
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

MOLE-GNN: PARAMETER-EFFICIENT FINE-TUNING
OF GRAPH NEURAL NETWORKS WITH MIXTURE-OF-
EXPERTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph Neural Networks (GNNs) are gaining popularity for modeling non-
Euclidean data due to their ability to capture local and global structure using
message-passing techniques. In real-world scenarios, such as graph classifica-
tion task, the size of graphs within the same dataset can vary significantly. This
warrants an investigation into depth-sensitivity of graphs, leading to selection of
optimal number of GNN layers according to the size of the graph. Traditional
GNNs suffer from a static choice of number of layers for the graphs as it leads to
underfitting in the large graphs and overfitting in the smaller ones. Although recent
Mixture-of-Experts (MoE) GNN models solve this problem by adaptively select-
ing depth-sensitive expert networks, they have high computational and memory
overhead. To overcome these challenges, we introduce a new hybrid model named
MoLE-GNN that combines parameter-efficient adapter modules with GNN ex-
perts, supporting dynamic expert assignment with minimal fine-tuning. It drasti-
cally minimizes trainable parameters (tunes only 5.1% of the total parameters) and
improves generalization, particularly in low-resource environments. Our exten-
sive experiments across inductive, transductive, and link prediction tasks demon-
strate that MoLE-GNN consistently outperforms both full fine-tuning and state-of-
the-art PEFT baselines, offering a scalable and effective approach for fine-tuning
GNNs on diverse graph topologies. Moreover, MoLE-GNN surpasses existing
MoE-based GNNs on inductive and link prediction tasks.

1 INTRODUCTION

Graph-structured data emerge across many important domains—molecular chemistry, social net-
works, recommendation systems, biological interaction networks, and knowledge graphs—where
relational structure and node/edge attributes jointly shape downstream prediction tasks. The rise
of Graph Neural Networks (GNNs) has enabled powerful representation-learning on such data: by
stacking message-passing layers, standard GNNs aggregate information across node neighborhoods
and learn task-specific embeddings. However, despite the numerous successes, several key chal-
lenges remain when deploying GNNs in modern, large-scale, heterogeneous graph learning regimes.
Early GNN research emphasised the static choice of the number of propagation layers. Subsequent
work has shown that graph-scale heterogeneity, node degree and topological variability make the
optimal propagation depth graph- and task-dependent. For example, decoupling receptive field size
from layer depth mitigates oversmoothing and neighbourhood explosion in large graphs (Zeng et al.,
2021; Gallicchio & Micheli, 2020; Poli et al., 2021). More recently, adaptive or continuous-depth
GNNs (e.g., via graph differential equations) allow per-graph or per-node adjustment of propaga-
tion steps (Poli et al., 2021; Zheng et al., 2025). Yet, such dynamic-depth mechanisms have seen
limited integration with parameter-efficient adaptation of pretrained graph models. Furthermore, the
graph-learning ecosystem has shifted from ad-hoc per-graph GNN training toward graph founda-
tion models (GFMs)—pretrained, large-scale graph models intended to support broad downstream
adaptation across domains. For instance, GraphGPT presents large transformer-style models pre-
trained on graph data, demonstrating strong transfer potential with increasing importance of uni-
versal graph representations that generalise across structural heterogeneity and domain (Zhao et al.;
Mao et al., 2024a;b). Equally, scalable graph-pretraining frameworks such as GPT-GNN show that

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

self-supervised generative pre-training on graphs enables improved downstream accuracy Hu et al.
(2020c). Another complementary research direction is the rise of auto-GNN architectures and graph
transformers: neural-architecture-search frameworks (GraphNAS, Auto-GNN) tailor GNN archi-
tectures to graph characteristics, relieving manual design effort Gao et al. (2019). Additionally,
graph transformers extend the representational power of GNNs by integrating transformer blocks
with graph structure, enabling larger receptive fields and structural flexibility. However, despite the
progress, a research gap remains, in terms of, how to parameter-efficiently fine-tune GNN back-
bones in the face of graph-size, topology and domain heterogeneity, while also leveraging dynamic
expert routing or depth-adaptive mechanisms without fully training large models from scratch.
We analyze the distribution of graph instances with respect to their order (number of nodes), as
shown in Fig. 1 (a) and (b) for IMDB-BINARY and COLLAB, respectively. By computing the area
under the curve, we partition the graphs into three equal groups such as small, medium, and large
based on node counts, and create train–test splits for each. As shown in Fig. 1 (c), we observe a clear
phenomenon of depth sensitivity. On small graphs, deeper GNNs often overfit, leading to redundant
parameters and degraded performance. Conversely, shallow GNNs on large graphs under-reach,
failing to capture global dependencies.

IMDB-BINARY

(a) (b)

(c)

Small Scale Graphs
Medium Scale Graphs
Large Scale Graphs

of Nodes

of GNN Layers

of

 G
ra

ph
s

of Nodes

COLLAB

of

 G
ra

ph
s

Ac
cu

ra
cy

 (%
)

Small Scale Graphs
Medium Scale Graphs
Large Scale Graphs

Small IMDB-BINARY

 Medium COLLAB
 Medium IMDB-BINARY

 Large IMDB-BINARY
 Large COLLAB

Small COLLAB

Figure 1: Comparison between the order of the graphs
seen vs. the number of graphs in (a) IMDB-BINARY
and (b) COLLAB. (c) The depth-sensitivity used in the
IMDB-BINARY and COLLAB datasets shows the way
different sized graphs depend on certain GNN depths
for effective extraction of information.

To counter depth sensitivity, recent work equips
GNNs with Mixture-of-Experts (MoE) routers
that dispatch each graph to depth or configu-
ration specialized experts via a learnable gate,
effectively aggregating across neighborhood
radii and improving robustness under struc-
tural heterogeneity Yao et al. (2024). How-
ever, MoE incurs heavy parameter and com-
pute overhead; end-to-end ensemble training is
resource-intensive and vulnerable to overfitting
and catastrophic forgetting, especially in low-
label regimes Goodfellow et al. (2013). A prag-
matic alternative is parameter-efficient fine-
tuning (PEFT): freeze the backbone experts and
insert lightweight adapters typically a down-
projection, nonlinearity, and up-projection to
capture task-specific shifts without perturbing pre-trained capacities Houlsby et al. (2019); He et al.
(2022). PEFT preserves transferability, curbs forgetting, and cuts trainable parameters by over an
order of magnitude, making MoE-style adaptability feasible in resource constrained settings.
In this paper, we propose an adapter-based Mixture-of-Experts model, MoLE-GNN (Mixture-of-
Learnable Experts with Adapter GNN), which integrates parameter-efficient fine-tuning (PEFT) into
GNNs - a challenging task - since most existing PEFT methods were originally developed for se-
quence models. MoLE-GNN demonstrates outstanding performance while tuning only a small frac-
tion of parameters, even outperforming full fine-tuning. To enable this, we combine adapter modules
with a dynamic gating mechanism, where adapters within each expert allow task-specific special-
ization while preserving generalization, and the gating network adaptively selects experts based on
input graphs. This hybrid design balances efficiency and adaptability, delivering competitive per-
formance under limited supervision while substantially reducing memory and compute costs. We
demonstrate, combining adapters with dynamic MoE–GNNs yields a lightweight and robust frame-
work that scales effectively across graph-, node-, and link-level tasks.
Our contributions are as follows - i) Dynamic-depth GNNs, GFMs, and auto-GNNs do not fully
combine dynamic specialization and parameter-efficient fine-tuning in a unified framework. Our
proposed MoLE-GNN integrates expert adapters with routing over heterogeneous graphs, enabling
depth- and topology-aware fine-tuning with a small fraction of tunable parameters. ii) We empiri-
cally validate that MoLE-GNN outperforms baselines on diverse graph-scale tasks, achieving strong
performance while lowering the trainable parameter count from 7.7M to just 0.39M, yet demonstrat-
ing robust transfer across graph-size heterogeneity.

2 RELATED WORK

For brevity, we focus here on recent works in mixture-of-experts models and graph-prompt tuning
methods, while a comprehensive discussion is provided in Appendix A.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Mixture of Experts Model. The Mixture-of-Experts (MoE) framework Jacobs et al. (1991); Jor-
dan & Jacobs (1994) trains specialized expert networks, with expert selection proposed via auto-
encoders Aljundi et al. (2017) and sparse gating Shazeer et al. (2017). MoE modules are now widely
applied in vision Dai et al. (2021); Yu et al. (2024) and NLP Fedus et al. (2022); Du et al. (2022),
and recently extended to GNNs. Examples include TopExpert Kim et al. (2023) (clustering-based
gating), GMoE Wang et al. (2023) (multi-hop information), G-FAME Liu et al. (2023c) (fairness),
Link-MoE Ma et al. (2024) and GraphMETRO Wu et al. (2023b) (task specialization and distribu-
tion shifts), and DA-MoE Yao et al. (2024) (adaptive depth for scale variation). However, existing
MoE-GNNs are typically trained from scratch with large parameter counts rather than leveraging
pre-trained GNN experts.
Graph-Prompt Tuning Methods. Prompt tuning methods, originating in NLP, adapt pre-trained
models to downstream tasks by modifying inputs rather than model architecture Liu et al. (2021a);
Lester et al. (2021). Variants include prefix-tuning Li & Liang (2021), which updates task-specific
parameters per layer; adapter tuning Houlsby et al. (2019); Chen et al. (2022b), which inserts bottle-
neck adapters; BitFit Zaken et al. (2021), which tunes only bias terms; and LoRA Hu et al. (2022),
which uses low-rank decomposition. These techniques have also been adopted in GNNs Wu et al.
(2023c). Recently, AdapterGNN Li et al. (2024) extends adapter-based tuning to GNNs by inte-
grating lightweight adapters into each layer, enabling efficient adaptation with minimal parameter
updates. S2PGNN Zhili et al. (2024), fine-tunes both pre-trained backbone GNNs along with adapter
and search best configuration of the architecture. Also GCNconv-Adapter Papageorgiou et al. (2025)
present new graph adapter based model. However, existing parameter-efficient methods rely on a
fixed layer configuration across all graphs, limiting their adaptability to varying data scales. To ad-
dress this, we propose an adapter-based MoE framework that employs pre-trained GNNs as experts
within a MoE architecture. By integrating tunable adapters into each expert, our approach miti-
gates challenges such as depth sensitivity, catastrophic forgetting, and overfitting, providing a more
flexible and scalable fine-tuning strategy.

?

?

?

?

?

Tasks

Expert-1 Expert-kExpert-2

 Gating
Network

1 2 3 4 5 k

Expert-3

0.11

0.09
0.25

0.55

Expert-4 Expert-5

: Graph Classification

Task Selector

: Node Classification : Link Prediction

(a) (b)

Output
.............

.............

Graph Backbone
 Layer

1
2

3
4

5
k

kN

 MLP MLP

Batch Norm

Tunable
Frozen
Non-Parametric

Learnable Scaling

R
eLU

R
eLU

D
ropout

1
2

3
4

5
k

R
eLU

B
atch norm

S

S

S

Down Up

1
2

3
4

5
k

R
eLU

B
atch norm

Down Up

Figure 2: Overview of MoLE-GNN. (a) Multiple experts replace the conventional GNN backbone to model
specialized patterns at various aggregation scales. Few of them are activated by the gating network, and the
grey boxes indicate the inactive experts. (b) Each expert is a pre-trained graph encoder with its own layer
configuration. Depending on the expert, this encoder may be a message-passing GNN or a Transformer-style
attention architecture. We insert two parallel adapters that operate on the representations both before and after
the core propagation/attention block, while the original encoder parameters remain frozen. This design enables
each expert to combine its base architecture with lightweight, task-specific adapters and learnable scaling.

3 METHODOLOGY

MoLE-GNN, as depicted in Fig. 2, combines a dynamic MoE strategy with a PEFT approach
through adapter modules. Fig. 2(a) shows that the model replaces a single, fixed GNN backbone
with a collection of K pre-trained experts, each specializing in different aggregation radii or depth
configurations. For each input graph, the structure-aware gating network computes a sparse distri-
bution over these experts and activates only a small subset, enabling the model to adapt its effective

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

receptive field to the graph’s topology and scale. Fig. 2(b) shows the internal structure of each expert,
where a frozen pre-trained GNN backbone is augmented with two lightweight adapter modules, one
placed before and one after the message-passing or attention block to enable task-specific adaptation
without altering backbone parameters. The two smaller groups of K experts indicate that the gating
network activates only a subset of experts for each input, while the remaining experts stay inactive.
Our goal is to adapt powerful, pre-trained GNNs to diverse downstream tasks while updating only
a small fraction of parameters. We consider three canonical regimes: (i) graph classification in the
inductive setting, where entire graphs are mapped to labels; (ii) node classification in the transduc-
tive setting, where node labels are inferred on a fixed graph; and (iii) link prediction, where edge
existence is predicted between node pairs. Let G = (V,E), where V is the set of nodes, and E is
the set of edges, be a graph with node features X ∈ R|V |×D and adjacency A ∈ {0, 1}|V |×|V |. We
learn f : G → Y with Y defined by the downstream task, aiming for strong generalization across
graph scales and topologies.
We instantiate K frozen, pre-trained GNN experts {Ek(·; Θk)}Kk=1, each specialized by depth or
receptive field (e.g., shallow experts capture local neighborhoods while deeper experts model long-
range dependencies). This heterogeneity directly addresses depth-sensitivity by allowing the system
to favor shallow experts on small graphs and deeper experts on large graphs without retraining the
full backbones. In all cases, Θk remain frozen during downstream adaptation.
Adapter-based PEFT. To envision relevant experts for a particular task while keeping Θk fixed, we
introduce lightweight adapter modules. Given a hidden state h ∈ Rd, the adapter is

A(h) = Wup σ
(
Wdown h

)
, Wdown ∈ Rd×r, Wup ∈ Rr×d, r ≪ d, (1)

with nonlinearity σ(·) (e.g., ReLU). A learnable scalar α controls the adapter’s residual contribution:
h̃ = h + αA(h). (2)

To exploit structure explicitly and maintain numerical stability, we use the symmetrically normalized
adjacency Â = D−1/2(A+ I)D−1/2, where D, and I are the degree and identity matrix, inside the
adapter when operating on batched node/graph features H ∈ R|V |×d:

Agraph(H) = Wup σ
(
ÂH Wdown

)
, H̃ = H + αAgraph(H). (3)

Adapters are placed (conceptually as in Fig. 2(b)) before and after message passing to specialize
both feature transformation and neighborhood aggregation, without modifying the backbone.
Dynamic expert routing. A structure-aware gating network (Γ(.)) maps each input to a sparse com-
bination of experts, as in Fig. 2(a). We compute a pooled graph representation g = READOUT(G)
and derive mixture weights via a small MLP and softmax:

w = softmax
(
Γ(g)

)
∈ RK ,

K∑
k=1

wk = 1. (4)

For computational efficiency and regularization, we retain only the top-ke entries of w, defining an
active set S of experts. Let hk denote expert k’s frozen output and Ak its adapter; the aggregated
representation is

z =
∑
k∈S

wk

(
hk + αk Ak(hk)

)
, (5)

which is then fed to a task head fhead.

Task-specific heads and learning objectives. We design distinct task-specific heads for inductive
and transductive settings, as well as link prediction.

Inductive Settings. Node embeddings are aggregated with a pooling operator:

ŷ = softmax
(
Wg · POOL(z)

)
, (6)

where POOL(·) can be mean, sum, or attention pooling.

Transductive Settings. Each node embedding zv is aligned with the fixed input topology, and
classification is performed via:

ŷv = softmax(Wnzv), v ∈ V. (7)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Link Prediction. For candidate pairs (u, v), we use a bilinear decoder:

s(u, v) = z⊤u Wℓzv. (8)

Cross-entropy or ranking-based objectives (e.g., Hits@k, MRR) are applied accordingly.

Theoretical guarantees: stability and graph-awareness. To justify our design, we analyze two
requirements: (i) stability under perturbations, ensuring controlled sensitivity, and (ii) graph depen-
dence, ensuring that adapters leverage topology rather than acting as graph-agnostic bias terms.
Scope. We analyze stability only for the adapter-augmented experts. The routing (gating) module
uses a standard GNN without adapters; during analysis we treat routing as fixed and make no claims
about the gate.

Theorem 3.1 (Stable Adapter-Augmented Experts). Assume ∥Â∥2 ≤ 1, σ is Lσ-Lipschitz, and
∥W↓∥2 ≤ γ↓, ∥W↑∥2 ≤ γ↑. Then, for

F (h) = h+ αW↑σ(ÂhW↓),

the Lipschitz constant satisfies
Lip(F) ≤ 1 + αLσγ↓γ↑.

Moreover, for MoE aggregation

z =
∑
k∈S

wkFk(hk), w ∈ ∆K−1,

we have Lip(z) ≤ max
k∈S

(
1 + αkLσγ

(k)
↓ γ

(k)
↑

)
.

Proof. For a single adapter block,

∥W↑σ(ÂW↓x)−W↑σ(ÂW↓y)∥ ≤ γ↑Lσγ↓∥x− y∥,

since ∥Â∥2 ≤ 1. The residual connection adds an identity map, yielding Lipschitz constant 1 +
αLσγ↓γ↑. For the MoE, z is a convex (or sparse-convex) combination of Lipschitz maps. Such a
combination inherits a Lipschitz constant bounded by the maximum of its components.

This theorem guarantees that adapters inject new flexibility without destabilizing training. By
bounding the Lipschitz constant, we ensure robustness to small perturbations crucial in low-resource
regimes where noisy or limited supervision may otherwise destabilize adaptation.

Proposition 3.2 (Graph-Dependence of Adapters). Let Â1 ̸= Â2 be normalized adjacency matrices
of two graphs G1 ̸= G2. Consider

Agraph(H) = W↑σ(ÂHW↓).

If W↓,W↑ are not rank-deficient, then for a non-measure-zero set of H ,

A
(1)
graph(H) ̸= A

(2)
graph(H).

Proof. If Â1 ̸= Â2, then (Â1 − Â2)HW↓ ̸= 0 for some H . Since σ is piecewise-linear and W↑ is
non-degenerate, the images differ on an open set of H , yielding non-trivial dependence on G.

This proposition establishes that our adapters genuinely exploit graph structure. Unlike graph ag-
nostic adapters, which produce identical transformations regardless of topology, our design ensures
responses vary with adjacency, enabling task-specific specialization across diverse graph topologies.
Together, Theorem 3.1 and Proposition 3.2 formalize why MoLE-GNN is both stable (avoiding un-
controlled growth or sensitivity) and structurally adaptive, providing the theoretical underpinnings
for its effectiveness in inductive, transductive, and link-level tasks.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

4 EXPERIMENTAL SETUP

Dataset. We construct the pre-training corpus from two million unlabeled molecules in
ZINC15 Sterling & Irwin (2015), 395K protein ego-networks from PPI, and academic and social
graphs from NetRep and SNAP Ritchie et al. (2016); Leskovec & Sosič (2016). Each expert GNN
is pre-trained on this corpus, following prior work Hu et al. (2020b); Qiu et al. (2020). We adopt
the ogbn-arxiv dataset with GraphMAE Hou et al. (2022) to pre-train expert GNNs for node classi-
fication and link prediction. Downstream evaluation covers 14 datasets for inductive setting, 5 for
transductive setting, and 4 for link prediction. Detailed dataset statistics are provided in Tables 9, 10
(Appendix B).

Evaluation Metrics. Here, we follow the work by Li et al. (2024) and use ROC-AUC as the eval-
uation metrics for inductive learning experiments. For transductive learning experiment, we utilize
work Accuracy as the evaluation metric Papageorgiou et al. (2025). For, link prediction we use
MRR and Hits@20 as the evaluation metric Ma et al. (2024).
Baseline Frameworks. For inductive learning experiments, we evaluate full fine-tuning, two
graph prompt learning methods, four widely used PEFT models, and a mixture-of-experts ap-
proach: GPF Fang et al. (2022), MolCPT Diao et al. (2022), Adapter Chen et al. (2022b), LoRA,
AdapterGNN, GCNConv-Adapter, and TopExpert. Addiotionally, we consider Surgical Fine-
Tuning Lee et al. (2022) and BitFit for transductive learning. For link prediction, we use all of
the above baselines and further include the MoE-based Link-MoE. For all these three type of tasks,
we conisder GMoE, and DA-MoE as the general purpose graph MoE based methods as baseline
models as described in Appendix C.

Pre-training Tuning Method Datasets (ROC-AUC ↑)
Method BACE BBBP ClinTox HIV SIDER Tox21 MUV ToxCast PPI Avg.

EdgePred

Full Fine-tune (100%) 79.9±0.9 67.3±2.4 64.1±3.7 76.3±1.0 60.4±0.7 76.0±0.6 74.1±2.1 64.1±0.6 65.6±0.9 69.8
Adapter (5.2%) 78.5±1.7 65.9±2.8 66.6±5.4 73.5±0.2 60.9±1.3 75.4±0.5 73.0±1.0 63.0±0.7 69.8±0.5 69.6
LoRA (5.0%) 81.0±0.8 64.8±1.6 67.7±1.2 74.8±1.2 60.8±1.1 74.6±0.4 75.0±1.5 62.2±1.0 68.0±1.0 69.9
GPF (0.1%) 68.0±0.4 55.9±0.2 50.8±0.1 66.0±0.7 51.5±0.7 63.1±0.5 63.1±0.1 55.7±0.5 51.2±1.3 58.3

AdapterGNN (5.2%) 79.0±1.5 69.7±1.4 67.7±3.0 76.4±0.7 61.2±0.9 75.9±0.9 75.8±2.1 64.2±0.5 70.6±1.1 71.2
TopExpert (100%) 80.2±0.8 66.2±0.8 56.8±2.4 76.0±0.7 59.6±0.5 74.1±0.4 79.9±1.2 62.5±0.4 66.3±0.9 69.1

GCNconv-Adapter (3.0%) 75.9±3.4 70.0±1.2 51.9±2.4 68.6±4.6 60.1±1.4 72.7±0.5 66.7±2.7 61.8±1.1 70.3±1.9 66.4
MoLE-GNN (ours) (5.1%) 81.0±0.7 73.9±0.5 75.5±1.4 77.6±0.9 62.5±0.8 75.8±0.4 78.5±1.1 64.9±0.3 72.7±0.6 73.6

ContextPred

Full Fine-tune (100%) 79.6±1.2 68.0±2.0 65.9±3.8 77.3±1.0 60.9±0.6 75.7±0.7 75.8±1.7 63.9±0.6 63.5±1.1 70.1
Adapter (5.2%) 75.0±3.3 68.2±3.0 57.6±3.6 75.4±0.6 62.4±1.2 74.7±0.7 73.3±0.8 62.2±0.4 68.2±1.5 68.6
LoRA (5.0%) 78.5±1.1 65.3±2.4 61.3±1.9 74.7±1.6 60.8±0.4 72.9±0.4 75.4±0.9 63.4±0.2 68.0±1.1 68.9
GPF (0.1%) 58.7±0.6 58.6±0.6 39.8±0.8 68.0±0.4 59.4±0.2 67.8±0.9 71.8±0.8 58.8±0.5 67.1±0.6 61.1

AdapterGNN (5.2%) 78.7±2.0 68.2±2.9 68.7±5.3 76.1±0.5 61.1±1.0 75.4±0.6 76.3±1.0 63.2±0.3 68.3±1.5 70.7
TopExpert (100%) 80.4±1.4 69.9±0.8 58.9±4.3 78.2±0.3 60.2±0.6 73.9±0.3 79.9±0.9 62.9±0.3 56.3±1.0 69.0

GCNconv-Adapter (3.0%) 79.8±2.0 70.1±0.6 53.0±5.2 73.9±1.2 59.9±1.1 72.4±0.7 72.6±2.2 61.2±0.9 67.3±1.6 67.8
MoLE-GNN (ours) (5.1%) 80.8±0.5 73.1±0.4 79.8±0.7 77.3±0.8 62.4±0.7 75.1±0.4 79.2±1.0 64.1±0.3 70.9±0.7 73.6

AttrMasking

Full Fine-tune (100%) 79.3±1.6 64.3±2.8 71.8±4.1 77.2±1.1 61.0±0.7 76.7±0.4 74.7±1.4 64.2±0.5 63.2±1.2 70.3
Adapter (5.2%) 76.1±1.4 68.7±1.7 65.8±4.4 75.6±0.7 59.8±1.7 74.4±0.9 75.8±2.4 62.6±0.8 70.9±1.0 70.0
LoRA (5.0%) 79.8±0.7 64.2±1.1 70.1±2.9 76.1±1.4 59.7±0.5 74.6±0.5 76.6±1.6 61.7±0.4 69.2±0.8 70.2
GPF (0.1%) 61.7±0.3 54.3±0.3 56.4±0.2 64.0±0.2 52.0±0.2 69.2±0.3 62.9±0.9 58.1±0.3 69.0±0.3 60.8

AdapterGNN (5.2%) 79.7±1.3 67.5±2.2 78.3±2.6 76.7±1.2 61.3±1.1 76.6±0.5 78.4±0.7 63.6±0.5 69.7±1.1 72.4
TopExpert (100%) 81.3±1.2 71.4±0.7 70.1±1.3 77.1±0.7 60.3±0.6 75.5±0.3 78.4±1.4 62.8±0.2 60.1±1.3 70.8

GCNconv-Adapter (3.0%) 78.4±3.7 71.3±1.4 51.1±5.0 71.9±0.9 59.2±1.3 72.6±0.7 70.0±1.8 61.9±1.1 68.1±1.9 67.2
MoLE-GNN (ours) (5.1%) 81.6±0.8 73.2±0.8 80.0±1.5 78.2±0.6 62.8±0.6 76.1±0.3 79.2±1.2 64.3±0.2 71.2±1.0 74.1

GraphCL

Full Fine-tune (100%) 74.6±2.2 68.6±2.3 69.8±7.2 78.5±1.2 59.6±0.7 74.4±0.5 73.7±2.7 62.9±0.4 65.5±0.8 69.7
Adapter (5.2%) 72.5±3.0 69.3±0.6 67.3±7.4 75.0±0.4 59.7±1.2 74.7±0.4 72.9±1.7 62.9±0.4 69.0±0.8 69.3
LoRA (5.0%) 75.1±0.7 67.8±1.1 65.1±3.5 78.9±0.6 57.6±0.7 73.9±0.9 72.8±1.2 62.7±0.6 69.4±0.6 69.3
GPF (0.1%) 71.5±0.6 63.7±0.4 64.5±0.6 70.3±0.5 55.3±0.6 65.5±0.5 70.1±0.7 58.5±0.5 62.3±0.5 64.6

AdapterGNN (5.2%) 76.1±2.2 67.8±1.4 72.0±3.8 77.8±1.3 59.6±1.3 74.9±0.9 75.1±2.1 63.1±0.4 68.1±1.5 70.5
TopExpert (100%) 77.9±1.3 70.9±0.8 70.7±3.8 80.7±0.7 60.1±1.0 74.6±0.5 78.2±1.2 62.3±0.5 62.3±1.1 70.9

GCNconv-Adapter (3.0%) 79.8±2.5 71.8±0.8 54.3±3.3 72.2±1.5 59.8±1.4 72.5±0.7 75.2±0.1 62.0±0.8 66.3±0.6 68.2
MoLE-GNN (ours) (5.1%) 79.8±1.3 72.0±0.8 69.8±5.3 76.8±0.8 61.9±0.6 75.3±0.4 76.4±1.1 64.3±0.4 71.1±1.5 71.9

SimGRACE

Full Fine-tune (100%) 74.7±1.0 69.0±1.0 59.9±2.3 74.6±1.2 59.1±0.6 73.9±0.4 71.0±1.9 61.8±0.4 68.2±1.2 68.0
Adapter (5.2%) 73.4±1.1 64.8±0.7 63.5±4.4 73.9±1.0 59.9±0.9 73.1±0.9 70.1±4.6 61.7±0.8 64.5±2.0 67.2
LoRA (5.0%) 73.2±1.0 67.5±0.4 60.7±0.4 74.1±0.5 57.6±2.6 72.2±0.2 67.9±0.9 61.8±0.2 63.0±0.3 66.5

AdapterGNN (5.2%) 77.7±1.7 68.1±1.3 73.9±7.0 75.1±1.2 58.9±0.9 74.4±0.6 71.8±1.4 62.6±0.6 70.1±1.2 70.3
TopExpert (100%) 74.0±1.0 65.3±1.2 56.9±2.5 73.6±2.5 56.3±0.7 71.5±0.3 73.6±1.1 61.9±0.1 65.8±1.4 66.5

GCNconv-Adapter (3.0%) 77.4±2.0 70.5±1.7 50.9±3.3 76.6±0.4 59.8±1.4 72.8±0.8 68.5±4.0 61.9±1.0 64.3±1.8 67.0
MoLE-GNN (ours) (5.1%) 81.7±0.9 71.9±0.7 78.8±1.7 77.4±0.4 60.8±0.4 75.2±0.3 75.8±1.2 63.9±0.5 70.7±1.2 72.9

Table 1: Test ROC-AUC (%) performance on molecular and PPI prediction benchmarks using different tun-
ing methods and pre-trained GNN models. Results are reported as mean ± standard deviation of ROC-AUC.
Best performing model, based on average ROC-AUC (%) is shown in bold, while the second-best model is
underlined

5 RESULTS & ANALYSIS

In the following section, we empirically validate our framework and present fine-grained results in
Table 1, Table 5, Table 6, and Figure 3. Implementation details are provided in Appendix E, and
the choice of pre-trained models is discussed in Appendix D. The base configuration of MoLE-
GNN employs five experts for inductive learning, three experts for transductive learning, and link

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Pre-training Tuning Datasets (ROC-AUC ↑)
Method Method

BACE BBBP
ClinTox SIDER

Tox21
ToxCast

EdgePred
S2PGNN (100%) 82.2±1.169.1±0.871.9±1.162.3±0.577.1±0.8 66.2±0.3
S2PGNN (5.2%) 80.7±1.165.1±0.875.1±2.257.1±0.875.1±0.7 61.2±0.5

MoLE-GNN (ours) (5.1%) 81.0±0.773.9±0.575.5±1.462.5±0.875.8±0.4 64.9±0.3

ContextPred
S2PGNN (100%) 82.6±0.770.9±1.375.9±2.262.8±0.376.3±0.4 67.0±0.5
S2PGNN (5.2%) 75.4±1.165.4±0.575.3±2.261.8±0.473.3±0.4 62.7±0.1

MoLE-GNN (ours) (5.1%) 80.8±0.573.1±0.479.8±0.762.4±0.775.1±0.4 64.1±0.3

AttrMasking
S2PGNN (100%) 82.7±0.871.9±1.174.8±3.162.9±0.477.3±0.4 66.8±0.5
S2PGNN (5.2%) 77.2±0.870.4±1.172.8±3.161.2±0.475.3±0.2 61.0±0.1

MoLE-GNN (ours) (5.1%) 81.6±0.873.2±0.880.0±1.562.8±0.676.1±0.3 64.3±0.2

GraphCL
S2PGNN (100%) 82.6±2.370.8±1.175.2±3.462.4±1.276.8±0.5 66.6±0.3
S2PGNN (5.2%) 77.1±2.368.4±1.168.9±3.459.4±1.273.2±0.5 63.5±0.3

MoLE-GNN (ours) (5.1%) 79.8±1.372.0±0.869.8±5.361.9±0.675.3±0.4 64.3±0.4

SimGRACE
S2PGNN (100%) 83.9±1.569.3±0.973.6±3.262.3±0.675.9±0.2 65.8±0.3
S2PGNN (5.2%) 80.2±1.569.3±0.973.6±3.255.7±0.674.8±0.2 61.4±0.1

MoLE-GNN (ours) (5.1%) 81.7±0.971.9±0.778.8±1.760.8±0.475.2±0.3 63.9±0.5

Table 2: MoLE-GNN versus S2PGNN: performance
comparison between MoLE-GNN and S2PGNN’s
adapter-based fine-tuning search. The best perform-
ing model is bold and second best performing model
is underlined.

Pre-training Tuning Datasets

Method Method
ogbn-arxiv
(Accuracy)

ogbn-proteins
(ROC-AUC)

ogbn-products
(Accuracy)

NodeFormer

Full Fine-tune (100%) 58.5±0.2 77.5±1.2 62.6±0.1
AdapterGNN (6.8%) 64.9±0.4 75.1±0.5 65.3±0.4

GCNconv-Adapter (3.0%) 56.2±0.7 71.5±0.6 27.2±0.3
MoLE-GNN (ours) (3.6%) 67.5±0.2 77.6±0.3 67.5±0.2

DIFFormer-s

Full Fine-tune (100%) 47.8±0.9 72.5±0.4 55.2±0.4
AdapterGNN (6.8%) 54.9±0.3 58.4±0.4 54.9±0.3

GCNconv-Adapter (3.0%) 26.7±0.9 65.1±1.1 22.9±0.9
MoLE-GNN (ours) (3.6%) 58.2±0.6 75.2±0.4 65.2±0.9

Table 3: Performance comparison on large-scale
node classification benchmarks across different fine-
tuning methods on pretrained graph transformers.
Best scores are in bold, and second-best are under-
lined.

Datasets (Time in Seconds)
Tuning Methods BBBP Tox21 ToxCast SIDER ClinTox BACE Avg. # Trainable

Methods Params(M)

Full Fine-Tune

GIN 2.31 2.88 2.34 1.98 1.61 2.21 2.22 7.81
GCN 1.75 2.55 2.61 1.68 1.88 2.03 2.08 2.65
GAT 2.23 2.74 3.39 1.97 2.02 2.36 2.45 4.45

MoLE-GNN 0.45 0.62 0.58 0.45 0.53 0.47 0.52 0.39

Adapter Tuning

Adapter-GNN 1.67 1.42 1.49 0.52 0.51 0.52 1.02 0.12
GCNConv-Adapter 0.64 1.34 1.65 0.49 0.48 0.58 0.86 0.05

S2PGNN 6.65 8.25 9.15 6.65 9.00 7.00 7.78 8.12
MoLE-GNN 0.45 0.62 0.58 0.45 0.53 0.47 0.52 0.39

MoE Tuning

GMoE 2.03 3.12 3.70 1.90 1.22 1.02 2.17 14.9
DA-MoE 1.63 2.26 3.02 1.27 0.89 1.03 1.68 29.8
TopExpert 1.19 2.02 2.36 0.56 0.62 0.51 1.21 2.51

MoLE-GNN 0.45 0.62 0.58 0.45 0.53 0.47 0.52 0.39

Table 4: Detailed time and memory comparison of
MoLE-GNN and other baseline methods on graph
classification dataset. Here, M stands for million.
The lowest time and parameter count are marked in
bold, and the second-lowest are underlined.

Pre-training Tuning Method Datasets (Accuracy ↑)
Method Cora Citeseer PubMed Wisconsin Texas Avg.

NodeFormer

Full Fine-tune (100%) 85.1±0.8 77.0±1.7 87.9±0.2 59.1±3.8 60.9±8.7 74.0
Surgical Fine Tuning (0.15%) 78.3±1.3 75.5±2.2 87.8±0.4 53.1±4.9 60.4±4.8 71.0

BitFit (0.10%) 78.2±0.9 74.6±2.4 87.9±0.6 54.4±7.9 58.7±8.7 70.8
LoRA (1.42%) 85.3±0.8 76.2±1.4 87.4±0.1 53.4±3.2 62.6±7.6 72.9

Adapter (1.00%) 78.5±1.3 74.5±2.6 87.9±0.5 56.6±4.9 63.8±6.7 72.3
G-Adapter (1.20%) 83.7±0.7 74.3±2.3 89.0±0.3 52.8±3.6 62.6±5.3 72.5

AdapterGNN (6.8%) 78.7±1.2 74.9±2.1 88.3±0.5 60.9±8.3 63.4±7.2 73.3
GCNconv-Adapter (3.0%) 81.3±0.9 76.6±2.0 89.1±0.3 55.3±5.0 64.4±4.3 73.3
MoLE-GNN (ours) (3.6%) 85.6±1.0 77.3±0.7 89.3±0.4 72.5±8.5 72.3±7.3 79.4

DIFFormer-s

Full Fine-tune (100%) 83.2±5.0 73.2±1.6 87.9±0.5 48.1±6.5 58.7±3.7 70.2
Surgical Fine Tuning (0.15%) 81.8±5.3 73.5±1.2 87.3±3.8 50.6±6.1 57.5±4.7 70.1

BitFit (0.10%) 81.4±5.5 48.8±6.1 76.0±6.1 49.1±8.5 60.0±5.3 63.1
LoRA (1.42%) 78.9±6.2 70.5±1.1 84.7±4.3 45.6±8.2 57.5±4.5 67.4

Adapter (1.00%) 81.4±5.3 72.9±1.8 85.2±3.9 47.2±5.9 55.8±5.8 68.5
G-Adapter (1.20%) 67.9±17.5 74.1±1.4 73.3±15.4 57.2±5.8 62.1±1.6 66.9

AdapterGNN (6.8%) 80.1±6.7 70.1±1.4 86.8±0.6 69.7±5.9 56.2±2.6 72.6
GCNconv-Adapter (3.0%) 82.8±5.0 72.1±1.9 85.7±0.5 57.8±4.7 62.9±5.9 72.3
MoLE-GNN (ours) (3.6%) 83.5±0.9 73.6±1.4 88.2±0.3 76.3±3.7 71.9±5.3 78.7

Table 5: Test Accuracy (%) performances on node
classification benchmarks with different tuning meth-
ods and pre-trained graph transformers models. Best
performing model, based on average Accuracy (%)
is shown in bold, while the second-best model is
underlined

Datasets
Methods Cora Citeseer PubMed ogbl-ddi

MRR ↑ MRR ↑ MRR ↑ Hits@20 ↑
Full Fine-tune 8.9±7.04 13.1±3.4 7.3±3.1 83.3±3.3

(100%)
Surgical Fine Tuning 24.3±14.4 26.4±2.5 19.3±2.7 24.2±14.5

(0.15%)
BitFit 19.6±9.5 29.5±6.5 10.3±3.1 19.5±17.2

(0.20%)
LoRA 11.1±3.1 16.7±3.4 3.8±1.1 16.5±4.0
(7.0%)
Adapter 26.0±8.5 39.2±12.6 20.5±9.1 40.9±18.1
(7.0%)

G-Adapter 28.0±5.9 33.2±9.7 21.6±7.1 38.1±1.3
(7.8%)

AdapterGNN 25.1±6.2 28.8±5.8 15.8±4.6 72.5±6.3
(1.7%)

GCNconv-Adapter 28.6±7.4 31.2±6.1 29.9±4.6 78.4±3.7
(1.5%)

Link-MoE 44.0±2.3 64.6±3.7 53.1±0.2 85.2±1.3
(100%)

MoLE-GNN 49.3±4.0 66.4±4.6 44.7±4.2 93.2±1.3
(2.3%)

Table 6: Test performance on the link prediction
benchmark with different tuning methods. The best
perform model, based MRR and Hits@20 (mean ±
standard deviation) are shown in bold, while the
second-best model is underlined.

prediction. Each expert is instantiated as either a Graph Isomorphism Network (GIN) or a Graph
Transformers (GTs) equipped with sequential adapters (placed before and after the message pass-
ing).
Inductive Learning Results. We evaluate MoLE-GNN under inductive learning settings, as re-
ported in Table 1. Across all datasets, MoLE-GNN consistently outperforms full fine-tuning in clas-
sification. MoLE-GNN achieves higher ROC–AUC than full fine-tuning across ClinTox, SIDER,
BACE, BBBP, HIV, ToxCast, and PPI, yielding an overall average of 73.22% i.e, 5.2% average
improvement over 69.6%. Furthermore, MoLE-GNN outperforms the domain-specific TopExpert
on eight of nine datasets and achieves comparable performance on MUV, yielding an average
ROC–AUC of 73.2% a 5.8% improvement over TopExpert (69.2%). Furthermore, MoLE-GNN
surpasses existing state-of-the-art (SOTA) graph-specific PEFT methods outperforming GCNconv-
Adapter by 8.7% and AdapterGNN by 3.1% and delivers notable improvements over conventional
PEFT approaches. A main reason MoLE-GNN surpasses pre-trained PEFT approaches, and Top-
Expert is its structure-aware sparse routing to depth specific experts with lightweight, topology-
conditioned adapters, aligning receptive fields to graph scale and reducing overfitting for stronger
inductive generalization. For brevity, we report the additional results of MoLE-GNN on social

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

network graph classification (Table 11) and few-shot learning (Fig. 5) in Appendix F. We also eval-
uate MoLE-GNN against the automatic adapter-based fine-tuning framework S2PGNN Zhili et al.
(2024), and the results are presented in Table 2. From Table 2, we observe that MoLE-GNN con-
sistently outperforms S2PGNN on BBBP across all pre-training methods, achieves better perfor-
mance on ClinTox for four out of five pre-training methods, and produces comparable results under
the GraphCL pre-training setting. For the remaining datasets, MoLE-GNN produces comparable
results. A key reason for the comparable performance is that S2PGNN fine-tunes the entire pre-
trained backbone together with its identity-augmentation modules including the bottleneck blocks
that resemble adapter tuning and additionally searches for the best fine-tuning configuration for each
dataset. In contrast, MoLE-GNN freezes the backbone of each expert and tunes only lightweight
adapters within a fixed architecture. Despite this more restricted tuning regime and the absence of
any search, MoLE-GNN still surpasses S2PGNN on BBBP and ClinTox. Moreover, from Table 4,
we observe that the S2PGNN search procedure requires substantially more training time and 20×
more tunable parameters. For a fair comparison, we evaluate a controlled variant of S2PGNN in
which all backbone parameters of the pre-trained GNNs are frozen and only the adapter-like mod-
ules are tuned. Under this setting, we observe that MoLE-GNN outperforms S2PGNN across all
datasets for all pre-training methods.
Transductive Learning Results. We evaluate the performance of MoLE-GNN under transductive
learning, with results summarized in Table 5. Across the three homophilic benchmarks Cora, Cite-
seer, and PubMed MoLE-GNN consistently outperforms fully fine-tuned baselines (NodeFormer
and DIFFormer-s), providing an average gain of 0.7%. Again, we observe that on the two het-
erophilic datasets, Wisconsin and Texas, our MoLE-GNN, instantiated with either pre-trained Node-
Former or DIFFormer-s (pre-trained on the homophilic dataset ogbn-arxiv), consistently outper-
forms vanilla fine-tuning. This demonstrates that each expert in MoLE-GNN transfers pre-trained
knowledge more effectively than the vanilla fine-tuning approach. Overall, this achieves an average
Accuracy of 79.1%, outperforming vanilla fine-tuning, where both NodeFormer and DIFFormer-s
attain only 72.1%. Furthermore, MoLE-GNN outperforms SOTA graph specific PEFT methods,
GCNconv-Adapter by 8.58% and AdapterGNN by 8.36%, and produces substantial gains over clas-
sical PEFT techniques. A primary reason is MoLE-GNN excels its structure aware gating, which
routes inputs to adapter based graph transformers within each expert, capturing richer graph struc-
ture than SOTA baselines. In addition, we provide a comparison of MoLE-GNN with existing graph
prompt based baselines (Table 12) and report its few-shot performance (Fig. 5) in Appendix F.
Transductive Learning results for Large-Scale Graphs. We examine the scalability of MoLE-
GNN on large-scale transductive node classification tasks such as protein-protein interaction, ci-
tation network and product co-purchase tasks using three large benchmark datasets: ogbn-arxiv,
ogbn-proteins, and ogbn-products. The results are summarized in Table 3. As shown in the table,
MoLE-GNN consistently outperforms all full fine-tuning baselines. Notably, when applied on top
of the NodeFormer pretraining backbone, MoLE-GNN achieves a 0.14% ROC-AUC improvement
on ogbn-proteins, despite updating only a small fraction of parameters. This demonstrates that our
parameter-efficient updates can surpass full-model fine-tuning even on extremely large graphs. For
the remaining two datasets, MoLE-GNN also outperforms the full fine-tuning setting in terms of
Accuracy, achieving improvements of 15.97% on ogbn-arxiv and 7.8% on ogbn-products. Across
all three large-scale datasets, MoLE-GNN consistently outperforms prior PEFT approaches, includ-
ing AdapterGNN and GCNConv-Adapter, when built upon the NodeFormer pre-training backbone.
Furthermore, as shown in Table 3, using DIFFormer-s as the backbone, MoLE-GNN surpasses both
full fine-tuning and other PEFT baselines on every large-scale dataset. These results demonstrate
that MoLE-GNN is not only effective on small-scale transductive benchmarks but also scales reli-
ably to large-scale datasets, thereby confirming its scalability.
Link Prediction Results. We evaluate the performance of MoLE-GNN on link prediction task,
with results summarized in Table 6. For this task, each expert in MoLE-GNN is instantiated as
NAGphormer Chen et al. (2022a). Across all datasets, MoLE-GNN consistently outperforms fully
fine-tuned NAGphormer, achieving MRR scores of 49.3%, 66.4%, and 44.7% on Cora, Citeseer,
and PubMed, compared to 8.9%, 13.1%, and 7.3% from fine-tuning. We further observe that
MoLE-GNN achieves a Hit@20 score of 93.2%, surpassing the full fine-tuning result of 83.3%.
Again, we observe that MoLE-GNN also outperforms the MoE-based model Link-MoE on Cora,
Citeseer, and ogbl-ddi, while achieving comparable performance on PubMed. While Link-MoE
trains experts from scratch, our model tunes only selected components yet achieves better results,
which is particularly noteworthy. MoLE-GNN consistently outperforms prior methods: it achieves
MRR scores of 49.3% and 66.4% (vs. 44.0% and 64.6% for Link-MoE), and Hits@20 of 93.2% on

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

ogbl-ddi (vs. 85.2%). On PubMed, MoLE-GNN attains 44.7% MRR, close to Link-MoE’s 53.1%.
Moreover, MoLE-GNN yields average improvements over graph-specific PEFT baselines (50.9%
vs. GCNconv-Adapter and 71.2% vs. AdapterGNN), while also surpassing classical PEFT tech-
niques.
MoLE-GNN Vs General Purpose MoE models. In this section, we compare MoLE-GNN with
SOTA general-purpose graph MoE models, as illustrated in Fig. 3. We consider GMoE and DA-
MoE as baselines. From Fig. 3(a), MoLE-GNN consistently outperforms GMoE and DA-MoE on
HIV, Tox21, and BBBP in terms of ROC-AUC, and achieves performance comparable to DA-MoE
on ToxCast for inductive molecular graph classification. Specifically, MoLE-GNN surpasses the
second-best model, DA-MoE, by 0.9%, 1.1%, and 7.8% on HIV, Tox21, and BBBP, respectively,
yielding an average improvement of 2.4% across the four datasets. From Fig. 3(b), MoLE-GNN
also consistently outperforms GMoE and DA-MoE on IMDB-B, IMDB-M, and COLLAB, while
achieving performance comparable to DA-MoE on RDT-M for inductive social network graph
classification. In particular, MoLE-GNN exceeds DA-MoE by 0.6%, 7.0%, and 3.4% on IMDB-
B, IMDB-M, and COLLAB, respectively, with an average gain of 1.4% across the four datasets.

(a)

(c) (d)

(b)

R
O

C
-A

U
C

 (%
)

A
cc

ur
ac

y
(%

)

A
cc

ur
ac

y
(%

)

Sc
or

e

GNN GMoE DA-MoE MoLE-GNN

BBBP

Texas ogbl-ddi
Hits@20

PubMed
 MRR

PubMedCiteseer Citeseer
 MRR

Cora Cora
MRR

RDT-MCOLLABIMDB-B IMDB-MToxCastTox21HIV

Figure 3: Performance comparison on graph
classification for (a) molecular graphs and (b) so-
cial network graphs in inductive settings, (c) node
classification in the transductive setting, and (d)
link prediction, against state-of-the-art MoE mod-
els, the base GNN based model, and our model
MoLE-GNN. Standard deviations are represented
as error bars on top of the corresponding bar plots.

Finally, Fig. 3(c) shows that MoLE-GNN achieves
superior performance over both baselines on four
transductive node classification benchmarks: Cora,
Citeseer, PubMed, and Texas. Relative to DA-MoE,
MoLE-GNN improves Accuracy by 3.3%, 6.6%,
1.9%, and 25.5% on Cora, Citeseer, PubMed, and
Texas, respectively, resulting in an average margin
of 7.96% across all four datasets. Finally, for link
prediction tasks, we observe from Fig. 3(d) shows
that MoLE-GNN outperforms GMoE and DA-MoE
on four datasets: Cora, Citeseer, PubMed, and ogbl-
ddi. Compared to DA-MoE, MoLE-GNN improves
the MRR by 51.6%, 36.7%, and 157.2% on Cora,
Citeseer, and PubMed, respectively, and boosts
Hits@20 by 104.5% on ogbl-ddi. For vanilla scratch
GNNs, MoLE-GNN consistently outperforms across
all datasets and for all three tasks—inductive, trans-
ductive, and link prediction as shown in Fig. 3.
Efficiency Analysis. We compare the per-epoch
training time and the number of trainable parameters
between MoLE-GNN and several baseline tuning
strategies, including full fine-tuning, adapter-based
tuning, and MoE-based tuning. All per-epoch times
are measured on a NVIDIA A6000 GPU server, and
for fairness, all methods are evaluated using the At-
trMasking pretraining setup. From Table 4, we observe that MoLE-GNN achieves the lowest per-
epoch training time while requiring the fewest trainable parameters across all fine-tuning paradigms.
Moreover, Table 1 shows that MoLE-GNN not only provides a significantly smaller parameter foot-
print compared to full fine-tuning, but also delivers superior predictive performance and also same
for the adapter-tuning and MoE based tuning categories. In addition, we have also reported wall
clock time for each graph based MoE methods in the Appendix (Table 14).

Form Bace BBBP ClinTox SIDER BN Avg

Sequential
(After MLP) 70.7± 1.8 65.8± 0.6 68.4 ± 2.3 61.3 ± 0.5 ✓ 66.6

Parallel
(Before MP) 80.9 ± 0.6 72.4 ± 0.5 77.1 ± 1.1 62.3 ± 0.4 ✓ 73.2

Parallel
(After MP) 81.3 ± 0.7 72.6 ± 0.9 80.9 ± 0.5 62.6 ± 0.7 ✓ 74.3

Parallel
(Dual) 80.6 ± 1.2 72.0 ± 0.7 71.2 ± 3.9 61.9 ± 0.5 × 71.4
Parallel
(Dual) 81.6 ± 0.8 73.2 ± 0.8 80.0 ± 1.5 62.8 ± 0.6 ✓ 74.4

Table 7: Comparison of different adapter forms
with and without BatchNorm (BN). The best re-
sult is in bold, and the second best model is
underlined.

Scaling Bace BBBP ClinTox SIDER Avg

0.01 79.6 ± 1.4 70.9 ± 0.6 74.7 ± 1.4 61.8 ± 0.7 71.8
0.1 81.2 ± 0.9 72.5 ± 0.6 79.3 ± 1.8 62.4 ± 0.7 73.9
0.5 81.4 ± 0.8 72.9 ± 0.5 79.5 ± 1.8 62.7 ± 0.4 74.1
1 81.9 ± 0.6 72.4 ± 0.6 78.9 ± 1.8 62.6 ± 0.3 73.9
5 81.2 ± 1.7 71.6 ± 0.9 74.8 ± 2.5 61.8 ± 0.5 72.3

10 80.8 ± 1.3 71.1 ± 1.2 73.9 ± 4.2 61.5 ± 0.9 71.8
Learnable 81.6 ± 0.8 73.2 ± 0.8 80.0 ± 1.5 62.8 ± 0.6 74.4

Table 8: Performance comparison between learn-
able scaling and fixed scaling. The best perform-
ing result is in bold, and the second best model is
underlined

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

6 ABLATION STUDY
In this section, we analyze the core design choices of our proposed adapter within each expert of
MoLE-GNN. We first evaluate the impact of different adapter variants, considering the presence or
absence of batch normalization (BN) and the use of learnable versus fixed scaling. For MoE compo-
nent of MoLE-GNN, we investigate the effect of structure-based gating and further examine the role
of PEFT within the MoE framework. For brevity, additional analyses are provided in Appendix G.
Impact of Insertion Form and BN. Here, we analyze the impact of different inser-
tion strategies and the effect of BN in the adapters integrated into each expert of the
GNNs within the MoLE-GNN framework. Each expert contains dual adapters placed in
parallel with the GNN MLP, positioned before and after message passing. To exam-
ine the effectiveness of this architecture, we compare it against variants using a single

R
O

C
-A

U
C

 (%
)

R
O

C
-A

U
C

 (%
)

(a) (b)

GCN GAT Linear GIN (default) MoE-Wo Adapter
(Full Fine-tune)

 MoE-Wo Adapter
(Freeze Backbone GNN) MoLE-GNN

BBBP ClinToxBACE BBBP ClinTox ToxCastBACE

Figure 4: (a) Ablation study on the gating net-
work, and (b) the effect of PEFT within the
MoE framework. Specifically, we compare the
performance of a fully fine-tuned MoE frame-
work, a frozen MoE framework, and a PEFT-
based MoLE-GNN MoE framework.

parallel adapter and a sequential adapter inserted af-
ter the GNN MLP. From Table 7, we observe that
using two parallel adapters yields better performance
for MoLE-GNN compared to a single adapter per ex-
pert. Moreover, omitting BN in each adapter within
an expert leads to a significant performance drop.
Scaling Strategy. We compare our proposed learn-
able scaling strategy against fixed scaling values
ranging from 0.01 to 5, applied to each adapter
within every expert of MoLE-GNN. Table 8 demon-
strates that our learnable scaling yields the best re-
sults on five out of six datasets and also achieves the
highest overall average performance. We observed
that as the scaling factor increased, performance de-
graded due to catastrophic forgetting of pretrained
knowledge.
Impact of Structure-Based Gating Network. As discussed earlier in Section 3, our gating net-
work employs a GNN model that incorporates structural information, in contrast to a gating network
based on linear projections. Fig. 4 (a) presents the results of the study conducted to further verify
the effectiveness of the structure-based gating network. From Fig. 4 (a), we observe that incorpo-
ration of the gating network with the GNN backbone experts consistently yields better performance
than using a linear projection. Specifically, a noticeable drop in performance is observed when the
structure-based gating network is removed (i.e., 62.4% on BACE, 43.5% on BBBP, and 60.4% on
ClinTox).
Impact of PEFT in MoE framework. We perform ablation studies to evaluate the impact of apply-
ing PEFT to pre-trained expert GNNs within our MoE-based architecture. Specifically, we compare
PEFT against two baselines: full fine-tuning of the expert GNNs, and freezing the experts while
tuning only the linear prediction layer. As illustrated in Fig. 4 (b), MoLE-GNN, which leverages
PEFT for each expert GNN, consistently achieves better performance across all tasks, demonstrat-
ing the effectiveness of parameter-efficient fine-tuning in this setting. Specifically, a noticeable drop
in performance is observed when PEFT is not applied to the pre-trained experts such as 15.8% on
BACE, 17.6% on BBBP, 23.8% on ClinTox, and 18.6% on ToxCast when compared to both full
fine-tuning of the expert GNNs and the strategy of freezing the experts while tuning only the linear
prediction layer. Full fine-tuning may perform poorly due to catastrophic forgetting and overfitting,
as updating all expert GNN parameters can erase learned representations Goodfellow et al. (2013).

7 CONCLUSION

In this study, we propose MoLE-GNN, an effective MoE-based PEFT framework specifically de-
signed for GNNs. Our approach addresses the depth-sensitivity issue inherent in traditional fine-
tuning strategies, while significantly reducing the number of tunable parameters. MoLE-GNN
utilized different pre-trained adapter GNN layers as experts and allowed each individual graph to
adaptively select experts. This framework highlights two key features: the structure based gating
network and pre-trained GNN experts. Through comprehensive experiments on graph, node clas-
sification, and link prediction tasks, MoLE-GNN demonstrates strong generalization capabilities
across datasets of varying scales. Future directions for extending our work include incorporating
pre-trained graph transformers as experts, which may enhance the model’s representational capac-
ity. Additionally, MoLE-GNN could be extended to the domain of graph self-supervised learning.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Maryam Akhavan Aghdam, Hongpeng Jin, and Yanzhao Wu. Da-moe: Towards dynamic expert
allocation for mixture-of-experts models. arXiv preprint arXiv:2409.06669, 2024.

Rahaf Aljundi, Punarjay Chakravarty, and Tinne Tuytelaars. Expert gate: Lifelong learning with a
network of experts. In CVPR, pp. 3366–3375, 2017.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, T. J. Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeff Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. NeurIPS, 2020.

Jinsong Chen, Kaiyuan Gao, Gaichao Li, and Kun He. Nagphormer: A tokenized graph transformer
for node classification in large graphs. arXiv preprint arXiv:2206.04910, 2022a.

Shoufa Chen, Chongjian Ge, Zhan Tong, Jiangliu Wang, Yibing Song, Jue Wang, and Ping Luo.
Adaptformer: Adapting vision transformers for scalable visual recognition. arXiv preprint
arXiv:2205.13535, 2022b.

Yongxing Dai, Xiaotong Li, Jun Liu, Zekun Tong, and Ling-Yu Duan. Generalizable person re-
identification with relevance-aware mixture of experts. In CVPR, pp. 16145–16154, 2021.

Cameron Diao, Kaixiong Zhou, Xiao Huang, and Xia Hu. Molcpt: Molecule continuous prompt
tuning to generalize molecular representation learning. arXiv preprint arXiv:2212.10614, 2022.

Nan Du, Yanping Huang, Andrew M Dai, Simon Tong, Dmitry Lepikhin, Yuanzhong Xu, Maxim
Krikun, Yanqi Zhou, Adams Wei Yu, Orhan Firat, et al. Glam: Efficient scaling of language
models with mixture-of-experts. In ICML, pp. 5547–5569. PMLR, 2022.

Yin Fang, Qiang Zhang, Haihong Yang, Xiang Zhuang, Shumin Deng, Wen Zhang, Ming Qin, Zhuo
Chen, Xiaohui Fan, and Huajun Chen. Molecular contrastive learning with chemical element
knowledge graph. In Proceedings of the AAAI conference on artificial intelligence, volume 36,
pp. 3968–3976, 2022.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. JMLR, 2022.

Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric. In
ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.

Claudio Gallicchio and Alessio Micheli. Fast and deep graph neural networks. In Proceedings of
the AAAI conference on artificial intelligence, volume 34, pp. 3898–3905, 2020.

Yang Gao, Hong Yang, Peng Zhang, Chuan Zhou, and Yue Hu. Graphnas: Graph neural architecture
search with reinforcement learning. arXiv preprint arXiv:1904.09981, 2019.

Ian J Goodfellow, Mehdi Mirza, Da Xiao, Aaron Courville, and Yoshua Bengio. An empirical
investigation of catastrophic forgetting in gradient-based neural networks. In Advances in Neural
Information Processing Systems (NeurIPS) Workshops, N/A, 2013.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
In NeurIPS, N/A, 2017a.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017b.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. Towards parameter-efficient tuning
of large-scale pretrained language models. In Findings of the Association for Computational
Linguistics (ACL), pp. 2069–2080, N/A, 2022.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Zhenyu Hou, Xiao Liu, Yukuo Cen, Yuxiao Dong, Hongxia Yang, Chunjie Wang, and Jie Tang.
Graphmae: Self-supervised masked graph autoencoders. In Proceedings of the 28th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 594–604, 2022.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, An-
drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp.
In International conference on machine learning, pp. 2790–2799. PMLR, 2019.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. arXiv
preprint arXiv:2005.00687, 2020a.

Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure
Leskovec. Strategies for pre-training graph neural networks. In International Conference
on Learning Representations, 2020b. URL https://openreview.net/forum?id=
HJlWWJSFDH.

Ziniu Hu, Yuxiao Dong, Kuansan Wang, Kai-Wei Chang, and Yizhou Sun. Gpt-gnn: Generative
pre-training of graph neural networks. In Proceedings of the 26th ACM SIGKDD international
conference on knowledge discovery & data mining, pp. 1857–1867, 2020c.

Kexin Huang, Ying Jin, Emmanuel Candes, and Jure Leskovec. Uncertainty quantification over
graph with conformalized graph neural networks. In NeurIPS, volume 36, 2024.

Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. Adaptive mixtures of
local experts. Neural computation, 1991.

Michael I Jordan and Robert A Jacobs. Hierarchical mixtures of experts and the em algorithm.
Neural computation, 6(2):181–214, 1994.

Suyeon Kim, Dongha Lee, SeongKu Kang, Seonghyeon Lee, and Hwanjo Yu. Learning topology-
specific experts for molecular property prediction. In AAAI, volume 37, pp. 8291–8299, 2023.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Thomas Kipf and Max Welling. Variational graph auto-encoders. ArXiv, abs/1611.07308, 2016.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In International Conference on Learning Representations, 2017. URL https:
//openreview.net/forum?id=SJU4ayYgl.

Yoonho Lee, Annie S Chen, Fahim Tajwar, Ananya Kumar, Huaxiu Yao, Percy Liang, and Chelsea
Finn. Surgical fine-tuning improves adaptation to distribution shifts. In NeurIPS 2022 Work-
shop on Distribution Shifts: Connecting Methods and Applications, 2022. URL https:
//openreview.net/forum?id=uhGi8kOgtU.

Jure Leskovec and Rok Sosič. Snap: A general-purpose network analysis and graph-mining library.
ACM Transactions on Intelligent Systems and Technology (TIST), 8(1):1–20, 2016.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. arXiv preprint arXiv:2104.08691, 2021.

Shengrui Li, Xueting Han, and Jing Bai. Adaptergnn: Parameter-efficient fine-tuning improves gen-
eralization in gnns. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38,
pp. 13600–13608, N/A, 2024.

12

https://openreview.net/forum?id=HJlWWJSFDH
https://openreview.net/forum?id=HJlWWJSFDH
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=uhGi8kOgtU
https://openreview.net/forum?id=uhGi8kOgtU

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. arXiv
preprint arXiv:2101.00190, 2021.

Yujia Li, Richard Zemel, Marc Brockschmidt, and Daniel Tarlow. Gated graph sequence neural
networks. In ICLR, N/A, 2016.

Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mohta, Tenghao Huang, Mohit Bansal, and
Colin Raffel. Few-shot parameter-efficient fine-tuning is better and cheaper than in-context learn-
ing. arXiv preprint arXiv:2205.05638, 2022.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig. Pre-
train, prompt, and predict: A systematic survey of prompting methods in natural language pro-
cessing. arXiv preprint arXiv:2107.13586, 2021a.

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding, Yujie Qian, Zhilin Yang, and Jie Tang. Gpt
understands, too. ArXiv, abs/2103.10385, 2021b.

Zemin Liu, Xingtong Yu, Yuan Fang, and Xinming Zhang. Graphprompt: Unifying pre-training
and downstream tasks for graph neural networks. Proceedings of the ACM Web Conference 2023,
2023a.

Zemin Liu, Xingtong Yu, Yuan Fang, and Xinming Zhang. Graphprompt: Unifying pre-training and
downstream tasks for graph neural networks. arXiv preprint arXiv:2302.08043, 2023b.

Zheyuan Liu, Chunhui Zhang, Yijun Tian, Erchi Zhang, Chao Huang, Yanfang Ye, and Chuxu
Zhang. Fair graph representation learning via diverse mixture-of-experts. In WWW, 2023c.

Siqu Long, Feiqi Cao, Soyeon Caren Han, and Haiqing Yang. Vision-and-language pretrained mod-
els: A survey. IJCAI, 2022.

Li Ma, Haoyu Han, Juanhui Li, Harry Shomer, Hui Liu, Xiaofeng Gao, and Jiliang Tang. Mixture
of link predictors. arXiv preprint arXiv:2402.08583, 2024.

Haitao Mao, Zhikai Chen, Wenzhuo Tang, Jianan Zhao, Yao Ma, Tong Zhao, Neil Shah, Mikhail
Galkin, and Jiliang Tang. Graph foundation models. CoRR, 2024a.

Haitao Mao, Zhikai Chen, Wenzhuo Tang, Jianan Zhao, Yao Ma, Tong Zhao, Neil Shah, Mikhail
Galkin, and Jiliang Tang. Position: Graph foundation models are already here. In Forty-first
International Conference on Machine Learning, 2024b.

Pantelis Papageorgiou, Haitz Sáez de Ocáriz Borde, Anastasis Kratsios, and Michael M Bronstein.
Graph low-rank adapters of high regularity for graph neural networks and graph transformers. In
First Workshop on Scalable Optimization for Efficient and Adaptive Foundation Models, 2025.

Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn: Geometric
graph convolutional networks. In International Conference on Learning Representations, 2019.

Michael Poli, Stefano Massaroli, Clayton M Rabideau, Junyoung Park, Atsushi Yamashita, Hajime
Asama, and Jinkyoo Park. Continuous-depth neural models for dynamic graph prediction. arXiv
preprint arXiv:2106.11581, 2021.

Xipeng Qiu, Tianxiang Sun, Yige Xu, Yunfan Shao, Ning Dai, and Xuanjing Huang. Pre-trained
models for natural language processing: A survey. Science China Technological Sciences, 63:
1872 – 1897, 2020.

Bharath Ramsundar, Peter Eastman, Pat Walters, and Vijay Pande. Deep learning for the life sci-
ences: applying deep learning to genomics, microscopy, drug discovery, and more. O’Reilly
Media, 2019.

Scott C Ritchie, Stephen Watts, Liam G Fearnley, Kathryn E Holt, Gad Abraham, and Michael
Inouye. A scalable permutation approach reveals replication and preservation patterns of network
modules in large datasets. Cell systems, 3(1):71–82, 2016.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Yu Rong, Yatao Bian, Tingyang Xu, Weiyang Xie, Ying Wei, Wenbing Huang, and Junzhou Huang.
Self-supervised graph transformer on large-scale molecular data. Advances in Neural Information
Processing Systems, 33:12559–12571, 2020.

Timo Schick and Hinrich Schütze. Exploiting cloze-questions for few-shot text classification and
natural language inference. In Conference of the European Chapter of the Association for Com-
putational Linguistics, 2020a.

Timo Schick and Hinrich Schütze. It’s not just size that matters: Small language models are also
few-shot learners. NAACL, 2020b.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
Collective classification in network data. AI magazine, 29(3):93–93, 2008.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and
Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. In
ICLR, 2017.

Teague Sterling and John J Irwin. Zinc 15–ligand discovery for everyone. Journal of chemical
information and modeling, 55(11):2324–2337, 2015.

Fan-Yun Sun, Jordan Hoffmann, Vikas Verma, and Jian Tang. Infograph: Unsupervised and
semi-supervised graph-level representation learning via mutual information maximization. arXiv
preprint arXiv:1908.01000, 2019.

Mingchen Sun, Kaixiong Zhou, Xin He, Ying Wang, and Xin Wang. Gppt: Graph pre-training and
prompt tuning to generalize graph neural networks. In Proceedings of the 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, pp. 1717–1727, 2022.

Jie Tang, Jimeng Sun, Chi Wang, and Zi Yang. Social influence analysis in large-scale networks.
In Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and
data mining, pp. 807–816, 2009.

Petar Veličković, William Fedus, William L Hamilton, Pietro Liò, Yoshua Bengio, and R Devon
Hjelm. Deep graph infomax. arXiv preprint arXiv:1809.10341, 2018.

Petar Velickovic, William Fedus, William L. Hamilton, Pietro Lio’, Yoshua Bengio, and R. Devon
Hjelm. Deep graph infomax. ICLR, 2019.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In ICLR, N/A, 2018.

Haotao Wang, Ziyu Jiang, Yuning You, Yan Han, Gaowen Liu, Jayanth Srinivasa, Ramana Rao
Kompella, and Zhangyang Wang. Graph mixture of experts: Learning on large-scale graphs with
explicit diversity modeling. In NeurIPS, 2023.

Qitian Wu, Wentao Zhao, Zenan Li, David P Wipf, and Junchi Yan. Nodeformer: A scalable graph
structure learning transformer for node classification. Advances in Neural Information Processing
Systems, 35:27387–27401, 2022.

Qitian Wu, Chenxiao Yang, Wentao Zhao, Yixuan He, David Wipf, and Junchi Yan. DIFFormer:
Scalable (graph) transformers induced by energy constrained diffusion. In The Eleventh Interna-
tional Conference on Learning Representations, 2023a. URL https://openreview.net/
forum?id=j6zUzrapY3L.

Shirley Wu, Kaidi Cao, Bruno Ribeiro, James Zou, and Jure Leskovec. Graphmetro: Mit-
igating complex distribution shifts in gnns via mixture of aligned experts. arXiv preprint
arXiv:2312.04693, 2023b.

Xuansheng Wu, Kaixiong Zhou, Mingchen Sun, Xin Wang, and Ninghao Liu. A survey of graph
prompting methods: Techniques, applications, and challenges. arXiv preprint arXiv:2303.07275,
2023c.

14

https://openreview.net/forum?id=j6zUzrapY3L
https://openreview.net/forum?id=j6zUzrapY3L

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Jun Xia, Lirong Wu, Jintao Chen, Bozhen Hu, and Stan Z Li. Simgrace: A simple framework for
graph contrastive learning without data augmentation. In Proceedings of the ACM Web Confer-
ence 2022, pp. 1070–1079, 2022a.

Jun Xia, Yanqiao Zhu, Yuanqi Du, and Stan Z Li. A survey of pretraining on graphs: Taxonomy,
methods, and applications. arXiv preprint arXiv:2202.07893, 2022b.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations (ICLR), N/A, 2019.

Zelin Yao, Chuang Liu, Xianke Meng, Yibing Zhan, Jia Wu, Shirui Pan, and Wenbin Hu. Da-moe:
Addressing depth-sensitivity in graph-level analysis through mixture of experts. arXiv preprint
arXiv:2411.03025, 2024.

Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen. Graph
contrastive learning with augmentations. NeurIPS, 2020.

Yuning You, Tianlong Chen, Yang Shen, and Zhangyang Wang. Graph contrastive learning auto-
mated. In International Conference on Machine Learning, pp. 12121–12132. PMLR, 2021.

Jiazuo Yu, Yunzhi Zhuge, Lu Zhang, Ping Hu, Dong Wang, Huchuan Lu, and You He. Boost-
ing continual learning of vision-language models via mixture-of-experts adapters. In CVPR, pp.
23219–23230, 2024.

Elad Ben Zaken, Shauli Ravfogel, and Yoav Goldberg. Bitfit: Simple parameter-efficient fine-tuning
for transformer-based masked language-models. arXiv preprint arXiv:2106.10199, 2021.

Dingyi Zeng, Wanlong Liu, Wenyu Chen, Li Zhou, Malu Zhang, and Hong Qu. Substructure aware
graph neural networks. In AAAI, volume 37, pp. 11129–11137, N/A, 2023.

Hanqing Zeng, Muhan Zhang, Yinglong Xia, Ajitesh Srivastava, Andrey Malevich, Rajgopal Kan-
nan, Viktor Prasanna, Long Jin, and Ren Chen. Decoupling the depth and scope of graph neural
networks. Advances in neural information processing systems, 34:19665–19679, 2021.

Zaixi Zhang, Qi Liu, Hao Wang, Chengqiang Lu, and Chee-Kong Lee. Motif-based graph self-
supervised learning for molecular property prediction. Advances in Neural Information Process-
ing Systems, 34:15870–15882, 2021.

Qifang Zhao, Weidong Ren, Tianyu Li, Hong Liu, Xingsheng He, and Xiaoxiao Xu. Graphgpt:
Generative pre-trained graph eulerian transformer. In Forty-second International Conference on
Machine Learning.

Yanping Zheng, Lu Yi, and Zhewei Wei. A survey of dynamic graph neural networks. Frontiers of
Computer Science, 19(6):196323, 2025.

WANG Zhili, DI Shimin, CHEN Lei, and ZHOU Xiaofang. Search to fine-tune pre-trained graph
neural networks for graph-level tasks. In 2024 IEEE 40th International Conference on Data
Engineering (ICDE), pp. 2805–2819. IEEE, 2024.

Kaixiong Zhou, Xiao Huang, Qingquan Song, Rui Chen, and Xia Hu. Auto-gnn: Neural architecture
search of graph neural networks. Frontiers in big Data, 5:1029307, 2022.

Chenyi Zi, Haihong Zhao, Xiangguo Sun, Yiqing Lin, Hong Cheng, and Jia Li. Prog: A graph
prompt learning benchmark. In The Thirty-eight Conference on Neural Information Processing
Systems Datasets and Benchmarks Track, 2024. URL https://openreview.net/forum?
id=wqo6xEMyk9.

15

https://openreview.net/forum?id=wqo6xEMyk9
https://openreview.net/forum?id=wqo6xEMyk9

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

MOLE-GNN: MIXTURE OF EXPERT BASED PARAMETER-EFFICIENT
FINE-TUNING FOR GRAPH NEURAL NETWORKS (TECHNICAL APPENDIX)

THE USE OF LARGE LANGUAGE MODELS (LLMS)

No Large Language Models (LLMs) were used in conducting the research presented in this pa-
per. However, we employed an LLM (ChatGPT) solely for editorial purposes, including refining
grammar, spelling, word choice, and overall clarity of the manuscript.

A RELATED WORK

Graph Neural Networks. GNNs are designed to process graph-structured data through message
passing to update node representations. State-of-the-art (SOTA) models include GatedGCN Li et al.
(2016), GCN Kipf & Welling (2017), GAT Veličković et al. (2018), GIN Xu et al. (2019), and
GraphSAGE Hamilton et al. (2017a). Recent advances focus on enhancing information aggrega-
tion, such as SAGIN Zeng et al. (2023) multi-level subgraph encoding and CF-GNNs Huang et al.
(2024) conformal prediction. However, most GNNs use a fixed layer depth, limiting their adaptabil-
ity to graphs of varying scales and complexities.
Pre-trained GNN Models. Inspired by the success of pre-trained models in NLP and vision, recent
research has increasingly focused on pre-trained GNNs Qiu et al. (2020); Long et al. (2022); Xia
et al. (2022b). These methods use self-supervised learning to extract meaningful representations
from large-scale pre-training graphs. GAE Kipf & Welling (2016) learns via edge prediction, while
DGI Velickovic et al. (2019) and InfoGraph Sun et al. (2019) maximize mutual information between
graph-level and substructure-level representations. Hu et al.Hu et al. (2020a) use attribute masking
and context prediction for molecular and protein property pre-training. GROVER Rong et al. (2020)
and MGSSL Zhang et al. (2021) focus on motif prediction to leverage molecular domain knowledge.
Graph contrastive learning methods like GraphCL You et al. (2020) and JOAO You et al. (2021) em-
ploy diverse augmentations for effective representation learning. However, existing methods face
challenges like catastrophic forgetting, overfitting with limited data, and fixed layer configurations
that fail to adapt to graph scale variations.
Mixture of Expert Models. The Mixture-of-Experts (MoE) framework, originally introduced by
Jacobs et al. Jacobs et al. (1991); Jordan & Jacobs (1994), involves training specialized expert net-
works. Aljundi et al. Aljundi et al. (2017) and Shazeer et al. Shazeer et al. (2017) propose expert
selection via auto-encoder and sparse gating, respectively. MoE modules are now widely used in
computer vision Dai et al. (2021); Yu et al. (2024) and NLP Fedus et al. (2022); Du et al. (2022). In
recent times, the integration of MoE techniques with GNNs has gained prominence. For example,
TopExpert Kim et al. (2023) employs clustering-based gating, GMoE Wang et al. (2023) captures
multi-hop information, and G-FAME Liu et al. (2023c) emphasizes fairness. Link-MoE Ma et al.
(2024) and GraphMETRO Wu et al. (2023b) tackle task specialization and distribution shifts, while
DA-MoE Yao et al. (2024) adapts the depth of the GNN to adapt graph scale variations. However,
most MoE-GNNs are trained from scratch with a large number of parameters and do not use pre-
trained GNNs as experts.
Graph-Prompt Tuning Methods. Prompt tuning methods, originating in NLP, adapt pre-trained
models to downstream tasks by modifying inputs rather than model architecture Liu et al. (2021a);
Lester et al. (2021). Variants include prefix-tuning Li & Liang (2021), which updates task-specific
parameters per layer; adapter tuning Houlsby et al. (2019); Chen et al. (2022b), which inserts bot-
tleneck adapters; BitFit Zaken et al. (2021), which tunes only bias terms; and LoRA Hu et al.
(2022), which uses low-rank decomposition. These techniques have also been increasingly adopted
in GNNs Wu et al. (2023c). GPPT Sun et al. (2022) introduces a framework tailored to node-level
tasks, while MoLCPT Diao et al. (2022) targets molecular graphs by embedding motif informa-
tion. GPF Fang et al. (2022) and GraphPrompt Liu et al. (2023b) improve parameter efficiency
but struggle to match full fine-tuning performance in standard settings. Recently, AdapterGNN Li
et al. (2024) extends adapter-based tuning to GNNs by integrating lightweight adapters into each
layer, enabling efficient adaptation with minimal parameter updates. Despite these advances, exist-
ing parameter-efficient methods use a fixed layer configuration for all graphs, limiting their ability to
adapt to varying data scales within a dataset. To overcome this, we propose an adapter-based MoE
framework that employs pre-trained GNNs as experts within a MoE architecture. By integrating

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

tunable adapters into each expert, our approach addresses key challenges such as depth sensitivity,
catastrophic forgetting, and overfitting, offering a more flexible and scalable fine-tuning strategy.

B DATASETS

Here, we provide a detailed description of the pre-training datasets and downstream tasks used in
our experiments.
Pre-training Datasets. For pre-training our GNN experts, we use three domains of unlabeled data:
two million molecules from ZINC15 Sterling & Irwin (2015), 395K protein ego-networks from
PPI data, and general graph datasets grouped into academic and social categories for our induc-
tive learning experiments. The academic set includes NetRep Ritchie et al. (2016) and two DBLP
datasets from SNAP Leskovec & Sosič (2016) and NetRep, while the social set comprises Facebook
and IMDB graphs from NetRep and the LiveJournal dataset from SNAP. Table 9 provides detailed
statistics for each datasets. In pre-training for transductive learning (i.e., node classification), we
use the ogbn-arxiv dataset from the Open Graph Benchmark (OGB) Hu et al. (2020a), a large-scale
citation network comprising over 169K computer science papers (nodes) and 1.1M citation links
(edges). For link prediction tasks, we likewise use ogbn-arxiv to pre-train the GNN experts.

Dataset Academia DBLP(SNALP) DBLP(NetRep) IMDB Facebook LiveJournal

|V | 137,969 317,080 540,486 896,305 3,097,165 4,843,953
|E| 739,984 2,099,732 30,491,158 7,564,894 47,334,788 85,691,368

Table 9: Statistics of datasets for pre-training on general graphs.

Downstream Tasks Datasets. For inductive graph classification settings, we use eight molecu-
lar property prediction datasets Hu et al. (2020b): BACE (1.5K), BBBP (2.0K), ClinTox (1.4K),
HIV (41K), SIDER (1.4K), Tox21 (7.8K), MUV (93K), and ToxCast (8.5K). We categorize BACE,
BBBP, ClinTox, and SIDER as small-scale datasets; Tox21 and ToxCast as medium-scale; and HIV
and MUV as large-scale. In addition, we include the PPI dataset (88K) Hu et al. (2020b), which
is also large-scale. Following prior work Hu et al. (2020b), we adopt the scaffold split Ramsun-
dar et al. (2019) for all molecular graph datasets and the species split for biological datasets. For
transductive node classification, we evaluate MoLE-GNN on five standard benchmarks: Cora, Cite-
seer, PubMed Sen et al. (2008), Wisconsin, and Texas Pei et al. (2019); Tang et al. (2009). The
first three are citation networks, where nodes represent documents and edges denote citation links;
these datasets are homophilic. The latter two are webpage hyperlink networks, where nodes are
webpages and edges correspond to hyperlinks; these datasets are heterophilic. We use a stan-
dard random 50%,25%, and 25% split for train/val/test. For link prediction, we evaluate on four
standard benchmarks: Cora, Citeseer, PubMed, and ogbl-ddi. Cora, Citeseer, and PubMed are
smaller graphs, whereas ogbl-ddi is substantially larger with more nodes and edges. We follow fixed
train/validation/test splits of 85%, 5%, and 10% for the first three datasets, and use the official splits
provided by the OGB benchmark Hu et al. (2020a) for ogbl-ddi. For the large-scale datasets ogbn-
arxiv, ogbn-proteins, and ogbn-products, we follow the official train/validation/test splits provided
by the OGB benchmark Hu et al. (2020a). A detailed description of all downstream task datasets is
provided in Table 10.

C BASELINE MODELS

We compare the results of our model MoLE-GNN against fully fine-tuned GNNs. We first de-
scribe the pre-training and fine-tuning based models, along with prompt-based and adapter-based
approaches. Subsequently, we provide a brief overview of MoE-based models employed in the con-
text of GNNs.
Pre-train & Fine-tune based Learning Methods. Recently, researchers have explored transfer
learning for GNNs, where models are pre-trained with self-supervised or unsupervised objectives
and then fine-tuned on downstream tasks. Hu et al. Hu et al. (2020b) introduced pre-training strate-
gies such as EdgePred and AttrMasking, followed by full fine-tuning on molecular and biological
property prediction datasets in inductive settings. Similarly, for inductive learning experiments on

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Dataset Graphs Avg.nodes Avg.edges Features Node
classes

Task (I /
T / L)

Category

Cora 1 2,708 5,429 1,433 7 T/L Homophilic
PubMed 1 19,717 88,648 500 3 T/L Homophilic
CiteSeer 1 3,327 9,104 3,703 6 T/L Homophilic

Wisconsin 1 251 515 1703 5 T Heterophilic
Texas 1 183 325 1703 5 T Heterophilic

ogbn-arxiv 1 169,343 1,166,243 128 40 T Large-scale
ogbn-proteins 1 132,534 39,561,252 8 2 T Large-scale
ogbn-products 1 2,449,029 61,859,140 100 47 T Large-scale

ogbl-ddi 1 4,267 1,334,889 0 – L –

Dataset Graphs Avg.nodes Avg.edges Features Graph
classes

Task (I /
T / L)

Domain

BACE 1513 34.1 73.7 18 1∗ I small molecule
BBBP 2039 24.1 51.9 23 1∗ I small molecule

ClinTox 1477 26.2 55.8 38 2∗ I small molecule
HIV 41127 25.5 54.9 61 1∗ I small molecule

SIDER 1427 33.6 70.7 50 27∗ I small molecule
Tox21 7831 18.6 38.6 61 12∗ I small molecule
MUV 93087 24.2 52.6 15 17∗ I small molecule

ToxCast 8576 18.8 38.5 63 617∗ I small molecule
PPI 88000 49.4 890.8 10 40∗ I proteins

IMDB-B 1000 19.8 96.5 0 2 I social network
IMDB-M 1500 13.0 65.9 0 3 I social network
COLLAB 5000 74.5 2457.2 0 3 I social network

RDT-B 2000 429.6 497.8 0 2 I social network
RDT-M 5000 508.5 594.9 0 5 I social network

Table 10: Statistics of all datasets. Settings: T—transductive (node classification), I—inductive (graph classi-
fication), and L—link prediction. An asterisk (*) indicates the number of prediction tasks.

social network graphs, we consider the pre-training strategies proposed by Qiu et al. Qiu et al.
(2020), namely GCC (E2E) and GCC (MoCo). For inductive learning, we employ two pre-trained
graph transformers, NodeFormer Wu et al. (2022) and DIFFormer-s Wu et al. (2023a), as adapter-
based baselines, and a pre-trained graph convolutional network (GCN) as the prompt-based baseline.
For link prediction, we used the pre-trained NAGphormer Chen et al. (2022a) as the fine-tuning base-
line.
Graph Prompt and Adapter based Learning Methods. Here, we consider GPF Fang et al. (2022)
as the graph prompt based method to compare against our method MoLE-GNN. We did not con-
sider other related works such as GPPT Sun et al. (2022) and GraphPrompt Liu et al. (2023b), as
they are either inefficient or fail to deliver satisfactory performance without a few-shot setting for
graph classification tasks, as observed by Li et al. Li et al. (2024). For node classification task
(transductive learning), we consider the prompt tuning methods presented in ProG Zi et al. (2024),
including GPPT Sun et al. (2022), All-in-one Zi et al. (2024), GraphPrompt Liu et al. (2023b),
and GPF, as baseline prompt tuning-based methods. We consider the state-of-the-art PEFT models,
namely (IA)3 Liu et al. (2022), BitFit Zaken et al. (2021), LoRA Hu et al. (2021), Adapter Chen
et al. (2022b), AdapterGNN Li et al. (2024), and GConv-Adapter Papageorgiou et al. (2025) as
baseline Adapter based models to compare our MoE-based model MoLE-GNN. Additionally, we
adopt domain-specific MoE models, including TopExpert Kim et al. (2023) for inductive learning
and Link-MoE for link prediction, as baselines.
MoE-based Learning Methods. Here, we consider two state-of-the-art MOE-based GNN models,
GMoEWang et al. (2023) and DA-MoEYao et al. (2024), as baseline models for comparing with
our model, MoLE-GNN. GMoE employs multiple experts within each layer, while DA-MoE uses a
dynamic MoE-based technique to capture information from the input graph.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

D DETAILS OF PRE-TRAINED GNN MODELS

Pre-Trained Models: Inductive For inductive learning experiments, we employ a five-layer Graph
Isomorphism Network (GIN) backbone Hu et al. (2020b). On molecular graphs, we evaluate seven
pre-training strategies. EdgePred Hamilton et al. (2017b) masks and reconstructs edges to predict
their existence, while AttrMasking and ContextPred Hu et al. (2020b) focus on attribute prediction
and structural context, respectively. GraphCL You et al. (2020) introduces a contrastive framework
for unsupervised graph representation learning, and SimGRACE Xia et al. (2022a) leverages a GNN
and its perturbed counterpart as dual encoders to generate correlated views without requiring data
augmentation. GCC (E2E) and GCC (MoCo) Qiu et al. (2020) employ self-supervised techniques to
learn universal network properties across multiple graphs. For all the pre-trained models, we utilized
the default checkpoints provided in their official repositories.
Pre-Trained Models: Transductive For the transductive learning experiments, we utilized the
NodeFormer Wu et al. (2022) and DIFFormer-s Wu et al. (2023a) GT architectures. Both mod-
els are pre-trained using the ogbn-arxiv dataset from the Open Graph Benchmark (OGB) Hu et al.
(2020b). Pre-training on this large, structurally diverse dataset enables the models to learn expres-
sive node representations and capture key structural patterns in citation networks, thereby enhancing
their transferability when fine-tuned on downstream tasks. For NodeFormer, we set the model with
32 hidden channels, 5 layers, and a single attention head, employing an identity transformation
for the relation bias and a regularization weight of 0.1. The training employed Gumbel-Softmax
sampling to enhance message passing, alongside batch normalization and residual connections. Op-
timization was performed with a learning rate of 0.01, no weight decay, and a batch size of 10,000
over 100 epochs. Similarly, DIFFormer-s was pre-trained with 64 hidden dimensions across 5 lay-
ers, employing a single attention head and setting the residual balance parameter α to 0.5. We
adopt batch normalization and residual connections, together with graph positional embeddings.
The attention mechanism uses a simple kernel in which queries and keys are normalized before
computing dot-product attention. Training is regularized with a dropout rate of 0.2 and weight de-
cay of 0.01, using a learning rate of 0.001, a batch size of 10,000, and 1,000 training epochs. For
both NodeFormer and DIFFormer-s, we follow the original papers Wu et al. (2022; 2023a) for all
hyperparameters and architectural settings, ensuring consistency with their implementations. For
graph prompt-based benchmarks, we adopt DGI Veličković et al. (2018) and GraphMAE Hou et al.
(2022). DGI maximizes mutual information between node- and graph-level representations to learn
informative embeddings, while GraphMAE reconstructs masked features to capture deep node rep-
resentations. We use Prog Zi et al. (2024) as an open-source framework to obtain the pre-trained
models for both methods.
Pre-Trained Models: Link Prediction For link prediction experiments, we adopt NAG-
phormer Chen et al. (2022a) as the underlying graph transformer architecture. The model is pre-
trained with the GraphMAE strategy Hou et al. (2022), from which we extract node embeddings.
We employ the ogbn-arxiv dataset from OGB, a large-scale social network benchmark, aligning with
our downstream tasks that also focus on social networks such as Cora, Citeseer, and PubMed. We
configure the NAGphormer model with a hidden dimension of 128, 3 layers, 3 hops, and 8 attention
heads. For NAGphormer, we adopt the hyperparameter and architectural configurations from the
original paper Chen et al. (2022a) to ensure consistency with its implementation.

E IMPLEMENTATION DETAILS OF MOLE-GNN

All our experiments are performed on computing servers equipped with NVIDIA A6000 (48GB)
and NVIDIA A100 (80GB) GPUs. We train our MoLE-GNN with freezing backbone GNN models
for 100 epochs both for graph and node classification tasks. We consider Adam Kingma & Ba
(2014), batch size of 256 and learning rate of 0.001. We run our MoLE-GNN model ten times with
different random seeds and report the mean and standard deviation of the obtained ROC-AUC scores
and accuracy to demonstrate the consistency of the results. We use PyTorch and PyG Fey & Lenssen
(2019) to conduct all experiments in this work. For the adapter hyperparameter used in each expert
GNN model, the bottleneck dimension is set to 15, and the initial value of the learnable scaling
parameter is 0.01.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Pre-training Tuning Datasets (Accuracy ↑)
Method Method IMDB-B IMDB-M COLLAB RDT-B RDT-M Avg.

GCC
(E2E)

Full Fine-tune (100%) 72.9±0.03 47.9±0.02 76.5±0.02 83.2±0.01 49.8±0.02 66.1
GPF (0.80%) 69.4±0.03 45.7±0.02 79.8±0.01 73.3±0.03 47.6±0.03 63.2

AdapterGNN (26.7%) 72.6±0.03 47.4±0.02 72.2±0.02 82.4±0.03 47.1±0.03 64.3
MoLE-GNN (ours) (8.3%) 76.9±0.01 54.7±0.01 78.5±0.01 85.5±0.02 51.6±0.01 69.4

GCC
(MoCo)

Full Fine-tune (100%) 74.5±0.02 52.2±0.01 79.8±0.01 82.9±0.01 49.9±0.02 67.8
GPF (0.80%) 73.9±0.01 50.9±0.02 80.0±0.01 83.0±0.01 51.1±0.02 67.8

AdapterGNN (26.7%) 74.4±0.03 50.8±0.03 79.0±0.01 83.7±0.02 45.6±0.02 66.7
MoLE-GNN (ours) (8.3%) 77.4±0.02 54.8±0.01 78.8±0.01 84.4±0.03 51.4±0.01 69.3

Table 11: Test Accuracy (%) performances on graph classification benchmarks with different tuning methods
and pre-trained GNN models. Results are reported as mean ± standard deviation of Accuracy. The best result
is in bold, and the second best model is underlined.

Pre-training Tuning Datasets (ROC-AUC ↑)
Method Method Cora Citesser Pubmed Wisconsin Texas Avg.

DGI

Full Fine-tune (100%) 78.7±7.1 85.0±3.1 93.2±0.4 58.7±4.9 48.2±4.7 72.7
GPPT (3.8%) 50.0±1.0 50.0±1.6 50.2±0.1 65.2±3.2 56.2±0.1 54.3

All-in-one (5.7%) 47.9±1.6 53.4±5.5 49.4±2.2 73.5±7.4 67.7±7.4 58.4
GraphPrompt (0.01%) 70.1±0.7 55.9±0.8 50.8±0.2 71.9±4.8 56.4±3.1 61.0

GPF (0.57%) 48.4±0.01 59.9±0.1 76.3±0.1 89.0±1.0 69.8±0.2 68.7
MoLE-GNN (ours) (6.4%) 97.2±0.2 97.7±0.6 92.8±0.3 95.8±8.0 87.9±9.8 94.3

GraphMAE

Full Fine-tune (100%) 86.8±2.6 87.0±0.6 93.5±0.3 57.9±6.8 50.2±4.9 75.1
GPPT (3.8%) 56.5±1.6 60.0±0.8 85.7±0.7 63.3±8.6 49.6±0.03 63.0

All-in-one (5.7%) 56.3±0.9 67.6±1.2 85.2±0.7 69.2±6.7 51.8±10.6 66.0
GraphPrompt (0.01%) 60.2±2.6 60.9±1.2 82.9±1.0 66.8±8.8 48.9±9.2 63.9

GPF (0.57%) 81.5±2.1 78.6±0.6 90.1±0.3 89.7±7.6 63.5±4.7 80.7
MoLE-GNN (ours) (6.4%) 68.2±3.4 72.8 ±3.7 92.2±0.3 96.0±8.0 88.0±9.8 83.4

Table 12: Test performances on node classification benchmarks with different tuning methods and pre-trained
GNN models. The best result is in bold, and the second best model is underlined.

Strategy Name
Fine-tuning Scenarios Key Properties

AutomatedGNN Graph Task Fine-tuning
Cost

Parameter
Efficiency Scalability

Conventional
GNNs

GCN
√

Node/Edge/Graph High Low Low ×
GIN

√
Node/Edge/Graph High Low Low ×

GAT
√

Node/Edge/Graph High Low Low ×
NAS /

AutoGNNs
GraphNAS (Gao et al., 2019)

√
Node/Graph Very High Moderate Moderate

√

Auto-gnn (Zhou et al., 2022)
√

Node/Graph Very High Moderate Moderate
√

Graph
Foundation Models

S2PGNN (Zhili et al., 2024)
√

Graph Very High Low Low Partial
AdapterGNN (Li et al., 2024)

√
Graph Low High Low ×

MoE-style
GNNs

DA-MoE (Yao et al., 2024)
√

Node/Edge/Graph Medium Moderate Moderately High Partial
TopExpert (Kim et al., 2023)

√
Graph Medium Moderate Moderately High Partial

Proposed MoLE-GNN
√

Node/Edge/Graph Low Very High High ×

Table 13: Comparison of strategy families in terms of fine-tuning scenarios and key properties. Fine-tuning
cost reflects the overall computational overhead to adapt a pre-trained GNN to downstream tasks. MoLE-GNN
achieves low fine-tuning cost while maintaining very high parameter efficiency and scalability.

F ADDITIONAL RESULTS

We present additional results covering inductive learning on social network graphs, a comparison
of MoLE-GNN with graph prompt–based methods, and the application of MoLE-GNN to few-shot
learning in both inductive and transductive settings.
Inductive Learning On Social Network Graphs. We evaluate the performance of MoLE-GNN
under inductive learning settings, with results summarized in Table 11. Across all social network
datasets, MoLE-GNN consistently surpasses full fine-tuning in graph classification. Specifically,
it attains 77.2% Accuracy on IMDB-B (a 4.75% gain over 73.7%), 50.1% on IMDB-M (9.38%),
COLLAB (0.64%), RDT-B (2.17%), and RDT-M (3.20%), respectively. Furthermore, MoLE-GNN
outperforms the graph-prompt baseline GPF on four out of five datasets, achieving an average im-
provement of 5.88%. Moreover, MoLE-GNN outperforms the current SOTA graph-specific PEFT
method, AdapterGNN, by 5.88%, marking a substantial gain over conventional PEFT approaches.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

BACE
GPF AdapterGNN DA-MoE MoLE-GNN

(b)

(a)

RO
C-

AU
C

(%
)

BBP ClinTox

1-Shot 5-Shot 10-Shot

SIDER BACE BBP ClinTox SIDER BACE BBP ClinTox SIDER

Cora Citesser WisconsinTexas Cora Citesser Wisconsin Texas Cora Citesser Wisconsin Texas

1-Shot 5-Shot 10-Shot

RO
C-

AU
C

(%
)

Figure 5: Performance comparison among the prompt-based method (GPF), the adapter-based method
(AdapterGNN), the MoE-based method (DA-MoE), and our proposed method (MoLE-GNN) under few-shot
settings for both graph classification and node classification tasks. Results are reported for 1-shot, 5-shot, and
10-shot scenarios across both tasks. Standard deviations are represented as error bars on top of the correspond-
ing bar plots.

Transductive Learning Results. We evaluate the performance of MoLE-GNN under transductive
learning settings against state-of-the-art graph prompt learning methods, with results summarized
in Table 12. MoLE-GNN consistently achieves superior ROC-AUC performance compared to all
state-of-the-art graph prompt learning methods.
Few-shot Performance on Inductive and Transductive Learning Settings. In recent times,
prompt tuning has been well accepted for its effectiveness in addressing few-shot downstream
tasks (Brown et al., 2020; Schick & Schütze, 2020b;a; Liu et al., 2021b; 2023a). GPF Fang et al.
(2022) is designed for graph classification in few-shot settings but fails to generalize to node classi-
fication tasks under the same setting. Similarly, AdapterGNN Li et al. (2024) does not address either
graph or node classification in few-shot scenarios. In contrast, DA-MoE Aghdam et al. (2024), a
MoE-based model, does not exhibit this limitation. In this work, we perform graph and node classifi-
cation tasks under few-shot settings using MoLE-GNN. For inductive (graph classification) task, we
consider four small molecule datasets these are BACE, BBBP, ClinTox, and SIDER. From Fig. 5 (a)
we observe that MoLE-GNN model outperforms all the baseline models by a significant improve-
ment of 10.83% in terms of ROC-AUC score on all four inductive datasets. For transductive (node
classification) tasks, we consider four datasets, these are Cora, Citeseer, Wisconsin, and Texas. From
Fig. 5 (b) we observe that MoLE-GNN model outperforms all the baseline models by a margin of
1.82% on all four node classification datasets. The hybrid combination of our framework balances
task-specific adaptation (via adapters) and structural flexibility (via the MoE). This synergy allows
the model to focus on the most relevant depth and expert pathways without overfitting, making it
robust in low-data regimes.
Wall-Clock Efficiency and Runtime Analysis. We measure the average per-epoch and total wall-
clock time (over 100 epochs) for various MoE-based tuning strategies across six datasets (BBBP,
Tox21, ToxCast, SIDER, ClinTox, and BACE). As shown in Table 14, our model, MoLE-GNN,
achieves the lowest per-epoch and wall-clock times among all graph-based MoE methods, while
also requiring the fewest trainable parameters compared to all baseline MoE approaches.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Method
Per-Epoch

Time (seconds)
Wall-Clock

(100 epochs, Minutes)
Inference

Time (seconds) Params (M)

GMoE 2.17 3.61 1.25 14.9
DA-MoE 1.68 2.80 0.94 29.8
TopExpert 1.21 2.02 0.75 2.51
MoLE-GNN 0.45 0.75 0.33 0.39

Table 14: Comparison of per-epoch, total wall-clock (100 epochs), along with trainable parameters across
different MoE-based tuning strategies.

BACE BBBP ClinTox

Dense Experts 73.1±9.8 67.5±5.9 76.8±4.9

Sparse Experts 81.6±0.8 73.2±0.8 80.0±1.5

Table 15: Performance analysis of the different expert mechanisms used in MoLE-GNN. The best results
are highlighted in bold. “Dense Experts” refers to the selection of all available experts in MoLE-GNN, while
“Sparse Experts” indicates that only a subset of the experts is selected.

G ABLATION STUDY

Ablation Study on the Impact Across GNN Backbones Here, we evaluate the performance of
MoLE-GNN using different GNN backbones within each expert, including GCN, Graph Attention
Network (GAT), GraphSAGE, and our default choice, GIN. As shown in Table 16, the best perfor-
mance is achieved when GIN is used as the backbone in each expert. Moreover, this configuration
requires updating only a small portion of the backbone parameters while still delivering optimal
results.

Backbones in BACE BBBP ClinTox Sider Total Trainable Trainable %
MoLE-GNN Params (M) Params (M)

GCN 76.7±2.6 66.3±2.5 58.3±2.4 61.1±1.4 2.54M 0.39M 15.4
GAT 71.4±3.1 65.5±1.4 55.4±5.5 60.6±0.9 4.43M 0.39M 8.8

GraphSAGE 69.8±2.8 66.4±3.1 55.9±0.7 59.7 ±1.7 2.54M 0.39M 15.4
GIN 81.6±0.8 73.2±0.8 80.0±1.5 62.8±0.6 7.7M 0.39M 5.1

Table 16: Performance analysis of different GNN backbones used in MoLE-GNN. We observe that
MoLE-GNN built on top of GIN outperforms other backbones while tuning only 5.1% of the total
parameters. Best performing model is bold and second best is underlined in terms of ROC-AUC.

Expert Diversity: How Crucial is Heterogeneity Among Experts. To evaluate the importance
of expert heterogeneity in MoLE-GNN, we compare configurations with homogeneous and hetero-
geneous experts. In the homogeneous settings, all experts share the same GNN architecture and
are pre-trained on identical data. Specifically, we consider three configurations where each expert
consists of (i) a 1-layer GNN, (ii) a 3-layer GNN, or (iii) a 5-layer GNN. In contrast, the heteroge-
neous version of MoLE-GNN employs experts with different depths and receptive fields, combining
multiple GNN backbones that specialize in diverse aggregation patterns. As shown in Table 18,
the heterogeneous expert design consistently achieves the best performance across all datasets, out-
performing every homogeneous configuration by a notable margin (average ROC-AUC 77.9% vs.
72.2% for the best homogeneous setup). This demonstrates that structural diversity among experts
is crucial to MoLE-GNN’s success: varied depths and receptive fields allow different experts to cap-
ture complementary subgraph patterns, which the gating mechanism dynamically integrates for each
input graph. When all experts share identical architectures and pretraining, the mixture degenerates
into redundant feature extractors, limiting the benefits of the mixture-of-experts formulation. Hence,
expert heterogeneity is a key factor that enhances both representational richness and generalization
ability in MoLE-GNN.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Tuning Method BACE BBBP ClinTox ToxCast Avg.

MoLE-GNN (GNN + adapter MLP) 75.4±3.3 66.2±3.6 69.3±4.5 63.1±0.3 68.5
MoLE-GNN 81.6±0.8 73.2±0.8 80.0±1.5 64.3±0.2 77.9

Table 17: Performance analysis on full fine tuning of MoLE-GNN (GNNs + adapter MLP) between MoLE-
GNN, where only tunes adapter MLPs and the GNNs remain freeze, which is our proposed framework. Best
performing model is bold and second best is underlined in terms of average ROC-AUC.

Expert Configuration BACE BBBP ClinTox ToxCast Avg.

Homogeneous Experts
1-layer GNNs 71.9±0.8 65.8±0.6 68.0±2.1 54.1±0.4 64.9
3-layer GNNs 79.9±0.4 70.9±0.7 76.6±1.7 61.2±0.3 72.2
5-layer GNNs 80.8±0.3 72.4±0.5 72.9±1.5 56.9±0.6 70.8

Heterogeneous Experts MoLE-GNN 81.6±0.8 73.2±0.8 80.0±1.5 64.3±0.2 77.9

Table 18: Effect of expert diversity in MoLE-GNN. Comparison between homogeneous experts (five identical
GNN experts with 1, 3, or 5 layers each) and heterogeneous experts (MoLE-GNN with varied GNN backbones).
Results are reported in ROC-AUC (%). Best results are highlighted in bold.

Ablation Study on Full MoLE-GNN Fine-Tuning. In this section, we evaluate the effect of full
fine-tuning in MoLE-GNN, where we update the entire GNN backbone of each expert in addition
to the adapters. We compare this with our default parameter-efficient variant of MoLE-GNN, in
which only the adapters are trained while all expert backbones remain frozen. As shown in Ta-
ble 17, the parameter-efficient MoLE-GNN consistently outperforms the full-tuning variant. We
also observe that fully tuning all experts often leads to negative transfer, likely because each expert
already contains a pretrained GNN backbone and overriding these pretrained weights disrupts their
specialization. Furthermore, full fine-tuning requires 7.7M trainable parameters, whereas our design
uses only 0.39M parameters—just 5.1% of the full-tuning model.

Impact of Dense Expert Selection Varying the number of top selected experts (i.e., k) allows
the model to adaptively capture patterns across different GNN layers. As shown in Table 15, we
observe that optimal performance in these datasets is achieved when MoLE-GNN employs sparse
expert selection rather than using all experts densely. Specifically, compared to the dense expert
configuration in MoLE-GNN, the sparse expert variant in MoLE-GNN (proposed model) achieved
notable performance gains of 11.6%, 8.4%, and 4.2% across the three datasets, respectively. These
improvements explain the ability of sparse experts to effectively capture aggregation information at
various GNN layers.

Experts BACE BBBP ClinTox ToxCast

1 62.8 64.4 56.0 59.1
2 71.6 65.9 71.6 61.4
3 75.1 70.6 75.7 62.5
4 80.4 72.4 78.1 63.2
5 81.6 73.2 80.0 64.3

Table 19: The sensitivity analysis on the choice of experts on four graph classification datasets.

Sensitivity Analysis on the Selection of the Number of Experts We conduct a sensitivity anal-
ysis on the number of experts used in the MoLE-GNN framework (Section 3 in main text). To this
end, we performed an ablation study on four graph classification datasets. Experiments were con-
ducted with varying numbers of expert GNNs, and the results are presented in Fig. 19. From the
figure, we observe that the best ROC-AUC (%) is obtained with five experts (we cannot perform sen-
sitivity analysis for six experts, as pre-trained GNNs can have a maximum of five layers of GNNs

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Bottelneck Dimension

MoLE-GNN Full Fine-tune

RO
C-

A
U

C
(%

)

Figure 6: Performances with different bottleneck dimensions. 0 represents identical mapping. Here we con-
sider ClinTox to perform this experiment.

Bottleneck MLP Datasets (ROC-AUC ↑)
Dim. Bace BBBP ClinTox SIDER Avg

0 73.1±2.4 62.8±1.2 64.4±1.3 58.4±1.7 64.7
4 74.6±0.9 66.0±0.5 70.1±1.8 59.4±1.5 67.5

15 81.6±0.8 73.2±0.8 80.0±1.5 62.8±0.6 74.4
64 75.2±0.9 65.2±0.5 76.3±3.5 58.4±0.4 68.8
100 74.2±3.6 63.2±1.4 76.4±2.0 58.3±0.7 68.1
150 72.8±0.4 62.6±0.2 72.4±4.0 58.7±0.5 66.6

(a) Graph classification tasks.

Bottleneck MLP Datasets (Accuracy ↑)
Dim Cora Citesser Pubmed Avg

0 79.0±1.7 73.4±1.1 80.0±0.6 77.8
4 81.7±1.2 74.2±1.0 86.8±0.6 80.9

15 85.6±1.0 77.3±0.7 89.3±0.3 84.1
64 81.5±1.1 72.9±1.2 85.8±0.3 80.1

100 78.7±1.0 70.1±0.6 84.3±0.3 77.7
150 70.7±1.5 68.7±0.8 82.7±0.4 74.0

(b) Node classification tasks.

Table 20: Effect of adapter bottleneck dimension on graph classification 20a and node classification
20b tasks. Small to moderate bottleneck sizes improve performance over the no-adapter baseline,
while excessively large bottlenecks reduce accuracy. Our default setting (15) consistently achieves
the best average performance across all tasks, indicating that balanced adapter capacity is crucial for
stable gains.

as discussed in Section D). Consequently, we selected five expert GNNs in our MoE framework
MoLE-GNN for all our experiments.

Ablation Study on Adapter MLP Capacity across different tasks. Table 20 shows that increas-
ing the adapter’s bottleneck MLP dimension leads to overfitting on both graph classification and
node classification tasks. As seen in Tables 20a and 20b, our default bottleneck dimension of 15
consistently achieves the strongest average ROC-AUC across all datasets. In contrast, setting the
bottleneck size to 0 causes MoLE-GNN to underfit, while an excessively large dimension of 150
results in overfitting and degraded performance. Since the underlying GNN MLP layers belong to
a pre-trained backbone and remain frozen during both training and inference, we adjust only the
adapter bottleneck dimension in this ablation to control the effective capacity of the tunable param-
eter space.

Bottleneck Dimension Fig. 6 that reducing the bottelneck dimension to limit the size of tunable
parameter space can improve the generalization ability of the model. But when the size of is too
small, the model may suffer from underfitting, which can restrict its performance. Therefore, select-
ing bottleneck dimension of 15, which present 5.1% of all parameters, yields the best performance.
Meanwhile, a dimension of 1, which accounts for only 0.5% of all parameters, can surpass the results
of full fine-tuning.

24

	Introduction
	Related Work
	Methodology
	Experimental Setup
	Results & Analysis
	Ablation Study
	Conclusion
	Related Work
	Datasets
	Baseline Models
	Details of Pre-trained GNN Models
	Implementation Details of MoLE-GNN
	Additional Results
	Ablation Study

