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ABSTRACT

The classic recognition problem assumes that all possible classes in testing are
known in advance during training, which can be termed closed-set recognition
(CSR). As a natural extension, open-set recognition (OSR) requires models to re-
ject samples of unknown classes that are not encountered in the training phase.
Traditional discriminative models struggle to learn decision boundaries for OSR
due to the absence of unknown samples. This has led to existing methods focusing
on either CSR or OSR, as optimizing one often results in performance degrada-
tion of the other. In this paper, we offer a formalization for OSR based on learning
theory, demonstrating that CSR and OSR share the same goal for generative mod-
els. Motivated by this core insight, we introduce a neural Latent Gaussian Mixture
Model (L-GMM) accompanied by a collaborative training algorithm. The model
consists of an encoder that maps inputs to a latent space, and a density estimator
that computes probability densities. The end-to-end training algorithm, designed
in a collaborative manner, learns the density estimator through maximum likeli-
hood estimation and trains the encoder using a discriminative loss derived from
the generative model. This framework yields a model capable of performing both
CSR and OSR. Experimental results show that L-GMM outperforms its discrim-
inative counterparts in image recognition and segmentation in CSR with models
trained from scratch. These models also outperform other specialized methods
when directly applied to OSR without any modifications or prior knowledge.

1 INTRODUCTION

In recognition problems, most models operate under the closed-set assumption [44; 28; 80], i.e., all
test samples are drawn from known classes that have been seen in the training phase. In open-set
scenarios, however, test samples from unknown classes should be rejected [10; 72; 91; 4; 76; 103;
11]. The fundamental challenge of OSR lies in the unobservability of unknown data distribution.

Since it is infeasible to learn feature representations of unknown data, typical OSR solutions train
discriminative models with cross-entropy loss on known classes. During testing, a thresholding of
the softmax probability is employed to decide if a sample should be rejected. Although some variants
have been developed to better utilize the softmax scores [24; 65], these methods generally face two
limitations: (1) learning decision boundaries between known classes may not be sufficient to identify
outlier classes [103; 6; 104; 37], and (2) for these methods to function, samples of unknown classes
should exhibit a uniform probability distribution over the known classes [11]. Consequently, most
existing methods consider CSR and OSR as tradeoffs [65; 110] and approach them separately.

In this paper, we reexamine the nature of OSR and its relation to CSR. We formulate the risk of both
problems (§3) in a more principled manner than existing formalizations [76; 11]. By investigating
the risks, we show that the goals of CSR and OSR are identical for generative models: both risks
can be minimized by applying maximum likelihood estimation on training data of known classes
(§ 3.3). Discriminative probabilities for recognition can thereby be obtained via the Bayes rule.

As it is practically challenging to learn an almost perfect generative model in high-dimensional
spaces, we propose a latent generative model with a collaborative training algorithm for both CSR
and OSR for real-world data (§2). The model is composed of two parts: an encoder that maps
the input sample to a latent space, and a density estimator that outputs a probability of the latent
variable. This model offers two advantages. (1) The latent variable may lie in a lower-dimensional
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space compared to the input, hence its distribution might be approximated more precisely. (2) We
can assume a closed-form distribution for the latent variable by adding constraints to the training
process so that we can easily compute the probability. Specifically, we use a neural Gaussian Mixture
Model as the density estimator for the latent variable, naming our method L-GMM.

(I) Discriminative model (III) L-GMM(II) Traditional 

... ... ...

Closed-set data Open-set data

... ... ...

Closed-set data Open-set data
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Figure 1: Discriminative: most recognition models fo-
cus on modeling the decision boundaries between known
classes and struggles with OSR problems. Traditional:
generative models for recognition are usually trained with
a mixed objective. L-GMM: our latent generative model
(§2.2) preserves the generative nature that models the data
density and handles both CSR and OSR. The yellow scatter
points stand for open-set data, while the other three colors
(i.e., green, blue, and red) represent closed-set data.

This latent generative model is
deeply integrated with a collabora-
tive training scheme. The fully end-
to-end framework is driven by two
forces. In a single pass, the gener-
ative learning part learns the den-
sity estimator by maximum likeli-
hood estimation, and the discrimina-
tive learning part trains the encoder.
In this way, the two components are
decoupled but highly synchronized
by the latent representation, which
needs to attain both a generative ca-
pacity and a discriminative power.
The discriminative power establishes
the basis for CSR, and the genera-
tive capacity makes OSR possible.
This framework can also maximize
(1) the divergence between the latent
densities of different classes, and (2)
the mutual information between la-
tent variables and output classes.

Our experiments show that L-GMM is effective on both CSR and OSR. In §5.1, with ResNet
[29] and Swin [58] backbone architectures, L-GMM outperforms its discriminative counterparts
on closed-set image classification, by training from scratch. Using the same model instance trained
previously, in §5.2 we show competitive results on open-set image recognition tasks. We present
similar results on closed-set and open-set image semantic segmentation in §5.3 and §5.4.

Overall, this paper makes three main contributions. First, we formulate the learning-theoretic risks
for both CSR and OSR problems and show that generative models minimize both risks by MLE on
known classes, advocating learning a single model for both scenarios. Second, we design a latent
generative framework that integrates a latent generative model with a collaborative training scheme.
Third, we demonstrate advanced performance on both CSR and OSR tasks by one single model
instance of L-GMM, a concrete example of the proposed framework. Our code will be released.

2 METHODOLOGY

We aim to build a recognition model that can be directly used in open-set scenarios after training
with closed-set datasets. Intuitively, generative models may be preferable over discriminative ones
because they learn the boundaries of distributions. In this section, we propose our latent generative
model and its accompanied training scheme. In §3, we will show that generative models learned by
maximum likelihood estimation minimize the recognition risks for both CSR and OSR.

2.1 LATENT GENERATIVE MODELS WITH COLLABORATIVE TRAINING

We can obtain a discriminative probability from a generative model via the Bayes rule:

p(y|x) = p(x|y)p(y)∑
y p(x|y)p(y)

, (1)

where x is a data sample and y is a class label. Since the prior probabilities p(y) are typically set as
uniform distributions (also in our case), the core part is to learn the data distribution p(x|y). How-
ever, modeling the distribution of real-world data can be challenging due to its high dimensionality
and complexity. To alleviate this, we propose a latent generative model composed of two parts: (1)an
encoder fϕ(·) that maps the input x to a latent variable z = fϕ(x), and (2) a probabilistic generative
model pθ(z|y) that outputs a probability density of the latent variable given the label y.
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Figure 2: In a single pass of L-GMM, the density estimator is updated by generative learning, and
the encoder is driven by discriminative learning. Thus the framework learns a latent representation
with the benefits of both generative and discriminative models through collaborative training.

The above model structure has three advantages. (1) We can constrain the latent variable to con-
form to any desired distributions. (2) z may have a lower dimensionality compared to x, hence the
distribution might be approximated more precisely by the density estimator. (3) We can assume
a closed-form distribution for z so that we can easily compute the probability as well as add con-
straints to the training process. Ideally, the encoder produces discriminative features for both CSR
and OSR, and the density estimator lays the foundation to recognize samples from unknown classes.

We propose to learn this latent generative model through a collaborative training scheme by adding
an auxiliary discriminative loss. In a single pass, the model parameters θ and ϕ are updated concur-
rently, driven by two forces to exploit the strengths of both generative and discriminative models:

Generative Learning. We update θ of the density model pθ(z|y) by:
maximizeθ Ep(x,y)[log pθ(z = fϕ(x)|y)], (2)

where p(x, y) denotes the true distribution of (x, y), which can be approximated by sample average.

Discriminative Learning. We update ϕ of the encoder fϕ(x) by:
maximizeϕ Ep(x,y)[log pθ(y|z = fϕ(x))], (3)

which is equivalent to minimizing the cross-entropy loss on the discriminative probability.

This algorithm learns an intermediate representation that achieves a generative capacity as well as a
discriminative power. Intuitively, the generative objective empowers the model with open-set robust-
ness, and the discriminative objective learns a distinctive latent representation. This framework also
maximizes (1) the divergence between the latent densities of different classes, and (2) the mutual
information between latent variables and classes. Please see the supplementary for more details.

Discussion. When considering the hybrid training of the generative and discriminative model, ex-
isting methods [97; 84; 103; 25] typically update the entire model using a loss function of the form
λDLD + λGLG, where the subscripts D and G stand for discriminative and generative components
with weight factors λD and λG (Figure 1). In contrast, we adopt a different approach by updating
the generative model solely through the unified objective (MLE) with the underlying discrimina-
tive features learned by, while keeping the entire framework end-to-end. This novel combination
preserves the generative nature of our architecture with additional discriminative power.

2.2 LATENT GAUSSIAN MIXTURE MODEL (L-GMM)

As a concrete realization, we use the Gaussian Mixture Model (GMM) as the generative model
pθ(z|y) of the latent space and obtain L-GMM (Figure 2). The reason is threefold: (1) GMM
is a universal approximator for densities, (2) GMM has a closed-form formulation and guarantees∫
X p(x|y)dx = 1 hence minimizes the risk ( Proposition 1), and (3) the multi-modal nature of GMM

avoids mode collapse of the latent space. Specifically, L-GMM computes a closed-form density:

pθ(z|y) =
∑

k
p(k|y;πy)p(z|k;µyk,σyk)

=
∑

k
πykN (z;µyk,σyk),

(4)

where k|y ∼ Mult(πk) is the prior probability of assigning z to mixture component k, i.e.,∑
k πyk = 1. µyk and σyk are the mean and covariance matrix for the k-th component of class

y. With the prior distribution pθ(y) = πy , we have the parameters of the generative model defined:
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θ = {πy, πyk,µyk,σyk}y,k. Here π can be estimated by maximum likelihood, which can be com-
puted by counting the frequency of examples that fall into different classes/mixture components, and
µ,σ can be updated by gradient-based algorithms. We design the collaborative training algorithm
for L-GMM as follows to learn a non-degenerate GMM with discriminative power.

Generative Learning. We update θ of the generative model by minimizing:
LG = −Lmle + λoneLone + λavgLavg, (5)

where −Lmle is the negative log-likelihood, λone and λavg are the coefficients for the regularizing
loss functions. The regularizer Lone computes the mean squared error between the best component
assignment (i.e., a one-hot vector) and the actual assignment, and Lavg computes the Wasserstein
distance W(·) between π and the uniform distribution:

Lmle =
∑

(x,y)
log(

∑
k
πykN (fϕ(x);µyk, σyk)),

Lone =
∑

(x,y,k)
(p(k|fϕ(x), y)− 1(k = k∗))2,

Lavg =
∑

y
W(p(k|y), U(K)).

(6)

Here 1 is the indicator function, and k∗ is the mixture component that has the highest probability.
U(K) is a discrete uniform distribution of K mixture components. Lone encourages a sample to
be assigned to only one component, and Lavg encourages the data samples to be evenly distributed
among mixture components. Intuitively, Lone and Lavg are adding constraints to the Gaussian
mixture model to avoid the model collapsing into a single Gaussian distribution, so that it can better
capture the underlying modes of the latent representation from the same class.

Discriminative Learning. We update ϕ of the encoder by minimizing the cross-entropy loss:

LD=−
∑
(x,y)

log

K∑
k=1

πykN (fϕ(x);µyk,σyk)

C∑
y′=1

πy′
K∑
k=1

πy′kN (fϕ(x);µy′k,σy′k)

. (7)

During inference, the out-of-detection data are recognized by applying a threshold to the probability.

L-GMM with the above training scheme can be applied to both CSR and OSR. (1) By learning
a generative density on the latent representation, L-GMM is built with the capability to recognize
samples of unknown classes. (2) The feature space is discriminatively trained end-to-end under the
guidance of the generative classifier, hence L-GMM learns a powerful representation for recognition.

3 CLOSED-SET RECOGNITION AND OPEN-SET RECOGNITION

In this section, we revisit CSR and OSR from a learning-theoretic perspective, which provides the
core insight that motivates our method in §2: generative models minimize the risk for both tasks.

3.1 EXISTING PROBLEM FORMULATION AND ITS LIMITATIONS

The OSR problem was initially formulated in [76]. Let f ∈ H be a model in a function space H
and fy(x) is the confidence of an input x being class y. The authors define an open space risk as

RO(fy) =

∫
O fy(x)dx∫
SO

fy(x)dx
, (8)

where O is the open space that is sufficiently far from any known positive samples, and SO is a
ball that includes all of the positive examples as well as the open space. The open space risk is
a relative measure of positively labeled open space compared to the overall measure of positively
labeled space. Then the goal of OSR is to find a recognition model that minimizes an open set risk:

argminf∈H RO(fy) + λrRE(fy), (9)

where RE(fy) = 1
n

∑n
i=1 L(f(xi), yi) is the empirical risk on the closed-set data, L(·) is a loss

function, and λr is a regularization coefficient. However, this risk definition has several limitations.
(1) The ratio form of RO is inconsistent with RE . (2) RO is not principled since it ignores the loss
function by giving a fixed form of the risk. (3) Most importantly, it defines the CSR objective RE as
a tradeoff; it is a regularization term in OSR, which may be a biased view of both CSR and OSR.
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3.2 A LEARNING-THEORETIC FORMULATION

We formulate a risk definition extending the traditional one in learning theory [89] from CSR to
OSR, providing a different and more principled perspective on this problem. In CSR, a model f(·)
is trained to predict whether an observation x ∈ XC belongs to a class y ∈ C. Here C is the set of
known discrete classes seen in the training phase and XC is the corresponding input space. In many
cases, the model f approximates a probability distribution, which can be either a discriminative
p(y|x) or a generative model p(x|y). In learning theory, the risk is defined as the expected loss:

Rcsr(f) = Ep(x,y)[L(fy(x), y)] =

∫
C

∫
XC

p(x, y)L(fy(x), y)dxdy, (10)

where some common choices for the loss function L(·) are the cross-entropy loss for discriminative
models and the negative log-likelihood for generative models. To find the best f that minimizes
the risk, the true risk is approximated in training by the empirical risk RE . It can be shown that
the empirical risk converges to the true risk when we have enough training data [89], under the
assumption of CSR that all test inputs come from the same distribution as the training samples.

In OSR, test inputs may come from unseen classes U , making x ∈ XC ∪ XU and y ∈ C ∪ U . Now:

Rosr(f) =

∫
C∪U

∫
XC∪XU

p(x, y)L(fy(x), y)dxdy

=

∫
C

∫
XC

p(x, y)L(fy(x), y)dxdy︸ ︷︷ ︸
Rcsr

+

∫
U

∫
XU

p(x, y)L(fy(x), y)dxdy︸ ︷︷ ︸
Rgap

(11)

where the first term Rcsr can be approximated by the empirical risk, and the second term Rgap is the
gap between CSR and OSR. Therefore models trained with closed-set datasets that minimize Remp

are not guaranteed to minimize Rosr.

One important question here is: what is a good loss function that involves unknown classes? Since
the goal of OSR is to reject samples from unknown classes, the loss function should output a high
cost when the model assigns a high probability for the sample to be any known class. We define:
Definition 1. A loss function L is open-set safe if it satisfies the following condition. Consider
any sample x ∈ XU of an unknown class y ∈ U , we have: f∗ = argminf∈H L(f(x), y) ⇐⇒
∀yc ∈ C, f∗ = argminf∈H fyc

(x).

For example, an open-set safe L for discriminative models fy(x) = q(y|x) can be:

L(f(x), y) =

{− log q(y|x) x ∈ XC , y ∈ C,
maxyc∈C log q(yc|x) x ∈ XU , y ∈ U .

(12)

One can switch the max operator with sum or average operators, the loss functions would also be
open-set safe: any sample of unknown classes still should have a low score for any known class.

3.3 GENERATIVE MODELS MINIMIZE RECOGNITION RISK

In this section, we show that the goals of CSR and OSR are aligned for generative models.
Proposition 1. For generative models fy(x) = q(x|y) that approximates the true distribution
p(x|y), the OSR risk Rosr with an open-set safe loss can be minimized asymptotically by MLE
on data of known classes: argmaxf∈H

∫
C
∫
XC

p(x, y) log fy(x)dxdy = argminf∈H Rosr(f).

Proof. The MLE objective directly minimizes Rcsr by minimizing Remp. Since Rosr = Rcsr +
Rgap, the proposition holds if MLE also minimizes Rgap. For the training data x ∈ XC , y ∈ C, we
have

f∗ = argmaxf Ep[log fy(x)] = argmaxf H(p(x|y))−DKL(p∥q) = argminf DKL(p∥q) (13)
where H denotes the information entropy and H(p(x|y)) is a constant. We can see that f∗ also
minimizes DKL(p∥q). Therefore f∗ = q∗(x|y) = p(x|y) on known classes for x ∈ XC and y ∈ C.

Suppose we test f∗ in the OSR setting, i.e., x ∈ XC ∪ XU . Consider a sample x ∈ XU and y ∈ C:

q∗(x|y) ≤
∫
XU

q∗(x|y)dx = 1−
∫
XC

q∗(x|y)dx = 1−
∫
XC

p(x|y)dx = 0. (14)

For f∗, we have ∀x ∈ XU , y ∈ C, q(x|y) = 0. Thus f∗ minimizes the open-set safe loss L according
to Definition 1 for y ∈ U , and thereby minimizes Rgap and Rosr (Equation 11).
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4 RELATED WORK
Open-set Recognition. Existing solutions to OSR can be classified into two categories: discrim-
inative and generative methods. Discriminative methods, prior to the advent of deep learning,
exhibited subpar performance without meticulous feature engineering [77; 78; 102; 39]. Recent
deep-learning-based models bring more appealing results, and can be categorized into two groups.
I. Classification-based methods largely rely on classifiers. Methods such as [31] firstly proposed
the detection of open-set examples by demonstrating that anomalous samples have a lower maximum
softmax probability than in-distribution samples and [53] introduced ODIN to enable more-effective
detection from gradient information. Other methods refer to outlier exposure to help models learn
open/closed-set discrepancy [32; 12], which requires a re-training step on classification, resulting in
performance degradation. II. Distance-based methods uses different distance metrics, i.e., radial
basis function kernel [88], Euclidean distance [35] or KL distance [33] to identify out-of-distribution
examples. Generative methods, on the other hand, falls into density-based methods, which ex-
plicitly model the in-distribution with some probabilistic models, and leave test data in low-density
regions. Methods such as flow-based methods [42; 40] estimate the in-distribution directly, identify
out-of-distribution examples by likelihoods, and classify examples using discriminative models.

With a collaborative training strategy, L-GMM gains benefit from its generative nature and therefore
handles open-set problems naturally, with neither external datasets of outliers [111; 32], nor specif-
ically designed distance metrics [85; 15]. It also differs from most uncertainty classification-based
methods that utilize post-processing to adjust the prediction scores of softmax-based classification
networks[32; 26; 71]. The most relevant ones to our work are density-based models[103; 70], which
measure the likelihood ratio of samples directly w.r.t. data distribution. However, they are built upon
pre-trained representation [7] or specialized for OSR [103], ignoring the closed-set performance.

Generative vs Discriminative Classifiers. Generative and discriminative classifiers represent two
ways of solving classification tasks [61]. Generally, the generative classifiers (e.g., naive Bayes)
learn the class densities p(x|y), while the discriminative classifiers (e.g., softmax) learn the class
boundaries p(y|x) without regard to the underlying class densities. In practical classification tasks,
softmax discriminative classifiers are used extensively [61], due to their simplicity and excellent
performance. Nonetheless, generative classifiers have several advantages over their discriminative
counterparts [9; 52] (e.g., accurately modeling the input distribution, and explicitly identifying un-
likely inputs in a natural way). Some of the recent work[3; 14] therefore investigates the potential
(and the limitation) of generative classifiers in adversarial example defense[81; 51; 23], explainable
AI[61], out-of-distribution detection [79; 63; 38; 5], and semi-supervised learning[64; 36].

The discriminative models and the generative models are mutually related [45; 62]. According
to [45], the only difference between these models is their statistical parameter constraints. Intu-
itively, given a generative model, we can derive a corresponding discriminative model, which makes
it possible to get the best of two worlds by training both models jointly. The hybrid training pro-
cedure has long been claimed even before the deep learning evaluation [45; 69]. However, hybrid
training approaches continue to encounter several limitations that prevent their widespread imple-
mentation in both closed and open-set scenarios: Methods like [27] are discriminatively trained;
some provide limited performance on naive datasets [64; 69]; [90; 56] are kernel-based methods
which simply applied the last layer of DNN as the GMM representation; [74; 20] separately train
DNNs for feature representations, which are then fed into independently trained GMM. More im-
portantly, most of these methods focus on single (open/closed-set) task [64; 86; 67], ignoring the
availability proofs on both OSR and CSR tasks. The experiences from previous arts serve as the
impetus for our current work, which proposes accommodating both OSR and CSR simultaneously.

5 EXPERIMENTS
We respectively examine the performance and robustness of L-GMM on CSR (§5.1, §5.3) and OSR
(§5.2, §5.4) on image classification and segmentation. For both tasks, we first train the model from
scratch under the CSR setting. Then we directly apply the trained model to OSR problems without
further changes or fine-tuning. Overall, the experiments demonstrate that L-GMM performs better
than its discriminative counterparts on CSR and other competitive methods on OSR.

5.1 CLOSED-SET IMAGE CLASSIFICATION

Datasets. The evaluation for closed-set image classification is carried out on three commonly used
datasets, i.e., CIFAR-10 [43], CIFAR-100 [43] and ImageNet [73].
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Table 1: Closed-set image classification top-1 accuracy on CIFAR-10 [43] test and CIFAR-100
[43]test (§5.1). The error bars are based on three randomized runs (same for Table 2)).

Dataset Method Backbone top-1

CIFAR-10

ResNet [29] ResNet50 95.55 ± (0.09)%
L-GMM-ResNet 95.67 ± (0.08)%
ResNet [29] ResNet101 95.58 ± (0.10)%
L-GMM-ResNet 95.77 ± (0.09)%

CIFAR-100

ResNet [29] ResNet50 79.81 ± (0.12)%
L-GMM-ResNet 79.98 ± (0.08)%
ResNet [29] ResNet101 79.83 ± (0.11)%
L-GMM-ResNet 80.15 ± (0.10)%

Table 2: Closed-set image classification top-1 and top-5 accuracy on ImageNet [73] val (see
§5.1). Further results on alternative encoders are available in Appendix.

Method Backbone top-1 top-5

ResNet [29] ResNet101 77.52 ± (0.12)% 93.06% ± (0.10)%
L-GMM-ResNet 77.83 ± (0.12)% 93.20% ± (0.09)%
Swin [58] Swin-B 83.36 ± (0.10)% 96.44% ± (0.08)%
L-GMM-Swin 83.47 ± (0.09)% 96.71% ± (0.08)%

Network Architecture. L-GMM is crafted on CNN-based ResNet50/101 [29] and Transformer-
based Swin-Small/Base [58]. We remove the last linear classification layer and add a simple convo-
lutional layer to reduce the dimension to 128. This acts as the feature encoder that maps the input
samples to a latent space (§2.2). For the density estimator, we directly optimize the GMM parame-
ters (§2.2) by backpropagation. The default configurations are adopted for training from scratch.
Results. Table 1 compares L-GMM with its discriminate counterpart on CIFAR-10 and CIFAR-
100 test, based on the most representative CNN network architecture, i.e., ResNet. As seen, L-
GMM gains consistently better performance than its discriminative counterpart: L-GMM is 0.12%
higher on ResNet50, and 0.19% higher on ResNet101. Similarly on CIFAR-100, L-GMM is 0.17%
higher on ResNet50, and 0.32% higher on ResNet101. We further show comparison results on
ImageNet val on Table 2. L-GMM shows strong performance over various network architectures.
Specifically, in terms of top-1 acc., our L-GMM surpasses the discriminative counterpart by 0.32%
on ResNet101. L-GMM also gives compelling performance over Transformer architecture, i.e.,
83.47% vs 83.36% on Swin-B. We provide corresponding error bars by training three times, with
different initialization seeds in Table 1 and Table 2. With the same backbone architecture and train-
ing settings, one can safely attribute the closed-set performance gain to L-GMM.

5.2 OPEN-SET IMAGE RECOGNITION

We evaluate the performance of our L-GMM on standard datasets used for open-set recognition
and compare with state-of-the art methods. The results include performance on out-of-distribution
recognition and open-set recognition tasks, respectively.

Datasets. Following common practices, we evaluate on five out-of-distribution datasets (i.e., Tiny-
ImageNet (Crop) [47], TinyImageNet (Resize) [47], LSUN (Crop) [100], LSUN (Resize) [100] and
iSUN [96]), and two open-set recognition datasets (i.e., CIFAR+10 [43] and TinyImageNet [47]).
Experiment Protocol. For out-of-distribution recognition, we use the models trained in the closed-
set setting (§5.1,Table 1): ResNet101 trained on CIFAR-10 and CIFAR-100 train only, respec-
tively. For open-set recognition, all results are applied to ResNet34 as the encoder backbone follow-
ing common practices [25; 83; 11].
Evaluation Metrics. In Table 3, we apply the area under receiver operating characteristics (AU-
ROC), and false positive rate (FPR95) at a true positive rate of 95%. In supplementary §C.3, we
provide results on out-of-distribution recognition using additional evaluation metrics. We follow
[31; 49] for the experimental setup. The AUROC is also applied in open-set recognition tasks.
Results. On Table 3, we show an overall comparison of various methods that are trained with/without
out-of-distribution data with five out-of-distribution benchmark datasets. In particular, we consider
maximum softmax probability (MSP) [31], ODIN* [34], KL Matching [33] and ODIN [53]. For
fairness, methods other than ODIN do not incorporate out-of-distribution data for tuning. Follow-
ing [34], ODIN* is the modified version that does not need any out-of-distribution data for tun-
ing while ODIN refers to out-of-distribution data during inference. The results show that L-GMM
provides competitive performance on out-of-distribution detection, it reaches first or second place
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Table 3: Out-of-distribution recognition results for in-distribution datasets CIFAR-10 [43] and
CIFAR-100 [43] on five out-of-distribution datasets. ODIN* is the modified version of ODIN pro-
vided in [34] that does not need any out-of-distribution data for tuning. All values are percentages
averaged over three runs, and the best results are indicated in bold. Additional results on out-of-
distribution data using other evaluation metrics are available in supplementary (see §5.2).

ID OOD AUROC ↑ FPR95 ↓
Methods: MSP / ODIN* / KL Matching / ODIN / Ours

CIFAR-10

iSUN [96] 93.99 / 93.70 / 89.72 / 94.49 / 95.62 45.51 / 37.01 / 52.69 / 31.60 / 28.96
LSUN (C.) [100] 93.73 / 94.05 / 90.16 / 93.77 / 94.45 43.31 / 33.88 / 46.62 / 34.82 / 30.30
LSUN (R.) [100] 89.96 / 90.88 / 86.89 / 92.24 / 92.83 43.43 / 37.16 / 46.96 / 31.82 / 26.60
TinyImg. (C.) [47] 93.30 / 93.49 / 90.67 / 94.11 / 93.53 47.46 / 39.57 / 53.79 / 35.42 / 34.38
TinyImg. (R.) [47] 92.91 / 92.66 / 89.03 / 93.48 / 93.54 50.31 / 43.98 / 54.13 / 38.14 / 34.61

CIFAR-100

iSUN [96] 79.29 / 81.80 / 77.31 / 83.70 / 85.24 76.78 / 76.51 / 75.29 / 71.43 / 69.07
LSUN (C.) [100] 75.49 / 83.21 / 76.31 / 82.64 / 81.88 80.69 / 74.06 / 79.47 / 75.04 / 73.53
LSUN (R.) [100] 73.29 / 82.24 / 78.32 / 84.11 / 85.90 82.90 / 75.57 / 78.35 / 70.51 / 67.36
TinyImg. (C.) [47] 74.71 / 84.24 / 71.01 / 85.51 / 87.84 81.34 / 68.64 / 81.03 / 64.54 / 60.58
TinyImg. (R.) [47] 80.34 / 82.94 / 78.21 / 84.84 / 87.17 78.81 / 72.65 / 77.31 / 67.16 / 62.96

Table 4: Open-set classification results on CIFAR+10 [43] and TinyImageNet [47].

Dataset MSP [31] OpenMax [5] G-OpenMax [24] OSRCI [65] CROSR [98] CGDL [84] GFROR [67] Ours
CIFAR+10 [43] 0.677 0.695 0.675 0.699 - 0.681 0.831 0.833
TinyImageNet [47] 0.577 0.576 0.580 0.586 0.589 0.653 0.657 0.681

among all methods introduced in Table 3. More impressively, it even outperforms ODIN [53], which
is a gradient-based method that refers to out-of-distribution data for calibration during inference.

For completeness on the open-set problems, we further compare our L-GMM with [5; 24; 65; 98;
84; 67] on two standard OSR datasets: CIFAR+10 and TinyImageNet [47] in Table 4. Following
common practices [103; 67; 25], we report AUROC scores on the detection of known and unknown
samples. The results show that L-GMM does enjoy strong performance gain with other state-of-the-
art methods, while benefiting from an elegant, single model for scenarios.

5.3 CLOSED-SET IMAGE SEGMENTATION

Table 5: Closed-set semantic segmentation re-
sults on ADE20K [109]val and Cityscapes [19]
val with mIOU. ∗: pre-trained on ImageNet 21K;
⋆: utilizing a larger crop size, i.e., 640× 640.

Method Backbone ADE20K Citys.
FCN [59] ResNet101 39.9% 75.5%
PSPNet [105] ResNet101 44.4% 79.8%
SETR [107] ViTLarge∗ 48.2% 79.2%
Segmenter [82] ViTLarge∗ 51.8%⋆ 79.1%
MaskFormer [16] SwinBase∗ 52.7%⋆ -
DeepLabV3+ [13] ResNet101 45.5% 80.6%
L-GMM-DeepLabV3+ 46.4% 81.3%
Segformer [95] MiTBase

50.0% 82.0%
L-GMM-Segformer 50.7% 82.5%

Datasets. The evaluation for semantic image
segmentation is carried out on two datasets:
ADE20K [109] and Cityscapes [19].
Architecture. L-GMM is evaluated
on the renowned segmentation models:
DeepLabV3+ [13] and Segformer [95], using
ResNet101 [29] and MiT [95] as backbones, re-
spectively. For fairness, all models are trained
by standardized hyper-parameters [55; 93; 92].
Results. Table 5 demonstrates our quan-
titative results. We include five widely
recognized methods [59; 105; 107; 82; 16] for
a complete experiment setup. Our L-GMM
outperforms its discriminative counterparts
across two datasets, i.e., with DeepLabV3+:
46.4% vs 45.5% on ADE20K and 81.0% vs 80.6% on Cityscapes, and other competitive methods.
Similar performance, i.e., 50.7% vs 50.0% and 82.5% vs 82.0% on two datasets are also obtained
with Segformer architecture.

5.4 OPEN-SET IMAGE SEGMENTATION

Datasets. We apply Fishyscapes Lost&Found [7] and Road Anomaly [54] for evaluation.
Experiment Protocol. Following [31; 41; 57], we adopt ResNet101-DeepLabV3+ architecture. For
completeness, we also report the results on MiTBase-Segformer. All models are initially trained in
§5.3 and do not require further change for open-set image segmentation.
Evaluation Metrics. Following the standard practice [41; 94; 52; 7], we use three evaluation metrics
in Table 6: the area under receiver operating characteristics (AUROC), the average precision (AP),
and the false positive rate (FPR95) at a true positive rate of 95%.
Results. As shown in Table 6, based on DeepLabV3+ architecture, L-GMM provides advanced
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Table 6: Open-set segmentation results on Fishyscapes Lost&Found [7] and Road Anomaly [54].
⋆: methods with confidence derived from a generative formulation (see §5.4).

Fishyscapes Lost&Found Road AnomalyMethod DeepLabV3+ Extra Resyn. OOD Data mIOU
AUROC ↑ AP ↑ FPR95 ↓ AUROC ↑ AP ↑ FPR95 ↓

SynthCP [94] ✔ ✔ ✔ 80.6 88.34 6.54 45.95 76.08 24.86 64.69
SynBoost [22] ✔ ✔ ✔ - 96.21 60.58 31.02 81.91 38.21 64.75
MSP [31] ✔ ✗ ✗ 80.6 86.99 6.02 45.63 73.76 20.59 68.44
Entropy [31] ✔ ✗ ✗ 80.6 88.32 13.91 44.85 75.12 22.38 68.15
SML [41] ✔ ✗ ✗ 80.6 96.88 36.55 14.53 81.96 25.82 49.74
Mahalanobis⋆ [49] ✔ ✗ ✗ 80.6 92.51 27.83 30.17 76.73 22.85 59.20
L-GMM-DeepLabV3+⋆ ✔ ✗ ✗ 81.3 97.31 45.42 14.15 85.01 34.73 48.21
L-GMM-Segformer⋆ ✗ ✗ ✗ 82.5 97.76 48.75 13.21 89.41 58.13 45.29

Table 7: Diagnostic experiments for L-GMM (see §5.5).

L-GMM top-1

Generative-only 78.08%
Collab. training 80.15%

(a) L-GMM training (b) Collaborative training

(c) Loss components (d) Gaussian components

L-GMM top-1 Collapse
ResNet101 + GMM 77.73% ✔

Collab. training 80.15% ✗

Loss Components
Lmle Lone Lavg

top-1

✔ 79.97%
✔ ✔ 80.02%
✔ ✔ ✔ 80.15%

# Components G top-1

G = 1 79.99%
G = 2 80.04%
G = 3 80.15%
G = 4 80.09%

results over all the competitors under the same setting, i.e., neither external out-of-distribution data
nor an additional resynthesis module is applied. [31; 41; 48] are methods based on pre-trained
discriminative segmentation models, requiring post-calibration during open-set segmentation. L-
GMM, on the other hand, derives confidence scores directly from likelihood. Mahalanobis [48]
similarity is a method that also models data density. However, it constructs over pre-trained feature
space with a single Gaussian component per class, ignoring the inner distribution of each class [106;
27; 52; 2]. When adopting SegFormer, better performance is achieved.

5.5 DIAGNOSTIC EXPERIMENTS

We ablate core designs of L-GMM, using ResNet101 [29] on CIFAR-100 [43]. We follow the
standard training settings introduced in §5.1.
Generative-only L-GMM vs L-GMM. We first investigate the necessity of utilizing collaborative
training in Table 7(a). By adding the discriminative learning component, we observe a clear per-
formance improvement from the method with only generative learning (i.e., top-1 acc.: 78.08%
→ 80.15%). This proves that the collaborative training scheme is practically useful for learning a
distribution with high divergences between the classes, and hence improving the recognition results.
Collaborative Training. We further investigate the effectiveness of the training strategy. We study
a variant where a neural GMM is directly fitted onto the feature space pretrained by a softmax
classifier, i.e., the original RestNet101. In Table 7(b), We observe a clear performance drop,
i.e., top-1 acc.: 80.15% → 77.73%. This indicates that a better latent representation is learned
by collaborative training. We also find that the examples are concentrated on a single Gaussian
component per class, indicating the necessity of generative learning to distribute examples evenly
since discriminative models ignore within-class variation and collapse into a single component.
Loss Components. In Table 7(c), we further study the impact on three losses: Lmle, Lone and
Lavg introduced in §2.2. A clear performance gain is observed (i.e., 79.97% → 80.15%) with the
aid of Lavg and Lmle, which are incorporated to better capture the modes of data during training.
Number of Gaussian Components. We study the impact on the number of Gaussian components
in Table 7(d). When G = 1, each class is following the concept of unimodality, without considering
within-class variation. When increasing G from 1 to 3 leads to better performance (i.e., 79.99% →
80.15%). This supports our hypothesis that one single Gaussian component is insufficient to either
capture the underlying data distribution or consider within-class variation. We stop using G > 3
since the performance reduces owing to overparameterization.

6 CONCLUSION

In this work, we present a generic solution for CSR and OSR by means of L-GMM, which consists
of a latent generative model empowered by collaborative training. Our method has two advantages:
(1) the probability density model learns the data distribution that enables OSR, and (2) the feature
encoder learns the discriminative power and thus achieves promising CSR results. Exhaustive ex-
periments on two computer vision tasks validate the competitive performance of L-GMM in both
CSR and OSR settings with the single model instance trained in the closed-set setting.
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REPRODUCIBILITY STATEMENT

To help readers reproduce our results, we have described the implementation details and provided
pseudo-code in §G. We will release our source code after acceptance. All the datasets we use are
publicly available.
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SUMMARY OF THE APPENDIX

This supplementary contains additional details for the twelfth International Conference on Learning
Representations submission, titled “A Latent Generative Framework for Closed-set and Open-set
Recognition”. The supplementary is organized as follows:

• §A extends our discussion on the proposed latent generative framework.

• §B shows more information and results on closed-set image classification.

• §C shows more information and results on open-set image recognition.

• §D provides more information on closed-set image segmentation.

• §E provides more information and qualitative results on open-set image segmentation.

• §G presents the pseudo code and reproducibility of our code.

• §H is the discussion of legal/ethical considerations and limitations.

A MORE DISCUSSION ON THE FRAMEWORK

A.1 LATENT GENERATIVE MODEL VIA COLLABORATIVE TRAINING

Now we seek to understand the collaborative training algorithm. The generative learning part is
equivalent to minimizing the Kullback-Leibler divergence:

minimizeθDKL(p(z|y)∥pθ(z|y)), (15)

where z = fϕ(x), and p(y|z) is the true distribution.
To understand the discriminative learning part. In our case, z is low-dimensional. Assume p(z|y) is
closedly approximated by pθ(z|y) then this part minimizes the conditional entropy over ϕ:

Ep(x,y)[log pθ(y|z = fϕ(x))] ≈ −H(p(y|z = fϕ(x))). (16)

That is, we want to choose ϕ so that the conditional data distribution of y given z = fϕ(x) has the
lowest entropy or uncertainty.
For simplicity, we first assume p(y) = 1/C is uniform over all the C categories. We will discuss
the more general case later. For notational simplicity, let p(y)p(z|y) be the data distribution of
(y, z = fϕ(x)). Then minimizing the conditional entropy of p(y|z) is minimizing:

Ep(y,z)[− log p(y|z)]

= Ep(y,z)

[
− log

p(y)p(z|y)
p(z)

]
= logC +

1

C

∑
y
Ep(z|y)

[
− log

p(z|y)
p(z)

]
= logC − 1

C

∑
y
DKL(p(z|y)∥p(z)),

(17)

where p(z) =
∑

y p(z|y)p(y) is the mixture of the C class densities. Thus minimizing the condi-
tional entropy amounts to maximizing

∑
y DKL(p(z|y)∥p(z))/C, where p(z) =

∑
y p(y)p(z|y) =

1
C

∑
y p(z|y). This is a generalized version of Jensen-Shannon divergence (JS divergence)

JSD(P∥Q) = 1
2 (D(P∥M) + D(Q∥M)), where M = 1

2 (P + Q). That is, we want to find
z = fϕ(x) so that the divergence between the class densities p(z|y) is maximized.
In an open-set setting, suppose there are Ctotal categories, and the C categories in the training set is
a random sample from the Ctotal categories. Then the JS divergence calculated for the C categories
can be considered an approximation or estimation of the divergence calculated for all the Ctotal

categories.
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In the above derivation, we assume a uniform prior distribution over classes p(y) = 1/C. For a
more general prior class distribution, we have

Ep(y,z)[− log p(y|z)]

= Ep(y,z)

[
− log

p(y)p(z|y)
p(z)

]
= Ep(y)[− log p(y)] + Ep(y)Ep(z|y)

[
− log

p(z|y)
p(z)

]
= H(p(y))− Ep(y)DKL(p(z|y)∥p(z)).

(18)

The above is a more general version of the JS divergence.

We can also show that the discriminative learning part maximizes the mutual information between
y and z, since

Ep(y,z)[− log p(y|z)]

= Ep(y,z)

[
− log

p(y, z)

p(z)

]
= Ep(y,z)

[
− log

p(y, z)

p(z)p(y)
− log p(y)

]
=H(p(y))−DKL(p(y, z)∥p(y)p(z))
=H(p(y))− I(y, z),

(19)

where I(y, z) is the mutual information.

A.2 MORE ON L-GMM

The discussed qualities greatly distinguishes L-GMM from most existing GMM-based neural clas-
sifiers, which are either ignoring the joint optimization of DNN features together with the GMM
backend [30; 99; 74; 20] or building a GMM in the feature space on a pre-trained discriminative
classifier [49; 108; 50].

A.3 MORE ON GENERATIVE CLASSIFIERS

Early works such as [66; 87] compared the properties of generative classifiers vs discriminative
classifiers in theory and through experiments, with the agreement on the advantages of generative
classifiers. Works like [8; 6] presented models that combine the aspects of generative and discrim-
inative classifiers, to reach a more favorable trade-off compared to each extreme. However, these
works do not consider complex tasks, and with the unmatched performance later delivered by deep-
learning-based discriminative classifiers in the 2010s, generative classifiers became rarely used. Till
recently, some of the deep learning literature[3; 14] studies the potential (and limitations) of gener-
ative classifiers in various fields discussed in §4.

B CLOSED-SET IMAGE CLASSIFICATION

B.1 DATASETS

We show additional information on the closed-set classification datasets we applied in L-GMM.

• CIFAR-10 [43] contains 60K (50K/10K for train/test) 32×32 colored images of 10 classes.
• CIFAR-100 [43] contains 60K (50K/10K fortrain/test) 32×32 colored images of 100 classes.
• ImageNet [73] contains 1.2M images fortrain and 50K images forvalidation of 1K classes.

B.2 DETAILED TRAINING PROCEDURES

We use mmclassification1 as the codebase and adopt the default training settings. For CIFAR-
10, we train ResNet for 200 epochs, with batch size 16. For ImageNet, we train 100 and 300 epochs

1https://github.com/open-mmlab/mmclassification
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with batch size 16 for ResNet and Swin, respectively. The initial learning rates of ResNet and Swin
are set as 0.1 and 0.0005, scheduled by a step policy and polynomial annealing policy, respec-
tively. The memory size for L-GMM models is set as 2000 examples per class [93; 52]. All other
hyper-parameters are empirically set by default. All models are trained from scratch on eight Tesla
V100 GPUs.

B.3 ADDITIONAL RESULTS AND DIAGNOSTIC STUDY

Table 8 reports closed-set classification performance on ImageNet [73], using ResNet50 [29] and
Swin-S [58] architectures. As can be seen, L-GMM again attributes decent performance. In partic-
ular, our L-GMM is 0.31% and 0.15% higher on ResNet50 and Swin-S, respectively.

We further study the influence of output dimensionality discussed in §6.1 from our paper. We follow
our diagnostic study using ResNet101 [29] on CIFAR-100 [43] for consistency. The number of
Gaussian components G is set to G = 3 and we remain other experimental settings the same. In
Table 9, with the dimension reduced to 128, it is enough for L-GMM to model the data distribution
precisely, a higher dimension (i.e., dimension=256) reaches the performance saturating point.
Table 8: Closed-set image classification top-1 and top-5 accuracy on ImageNet [73] val with
standard deviation error bars on three runs with different initialization seeds.

Method Backbone top-1 top-5

ResNet [29] ResNet50 76.20 ± (0.10)% 93.01%
L-GMM-ResNet 76.51 ± (0.09)% 93.03%
Swin [58] Swin-S 83.02 ± (0.14)% 96.29%
L-GMM-Swin 83.17 ± (0.14)% 96.42%

C OPEN-SET IMAGE RECOGNITION

C.1 EVALUATION METRICS

Here we present the evaluation metrics applied in Table 1 from our paper, and Table 10.

• True negative rate (TNR) at 95% true positive rate (TPR). Let TP , TN , FP , and FN denote
true positive, true negative, false positive and false negative, respectively. We measure TNR =
TN/(FP + TN), when TPR = TP/(TP + FN) at 95%.

• Area under the receiver operating characteristic curve (AUROC). It describes the relation
between TPR and FPR interpreted as the probability of a positive sample being assigned a
higher score than a negative sample.

• Area under the precision-recall curve (AUPR). The PR curve is a graph plotting the precision
= TP/(TP + FP ) against recall = TP/(TP + FN) by varying a threshold. AUPR-In (or
AUPR-Out) is AUPR where in- (or out-of-) distribution samples are specified as positive.

• Detection error. It measures the probability of misclassifying a sample when the TPR is at 95%.
Assuming that a sample has equal probability of being positive or negative in the test, it is defined
as 0.5(1− TPR) + 0.5FPR

C.2 DATASETS

We provide additional information on the open-set setting, including both out-of-distribution
datasets and open-set datasets. Each out-of-distribution input is pre-processed by default set-
tings [32; 57; 34; 33; 53]: subtracting the mean of in-distribution data and dividing the standard
deviation. All the datasets considered are listed below:

• iSUN. iSUN [96] dataset is a subset of SUN images. The entire collection of 8925 images in
iSUN are included and resized to size 32× 32.

• LSUN (Crop) and LSUN (Resize). Large-scale Scene UNderstanding (LSUN) dataset has 10000
images test set of 10 different scenes [100]. LSUN (Crop) and LSUN (Resize) are two datasets
constructed by either randomly cropping image patches of size 32× 32 or downsampling images
to size 32× 32.
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Table 9: Output dimensionality of L-GMM

Output dimensionality d top-1

d = 64 79.91%
d = 128 80.15%
d = 256 80.10%
d = 512 80.04%

Table 10: Open-set recognition results for in-distribution datasets CIFAR10 [43] and CIFAR-
100 [43] on five out-of-distribution datasets with evaluation metrics AUPR In, AUPR Out and De-
tection Error. ↑ indicates larger value is better, and ↓ indicates lower value is better. All values are
percentages averaged over three runs, and the best results are indicated in bold.

ID OOD AUPR In ↑ AUPR Out ↑ Detection Error ↓
Methods: MSP / ODIN* / KL Matching / ODIN / Ours

CIFAR-10

iSUN [96] 95.63/95.10/87.67/95.63/95.64 90.21/91.70/87.87/93.00/93.71 11.41/12.31/14.31/11.59/9.92
LSUN (C.) [100] 95.02/94.75/91.54/94.41/93.92 91.53/92.76/89.31/92.53/93.96 11.74/12.35/12.89/12.75/10.83
LSUN (R.) [100] 95.46/94.37/91.10/94.96/95.91 91.55/92.29/89.43/87.89/94.82 11.14/12.45/13.01/11.70/9.30
TinyImg. (C.) [47] 94.86/94.31/91.35/94.78/92.60 90.69/91.94/88.03/92.88/92.83 11.95/12.80/13.21/12.30/11.38
TinyImg. (R.) [47] 94.56/93.59/90.56/94.25/92.60 89.96/90.88/86.89/92.24/92.83 12.25/13.69/13.34/12.93/11.42

CIFAR-100

iSUN [96] 81.26/85.53/80.01/86.90/88.84 75.54/75.11/71.39/78.24/80.03 26.87/24.66/27.12/23.18/22.40
LSUN (C.) [100] 77.89/85.63/75.24/84.96/84.06 71.66/79.06/69.67/78.49/78.48 30.09/23.46/28.37/23.80/25.48
LSUN (R.) [100] 77.66/84.83/80.26/86.32/88.49 66.75/77.81/73.89/80.65/82.63 31.84/24.48/31.58/23.03/21.85
TinyImg. (C.) [47] 77.09/86.21/76.31/87.26/89.86 70.92/81.11/68.21/82.92/85.20 31.16/23.38/31.10/22.31/20.12
TinyImg. (R.) [47] 82.66/85.22/80.34/86.75/89.30 75.28/79.14/74.61/81.96/84.38 25.23/24.21/25.49/22.74/20.74

• TinyImageNet (Crop) and TinyImageNet (Resize). TinyImageNet dataset is a subset of Ima-
geNet [44] which consists of 10000 test images from 200 different classes. Similar to LSUN, two
datasets, TinyImageNet (Crop) and TinyImageNet (Resize) are constructed by randomly cropping
or downsampling the LSUN testing set to 32× 32, respectively.

For open-set datasets, we include CIFAR+10 [43] and TinyImageNet [47]. Specifically, CIFAR+10
uses data from both CIFAR10 and CIFAR100. 4 classes are sampled from CIFAR10 and unknown
classes are randomly selected from CIFAR100 dataset. TinyImageNet is a subset of ImageNet con-
sisting of 200 classes. 20 classes are randomly sampled as known and the remaining classes are set
as unknown.

C.3 ADDITIONAL RESULTS

We present additional results on other evaluation metrics introduced in §C.1. Table 10 consid-
ers CIFAR-10 [43] and CIFAR-100 [43] as the in-distribution dataset and evaluates on AUPR In,
AUPR Out and Detection Error metrics. Our method handles out-of-distribution detection naturally
without any modifications on either reaching the external datasets of outliers, or having additional
image resynthesis structures, showed competitive results against other out-of-distribution methods
discussed in §5.2 from our paper.

OpenHybrid [103] acts as the most relevant one to our work as a density-based model, which mea-
sures the likelihood ratio of samples directly w.r.t. data distribution. We therefore further compare L-
GMM to [103] for out-of-distribution detection. Note that [103] lacks a code release, we then follow
and design extra experiments in Table 11 to test the performance of L-GMM on CIFAR-10 [43] and
CIFAR-100 [43] without any post-processing, respectively. We directly adapt the trained L-GMM
model (i.e., L-GMM ResNet101 [29] trained on CIFAR-10 [43] and CIFAR-100 [43], respectively)
in §6.1 and follow the same experimental setup in our paper (§6.2) for open-set image recognition.
We report AUROC for consistency to [103]. A stronger performance to [103] can be observed with
a single model instance.

D CLOSED-SET IMAGE SEGMENTATION

D.1 DATASETS

Two widely applied semantic segmentation datasets are conducted in our experiments.

20



Under review as a conference paper at ICLR 2024

Table 11: AUROC on OpenHybrid [103] and ours between CIFAR-10 [43] and CIFAR-100 [43].
All values are in percentage.

Train/Test(Out-of-distribution) OpenHybrid [103] L-GMMM (Ours)
CIFAR-10 [43]/CIFAR-100 [43] 95.1 95.7
CIFAR-100 [43]/CIFAR-10 [43] 85.6 86.4

MSP L-GMM

MSP L-GMM

MSP L-GMM

MSP L-GMM

Figure 3: Qualitative results (§E.2) of open-set segmentation heatmaps on Fishyscapes
Lost&Found [7] val.

• ADE20K [109] has 20K/2K/3K general scene images for train/val/test of 150 semantic
categories.

• Cityscapes [19] has 2,975/500/1,524 urban scene images for train/val/test of 19 classes.

D.2 DETAILED TRAINING PROCEDURES

We adopt mmsegmentation2 as the codebase, and follow the default training settings. We train
DeepLabV3+ [13] with ResNet101 using SGD optimizer with an initial learning rate 0.1, and Seg-
former [95] with MiTBase using AdamW with an initial learning rate 6e-5. The learning rate is
scheduled following a polynomial annealing policy. As common practices [95; 16], we train the
model on ADE20K train with crop size 512× 512 and batch size 16; on Cityscapes train with
crop size 769×769 and batch size 8. The model is trained for 160K iterations on ADE20K and 80K
iterations on Cityscapes. Standard data augmentation techniques, such as scale and color jittering,
flipping, and cropping are used.

E OPEN-SET IMAGE SEGMENTATION

E.1 DATASETS

Two popular open-set segmentation datasets are conducted in our experiments.

• Fishyscapes Lost&Found [7] is built upon the original Lost&Found [68] dataset, which has
100/275 val/test images. The dataset is collected with the same setup as Cityscapes [19].

• Road Anomaly [54] contains 60 images where there exist anomalous objects (e.g., animals, rocks,
and etc.) in unusual road conditions with a resolution of 1280 × 720.

E.2 QUALITATIVE RESULTS

In Figure 3, we visualize the score heatmaps generated by MSP [31]-DeepLabV3 [13] and L-GMM-
DeepLabV3, respectively. The softmax based counterpart becomes overconfident on predictions,
failing to recognize out-of-distribution examples. L-GMM, on the other hand, naturally rejects
them (red colored regions).

F RUNTIME ANALYSIS

The inference speed of L-GMM on ResNet101 ImageNet [73] val is 211 fps, which yields
negligible overhead w.r.t the discriminative counterpart, i.e., 217s vs 238 fps. On DeepLabV3
ADE20K [109] val, the inference speed of L-GMM is 13.21 fps, slightly slower than its discrimi-
native counterpart, i.e., 14.37 fps vs 15.56 fps.

2https://github.com/open-mmlab/mmsegmentation
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G PSEUDO CODE OF L-GMM AND REPRODUCIBILITY

The pseudo-code of L-GMM is given in Algorithm 1. L-GMM is implemented in Pytorch. Training
and testing are conducted on eight Tesla NVIDIA V100 GPUs. We will release our code publicly to
guarantee our reproducibility.

Algorithm 1 Pseudo-code of L-GMM in a PyTorch-like style.

# X: feature embeddings
# K: augmented memory size
# gamma: momentum coefficient
# numGauss: number of Gaussian components for each class
# memory_log: augmented memory for saving log likelihood
# memory_feature: augmented memory for saving feature embeddings

def L-GMM(X, label)
#== Model Prediction and Training Loss (Eq.16 and Eq.18) ==#

_c_gauss = MultivariateNormalDiag(means.view(-1, X.shape[1]), scale_diag=
covariance.view(-1, X.shape[1]))

probs = _c_gauss.log_prob(X.view(X.shape[0], -1, X.shape[1]))

unique_c_list = label.unique().long()

prob_memo_onehot = []
means_sup = means.data.clone()
for _c in unique_c_list:

prob_log_new = probs[label == _c, _c:_c+1, :]
_c_init_q_log = memory_log[_c:_c+1,:(K - prob_log_new.shape[0]),:]

# update log_likelihood memory space
_c_init_q_log = torch.cat([prob_log_new, _c_init_q_log.transpose(0, 1)],

dim=0)
_c_init_q_log = _c_init_q_log / _c_init_q_log.sum(dim=-1, keepdim=True)

# one-hot for best component assignment
indexs = torch.argmax(_c_init_q_log, dim=-1)
oneHot_Ver = torch.nn.functional.one_hot(indexs, num_classes=numGauss)
prob_memo_onehot.append(oneHot_Ver)

_mem_fea_k = memory_feature[_c:_c+1,:,:].data.clone().transpose(-1,-2)
n = torch.sum(_c_init_q_log, dim=0)
n_memo.append(n)

f = oneHot_Ver.float().permute((1, 2, 0)) @ _mem_fea_k
f = l2_normalize(f)
means_sup[_c:_c+1,:self.p_m_n[_c], :] = f

# encourage the data samples to be evenly distributed
n_saved = torch.cat(n_memo, dim=1)
n_supervise = torch.ones_like(n_saved) * (K / numGauss)

_sum_prob = torch.amax(probs, dim=-1)

# MLE
MLE_mask = torch.zeros_like(out_seg)
for i,j in enumerate(label):

MLE_mask[i, j] = 1
MLE = torch.sum(-_sum_prob.mul(MLE_mask))

losses = CrossEntropyLoss(_sum_prob, label)
losses -= MLE
losses[’one’] = MSELoss(means, means_sup.float())
losses[’avg’] = WassersteinLoss(n_saved, n_supervise.float())

return losses
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H DISCUSSION

H.1 ASSET LICENSE AND CONSENT

We apply three closed-set image classficiation datasets, i.e., CIFAR-10 [43], CIFAR-100 [43]
and ImageNet [73], and five open-set image recognition datasets are used, i.e., TinyIma-
geNet (Crop) [47], TinyImageNet (Resize) [47], LSUN (Crop) [100], LSUN (Resize) [100]
and iSUN [96]. We use two closed-set semantic segmentation datasets, i.e., ADE20K [109]
and Cityscapes [19], and two open-set image segmentation datasets, i.e., Fishyscapes [7]
and Road Anomaly [54]. They are all publicly and freely available for academic pur-
poses. We implement all models with MMClassification [17] and MMSegmentation [18]
codebases. ADE20K (https://groups.csail.mit.edu/vision/datasets/ADE20K/) is released under
a CC BSD-3; Cityscapes (https://www.cityscapes-dataset.com/) is released under this License;
Road Anomaly (https://www.epfl.ch/labs/cvlab/data/road-anomaly/)) is released under CC BY
4.0; All assets mentioned above release annotations obtained from human experts with agree-
ments. Fishyscapes (https://fishyscapes.com/) is released under CC BY 4.0, which is syn-
thesized and re-organized from existing datasets that prevents us to trace details; MM-
Classification (https://github.com/open-mmlab/mmclassification) and MMSegmentation codebases
(https://github.com/open-mmlab/mmsegmentation) are released under Apache-2.0.

H.2 LIMITATIONS AND FUTURE WORK

One limitation of this work is that it currently only considers density-estimating generative models
as part of the design. While we believe it is possible to integrate non-density-estimating generative
models into this framework, the question remains open for our future endeavors.

We can also naturally extent our work to open-set video segmentation scenarios. Despite progress
we have made in current CSR and OSR problems, continuous work should be deployed to delve
deeper into the challenges presented by real-time inference [1; 46] and cross-frame/time-step rela-
tions [101]. These are aspects often overlooked in image OSR problems, yet they maintain substan-
tial pragmatic relevance in real-world applications. Furthermore, though showing extensive general-
ity across multiple open-set, closed-set datasets, many research [75; 21] have shown that these data
have not been closely scrutinized. For example, ImageNet presents significant geographical and
cultural bias, as well as ambiguities [60]. We shall further evaluate our work in dealing with biases
learned during training when approaching the open world application.
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