i.i.d. samples. Across all targets and step-sizes,
the corrected HMC-based MixFlow consistently achieves lower TV error and remains robust as the
step-size grows. In contrast, the uncorrected variant often deteriorates with longer flows because
the inexact map error accumulates (e.g., the green dashed curve in the third panel). At larger step
sizes the uncorrected flow frequently diverges, producing NaNs (marked by crosses), whereas the
corrected flow remains stable—echoing the inversion stability results in Fig. 1.

We next compare the four IRF flows with RealNVP and NSF. Two IRF variants are examined: HMC-
based (50 leapfrog steps per transition; 7' = 200) and RWMH-based (1" = 4000). Each normalizing
flow consists 6 flow layers, and is trained via 50,000 Adam steps with batch size 32; we tune the
learning rates in the grid {107%,1073,1072}, and report the results of the setting with smallest
median TV distance over 5 runs. Additional implementation details can be found in Appendix E.1.

Figs. 3a and 3b display the ELBO and log Z estimates (via importance sampling) for the Banana
target; the remaining synthetic cases show the same pattern (Fig. 7 in Appendix E.1.3). As synthetic
targets are normalized, a perfect variational approximation has both metrics near 0. The IRF flows
meet this mark consistently across runs, whereas RealNVP and NSF exhibit high variability and often
produce extreme ELBO or log Z values. We restrict the vertical range of the ELBO plot for better
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Figure 2: Total-variation error for homogeneous MixFlow built on corrected (solid) versus uncor-
rected (dashed) HMC kernels, plotted against flow length T for several step sizes. Each curve is the
mean over 32 independent runs; shaded bands (1 SD) show run-to-run variability. A cross marks
any setting where at least one run returned a NaN (instability), at which point the trace is terminated.
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Figure 3: Variational approximation quality of IRF Flows versus RealNVP and NSF. Box plots for
IRF flows are based on 32 independent runs, and 10 runs for the normalizing flows. The black
dashed line in (c) indicates the optimal ESS of perfect i.i.d. samples.

visualization; full-range plots are in Fig. 7b. We also note that training instability is common for the
normalizing flows: on the Funnel example, 10 of 15 RealNVP runs and all NSF runs diverged.

Fig. 3c further examine the per-sample importance sampling ESS (see Fig. 7d on similar results for
other examples), which reflects the 2 divergence from the variational distribution to the target [65].
The ESS is orders of magnitude higher for IRF flows than for the normalizing flows. Additionally,
we provide comparisons among the three ergodic averaging MixFlow variants in Appendix E.I.1,
and ensemble-size/length trade-offs for ensemble IRF MixFlows are explored in Appendix E.1.2.

5.2 Real-data experiments

The real-data experiments include the Student-t-regression (TReg; 4-dimensional), and the Sparse
linear regression (SparseReg; 83-dimensional) from [26], and a latent Brownian motion model
(Brownian; 32-dimensional) and the Log-Gaussian Cox process model (LGCP; 1600-dimensional)
from the Inference Gym library [66]. Each normalizing flow is trained via 50,000 Adam steps of
batch size 32; we grid-search both the learning rates {10~4,1073, 1072} and flow layers {6, 10},
and report the configuration with the highest median ELBO over 5 runs. An additional mean-field
Gaussian baseline is optimized for the same number of steps and batch size with learning rate 1073,

All IRF variants use RWMH kernel, with the step size tuned to achieve a 0.8 acceptance rate using
bisection search between 0.001 and 10. In each search step, we estimate acceptance rate with 5,000
RWMH-IREF iterations. We set 7" = 5000 for the backward IRF and homogeneous MixFlow and en-
semble IRF MixFlow, and set T' = 4000 for the IRF MixFlow. Normalizing flow results are omitted
for LGCP, which did not finish training within 48 hours on the same computation cluster. Ground
truth values are estimated using AIS with a dense temperature grid; see the details in Appendix E.2.

As in the synthetic experiments, our exact flows match—or modestly improve upon—the best-tuned
RealNVP and NSF in both ELBO (Fig. 4a) and log Z accuracy (Fig. 4b), and outperform the mean-
field baseline by a wide margin. The per-sample importance-sampling ESS shows the same advan-
tage (Fig. 8b). Crucially, normalizing flow training is orders of magnitude more expensive (Fig. 4d),
whereas the exact flows achieve comparable accuracy at a fraction of the computational cost.



500 v

490 —

o 480

ELB

470

-500 - PE— b

sl o M e heousM 2l RFF IO a5 o RO

(a) ELBO

JorrpE——T———
BaseI yormFoNepEotaeuEot

-1445

-145.0

-1455

-146.0 of=

log normalization constant
:

log normahzaénon constant

log norrga\izgion constant

log normalization constant

Baselin® yormFioYenr

- ++++
L

Back,

Baselne orm o B ousM bl RFFIO™ B oo e

(b) log Z estimates

T

Backu, Ensem Home
AR g bl o9 e

al coord abs. error

maximal coord abs. error
8

maximal coord abs. error
maximal coord abs. error

o T — T s
T -

(c) Maximum absolute error of coordinate-wise posterior standard-deviation estimates relative to NUTS

e — - — IO e
—— —wFvi —wrv
10 —nsf —NsF —nsF
B ANV -~ RealNVP,

Time (seconds)

s
Time (seconds)

Time (seconds)
S
Time (seconds)

10

Backmargmeyy, E15€ Hom Nurs Backuargeyy, E15e Hom Nurs Bachwargmy E1se Hom [ Backuargipgy, E75emi Hom Nurs
R Mgy IR0y O COUSMixprey IR Mgy O RFFlon, OIS 0uSM gy RS g Rl I EOUSH g0 TR Mixgiony IRl OO,

(d) Computation time (in seconds) for each method. To ensure a consistent environment, all timing results were
obtained by rerunning the methods on the same local machine (hardware details provided in Appendix E). MFVI,
NSF, and RealNVP were each run once, as their execution times are deterministic given the flow architecture
and optimization settings. For IRF flows and NUTS, timing statistics are based on 10 independent runs.

Figure 4: Results on real-data benchmarks (columns, from left to right): TReg(d = 4),
Brownian(d = 32), SparseReg (d = 83), and LGCP (d = 1600).

We further compare coordinate-wise posterior mean estimates (Fig. 8c in Appendix E.2) and stan-
dard deviation estimates (Fig. 4c) against NUTS, reporting the maximum absolute error across di-
mensions relative to the estimated ground truth. NUTS is initialized with independent draws from
qo and run for 10,000 iterations including 5000 warm-up iterations. IRF flows outperform NUTS
on two models and are slightly worse on the other two—yet they do so at generally faster compu-
tation time (Fig. 4d). Note that the goal of this work is not to outperform MCMC, but rather to
construct a variational family that provides asymptotic exactness and similar sampling performance;
IRF MixFlows meet this standard.

6 Conclusion

We introduced a general framework for building asymptotically exact variational families from gen-
eral involutive MCMC kernels. By constructing invertible, measure-preserving maps directly from
these kernels, we overcome the main practical limitation of MixFlow [26] and enable the construc-
tion of a broad class of exact flows. We also provided a streamlined theoretical analysis for flows
based on measure-preserving transformations and demonstrated their empirical advantages in den-
sity approximation and importance sampling. A promising direction is to pair our framework with
recent automatic-tuning MCMC [39-42], developing truly tuning-free exact flows in practice.

10
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recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: We describe high-level experimental setting in the experiment section (Section 5.), and
defer additional details in the Appendix.
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* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail that is
necessary to appreciate the results and make sense of them.

» The full details can be provided either with the code, in appendix, or as supplemental material.
7. Experiment statistical significance
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Answer: [Yes]

Justification: Error bars of each figure is described in the caption of the figure or explained in the
corresponding text discussing the figure.
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* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confidence inter-
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8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer re-
sources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: We provide informations of used computational resources in the Appendix, submitted
as PDF in the supplementary materials.
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tal runs as well as estimate the total compute.
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e The authors should make sure to preserve anonymity (e.g., if there is a special consideration
due to laws or regulations in their jurisdiction).

10. Broader impacts
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pacts of the work performed?

Answer: [NA]

Justification: This paper focus on theoretical and methodological development in the field of compu-
tational Statistics. The societal consequences need not to be dicussed for this work.
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* The answer NA means that there is no societal impact of the work performed.

« If the authors answer NA or No, they should explain why their work has no societal impact or
why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses (e.g., dis-
information, generating fake profiles, surveillance), fairness considerations (e.g., deployment
of technologies that could make decisions that unfairly impact specific groups), privacy consid-
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ular applications, let alone deployments. However, if there is a direct path to any negative
applications, the authors should point it out. For example, it is legitimate to point out that
an improvement in the quality of generative models could be used to generate deepfakes for
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* The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation strate-
gies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for
monitoring misuse, mechanisms to monitor how a system learns from feedback over time, im-
proving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators,
or scraped datasets)?

Answer: [NA]

Justification: This paper focus on theoretical and methodological development in the field of compu-
tational Statistics, which poses no risk for misuse.
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¢ The answer NA means that the paper poses no such risks.
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* We recognize that the procedures for this may vary significantly between institutions and loca-
tions, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

¢ For initial submissions, do not include any information that would break anonymity (if applica-
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A Additional content about involutive MCMC

A.1 Examples of involutive MCMC

Here, we illustrate how the generic Metropolis-Hastings (MH) algorithm [35, 38], random-walk Metropolis-
Hastings (RWMH) [50, 67], and Hamiltonian Monte Carlo (HMC) [46, 47], fit into this framework by specify-
ing the corresponding auxiliary distribution p(:|z) and the involution map g.

Example A.1 (MH sampler; Section B.3. of [36]). The Metropolis-Hastings sampler with proposal distribution
p(dz’|z) can be cast as an involutive MCMC method by defining the auxiliary distribution as p(dv|x), and
using the swap involution g : (z,v) — (v, z).

Example A.2 (RWMH sampler; Section 2. of [39]). RWMH with step size € is obtained by setting
g(z,v) = (x4 ev,—v), v~ p(dv|z) =N(0,I).

Example A.3 (HMC; [47]). In the involutive formulation of HMC, the auxiliary variable v corresponds to the
momentum variable, and p(v|x) is the momentum distribution, typically a Gaussian distribution independent
of . The involution map g consists of applying k steps of the leapfrog integrator, followed by a momentum sign

Jlip:
x | 0 |z
()= 2= (F])
where L : (z,v) — (x',v") denotes a single leapfrog step (of step size €) given by
V12 v+ %V]og m(x)

z — X+ evy/2

v« v1/2 + %Vlogﬂ' (x/) .

A.2 Pseudocode of involutive MCMC

Algorithm 1 Involutive MCMC kernel K (2/, v'|z, v)

Require: current state x, target 7, auxiliary distribution p(dv|z), involution g
1: v~ p(dv|z) > sample auxiliary variable
2: (2, v") + g(z,v) B> generate proposal via the involution

w

' w(zw) Y9
> Accept or reject
u ~ Unif]0, 1]
if v > o then
2 > reject
end if
return z’, v’

« < min (1 T (z, v)) > compute the acceptance probability

AN AN
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B Pseudocode for IRF and inverse IRF based on involutive MCMC

Algorithm 2 IRF based on involutive MCMC fy(s)

Require: joint state s = (x, v, Uy, U, ), random parameters 0 = (6,,,0,)

> update uniform auxiliary variables

Uy  (uy +6,) mod 1

Ug  (Uqg +6,) mod 1

> involutive MCMC with target 7(x), auxiliary distribution p(dv|x), involution g

!/

Uy, Fpl(.‘r) (1})

U By (o)

(2',0") = g(x,0)

T ”ﬁ(&%’)) Jy(z,0) > Compute MH ratio

if u, > r then
return x, v, u

end if

ul, — Y > u, < rimplies that u), € [0, 1]

return z’, v’ ul , ul, B> accept and return after-involution state

N =

/
v

Ug, > reject and return pre-involution state

,_
TRYRR ;N W

—

Algorithm 3 Inverse IRF based on involutive MCMC f, *(s')

Require: joint state s’ = (z/,v’, u} ,u/,), random parameters § = (6,,0,,)
> recover pre- and post-involution pair
1: (z,0) + g(2’,v)
> this will either be r in line 6 of Algorithm 2 if accepted, or ! otherwise

2 7 ZE) 72 7)

7(x,0) Y9
> checl(< ac)cept or reject
3 ug —ul, T > update u, (line 10 of Algorithm 2) as if the forward pass was an accept
4: if u, > 1 then > forward pass was a reject (see line 6-7 of Algorithm 2)
> pre-involution state
5: (z,0) « 2’0
6: Ug — U,
7: end if

> inverse of line 3-4 of Algorithm 2
8 v« Fp(_l‘ )(ug)
9: Uy — Fp(_‘m)(v)
> inverse update of the uniform auxiliary variables (line 1-2 of Algorithm 2)
10: uy + (upy +1—10,) mod 1
11: ug < (ug+1—10,) mod 1
12: return , v, Uy, U,
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C Measure-theoretic formulation of pushforward density

A fundamental formula when studying variational inference is the the change of variable formula, which char-
acterizes the density of a transformed distribution. For a diffeomorphism f : X — X on a continuous space,
the density of X = f(Y),Y ~ qo, is given by

g0 (f (@)

J(fH (=)
However, the assumptions of differentiability and a continuous state space can be restrictive, as many inference
problems involve discrete or hybrid spaces (e.g., Ising model [68], Bayesian Gaussian mixture model [69], and
spike-and-slab model [70]). To handle general state spaces, we adopt a measure-theoretic formulation of the
pushforward density, stated in Proposition C.1, for a generic bijection f. This result is well known (see, e.g.,
38 for its use in the general involutive MCMC framework), but we include a proof here for completeness.

Proposition C.1. Suppose that f : X — X is bijective. For a distribution ¢ < 7, forallx € X" :

Ve 2, aa(@) = faolw) J(@) = [det V f()].

dm

dm

dm

Proof of Proposition C.1. First, note that if ¢ < 7, then fq < fm. This implies that
d(fg)  \ _ d(fg),_ df=
dm (@) = dr (@) dm

It remains to show that 449 — g—fr o f~1. It suffices to show that VA € B,

dfm
dg .. [ d(fq) _
/Aaof dfr= | “3pe i = faA).

(z), VzeX.

Note that for all A € B, we have that
dg , .1 o ﬁ o -1 _
[ amtan) = [ @) = a7 4) = fala),
A F=H(A)
which completes the proof. O

It is worth noting that for a Euclidean space X’ equipped with the Lebesgue measure m, and a diffeomorphism
, cg—mm () is precisely the Jacobian determinant |det V f~* ().

If f is further w-measure-preserving, then d(f—:

density.

= 1, yielding a simplified expression for the pushforward

Corollary C.2. Suppose that f is bijective and w-measure-preserving. For a distribution ¢ < m, for all
TeX:

d(fq)
dm

(0) = $L( 1),

Aside from the generality of Corollary C.2 over the diffeomorphic case, it provides an elegant formula of the
pushforward density under a measure-preserving map. We invoke Corollary C.2 frequently when developing
and analyzing MixFlows.

Beyond extending the diffeomorphic case, Corollary C.2 offers an elegant expression for the pushforward
density under a measure-preserving map. We frequently invoke this result when developing and analyzing
MixFlows. Finally, we present a specialization of Corollary C.2 for diffeomorphic f, which provides a conve-
nient characterization of m-measure-preservation.

Proposition C.3. Ler f : X — X be a diffeomorphism, 7 be a probability distribution on X, with density
(denoted by w(x)) with respect to a dominating measure \. Then,

1. f is m-measure-preserving if and only if f 1 is m-measure-preserving.

7 (x)

2. f is m-measure-preserving if and only if for A-a.e. x € X, J(z) := |det Vf_l(a:)| = TG T@y

Proof of Proposition C.3. By definition, f is 7-preserving if and only if fr(2) = 7(x) = f~'m(x). Examin-
ing the density of the pushforward f via the change-of-variable formula, we have

7(z)
m(f~H (=)
The second claim follows from the fact that 7 = (f o f~")m = (f ™ o f). O

Vo€ X, fr(x)=n(f""(2))Js(2) = n(2) & Jp(2) =
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D Proofs

D.1 Proof of Theorem 2.3
As introduced in the main text, the IRF fy induces a Markov kernel given by:
Vee X, VBeB, P(z,B):= /@ 1a(fo(x))u(d).
This yields a simple characterization of the action of the Markov process P on a distribution g:

(Pa)(y) == /X P(z,y)q(dz) = E[foq(y)], 0~ u, foq: pushforward of ¢ under fy.

We can further characterize the Markov kernel R(-, -) induced by the inverse IRF fo, L
Ve e X, VAEB, Rz, A)= / La(f; (2))u(do).
e
which is precisely the reversal of P(-,-):

T®P(AXx B)=nQR(B x A) = /W(fe(A) N B)u(do), (10)

where 7 ® P(A x B) := [, P(z, B)w(dz). See Kakutani [44, Eq. (4.5)] for the detailed derivation. Notice

that if P is reversible wrt 7, i.e., 7 ® P = m ® R, both the IRF fj and its inverse f, ! induce the same Markov

process P. In other words, P = R. From Eq. (10), we can see that a sufficient and necessary condition so that
P = (@ is that

/wmmMmBmwm:/%u;%MmBmmw

Proof of Theorem 2.3. From Eq. (4), we see that P must admit 7 as a stationary distribution. Douc et al. [53,
Theorem 5.2.6] further states that if 7 is the unique invariant probability measure of P, then the Markov process
P is ergodic. Therefore, the LLM of ergodic Markov process [53, Theorem 5.29] guarantees Eq. (5), and the
random ergodic theorem [45, Cor. 2.2.] ensures Eq. (6).

Then as discussed above, Kakutani [44, Theorem 3.] show that Assumption 2.2 holds for fy and its induced
Markov process P if and only if Assumption 2.2 holds for the inverse IRF f, ! and its induced R. Therefore,
the same convergence holds for the inverse IRF. O

D.2 Convergence of the homogeneous MixFlow

Definition D.1 (Ergodic map [51, pp. 73, 105]). f : X — X is ergodic for « if for all measurable sets A C X,
f(A) = Aimplies that 7(A) € {0,1}.

The most notable implication of a w-e.m.p f is that the long-run average of repeated applications of f converges
to the expectation under 7, a result known as the Birkhoff ergodic theorem [52; 51, p. 212]. The full statement
is given in Theorem D.2.

Theorem D.2 (Ergodic Theorem [52; 51, p. 212]). Suppose f : X — X is measure-preserving and ergodic
form, and ¢ € L*(r). Then

|z
lim T tzzlqb(ftx) = /¢d7r, m-a.e x € X.

T— o0

Lemma D.3 (Scheffé’s Lemma). Let ¢y, be a sequence of integrable functions on a measure space (X, B, )
that convergences m-a.s. to ¢. Then

/mm%mwwmww,nam
if and only if

/wammmwﬁ/wmmmm n - oo,

Proof of Theorem 4.1. Note that the Jacobian of the m-e.m.p f is 7(x)/7(f*(z)) by Proposition C.3, allow-
ing the density of gr to be expressed as:

ar(@) = 5> fao(e) =n@) 73 T @), VeeX.
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The pointwise density convergence is the direct consequence of Eq. (11). Specifically, provided ¢o < 7, we
have qo/m € L*(w), so the Birkhoff ergodic theorem [52; 51, p. 212] (see Theorem D.2) ensures:

1 X
T2

t=1

The total variation convergence is then by the direct application of the Scheffé’s lemma Lemma D.3. Notice that

m(dz) = /

To apply Lemma D.3, we set ¢ (z) := Zle 9 (fy (), and set ¢(z) := 1. Because go < 7, all ¢n’s
are m-integrable. Then, for all n € N, we obtain that

[1en@ln(dz) = [ 6,(@)n(az)
}i/?mwwm>
=/%wm (as for = )
1= [ lo@)atas),

yielding the second convergence in Lemma D.3. O

S

O(fit(m))ﬂl, T —aex € X, as T — oo. (11

T

1 q0 / p—t
fZ—( () — 1| w(dz).

m
t=1

q?T(x)—l

TV(qr,m) =/

D.3 Convergence of the IRF MixFlow

As hinted in the main text, the proof of Theorem 4.2 involves interpreting the IRF as a time-homogeneous,
e.m.p. dynamical system on the joint space O~ x X Specifically, we define a map ® (Eq. (12)) whose iterates
evolve both the state X; and the parameter sequence (0:):en. Overall, the proof proceeds in two steps. First,
we show that the joint law of (0, X;) converges in total variation to P ® 7. Second, we deduce marginal
convergence for X;. Section D.3.1 establishes the joint result, while Section D.3.2 explains why it suffices to
prove Theorem 4.2.

D.3.1 Convergence in the product space

The key technique for proving the joint convergence is to interpret the iterative process Eq. (2) as an autonomous,
ergodic, and measure-preserving dynamical system in the joint space O x X. Given this framework, the joint
convergence follows immediately, as substantiated by Xu et al. [26, Theorem 4.2] (which is based on the mean
ergodic theorem).

For brevity, we define = O, Fyv = F®V and P be the joint distribution of (6:):en with independent
marginal distribution u. Define the shift operator o : Q0 — Q by

ow : (wo,w1,...) — (wi,wa,...).
And let (65,)nen be the coordinate process on (€2, Fy, P), i.e., forall w = (wo, w1, ...) € £,
On(w) = wn.
By definition, we have 0,41 = 6y o o, and (fo,,),cy With (0n)nen S 4 can be formally understood as

(fen(W))nEN ,w ~ P satisfying that fo, () = fogoon (w) = foo(omw)- For the rest of this work, we abuse the
notation by writing fs,, () as fone forallm € N.

Now consider the product probability space (2 x X, Fy ® B,P x ), where P X 7 denotes the joint dis-
tribution with independent marginals P and 7 on Q and X" respectively. We define the transformation
P: QXX — QxXby

O(w, z) = (ow, fow(x)), Y(w,z)€QxX. (12)

Note that Eq. (12) equivalently describes the iterative process Eq. (2) with i.i.d. (6, )nen. For the rest of the
proof, we will focus on the autonomous dynamical system (2 X X', Fy ® B, P x w, ).

Theorem D.4. Under the same assumption of Theorem 4.2, we have

N
1 n
™V <N E P (]P’qu),]P’Xﬂ’> —0, asN — oo. (13)

n=1
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Proof of Theorem D.4. We first show that ® preserves P x 7, namely, ®(Px ) = Px . Forall ¢ € L'(Px7),

(P x 7)(&) := /Q . &(w, )P (P x 7)(dw, dx)
= /Q . €0 P(w,z)P x w(dw,dx) (14)

- / /X E(0w, fouo(@))m(d2)P(dw)

Since o is measure-preserving for P due to the i.i.d. assumption, and x — f,,(z) is T-measure-preserving by
hypothesis, we obtain that

(P x m)(€) = / | o fe@manpia)
- / /X (w, @) () (de) P(dw)
_ /Q /X € (w, 2)m(dz)P(dw)

:/Q Xﬁ(w,m)]P’ x m(dw, dx)
(P x 7)(8).

This concludes that (2 x X, Fy ® B, P x 7, ®) is a measure-preserving dynamical system.

We further show that (2 x X, Fy ® B,P x 7, ®) is an ergodic dynamical system. Morita [33, Theorem 4.1]
shows that it is equivalent to show the ergodicity of the shift dynamical system—(X N B®N P, T)—induced

by the Markov process associated to Eq. (2). Here P, is the unique probability measure on (X N B®N) SO
that the coordinate process (X1, X2,...) is a Markov chain with kernel P (Eq. (3)) and initial distribution
7, and 7 is the shift operator on XV, i.e., 7(Xo, X1,...) = (X1, X2,...). Douc et al. [53, Theorem 5.2.6]
further guarantees that if 7 is the unique invariant probability measure of P, then (X N B®N P, 7') is both

measure-preserving and ergodic. Hence, the second assertion of Assumption 2.2 guarantees the ergodicity of
QX X, Fn® B,P x m, ).

Finally, we apply Theorem 4.2 in Xu et al. [26] to finish the proof. Given that ¢ is measure-preserving and
ergodic for P x , it remains to show that ¢ < 7 implies that P x ¢ < P x 7. Forall B € B and F' € Fy,

0= (P x 7)(F,B) =P(F) x n(B) = P(F)=0orm(B)=0.

Since (P x ¢)(F, B) = P(F) x q(B),if P(F) = 0, then P(F) x ¢(B) = 0, and if 7(B) = 0, then ¢(B) = 0
by hypothesis and P(F') x qo(B) = 0 as well. Therefore, Xu et al. [26, Theorem 4.2] yields the desired
result. O

D.3.2 From the joint convergence to Theorem 4.2

Finally, we justify why Eq. (13) is sufficient for Eq. (8).

Proof of Theorem 4.2. We first derive the explicit expression of ®(IP x go) and examine its conditional proba-
bility measure. Following the same derivation as Eq. (14), for all £ € L*(P x qo),

B(P x q0)(€) = / /X £(0w, fou(2)) 0 (d)P(duw)
— / /X €(w, fu(2))q0(dz)B(dw)
- / /X £(w, 2)(fuo)(dz)P(dw), (15)

where the second equality is by the fact that o is measure-preserving for P. Eq. (15) demonstrates that ®(Px qo)
can be disintegrated into the marginal distribution P(dw) on € and the conditional distribution (f.,qo)(dx),
yielding that

Xn|(0i)ien ~ fo, 00 fo,q0, forn>1,
where Xo ~ go. Hence, disintegration of & Zf:’:l O™ (P X qo) on the slice (61,02,...) € Qis

1 N
N > fon 00 fordo.
n=1

28



Then we show that the total variation convergence of the joint distribution (Theorem D.4) implies the total
variation convergence of the conditionals (Theorem 4.2). For all N € N,

TV( Zfbn]P’qu ]P)XTF) // o~ d2"( X a0)

dP xm)
Notice that for all n € N, the Radon-Nikodym derivative ﬁ always exists given that P X go < P x 7

and @ is P x m-measure-preserving. And explicitly, since P x go and P x 7 have same marginal distributions
on €2, we have

7(dz)P(df)

de" (P x qo) _ fo, ©---° fo,q0
d(P x ) T '

vy eecmess) - [ [ 1

1
TV (N’,lzlfen,o"'ofelqov’]-f-)] ) (HW)WGNNP

Since TV (-, ) is always non-negative, the left-hand side converges to 0 as N — oo yields that the following
convergence holds in probability IP:

N
1
TV(NT;f97LO"'Of91QD7ﬂ—>—>07 as N — oo.

This completes the proof. O

Hence,

Z fo,, © Oftho( ) — 1| n(dz)P(d0)

=E

D.4 Convergence of the backward IRF MixFlow
Proof of Theorem 4.3. The pointwise density convergence is the direct consequence of Eq. (9) via Theorem 2.3.

The total variation convergence is then established using identical strategy as the proof of Theorem 4.1 via
Scheffé’s lemma Lemma D.3. O

D.5 Convergence of the ensemble IRF MixFlow

Proof of Theorem 4.4. By the definition of the total variation,
~(M)

v ((3(TM),7T) :/ q

ir (x) —
By the triangle inequality,

- (dx)
1 qo [ ,— 1 T
13 (e ) - (2

m(dz).

1 M q
0 —1 —1
Vi Z o (fggm) o o 0<Tm) (@)
m(dz).
m=1

m=1
m(dz) /‘/q" YRT 8, (dy) — 1

We derive upper bounds for two terms on the right-hand side separately.

(16)

For the first term, taking the expectation with respect to the randomness of § ~ p, and interchange the order of
integrations,

M
E [/ % mzzzl % (f(’?") 0-+-0 fe_(T"l”) (x)) - RT (%O) (z) ﬂ(dx):|
- 1 . qo [ -1 -1 T (90 (1:M)
- [/ Mmz_l - (feymo...ofe(Tm)(X)) -R (w)(X)’u(dQLT )] X~m
Mo
Notice that Vz € X, { feg’l"/) -0 9(7”) (x)}mil % RT§,, where the randomness comes from the inde-

pendent realization of @s, where R is the induced the Markov process of f, ! Therefore, applying Jensen’s
inequality yields

<%E{\/Var91;7 [%O(fe—llo...of(;Tl(X))|X]],
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For the second term of Eq. (16), since 2 is globally bounded by constant B < oo, we have that

/l/%(y)RT%(dy)—l

:/‘/%(y)RTcsz(dy)—/q;o(y)fr(dy)

<B / TV(R" 6., m)n(dx)

m(dz)

m(dx)

- B-E [TV(RTéx,W)] . X~

This completes the proof.

D.6 Proof of Proposition 3.1

Proof of Proposition 3.1. We first verify that the map defined in Algorithm 2 is 7-measure-preserving, invoking
the second part of Proposition 3.1. The algorithm has four steps (see Section 3); we compute the Jacobian of
each step. Steps 3-4 involve a discrete accept/reject decision, so we treat the two branches separately—within
a branch the transformation is a diffeomorphism, making the Jacobian well defined.

1. Step 1 describes constant shifts applied to uniform random variables, which preserves Unif{g 1) (du.,)
and Unif}g 17(dua) with Jacobian 1.
2. Step 2 is the CDF/inverse-CDF transformation of p(:|z). As long as the CDF F'(-|z) is well-defined,

this step describes a diffeomorphism in V X [0, 1]. The corresponding Jacobian is given by:
p(0lz)
p(vlz)

3. We analyze step 3 and 4 together. In the rejection branch, no additional transformation is applied, so
the Jacobian is 1. In the acceptance branch, step 3 involves the involution mapping, with Jacobian

|M|_1, and step 4 rescale u, by the MH-ratio r, yielding a combined Jacobian with step 3

oz, v

Hence, in the rejection branch, the combined jacobian of step 1-4 evaluated on s" = (z, v, u},, uq) is

p(a|‘r) _ 77-(1.7 ’67 u"IL” u‘l)

plz)  T(x,v,uv, ua)
In the acceptance branch, the combined jacobian of step 1-4 evaluated on s’ = (z', v’ u,,, uj) is
p(lz) T(x', V") w(x v, un, up)
p(’l}|ZC) %(x7m ﬁ(x7U7’u”UauO«) '

Both satisfy the criterion of Proposition 3.1; the map is therefore 7-measure-preserving.

Finally, we show uniqueness of the invariant distribution. By Douc et al. [53, Corollary 9.2.16], an irreducible
kernel has at most one invariant distribution. Because each fy preserves 7, the induced Markov kernel P must
admit 7 as an invariant distribution. If P is irreducible, then 7 is its unique invariant distribution.

O
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E Additional experimental details

For all homogeneous MixFlows variants, the uniform-shift parameters were fixed to 6, = 7 / 8and 0, =7 / 7.
For NUTS benchmarks, we use the Julia package AdvancedHMC. j1 [71] with default settings throughout. The
normalizing flow architectures were implemented as follows. In RealNVP, the affine coupling layers consist of
two separate multilayer perceptrons (MLPs)—one for scaling and one for shifting—each with three fully con-
nected layers and LeakyReLU activations. For Neural Spline Flows (NSF), we set the spline bandwidth
to B = 30, and used K = 11 knots. For synthetic examples, the hidden dimension in each MLP was set to 32
for RealNVP and 64 for NSF. For real-data examples, the hidden dimension was set to min(d, 64), where d is
the dimensionality of the target posterior distribution.

Experiments are conducted on the following platforms: a local machine equipped with an AMD Ryzen 9 5900X
CPU and 64 GB of RAM, the ARC Sockeye computing platform at the University of British Columbia, and the
high-performance compute cluster provided by the Digital Research Alliance of Canada. Code for reproducing
the main experimental results is available at: https://github.com/zuhengxu/MixFlow. jl.git.

E.1 Synthetic experiments
The four target distributions used in this experiment are as follows:

1. the banana distribution [63]:

_[w] 100 0 _ Y1 o1
y*{m] N<O’{0 1) 7 g+ byt — 10000 D= OE

2. Neals’ funnel [64]:
1 NN(O,O'Q) , T2 |x1 ~N(O,exp (%)) , o’ =36

3. across-shaped distribution: in particular, a Gaussian mixture of the form
1 o] [o.15% o 1 -2] [t o0
2= (B ) (BT o)
1 2] 10 1 01 [o0.15% o0]).
(0] b o))< (5[0 1))

4. and a warped Gaussian distribution
1
] a0t 0 _ [llyllz cos (atan2 (y2,y1) — L yll2)
oo R O N R e vt 1

where atan2(y, x) is the angle, in radians, between the positive z axis and the ray to the point (x, y).
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E.1.1 Relative performance of homogeneous, IRF, and backward IRF MixFlows
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Total-variation error for homogeneous, IRF, and backward IRF MixFlows built on RWMH kernels, plotted
against flow length T for the most performant step sizes among {0.05,0.2,1.0}. Each curve is the mean over
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32 independent runs; shaded bands (£1 SD) show run-to-run variability.
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Running mean estimates over 3000 iterates from different IRF and MCMC dynamics based on RWMH, eval-
uated on the Cross distribution across 32 independent runs. Each line represents the trajectory of a single run.
From top to bottom, the rows show the running mean of the test functions (1, z2) — 1, (x1,x2) — 22, and
(z1,m2) + L (z1,22). From left to right, the columns correspond to the dynamic of inverse IRF f; ', the
backward process of the inverse IRF, time-homogeneous dynamics fg+, and the standard RWMH MCMC.
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Per-sample MCMC effective sample size (ESS) estimates on the test function 22, computed from trajectories
generated by various IRF and MCMC dynamics based on HMC, MALA, and RWMH kernels. The trajectory
lengths are set to 300 for HMC-based dynamics, 2000 for MALA, and 4000 for RWMH. Each ESS value is
computed from a single trajectory, and the boxplots summarize the ESS estimates over 32 independent runs per
method. The per-sample ESS for i.i.d. samples will be 1.

Figure 5: Results showing difference between homogeneous, IRF, and backward IRF MixFlows

Fig. 5a compares the total variation (TV) errors of homogeneous, IRF, and backward IRF MixFlows con-
structed from RWMH kernels. Overall, homogeneous and backward IRF MixFlows perform similarly, though
the latter exhibits slightly improved accuracy at longer flow lengths. IRF MixFlow consistently outperforms
both, achieving faster TV convergence and lower variability across runs. As discussed in Section 4.5, this im-
provement stems from differences in the convergence behavior of the series K 9D (Tx(x)), where Tk
represents the sequence of transformations used in the density computation of each MixFlow variant.

Fig. 5b further illustrates this effect by showing running mean estimates over 3000 iterations for the Cross
distribution. From top to bottom, each row shows the mean of the test functions (z1, z2) — z1, (z1,%2) — T2,
and (z1,x2) — q?o(xl, x2). From left to right, the columns correspond to the inverse IRF f,~ ! (backward
IRF MixFlow), the backward process of the inverse IRF (IRF MixFlow), the time-homogeneous flow fg+
(homogeneous MixFlow), and standard RWMH MCMC. The backward process exhibits significantly faster
convergence in all cases, consistent with the superior TV performance of IRF MixFlows under equal flow
lengths. This advantage arises from reduced autocorrelation in the backward iterates.
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Fig. 5c reports the per-sample MCMC effective sample size (ESS) for the test function L2, estimated from
trajectories generated using various IRF and MCMC dynamics based on HMC, MALA, and RWMH. This
metric captures the degree of autocorrelation in 42 (T} (x)) across iterations. Backward process dynamics
consistently yield ESS values orders of magnitude higher than other methods—often approaching the ideal of
independent sampling, with relative ESS close to 1 in some cases.

E.1.2 Ensemble IRF MixFlows: scaling up M or T’
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Figure 6: TV error of ensemble IRF MixFlows based on HMC over increasing ensemble size M
and flow length T'. Each curve is the mean over 32 independent runs; shaded bands (1 SD) show
run-to-run variability.
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E.1.3 Additional results for synthetic examples
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Figure 7: Variational approximation quality of IRF Flows versus RealNVP and NSF. Box plots for
IRF flows are based on 32 independent runs, and 10 runs for the normalizing flows.
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E.2 Additional results for real-data experiments

To approximate the ground truth, we ran an AIS procedure with 4096 particles with adaptive schedule selection.
The initial temperature schedule was generated via mirror descent [72] with a small step size of 0.005; the
schedule was then refined for five rounds using the adaptive scheme of Syed et al. [73], yielding more than 1000
annealing steps for each data set. All reference values are taken as the median estimates across 10 independent
runs of the above procedure.
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Figure 8: Results on real-data benchmarks (columns, from left to right): TReg(d = 4),
Brownian(d = 32), SparseReg (d = 83), and LGCP (d = 1600)
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