

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 MOLE-GNN: PARAMETER-EFFICIENT FINE-TUNING OF GRAPH NEURAL NETWORKS WITH MIXTURE-OF- EXPERTS

Anonymous authors

Paper under double-blind review

ABSTRACT

Graph Neural Networks (GNNs) are gaining popularity for modeling non-Euclidean data due to their ability to capture local and global structure using message-passing techniques. In real-world scenarios, such as graph classification task, the size of graphs within the same dataset can vary significantly. This warrants an investigation into *depth-sensitivity* of graphs, leading to selection of optimal number of GNN layers according to the size of the graph. Traditional GNNs suffer from a static choice of number of layers for the graphs as it leads to underfitting in the large graphs and overfitting in the smaller ones. Although recent Mixture-of-Experts (MoE) GNN models solve this problem by adaptively selecting depth-sensitive expert networks, they have high computational and memory overhead. To overcome these challenges, we introduce a new hybrid model named MoLE-GNN that combines parameter-efficient adapter modules with GNN experts, supporting dynamic expert assignment with minimal fine-tuning. It drastically minimizes trainable parameters (tunes only 5.1% of the total parameters) and improves generalization, particularly in low-resource environments. Our extensive experiments across inductive, transductive, and link prediction tasks demonstrate that MoLE-GNN consistently outperforms both full fine-tuning and state-of-the-art PEFT baselines, offering a scalable and effective approach for fine-tuning GNNs on diverse graph topologies. Moreover, MoLE-GNN surpasses existing MoE-based GNNs on inductive and link prediction tasks.

1 INTRODUCTION

Graph-structured data emerge across many important domains—molecular chemistry, social networks, recommendation systems, biological interaction networks, and knowledge graphs—where relational structure and node/edge attributes jointly shape downstream prediction tasks. The rise of Graph Neural Networks (GNNs) has enabled powerful representation-learning on such data: by stacking message-passing layers, standard GNNs aggregate information across node neighborhoods and learn task-specific embeddings. However, despite the numerous successes, several key challenges remain when deploying GNNs in modern, large-scale, heterogeneous graph learning regimes. Early GNN research emphasised the *static* choice of the number of propagation layers. Subsequent work has shown that graph-scale heterogeneity, node degree and topological variability make the optimal propagation depth graph- and task-dependent. For example, decoupling receptive field size from layer depth mitigates oversmoothing and neighbourhood explosion in large graphs (Zeng et al., 2021; Gallicchio & Micheli, 2020; Poli et al., 2021). More recently, adaptive or continuous-depth GNNs (e.g., via graph differential equations) allow per-graph or per-node adjustment of propagation steps (Poli et al., 2021; Zheng et al., 2025). Yet, such dynamic-depth mechanisms have seen limited integration with parameter-efficient adaptation of pretrained graph models. Furthermore, the graph-learning ecosystem has shifted from ad-hoc per-graph GNN training toward graph foundation models (GFMs)—pretrained, large-scale graph models intended to support broad downstream adaptation across domains. For instance, GraphGPT presents large transformer-style models pretrained on graph data, demonstrating strong transfer potential with increasing importance of universal graph representations that generalise across structural heterogeneity and domain (Zhao et al.; Mao et al., 2024a;b). Equally, scalable graph-pretraining frameworks such as GPT-GNN show that

054 self-supervised generative pre-training on graphs enables improved downstream accuracy Hu et al.
 055 (2020c). Another complementary research direction is the rise of auto-GNN architectures and graph
 056 transformers: neural-architecture-search frameworks (GraphNAS, Auto-GNN) tailor GNN archi-
 057 tectures to graph characteristics, relieving manual design effort Gao et al. (2019). Additionally,
 058 graph transformers extend the representational power of GNNs by integrating transformer blocks
 059 with graph structure, enabling larger receptive fields and structural flexibility. However, despite the
 060 progress, a research gap remains, in terms of, how to parameter-efficiently fine-tune GNN back-
 061 bones in the face of graph-size, topology and domain heterogeneity, while also leveraging dynamic
 062 expert routing or depth-adaptive mechanisms without fully training large models from scratch.
 063 We analyze the distribution of graph instances with respect to their order (number of nodes), as
 064 shown in Fig. 1 (a) and (b) for IMDB-BINARY and COLLAB, respectively. By computing the area
 065 under the curve, we partition the graphs into three equal groups such as small, medium, and large
 066 based on node counts, and create train–test splits for each. As shown in Fig. 1 (c), we observe a clear
 067 phenomenon of depth sensitivity. On small graphs, deeper GNNs often overfit, leading to redundant
 068 parameters and degraded performance. Conversely, shallow GNNs on large graphs under-reach,
 069 failing to capture global dependencies.

070 To counter depth sensitivity, recent work equips
 071 GNNs with Mixture-of-Experts (MoE) routers
 072 that dispatch each graph to depth or config-
 073 uration specialized experts via a learnable gate,
 074 effectively aggregating across neighborhood
 075 radii and improving robustness under struc-
 076 tural heterogeneity Yao et al. (2024). How-
 077 ever, MoE incurs heavy parameter and com-
 078 pute overhead; end-to-end ensemble training is
 079 resource-intensive and vulnerable to overfitting
 080 and catastrophic forgetting, especially in low-
 081 label regimes Goodfellow et al. (2013). A prag-
 082 matic alternative is parameter-efficient fine-
 083 tuning (PEFT): freeze the backbone experts and
 084 insert lightweight adapters typically a down-
 085 projection, nonlinearity, and up-projection to
 086 capture task-specific shifts without perturbing pre-trained capacities Houlsby et al. (2019); He et al.
 087 (2022). PEFT preserves transferability, curbs forgetting, and cuts trainable parameters by over an
 088 order of magnitude, making MoE-style adaptability feasible in resource constrained settings.
 089 In this paper, we propose an adapter-based Mixture-of-Experts model, MoLE-GNN (Mixture-of-
 090 Learnable Experts with Adapter GNN), which integrates parameter-efficient fine-tuning (PEFT) into
 091 GNNs - a challenging task - since most existing PEFT methods were originally developed for se-
 092 quence models. MoLE-GNN demonstrates outstanding performance while tuning only a small frac-
 093 tion of parameters, even outperforming full fine-tuning. To enable this, we combine adapter modules
 094 with a dynamic gating mechanism, where adapters within each expert allow task-specific special-
 095 ization while preserving generalization, and the gating network adaptively selects experts based on
 096 input graphs. This hybrid design balances efficiency and adaptability, delivering competitive per-
 097 formance under limited supervision while substantially reducing memory and compute costs. We
 098 demonstrate, combining adapters with dynamic MoE-GNNs yields a lightweight and robust frame-
 099 work that scales effectively across graph-, node-, and link-level tasks.
 100 Our contributions are as follows - *i*) Dynamic-depth GNNs, GFMs, and auto-GNNs do not fully
 101 combine dynamic specialization and parameter-efficient fine-tuning in a unified framework. Our
 102 proposed MoLE-GNN integrates expert adapters with routing over heterogeneous graphs, enabling
 103 depth- and topology-aware fine-tuning with a small fraction of tunable parameters. *ii*) We empiri-
 104 cally validate that MoLE-GNN outperforms baselines on diverse graph-scale tasks, achieving strong
 105 performance while lowering the trainable parameter count from 7.7M to just 0.39M, yet demon-
 106 strating robust transfer across graph-size heterogeneity.

2 RELATED WORK

107 For brevity, we focus here on recent works in mixture-of-experts models and graph-prompt tuning
 108 methods, while a comprehensive discussion is provided in Appendix A.

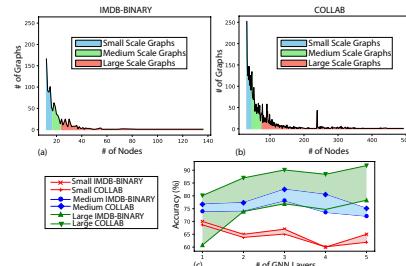


Figure 1: Comparison between the order of the graphs seen vs. the number of graphs in (a) IMDB-BINARY and (b) COLLAB. (c) The *depth-sensitivity* used in the IMDB-BINARY and COLLAB datasets shows the way different sized graphs depend on certain GNN depths for effective extraction of information.

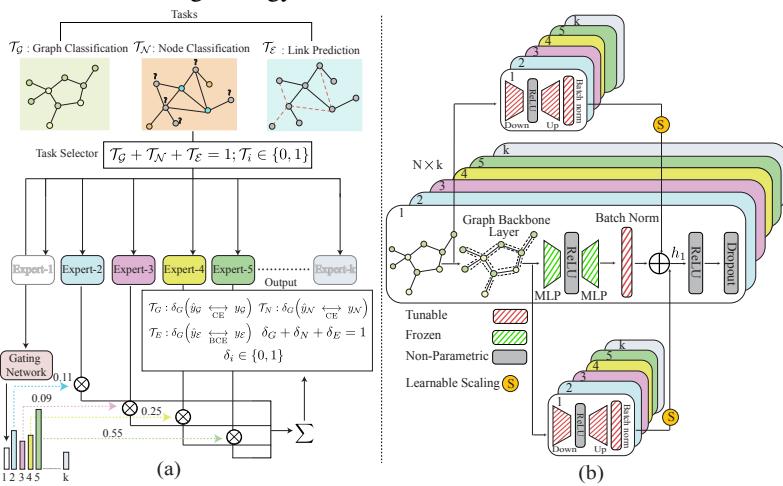
109 pre-trained capacities Houlsby et al. (2019); He et al.
 110 (2022). PEFT preserves transferability, curbs forgetting, and cuts trainable parameters by over an
 111 order of magnitude, making MoE-style adaptability feasible in resource constrained settings.

112 In this paper, we propose an adapter-based Mixture-of-Experts model, MoLE-GNN (Mixture-of-
 113 Learnable Experts with Adapter GNN), which integrates parameter-efficient fine-tuning (PEFT) into
 114 GNNs - a challenging task - since most existing PEFT methods were originally developed for se-
 115 quence models. MoLE-GNN demonstrates outstanding performance while tuning only a small frac-
 116 tion of parameters, even outperforming full fine-tuning. To enable this, we combine adapter modules
 117 with a dynamic gating mechanism, where adapters within each expert allow task-specific special-
 118 ization while preserving generalization, and the gating network adaptively selects experts based on
 119 input graphs. This hybrid design balances efficiency and adaptability, delivering competitive per-
 120 formance under limited supervision while substantially reducing memory and compute costs. We
 121 demonstrate, combining adapters with dynamic MoE-GNNs yields a lightweight and robust frame-
 122 work that scales effectively across graph-, node-, and link-level tasks.

123 Our contributions are as follows - *i*) Dynamic-depth GNNs, GFMs, and auto-GNNs do not fully
 124 combine dynamic specialization and parameter-efficient fine-tuning in a unified framework. Our
 125 proposed MoLE-GNN integrates expert adapters with routing over heterogeneous graphs, enabling
 126 depth- and topology-aware fine-tuning with a small fraction of tunable parameters. *ii*) We empiri-
 127 cally validate that MoLE-GNN outperforms baselines on diverse graph-scale tasks, achieving strong
 128 performance while lowering the trainable parameter count from 7.7M to just 0.39M, yet demon-
 129 strating robust transfer across graph-size heterogeneity.

108 **Mixture of Experts Model.** The Mixture-of-Experts (MoE) framework Jacobs et al. (1991); Jordan-
 109 & Jacobs (1994) trains specialized expert networks, with expert selection proposed via auto-
 110 encoders Aljundi et al. (2017) and sparse gating Shazeer et al. (2017). MoE modules are now widely
 111 applied in vision Dai et al. (2021); Yu et al. (2024) and NLP Fedus et al. (2022); Du et al. (2022),
 112 and recently extended to GNNs. Examples include TopExpert Kim et al. (2023) (clustering-based
 113 gating), GMoE Wang et al. (2023) (multi-hop information), G-FAME Liu et al. (2023c) (fairness),
 114 Link-MoE Ma et al. (2024) and GraphMETRO Wu et al. (2023b) (task specialization and distribu-
 115 tion shifts), and DA-MoE Yao et al. (2024) (adaptive depth for scale variation). However, existing
 116 MoE-GNNs are typically trained from scratch with large parameter counts rather than leveraging
 117 pre-trained GNN experts.

118 **Graph-Prompt Tuning Methods.** Prompt tuning methods, originating in NLP, adapt pre-trained
 119 models to downstream tasks by modifying inputs rather than model architecture Liu et al. (2021a);
 120 Lester et al. (2021). Variants include prefix-tuning Li & Liang (2021), which updates task-specific
 121 parameters per layer; adapter tuning Houlsby et al. (2019); Chen et al. (2022b), which inserts bottle-
 122 neck adapters; BitFit Zaken et al. (2021), which tunes only bias terms; and LORA Hu et al. (2022),
 123 which uses low-rank decomposition. These techniques have also been adopted in GNNs Wu et al.
 124 (2023c). Recently, AdapterGNN Li et al. (2024) extends adapter-based tuning to GNNs by inte-
 125 grating lightweight adapters into each layer, enabling efficient adaptation with minimal parameter
 126 updates. **S2PGNN** Zhili et al. (2024), **fine-tunes both pre-trained backbone GNNs along with adapter**
 127 **and search best configuration of the architecture.** Also GCNconv-Adapter Papageorgiou et al. (2025)
 128 present new graph adapter based model. However, existing parameter-efficient methods rely on a
 129 fixed layer configuration across all graphs, limiting their adaptability to varying data scales. To ad-
 130 dress this, we propose an adapter-based MoE framework that employs pre-trained GNNs as experts
 131 within a MoE architecture. By integrating tunable adapters into each expert, our approach miti-
 132 gates challenges such as *depth sensitivity*, catastrophic forgetting, and overfitting, providing a more
 133 flexible and scalable fine-tuning strategy.



148 Figure 2: Overview of MoLE-GNN. (a) Multiple experts replace the conventional GNN backbone to model
 149 specialized patterns at various aggregation scales. Few of them are activated by the gating network, and the
 150 grey boxes indicate the inactive experts. (b) **Each expert is a pre-trained graph encoder with its own layer**
 151 **configuration.** Depending on the expert, this encoder may be a message-passing GNN or a Transformer-style
 152 attention architecture. We insert two parallel adapters that operate on the representations both before and after
 153 the core propagation/attention block, while the original encoder parameters remain frozen. This design enables
 154 each expert to combine its base architecture with lightweight, task-specific adapters and learnable scaling.

3 METHODOLOGY

158 MoLE-GNN, as depicted in Fig. 2, combines a dynamic MoE strategy with a PEFT approach
 159 through adapter modules. Fig. 2(a) shows that the model replaces a single, fixed GNN backbone
 160 with a collection of K pre-trained experts, each specializing in different aggregation radii or depth
 161 configurations. For each input graph, the structure-aware gating network computes a sparse distri-
 162 bution over these experts and activates only a small subset, enabling the model to adapt its effective

receptive field to the graph’s topology and scale. Fig. 2(b) shows the internal structure of each expert, where a frozen pre-trained GNN backbone is augmented with two lightweight adapter modules, one placed before and one after the message-passing or attention block to enable task-specific adaptation without altering backbone parameters. The two smaller groups of K experts indicate that the gating network activates only a subset of experts for each input, while the remaining experts stay inactive. Our goal is to adapt powerful, pre-trained GNNs to diverse downstream tasks while updating only a small fraction of parameters. We consider three canonical regimes: (i) *graph classification* in the inductive setting, where entire graphs are mapped to labels; (ii) *node classification* in the transductive setting, where node labels are inferred on a fixed graph; and (iii) *link prediction*, where edge existence is predicted between node pairs. Let $G = (V, E)$, where V is the set of nodes, and E is the set of edges, be a graph with node features $X \in \mathbb{R}^{|V| \times D}$ and adjacency $A \in \{0, 1\}^{|V| \times |V|}$. We learn $f : \mathcal{G} \rightarrow \mathcal{Y}$ with \mathcal{Y} defined by the downstream task, aiming for strong generalization across graph scales and topologies.

We instantiate K frozen, pre-trained GNN experts $\{E_k(\cdot; \Theta_k)\}_{k=1}^K$, each specialized by depth or receptive field (e.g., shallow experts capture local neighborhoods while deeper experts model long-range dependencies). This heterogeneity directly addresses depth-sensitivity by allowing the system to favor shallow experts on small graphs and deeper experts on large graphs without retraining the full backbones. In all cases, Θ_k remain frozen during downstream adaptation.

Adapter-based PEFT. To envision relevant experts for a particular task while keeping Θ_k fixed, we introduce lightweight adapter modules. Given a hidden state $h \in \mathbb{R}^d$, the adapter is

$$A(h) = W_{\text{up}} \sigma(W_{\text{down}} h), \quad W_{\text{down}} \in \mathbb{R}^{d \times r}, \quad W_{\text{up}} \in \mathbb{R}^{r \times d}, \quad r \ll d, \quad (1)$$

with nonlinearity $\sigma(\cdot)$ (e.g., ReLU). A learnable scalar α controls the adapter’s residual contribution:

$$\tilde{h} = h + \alpha A(h). \quad (2)$$

To exploit structure explicitly and maintain numerical stability, we use the symmetrically normalized adjacency $\hat{A} = D^{-1/2}(A + I)D^{-1/2}$, where D , and I are the degree and identity matrix, inside the adapter when operating on batched node/graph features $H \in \mathbb{R}^{|V| \times d}$:

$$A_{\text{graph}}(H) = W_{\text{up}} \sigma(\hat{A} H W_{\text{down}}), \quad \tilde{H} = H + \alpha A_{\text{graph}}(H). \quad (3)$$

Adapters are placed (conceptually as in Fig. 2(b)) before and after message passing to specialize both feature transformation and neighborhood aggregation, without modifying the backbone.

Dynamic expert routing. A structure-aware gating network ($\Gamma(\cdot)$) maps each input to a sparse combination of experts, as in Fig. 2(a). We compute a pooled graph representation $g = \text{READOUT}(G)$ and derive mixture weights via a small MLP and softmax:

$$w = \text{softmax}(\Gamma(g)) \in \mathbb{R}^K, \quad \sum_{k=1}^K w_k = 1. \quad (4)$$

For computational efficiency and regularization, we retain only the top- k_e entries of w , defining an active set S of experts. Let h_k denote expert k ’s frozen output and A_k its adapter; the aggregated representation is

$$z = \sum_{k \in S} w_k (h_k + \alpha_k A_k(h_k)), \quad (5)$$

which is then fed to a task head f_{head} .

Task-specific heads and learning objectives. We design distinct task-specific heads for inductive and transductive settings, as well as link prediction.

Inductive Settings. Node embeddings are aggregated with a pooling operator:

$$\hat{y} = \text{softmax}(W_g \cdot \text{POOL}(z)), \quad (6)$$

where $\text{POOL}(\cdot)$ can be mean, sum, or attention pooling.

Transductive Settings. Each node embedding z_v is aligned with the fixed input topology, and classification is performed via:

$$\hat{y}_v = \text{softmax}(W_n z_v), \quad v \in V. \quad (7)$$

216 **Link Prediction.** For candidate pairs (u, v) , we use a bilinear decoder:
 217

$$218 \quad s(u, v) = z_u^\top W_\ell z_v. \quad (8)$$

219 Cross-entropy or ranking-based objectives (e.g., Hits@k, MRR) are applied accordingly.
 220

222 **Theoretical guarantees: stability and graph-awareness.** To justify our design, we analyze two
 223 requirements: (i) *stability under perturbations*, ensuring controlled sensitivity, and (ii) *graph dependence*,
 224 ensuring that adapters leverage topology rather than acting as graph-agnostic bias terms.

225 **Scope.** We analyze stability only for the adapter-augmented *experts*. The routing (gating) module
 226 uses a standard GNN without adapters; during analysis we treat routing as fixed and make no claims
 227 about the gate.

228 **Theorem 3.1** (Stable Adapter-Augmented Experts). *Assume $\|\hat{A}\|_2 \leq 1$, σ is L_σ -Lipschitz, and*
 229 $\|W_\downarrow\|_2 \leq \gamma_\downarrow$, $\|W_\uparrow\|_2 \leq \gamma_\uparrow$. *Then, for*

$$231 \quad F(h) = h + \alpha W_\uparrow \sigma(\hat{A} h W_\downarrow),$$

232 the Lipschitz constant satisfies

$$233 \quad \text{Lip}(F) \leq 1 + \alpha L_\sigma \gamma_\downarrow \gamma_\uparrow.$$

235 Moreover, for MoE aggregation

$$236 \quad z = \sum_{k \in S} w_k F_k(h_k), \quad w \in \Delta_{K-1},$$

239 we have

$$240 \quad \text{Lip}(z) \leq \max_{k \in S} \left(1 + \alpha_k L_\sigma \gamma_\downarrow^{(k)} \gamma_\uparrow^{(k)} \right).$$

242 *Proof.* For a single adapter block,

$$244 \quad \|W_\uparrow \sigma(\hat{A} W_\downarrow x) - W_\uparrow \sigma(\hat{A} W_\downarrow y)\| \leq \gamma_\uparrow L_\sigma \gamma_\downarrow \|x - y\|,$$

246 since $\|\hat{A}\|_2 \leq 1$. The residual connection adds an identity map, yielding Lipschitz constant $1 + \alpha L_\sigma \gamma_\downarrow \gamma_\uparrow$. For the MoE, z is a convex (or sparse-convex) combination of Lipschitz maps. Such a
 247 combination inherits a Lipschitz constant bounded by the maximum of its components. \square
 248

250 This theorem guarantees that adapters inject new flexibility without destabilizing training. By
 251 bounding the Lipschitz constant, we ensure robustness to small perturbations crucial in low-resource
 252 regimes where noisy or limited supervision may otherwise destabilize adaptation.

254 **Proposition 3.2** (Graph-Dependence of Adapters). *Let $\hat{A}_1 \neq \hat{A}_2$ be normalized adjacency matrices*
 255 *of two graphs $G_1 \neq G_2$. Consider*

$$256 \quad A_{\text{graph}}(H) = W_\uparrow \sigma(\hat{A} H W_\downarrow).$$

258 If W_\downarrow, W_\uparrow are not rank-deficient, then for a non-measure-zero set of H ,

$$260 \quad A_{\text{graph}}^{(1)}(H) \neq A_{\text{graph}}^{(2)}(H).$$

263 *Proof.* If $\hat{A}_1 \neq \hat{A}_2$, then $(\hat{A}_1 - \hat{A}_2) H W_\downarrow \neq 0$ for some H . Since σ is piecewise-linear and W_\uparrow is
 264 non-degenerate, the images differ on an open set of H , yielding non-trivial dependence on G . \square
 265

266 This proposition establishes that our adapters genuinely exploit graph structure. Unlike graph ag-
 267 nostic adapters, which produce identical transformations regardless of topology, our design ensures
 268 responses vary with adjacency, enabling task-specific specialization across diverse graph topologies.
 269 Together, Theorem 3.1 and Proposition 3.2 formalize why MoLE-GNN is both *stable* (avoiding un-
 270 controlled growth or sensitivity) and *structurally adaptive*, providing the theoretical underpinnings
 271 for its effectiveness in inductive, transductive, and link-level tasks.

270 4 EXPERIMENTAL SETUP

272 **Dataset.** We construct the pre-training corpus from two million unlabeled molecules in
 273 ZINC15 Sterling & Irwin (2015), 395K protein ego-networks from PPI, and academic and social
 274 graphs from NetRep and SNAP Ritchie et al. (2016); Leskovec & Sosić (2016). Each expert GNN
 275 is pre-trained on this corpus, following prior work Hu et al. (2020b); Qiu et al. (2020). We adopt
 276 the ogbn-arxiv dataset with GraphMAE Hou et al. (2022) to pre-train expert GNNs for node classi-
 277 fication and link prediction. Downstream evaluation covers 14 datasets for inductive setting, 5 for
 278 transductive setting, and 4 for link prediction. Detailed dataset statistics are provided in Tables 9, 10
 279 (Appendix B).

280 **Evaluation Metrics.** Here, we follow the work by Li et al. (2024) and use ROC-AUC as the eval-
 281 uation metrics for inductive learning experiments. For transductive learning experiment, we utilize
 282 work Accuracy as the evaluation metric Papageorgiou et al. (2025). For, link prediction we use
 283 MRR and Hits@20 as the evaluation metric Ma et al. (2024).

284 **Baseline Frameworks.** For inductive learning experiments, we evaluate full fine-tuning, two
 285 graph prompt learning methods, four widely used PEFT models, and a mixture-of-experts ap-
 286 proach: GPF Fang et al. (2022), MolCPT Diao et al. (2022), Adapter Chen et al. (2022b), LoRA,
 287 AdapterGNN, GCNConv-Adapter, and TopExpert. Addditionally, we consider Surgical Fine-
 288 Tuning Lee et al. (2022) and BitFit for transductive learning. For link prediction, we use all of
 289 the above baselines and further include the MoE-based Link-MoE. For all these three type of tasks,
 290 we consider GMoE, and DA-MoE as the general purpose graph MoE based methods as baseline
 291 models as described in Appendix C.

292 Pre-training Method	Tuning Method	Datasets (ROC-AUC \uparrow)									Avg.
		BACE	BBBP	ClinTox	HIV	SIDER	Tox21	MUV	ToxCast	PPI	
293 EdgePred	Full Fine-tune (100%)	79.9 \pm 0.9	67.3 \pm 2.4	64.1 \pm 3.7	76.3 \pm 1.0	60.4 \pm 0.7	76.0 \pm 0.6	74.1 \pm 2.1	64.1 \pm 0.6	65.6 \pm 0.9	69.8
	Adapter (5.2%)	78.5 \pm 1.7	65.9 \pm 2.8	66.6 \pm 5.4	73.5 \pm 0.2	60.9 \pm 1.3	75.4 \pm 0.5	73.0 \pm 1.0	63.0 \pm 0.7	69.8 \pm 0.5	69.6
	LoRA (5.0%)	81.0 \pm 0.8	64.8 \pm 1.6	67.2 \pm 1.2	74.8 \pm 1.1	60.8 \pm 1.1	74.6 \pm 0.4	75.0 \pm 1.5	62.2 \pm 1.0	68.0 \pm 1.0	69.9
	GPF (0.1%)	68.0 \pm 0.4	55.9 \pm 0.2	50.8 \pm 0.1	66.0 \pm 0.7	51.5 \pm 0.7	63.1 \pm 0.5	63.1 \pm 0.1	55.7 \pm 0.5	51.2 \pm 1.3	58.3
	AdapterGNN (5.2%)	79.0 \pm 1.5	69.7 \pm 1.4	67.7 \pm 3.0	76.4 \pm 0.7	61.2 \pm 0.9	75.9 \pm 0.9	75.8 \pm 2.1	64.2 \pm 0.5	70.6 \pm 1.1	71.2
	TopExpert (100%)	80.2 \pm 0.8	66.2 \pm 0.8	56.8 \pm 2.4	76.0 \pm 0.7	59.6 \pm 0.5	74.1 \pm 0.4	79.9 \pm 1.2	62.5 \pm 0.4	66.3 \pm 0.9	69.1
294 ContextPred	GCNconv-Adapter (3.0%)	75.9 \pm 3.4	70.0 \pm 1.2	51.9 \pm 2.4	68.6 \pm 6.6	60.1 \pm 1.4	72.7 \pm 0.5	66.7 \pm 2.7	61.8 \pm 1.1	70.3 \pm 1.9	66.4
	MoLE-GNN (ours) (5.1%)	81.0 \pm 0.7	73.9 \pm 0.5	75.5 \pm 1.4	77.6 \pm 0.9	62.5 \pm 0.8	75.8 \pm 0.4	78.5 \pm 1.1	64.9 \pm 0.3	72.7 \pm 0.6	73.6
	Full Fine-tune (100%)	79.6 \pm 1.2	68.0 \pm 2.0	65.9 \pm 3.8	77.3 \pm 1.0	60.9 \pm 0.6	75.7 \pm 0.7	75.8 \pm 1.7	63.9 \pm 0.6	63.5 \pm 1.1	70.1
	Adapter (5.2%)	75.0 \pm 3.3	68.2 \pm 3.0	57.6 \pm 3.6	75.4 \pm 0.6	62.4 \pm 1.2	74.7 \pm 0.7	73.3 \pm 0.8	62.2 \pm 0.4	68.2 \pm 1.5	68.6
	LoRA (5.0%)	78.5 \pm 1.1	65.3 \pm 2.4	61.3 \pm 1.9	74.7 \pm 1.6	60.8 \pm 0.4	72.9 \pm 0.4	75.4 \pm 0.9	63.4 \pm 0.2	68.0 \pm 1.1	68.9
	GPF (0.1%)	58.7 \pm 0.6	58.6 \pm 0.6	39.8 \pm 0.8	68.0 \pm 0.4	59.4 \pm 0.2	67.8 \pm 0.9	71.8 \pm 0.8	58.8 \pm 0.5	67.1 \pm 0.6	61.1
295 AttrMasking	AdapterGNN (5.2%)	78.7 \pm 2.0	68.2 \pm 2.9	68.7 \pm 5.3	76.1 \pm 0.5	61.1 \pm 1.0	75.4 \pm 0.6	76.3 \pm 1.0	63.2 \pm 0.3	68.3 \pm 1.5	70.7
	TopExpert (100%)	80.4 \pm 1.4	69.9 \pm 0.8	58.9 \pm 4.3	78.2 \pm 0.3	60.2 \pm 0.6	73.9 \pm 0.3	79.9 \pm 0.9	62.9 \pm 0.3	56.3 \pm 1.0	69.0
	GCNconv-Adapter (3.0%)	79.8 \pm 2.0	70.1 \pm 0.6	53.0 \pm 5.2	73.9 \pm 1.2	59.9 \pm 1.1	72.4 \pm 0.7	72.6 \pm 2.2	61.2 \pm 0.9	67.3 \pm 1.6	67.8
	MoLE-GNN (ours) (5.1%)	80.8 \pm 0.5	73.1 \pm 0.4	79.8 \pm 0.7	77.3 \pm 0.8	62.4 \pm 0.7	75.1 \pm 0.4	79.2 \pm 1.0	64.1 \pm 0.3	70.9 \pm 0.7	73.6
	Full Fine-tune (100%)	79.3 \pm 1.6	64.3 \pm 2.8	71.8 \pm 4.1	77.2 \pm 1.1	61.0 \pm 0.7	76.7 \pm 0.4	74.7 \pm 1.4	64.2 \pm 0.5	63.2 \pm 1.2	70.3
	Adapter (5.2%)	76.1 \pm 1.4	68.7 \pm 1.7	65.8 \pm 4.4	75.6 \pm 0.7	59.8 \pm 1.7	74.4 \pm 0.9	75.8 \pm 2.4	62.6 \pm 0.8	70.9 \pm 1.0	70.0
296 GraphCL	LoRA (5.0%)	79.8 \pm 0.7	64.2 \pm 1.1	70.1 \pm 2.9	76.1 \pm 1.4	59.7 \pm 0.2	74.6 \pm 0.5	76.6 \pm 1.6	61.7 \pm 0.4	69.2 \pm 0.8	70.2
	GPF (0.1%)	61.7 \pm 0.3	54.3 \pm 0.3	56.4 \pm 0.2	64.0 \pm 0.2	52.0 \pm 0.2	69.2 \pm 0.3	62.9 \pm 0.9	58.1 \pm 0.3	69.0 \pm 0.3	60.8
	AdapterGNN (5.2%)	79.7 \pm 1.3	67.5 \pm 2.2	78.3 \pm 2.6	76.7 \pm 1.2	61.3 \pm 1.1	76.6 \pm 0.5	78.4 \pm 0.7	63.6 \pm 0.5	69.7 \pm 1.1	72.4
	TopExpert (100%)	81.3 \pm 1.2	71.4 \pm 0.7	70.1 \pm 1.3	77.1 \pm 0.7	60.3 \pm 0.6	75.5 \pm 0.3	78.4 \pm 1.4	62.8 \pm 0.2	60.1 \pm 1.3	70.8
	GCNconv-Adapter (3.0%)	78.4 \pm 3.7	71.3 \pm 1.4	51.1 \pm 5.0	71.9 \pm 0.9	59.2 \pm 1.3	72.6 \pm 0.7	70.0 \pm 1.8	61.9 \pm 1.1	68.1 \pm 1.9	67.2
	MoLE-GNN (ours) (5.1%)	81.6 \pm 0.8	73.2 \pm 0.8	80.8 \pm 1.5	78.2 \pm 0.6	76.1 \pm 0.3	79.2 \pm 1.2	64.3 \pm 0.2	71.2 \pm 1.0	74.1	74.1
297 SimGRACE	Full Fine-tune (100%)	74.6 \pm 2.2	68.6 \pm 2.3	69.8 \pm 7.2	78.5 \pm 1.2	59.6 \pm 0.7	74.4 \pm 0.5	73.7 \pm 2.7	62.9 \pm 0.4	65.5 \pm 0.8	69.7
	Adapter (5.2%)	72.5 \pm 0.2	69.3 \pm 0.6	67.3 \pm 7.4	75.0 \pm 0.4	59.7 \pm 1.2	74.7 \pm 0.4	72.9 \pm 1.7	62.9 \pm 0.4	69.0 \pm 0.8	69.3
	LoRA (5.0%)	75.1 \pm 0.7	67.8 \pm 1.1	65.1 \pm 3.5	78.9 \pm 0.6	57.6 \pm 0.7	73.9 \pm 0.9	72.8 \pm 1.2	62.7 \pm 0.6	69.4 \pm 0.6	69.3
	GPF (0.1%)	71.5 \pm 0.6	63.7 \pm 0.4	64.5 \pm 0.6	70.3 \pm 0.5	55.3 \pm 0.6	65.5 \pm 0.5	70.1 \pm 0.7	58.5 \pm 0.5	62.3 \pm 0.5	64.6
	AdapterGNN (5.2%)	76.1 \pm 2.2	67.8 \pm 4.4	72.0 \pm 3.8	77.1 \pm 1.3	59.6 \pm 1.3	74.9 \pm 0.9	75.1 \pm 2.1	63.1 \pm 0.4	68.1 \pm 1.5	70.5
	TopExpert (100%)	77.9 \pm 1.3	70.9 \pm 0.8	70.7 \pm 3.8	80.7 \pm 0.7	60.1 \pm 1.0	74.6 \pm 0.5	78.2 \pm 1.2	62.3 \pm 0.5	62.3 \pm 1.1	70.9
298 GraphCL	GCNconv-Adapter (3.0%)	79.8 \pm 2.5	71.8 \pm 0.8	54.3 \pm 3.3	72.2 \pm 1.5	59.8 \pm 1.4	72.5 \pm 0.7	75.2 \pm 0.1	62.0 \pm 0.8	66.3 \pm 0.6	68.2
	MoLE-GNN (ours) (5.1%)	79.8 \pm 1.3	72.0 \pm 0.8	69.8 \pm 5.3	76.8 \pm 0.8	61.9 \pm 0.6	75.3 \pm 0.4	76.4 \pm 1.1	64.3 \pm 0.4	71.1 \pm 1.5	71.9
	Full Fine-tune (100%)	74.7 \pm 1.0	69.0 \pm 0.10	59.9 \pm 2.3	74.6 \pm 1.2	59.1 \pm 0.6	73.9 \pm 0.4	71.0 \pm 1.9	61.8 \pm 0.4	68.2 \pm 1.2	68.0
	Adapter (5.2%)	73.4 \pm 1.1	64.8 \pm 0.7	63.5 \pm 4.4	73.9 \pm 1.0	59.9 \pm 0.9	73.1 \pm 0.9	70.1 \pm 4.6	61.7 \pm 0.8	64.5 \pm 2.0	67.2
	LoRA (5.0%)	73.2 \pm 1.0	67.5 \pm 0.4	60.7 \pm 0.4	74.1 \pm 0.5	57.6 \pm 2.6	72.2 \pm 0.2	67.9 \pm 0.9	61.8 \pm 0.2	63.0 \pm 0.3	66.5
	AdapterGNN (5.2%)	77.7 \pm 1.7	68.1 \pm 1.3	73.9 \pm 0.7	75.1 \pm 1.2	58.9 \pm 0.9	74.4 \pm 0.6	71.8 \pm 1.4	62.6 \pm 0.6	70.1 \pm 1.2	70.3
299 SimGRACE	TopExpert (100%)	74.0 \pm 1.0	65.3 \pm 1.2	56.9 \pm 2.5	73.6 \pm 2.5	56.3 \pm 0.7	71.5 \pm 0.3	73.6 \pm 1.1	61.9 \pm 0.1	65.8 \pm 1.4	66.5
	GCNconv-Adapter (3.0%)	77.4 \pm 2.0	70.5 \pm 1.7	50.9 \pm 3.3	76.6 \pm 0.4	59.8 \pm 1.4	72.8 \pm 0.8	68.5 \pm 4.0	61.9 \pm 1.0	64.3 \pm 1.8	67.0
	MoLE-GNN (ours) (5.1%)	81.7 \pm 0.9	71.9 \pm 0.7	78.8 \pm 1.7	77.4 \pm 0.4	60.8 \pm 0.4	75.2 \pm 0.3	75.8 \pm 1.2	63.9 \pm 0.5	70.7 \pm 1.2	72.9
	Full Fine-tune (100%)	74.7 \pm 1.0	69.0 \pm 0.10	59.9 \pm 2.3	74.6 \pm 1.2	59.1 \pm 0.6	73.9 \pm 0.4	71.0 \pm 1.9	61.8 \pm 0.4	68.2 \pm 1.2	68.0
	Adapter (5.2%)	73.4 \pm 1.1	64.8 \pm 0.7	63.5 \pm 4.4	73.9 \pm 1.0	59.9 \pm 0.9	73.1 \pm 0.9	70.1 \pm 4.6	61.7 \pm 0.8	64.5 \pm 2.0	67.2
	LoRA (5.0%)	73.2 \pm 1.0	67.5 \pm 0.4	60.7 \pm 0.4	74.1 \pm 0.5	57.6 \pm 2.6	72.2 \pm 0.2	67.9 \pm 0.9	61.8 \pm 0.2	63.0 \pm 0.3	66.5
300 GraphCL	AdapterGNN (5.2%)	77.7 \pm 1.7	68.1 \pm 1.3	73.9 \pm 0.7	75.1 \pm 1.2	58.9 \pm 0.9	74.4 \pm 0.6	71.8 \pm 1.4	62.6 \pm 0.6	70.1 \pm 1.2	70.3
	TopExpert (100%)	77.9 \pm 1.3	70.9 \pm 0.8	70.7 \pm 3.8	80.7 \pm 0.7	60.1 \pm 1.0	74.6 \pm 0.5	78.2 \pm 1.2	62.3 \pm 0.5	62.3 \pm 1.1	70.9
	GCNconv-Adapter (3.0%)	79.8 \pm 2.5	71.8 \pm 0.8	54.3 \pm 3.3	72.2 \pm 1.5	59.8 \pm 1.4	72.5 \pm 0.7	75.2 \pm 0.1	62.0 \pm 0.8	66.3 \pm 0.6	68.2
	MoLE-GNN (ours) (5.1%)	79.8 \pm 1.3	72.0 \pm 0.8	69.8 \pm 5.3	76.8 \pm 0.8	61.9 \pm 0.6	75.3 \pm 0.4	76.4 \pm 1.1	64.3 \pm 0.4	71.1 \pm 1.5	71.9
	Full Fine-tune (100%)</td										

324	325	326	327	328	329	330	331	332	333	Pre-training	Tuning	Datasets (ROC-AUC \uparrow)			
										Method	Method	BACE	BBBP	ClinTox	SIDER
												<u>82.2</u> \pm 0.1	<u>69.1</u> \pm 0.1	<u>71.9</u> \pm 0.2	<u>62.3</u> \pm 0.3
EdgePred		S2PGNN (100%)		ContextPred	S2PGNN (100%)	AttrMasking	S2PGNN (100%)	GraphCL	SimGRACE	S2PGNN (5.2%)	<u>MoLE-GNN</u> (ours) (5.1%)	<u>82.2</u> \pm 0.1	<u>69.1</u> \pm 0.1	<u>71.9</u> \pm 0.2	<u>62.3</u> \pm 0.3
		S2PGNN (5.2%)			S2PGNN (5.2%)		S2PGNN (5.2%)					80.7 \pm 0.1	<u>65.1</u> \pm 0.0	<u>75.1</u> \pm 0.2	<u>57.1</u> \pm 0.7
		<u>MoLE-GNN</u> (ours) (5.1%)			<u>MoLE-GNN</u> (ours) (5.1%)		<u>MoLE-GNN</u> (ours) (5.1%)					81.0 \pm 0.7	<u>73.9</u> \pm 0.7	<u>75.5</u> \pm 0.1	<u>62.5</u> \pm 0.9
												75.4 \pm 1.1	<u>65.4</u> \pm 0.7	<u>75.3</u> \pm 2.6	<u>61.8</u> \pm 0.6
												75.4 \pm 1.1	<u>65.4</u> \pm 0.7	<u>75.3</u> \pm 2.6	<u>61.8</u> \pm 0.6
												80.8 \pm 0.8	<u>73.1</u> \pm 0.0	<u>79.8</u> \pm 0.2	<u>62.4</u> \pm 0.7
												81.6 \pm 0.7	<u>73.2</u> \pm 0.0	<u>80.0</u> \pm 0.2	<u>62.8</u> \pm 0.7
												77.1 \pm 2.2	<u>68.4</u> \pm 1.1	<u>68.9</u> \pm 3.5	<u>59.9</u> \pm 1.1
												79.8 \pm 1.2	<u>72.0</u> \pm 0.0	<u>69.8</u> \pm 5.6	<u>57.3</u> \pm 0.4
												77.1 \pm 2.2	<u>68.4</u> \pm 1.1	<u>68.9</u> \pm 3.5	<u>59.9</u> \pm 1.1
												79.8 \pm 1.2	<u>72.0</u> \pm 0.0	<u>69.8</u> \pm 5.6	<u>57.3</u> \pm 0.4
												81.7 \pm 0.7	<u>71.9</u> \pm 0.0	<u>78.8</u> \pm 1.0	<u>60.8</u> \pm 0.3
												77.1 \pm 2.2	<u>68.4</u> \pm 1.1	<u>68.9</u> \pm 3.5	<u>59.9</u> \pm 1.1
												81.7 \pm 0.7	<u>71.9</u> \pm 0.0	<u>78.8</u> \pm 1.0	<u>60.8</u> \pm 0.3

Table 2: MoLE-GNN versus S2PGNN: performance comparison between MoLE-GNN and S2PGNN’s adapter-based fine-tuning search. The best performing model is **bold** and second best performing model is underlined.

339	340	341	342	343	Pre-training	Tuning	Datasets (Accuracy \uparrow)		
					Method	Method	ogbn-arxiv	ogbn-proteins	ogbn-products
							(Accuracy)	(ROC-AUC)	(Accuracy)
NodeFormer					Full Fine-tune (100%)		58.5 \pm 0.2	<u>77.5</u> \pm 1.2	62.6 \pm 0.1
					AdapterGNN (6.8%)		64.9 \pm 0.4	<u>75.1</u> \pm 0.5	65.3 \pm 0.4
					GCNconv-Adapter (3.0%)		56.2 \pm 0.7	71.5 \pm 0.6	<u>27.2</u> \pm 0.3
DIFFormer-s					MoLE-GNN (ours) (3.6%)		<u>67.5</u> \pm 0.2	<u>77.6</u> \pm 0.3	<u>67.5</u> \pm 0.2
					Full Fine-tune (100%)		47.8 \pm 0.9	<u>72.5</u> \pm 0.4	<u>55.2</u> \pm 0.4
					AdapterGNN (6.8%)		54.9 \pm 0.3	<u>58.4</u> \pm 0.4	<u>54.9</u> \pm 0.3
					GCNconv-Adapter (3.0%)		26.7 \pm 0.9	65.1 \pm 1.1	22.9 \pm 0.9
					MoLE-GNN (ours) (3.6%)		<u>58.2</u> \pm 0.6	<u>75.2</u> \pm 0.4	<u>65.2</u> \pm 0.9

Table 3: Performance comparison on large-scale node classification benchmarks across different fine-tuning methods on pretrained graph transformers. Best scores are in **bold**, and second-best are underlined.

350	351	352	353	354	355	356	Datasets (Time in Seconds)								
							BBBP	ToxCast	SIDER	ClinTox	BACE				
											Avg.				
Full Fine-Tune							GIN	2.31	2.88	2.34	1.98	1.61	2.21	2.22	7.81
							GCN	1.75	2.55	2.61	1.68	1.88	2.03	2.08	2.65
							GAT	2.23	2.74	3.39	1.97	2.02	2.36	2.45	4.45
							MoLE-GNN	<u>0.45</u>	<u>0.62</u>	<u>0.58</u>	<u>0.45</u>	<u>0.53</u>	<u>0.47</u>	<u>0.52</u>	<u>0.39</u>
Adapter Tuning							Adapter-GNN	1.67	1.42	1.49	0.52	0.51	0.52	1.02	0.12
							GCNConv-Adapter	0.64	1.34	1.65	0.49	0.48	0.56	0.86	0.05
							S2PGNN	6.65	8.25	9.15	6.65	9.00	7.00	7.78	8.12
							MoLE-GNN	<u>0.45</u>	<u>0.62</u>	<u>0.58</u>	<u>0.45</u>	<u>0.53</u>	<u>0.47</u>	<u>0.52</u>	<u>0.39</u>
MoE Tuning							GMoE	2.03	3.12	3.70	1.90	1.22	2.10	2.15	14.9
							DAMoE	1.63	2.39	3.02	1.29	0.89	1.03	1.60	2.99
							TopExpert	1.19	2.02	2.36	0.56	0.62	0.51	1.21	2.51
							MoLE-GNN	<u>0.45</u>	<u>0.62</u>	<u>0.58</u>	<u>0.45</u>	<u>0.53</u>	<u>0.47</u>	<u>0.52</u>	<u>0.39</u>

Table 4: Detailed time and memory comparison of MoLE-GNN and other baseline methods on graph classification dataset. Here, M stands for million. The lowest time and parameter count are marked in **bold**, and the second-lowest are underlined.

prediction. Each expert is instantiated as either a Graph Isomorphism Network (GIN) or a Graph Transformers (GTs) equipped with sequential adapters (placed before and after the message passing).

Inductive Learning Results. We evaluate MoLE-GNN under inductive learning settings, as reported in Table 1. Across all datasets, MoLE-GNN consistently outperforms full fine-tuning in classification. MoLE-GNN achieves higher ROC-AUC than full fine-tuning across ClinTox, SIDER, BACE, BBBP, HIV, ToxCast, and PPI, yielding an overall average of 73.22% i.e., 5.2% average improvement over 69.6%. Furthermore, MoLE-GNN outperforms the domain-specific TopExpert on eight of nine datasets and achieves comparable performance on MUV, yielding an average ROC-AUC of 73.2% a 5.8% improvement over TopExpert (69.2%). Furthermore, MoLE-GNN surpasses existing state-of-the-art (SOTA) graph-specific PEFT methods outperforming GCNconv-Adapter by 8.7% and AdapterGNN by 3.1% and delivers notable improvements over conventional PEFT approaches. A main reason MoLE-GNN surpasses pre-trained PEFT approaches, and TopExpert is its structure-aware sparse routing to depth specific experts with lightweight, topology-conditioned adapters, aligning receptive fields to graph scale and reducing overfitting for stronger inductive generalization. For brevity, we report the additional results of MoLE-GNN on social

324	325	326	327	328	329	330	331	332	333	Pre-training	Tuning Method	Datasets (Accuracy \uparrow)					
										Method	Method	Cora	Citeseer	PubMed	Wisconsin	Texas	Avg.
												85.4 \pm 0.8	77.0 \pm 1.7	87.9 \pm 0.2	59.1 \pm 3.8	60.9 \pm 4.7	74.0
NodeFormer										Surgical Fine Tuning (0.15%)	78.3 \pm 3.3	75.5 \pm 2.2	87.8 \pm 0.4	53.1 \pm 3.8	60.4 \pm 4.8	71.0	
										BitFit (0.10%)	78.2 \pm 0.9	74.6 \pm 2.2	87.9 \pm 0.6	54.4 \pm 7.9	58.7 \pm 8.7	70.8	
										LoRA (1.42%)	85.3 \pm 0.8	76.2 \pm 1.4	87.4 \pm 0.1	53.4 \pm 3.2	62.6 \pm 7.6	72.9	
DIFFormer-s										Adapter (1.00%)	78.5 \pm 1.3	74.5 \pm 2.6	87.9 \pm 0.5	56.6 \pm 4.9	63.8 \pm 6.7	72.3	
										Adapter (1.00%)	82.7 \pm 0.7	78.2 \pm 0.7	87.0 \pm 0.3	52.1 \pm 3.1	57.2 \pm 4.0	72.5	
										G-Adapter (1.20%)	67.9 \pm 1.5	<u>74.1</u> \pm 1.4	73.3 \pm 1.5	57.5 \pm 5.8	62.1 \pm 6.6	66.9	
										AdapterGNN (6.8%)	80.1 \pm 6.7	70.1 \pm 1.4	86.8 \pm 0.6	69.7 \pm 5.9	56.2 \pm 6.6	72.6	
										GCNconv-Adapter (3.0%)	82.8 \pm 5.0	72.1 \pm 1.9	85.7 \pm 0.5	57.8 \pm 4.7	62.9 \pm 5.9	72.3	
										MoLE-GNN (3.6%)	<u>83.5</u> \pm 0.6	<u>73.6</u> \pm 1.4	<u>88.2</u> \pm 0.3	<u>76.3</u> \pm 3.7	<u>71.9</u> \pm 5.3	<u>78.7</u>	

Table 5: Test Accuracy (%) performances on node classification benchmarks with different tuning methods and pre-trained graph transformers models. Best performing model, based on average Accuracy (%) is shown in **bold**, while the second-best model is underlined

| 350 | 351 | 352 | 353 | 354 | 355 | 356 | 357 | 358 | 359 |
<th rowspan
| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |

378 network graph classification (Table 11) and few-shot learning (Fig. 5) in Appendix F. We also evaluate MoLE-GNN against the automatic adapter-based fine-tuning framework S2PGNN Zhili et al.
 379 (2024), and the results are presented in Table 2. From Table 2, we observe that MoLE-GNN
 380 consistently outperforms S2PGNN on BBBP across all pre-training methods, achieves better performance
 381 on ClinTox for four out of five pre-training methods, and produces comparable results under
 382 the GraphCL pre-training setting. For the remaining datasets, MoLE-GNN produces comparable
 383 results. A key reason for the comparable performance is that S2PGNN fine-tunes the entire pre-
 384 trained backbone together with its identity-augmentation modules including the bottleneck blocks
 385 that resemble adapter tuning and additionally searches for the best fine-tuning configuration for each
 386 dataset. In contrast, MoLE-GNN freezes the backbone of each expert and tunes only lightweight
 387 adapters within a fixed architecture. Despite this more restricted tuning regime and the absence of
 388 any search, MoLE-GNN still surpasses S2PGNN on BBBP and ClinTox. Moreover, from Table 4,
 389 we observe that the S2PGNN search procedure requires substantially more training time and $20\times$
 390 more tunable parameters. For a fair comparison, we evaluate a controlled variant of S2PGNN in
 391 which all backbone parameters of the pre-trained GNNs are frozen and only the adapter-like mod-
 392 ules are tuned. Under this setting, we observe that MoLE-GNN outperforms S2PGNN across all
 393 datasets for all pre-training methods.

394 **Transductive Learning Results.** We evaluate the performance of MoLE-GNN under transductive
 395 learning, with results summarized in Table 5. Across the three homophilic benchmarks Cora, Cite-
 396 seer, and PubMed MoLE-GNN consistently outperforms fully fine-tuned baselines (NodeFormer
 397 and DIFFFormer-s), providing an average gain of 0.7%. Again, we observe that on the two het-
 398 erophilic datasets, Wisconsin and Texas, our MoLE-GNN, instantiated with either pre-trained Node-
 399 Former or DIFFFormer-s (pre-trained on the homophilic dataset ogbn-arxiv), consistently outper-
 400 forms vanilla fine-tuning. This demonstrates that each expert in MoLE-GNN transfers pre-trained
 401 knowledge more effectively than the vanilla fine-tuning approach. Overall, this achieves an average
 402 Accuracy of 79.1%, outperforming vanilla fine-tuning, where both NodeFormer and DIFFFormer-s
 403 attain only 72.1%. Furthermore, MoLE-GNN outperforms SOTA graph specific PEFT methods,
 404 GCNconv-Adapter by 8.58% and AdapterGNN by 8.36%, and produces substantial gains over clas-
 405 sical PEFT techniques. A primary reason is MoLE-GNN excels its structure aware gating, which
 406 routes inputs to adapter based [graph transformers](#) within each expert, capturing richer graph struc-
 407 ture than SOTA baselines. In addition, we provide a comparison of MoLE-GNN with existing graph
 408 prompt based baselines (Table 12) and report its few-shot performance (Fig. 5) in Appendix F.

409 **Transductive Learning results for Large-Scale Graphs.** We examine the scalability of MoLE-
 410 GNN on large-scale transductive node classification tasks such as protein-protein interaction, ci-
 411 tation network and product co-purchase tasks using three large benchmark datasets: ogbn-arxiv,
 412 ogbn-proteins, and ogbn-products. The results are summarized in Table 3. As shown in the table,
 413 MoLE-GNN consistently outperforms all full fine-tuning baselines. Notably, when applied on top
 414 of the NodeFormer pretraining backbone, MoLE-GNN achieves a 0.14% ROC-AUC improvement
 415 on ogbn-proteins, despite updating only a small fraction of parameters. This demonstrates that our
 416 parameter-efficient updates can surpass full-model fine-tuning even on extremely large graphs. For
 417 the remaining two datasets, MoLE-GNN also outperforms the full fine-tuning setting in terms of
 418 Accuracy, achieving improvements of 15.97% on ogbn-arxiv and 7.8% on ogbn-products. Across
 419 all three large-scale datasets, MoLE-GNN consistently outperforms prior PEFT approaches, includ-
 420 ing AdapterGNN and GCNConv-Adapter, when built upon the NodeFormer pre-training backbone.
 421 Furthermore, as shown in Table 3, using DIFFFormer-s as the backbone, MoLE-GNN surpasses both
 422 full fine-tuning and other PEFT baselines on every large-scale dataset. These results demonstrate
 423 that MoLE-GNN is not only effective on small-scale transductive benchmarks but also scales reli-
 424 ably to large-scale datasets, thereby confirming its scalability.

425 **Link Prediction Results.** We evaluate the performance of MoLE-GNN on link prediction task,
 426 with results summarized in Table 6. For this task, each expert in MoLE-GNN is instantiated as
 427 NAGphormer Chen et al. (2022a). Across all datasets, MoLE-GNN consistently outperforms fully
 428 fine-tuned NAGphormer, achieving MRR scores of 49.3%, 66.4%, and 44.7% on Cora, Citeseer,
 429 and PubMed, compared to 8.9%, 13.1%, and 7.3% from fine-tuning. We further observe that
 430 MoLE-GNN achieves a Hit@20 score of 93.2%, surpassing the full fine-tuning result of 83.3%.
 431 Again, we observe that MoLE-GNN also outperforms the MoE-based model Link-MoE on Cora,
 432 Citeseer, and ogbl-ddi, while achieving comparable performance on PubMed. While Link-MoE
 433 trains experts from scratch, our model tunes only selected components yet achieves better results,
 434 which is particularly noteworthy. MoLE-GNN consistently outperforms prior methods: it achieves
 435 MRR scores of 49.3% and 66.4% (vs. 44.0% and 64.6% for Link-MoE), and Hits@20 of 93.2% on

432 ogl-ddi (vs. 85.2%). On PubMed, MoLE-GNN attains 44.7% MRR, close to Link-MoE’s 53.1%.
 433 Moreover, MoLE-GNN yields average improvements over graph-specific PEFT baselines (50.9%
 434 vs. GCNconv-Adapter and 71.2% vs. AdapterGNN), while also surpassing classical PEFT tech-
 435 niques.

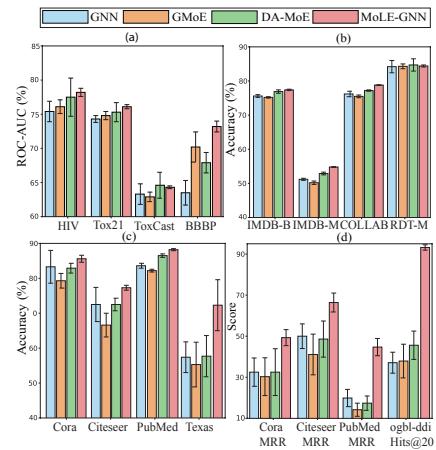
436 **MoLE-GNN Vs General Purpose MoE models.** In this section, we compare MoLE-GNN with
 437 SOTA general-purpose graph MoE models, as illustrated in Fig. 3. We consider GMoE and DA-
 438 MoE as baselines. From Fig. 3(a), MoLE-GNN consistently outperforms GMoE and DA-MoE on
 439 HIV, Tox21, and BBBP in terms of ROC-AUC, and achieves performance comparable to DA-MoE
 440 on ToxCast for inductive molecular graph classification. Specifically, MoLE-GNN surpasses the
 441 second-best model, DA-MoE, by 0.9%, 1.1%, and 7.8% on HIV, Tox21, and BBBP, respectively,
 442 yielding an average improvement of 2.4% across the four datasets. From Fig. 3(b), MoLE-GNN
 443 also consistently outperforms GMoE and DA-MoE on IMDB-B, IMDB-M, and COLLAB, while
 444 achieving performance comparable to DA-MoE on RDT-M for inductive social network graph
 445 classification. In particular, MoLE-GNN exceeds DA-MoE by 0.6%, 7.0%, and 3.4% on IMDB-
 446 B, IMDB-M, and COLLAB, respectively, with an average gain of 1.4% across the four datasets.

447 Finally, Fig. 3(c) shows that MoLE-GNN achieves
 448 superior performance over both baselines on four
 449 transductive node classification benchmarks: Cora,
 450 Citeseer, PubMed, and Texas. Relative to DA-MoE,
 451 MoLE-GNN improves Accuracy by 3.3%, 6.6%,
 452 1.9%, and 25.5% on Cora, Citeseer, PubMed, and
 453 Texas, respectively, resulting in an average margin
 454 of 7.96% across all four datasets. Finally, for link
 455 prediction tasks, we observe from Fig. 3(d) shows
 456 that MoLE-GNN outperforms GMoE and DA-MoE
 457 on four datasets: Cora, Citeseer, PubMed, and oglb-
 458 ddi. Compared to DA-MoE, MoLE-GNN improves
 459 the MRR by 51.6%, 36.7%, and 157.2% on Cora,
 460 Citeseer, and PubMed, respectively, and boosts
 461 Hits@20 by 104.5% on oglb-ddi. For vanilla scratch
 462 GNNs, MoLE-GNN consistently outperforms across
 463 all datasets and for all three tasks—inductive, trans-
 464 ductive, and link prediction as shown in Fig. 3.

465 **Efficiency Analysis.** We compare the per-epoch
 466 training time and the number of trainable parameters
 467 between MoLE-GNN and several baseline tuning
 468 strategies, including full fine-tuning, adapter-based
 469 tuning, and MoE-based tuning. All per-epoch times
 470 are measured on a NVIDIA A6000 GPU server, and
 471 for fairness, all methods are evaluated using the At-
 472 trMasking pretraining setup. From Table 4, we observe that MoLE-GNN achieves the lowest per-
 473 epoch training time while requiring the fewest trainable parameters across all fine-tuning paradigms.
 474 Moreover, Table 1 shows that MoLE-GNN not only provides a significantly smaller parameter foot-
 475 print compared to full fine-tuning, but also delivers superior predictive performance and also same
 476 for the adapter-tuning and MoE based tuning categories. In addition, we have also reported wall
 477 clock time for each graph based MoE methods in the Appendix (Table 14).

Form	Bace	BBBP	ClinTox	SIDER	BN	Avg
Sequential (After MLP)	70.7 \pm 1.8	65.8 \pm 0.6	68.4 \pm 2.3	61.3 \pm 0.5	✓	66.6
Parallel (Before MP)	80.9 \pm 0.6	72.4 \pm 0.5	77.1 \pm 1.1	62.3 \pm 0.4	✓	73.2
Parallel (After MP)	<u>81.3</u> \pm 0.7	<u>72.6</u> \pm 0.9	80.9 \pm 0.5	<u>62.6</u> \pm 0.7	✓	74.3
Parallel (Dual)	80.6 \pm 1.2	72.0 \pm 0.7	71.2 \pm 3.9	61.9 \pm 0.5	✗	71.4
Parallel (Dual)	81.6 \pm 0.8	73.2 \pm 0.8	<u>80.0</u> \pm 1.5	62.8 \pm 0.6	✓	74.4

482 Table 7: Comparison of different adapter forms
 483 with and without BatchNorm (BN). The best result is in **bold**, and the second best model is
 484 underlined.
 485



486 Figure 3: Performance comparison on graph
 487 classification for (a) molecular graphs and (b) so-
 488 cial network graphs in inductive settings, (c) node
 489 classification in the transductive setting, and (d)
 490 link prediction, against state-of-the-art MoE mod-
 491 els, the base GNN based model, and our model
 492 MoLE-GNN. Standard deviations are represented
 493 as error bars on top of the corresponding bar plots.

Scaling	Bace	BBBP	ClinTox	SIDER	Avg
0.01	79.6 \pm 1.4	70.9 \pm 0.6	74.7 \pm 1.4	61.8 \pm 0.7	71.8
0.1	81.2 \pm 0.9	72.5 \pm 0.6	79.3 \pm 1.8	62.4 \pm 0.7	73.9
0.5	81.4 \pm 0.8	<u>72.9</u> \pm 0.5	<u>79.5</u> \pm 1.8	62.7 \pm 0.4	74.1
1	81.9 \pm 0.6	72.4 \pm 0.6	78.9 \pm 1.8	62.6 \pm 0.3	73.9
5	81.2 \pm 1.7	71.6 \pm 0.9	74.8 \pm 2.5	61.8 \pm 0.5	72.3
10	80.8 \pm 1.3	71.1 \pm 1.2	73.9 \pm 4.2	61.5 \pm 0.9	71.8
Learnable	<u>81.6</u> \pm 0.8	73.2 \pm 0.8	80.0 \pm 1.5	62.8 \pm 0.6	74.4

495 Table 8: Performance comparison between learn-
 496 able scaling and fixed scaling. The best perform-
 497 ing result is in **bold**, and the second best model is
 498 underlined.

486 6 ABLATION STUDY

487 In this section, we analyze the core design choices of our proposed adapter within each expert of
 488 MoLE-GNN. We first evaluate the impact of different adapter variants, considering the presence or
 489 absence of batch normalization (BN) and the use of learnable versus fixed scaling. For MoE component
 490 of MoLE-GNN, we investigate the effect of structure-based gating and further examine the role
 491 of PEFT within the MoE framework. For brevity, additional analyses are provided in Appendix G.
 492 **Impact of Insertion Form and BN.** Here, we analyze the impact of different inser-
 493 tion strategies and the effect of BN in the adapters integrated into each expert of the
 494 GNNs within the MoLE-GNN framework. Each expert contains dual adapters placed in
 495 parallel with the GNN MLP, positioned before and after message passing. To exam-
 496 ine the effectiveness of this architecture, we compare it against variants using a single
 497 parallel adapter and a sequential adapter inserted af-
 498 ter the GNN MLP. From Table 7, we observe that
 499 using two parallel adapters yields better performance
 500 for MoLE-GNN compared to a single adapter per ex-
 501 pert. Moreover, omitting BN in each adapter within
 502 an expert leads to a significant performance drop.

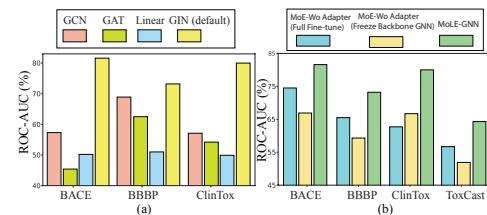
503 **Scaling Strategy.** We compare our proposed learn-
 504 able scaling strategy against fixed scaling values
 505 ranging from 0.01 to 5, applied to each adapter
 506 within every expert of MoLE-GNN. Table 8 demon-
 507 strates that our learnable scaling yields the best re-
 508 sults on five out of six datasets and also achieves the
 509 highest overall average performance. We observed
 510 that as the scaling factor increased, performance de-
 511 graded due to catastrophic forgetting of pretrained
 512 knowledge.

513 **Impact of Structure-Based Gating Network.** As discussed earlier in Section 3, our gating net-
 514 work employs a GNN model that incorporates structural information, in contrast to a gating network
 515 based on linear projections. Fig. 4 (a) presents the results of the study conducted to further verify
 516 the effectiveness of the structure-based gating network. From Fig. 4 (a), we observe that incorpo-
 517 ration of the gating network with the GNN backbone experts consistently yields better performance
 518 than using a linear projection. Specifically, a noticeable drop in performance is observed when the
 519 structure-based gating network is removed (i.e., 62.4% on BACE, 43.5% on BBBP, and 60.4% on
 520 ClinTox).

521 **Impact of PEFT in MoE framework.** We perform ablation studies to evaluate the impact of apply-
 522 ing PEFT to pre-trained expert GNNs within our MoE-based architecture. Specifically, we compare
 523 PEFT against two baselines: full fine-tuning of the expert GNNs, and freezing the experts while
 524 tuning only the linear prediction layer. As illustrated in Fig. 4 (b), MoLE-GNN, which leverages
 525 PEFT for each expert GNN, consistently achieves better performance across all tasks, demon-
 526 strating the effectiveness of parameter-efficient fine-tuning in this setting. Specifically, a noticeable drop
 527 in performance is observed when PEFT is not applied to the pre-trained experts such as 15.8% on
 528 BACE, 17.6% on BBBP, 23.8% on ClinTox, and 18.6% on ToxCast when compared to both full
 529 fine-tuning of the expert GNNs and the strategy of freezing the experts while tuning only the linear
 530 prediction layer. Full fine-tuning may perform poorly due to catastrophic forgetting and overfitting,
 531 as updating all expert GNN parameters can erase learned representations Goodfellow et al. (2013).

532 7 CONCLUSION

533 In this study, we propose MoLE-GNN, an effective MoE-based PEFT framework specifically de-
 534 signed for GNNs. Our approach addresses the *depth-sensitivity* issue inherent in traditional fine-
 535 tuning strategies, while significantly reducing the number of tunable parameters. MoLE-GNN
 536 utilized different pre-trained adapter GNN layers as experts and allowed each individual graph to
 537 adaptively select experts. This framework highlights two key features: the structure based gating
 538 network and pre-trained GNN experts. Through comprehensive experiments on graph, node clas-
 539 sification, and link prediction tasks, MoLE-GNN demonstrates strong generalization capabilities
 540 across datasets of varying scales. Future directions for extending our work include incorporating
 541 pre-trained graph transformers as experts, which may enhance the model’s representational capac-
 542 ity. Additionally, MoLE-GNN could be extended to the domain of graph self-supervised learning.



543 Figure 4: (a) Ablation study on the gating net-
 544 work, and (b) the effect of PEFT within the
 545 MoE framework. Specifically, we compare the
 546 performance of a fully fine-tuned MoE frame-
 547 work, a frozen MoE framework, and a PEFT-
 548 based MoLE-GNN MoE framework.

540 REFERENCES
541

542 Maryam Akhavan Aghdam, Hongpeng Jin, and Yanzhao Wu. Da-moe: Towards dynamic expert
543 allocation for mixture-of-experts models. *arXiv preprint arXiv:2409.06669*, 2024.

544 Rahaf Aljundi, Punarjay Chakravarty, and Tinne Tuytelaars. Expert gate: Lifelong learning with a
545 network of experts. In *CVPR*, pp. 3366–3375, 2017.

546 Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
547 wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
548 Ariel Herbert-Voss, Gretchen Krueger, T. J. Henighan, Rewon Child, Aditya Ramesh, Daniel M.
549 Ziegler, Jeff Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
550 Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,
551 Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. *NeurIPS*, 2020.

552

553 Jinsong Chen, Kaiyuan Gao, Gaichao Li, and Kun He. Nagphormer: A tokenized graph transformer
554 for node classification in large graphs. *arXiv preprint arXiv:2206.04910*, 2022a.

555

556 Shoufa Chen, Chongjian Ge, Zhan Tong, Jiangliu Wang, Yibing Song, Jue Wang, and Ping Luo.
557 Adaptformer: Adapting vision transformers for scalable visual recognition. *arXiv preprint
558 arXiv:2205.13535*, 2022b.

559

560 Yongxing Dai, Xiaotong Li, Jun Liu, Zekun Tong, and Ling-Yu Duan. Generalizable person re-
561 identification with relevance-aware mixture of experts. In *CVPR*, pp. 16145–16154, 2021.

562

563 Cameron Diao, Kaixiong Zhou, Xiao Huang, and Xia Hu. Molcpt: Molecule continuous prompt
564 tuning to generalize molecular representation learning. *arXiv preprint arXiv:2212.10614*, 2022.

565

566 Nan Du, Yanping Huang, Andrew M Dai, Simon Tong, Dmitry Lepikhin, Yuanzhong Xu, Maxim
567 Krikun, Yanqi Zhou, Adams Wei Yu, Orhan Firat, et al. Glam: Efficient scaling of language
568 models with mixture-of-experts. In *ICML*, pp. 5547–5569. PMLR, 2022.

569

570 Yin Fang, Qiang Zhang, Haihong Yang, Xiang Zhuang, Shumin Deng, Wen Zhang, Ming Qin, Zhuo
571 Chen, Xiaohui Fan, and Huajun Chen. Molecular contrastive learning with chemical element
572 knowledge graph. In *Proceedings of the AAAI conference on artificial intelligence*, volume 36,
573 pp. 3968–3976, 2022.

574

575 William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
576 models with simple and efficient sparsity. *JMLR*, 2022.

577

578 Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric. In
579 *ICLR Workshop on Representation Learning on Graphs and Manifolds*, 2019.

580

581 Claudio Gallicchio and Alessio Micheli. Fast and deep graph neural networks. In *Proceedings of
582 the AAAI conference on artificial intelligence*, volume 34, pp. 3898–3905, 2020.

583

584 Yang Gao, Hong Yang, Peng Zhang, Chuan Zhou, and Yue Hu. Graphnas: Graph neural architecture
585 search with reinforcement learning. *arXiv preprint arXiv:1904.09981*, 2019.

586

587 Ian J Goodfellow, Mehdi Mirza, Da Xiao, Aaron Courville, and Yoshua Bengio. An empirical
588 investigation of catastrophic forgetting in gradient-based neural networks. In *Advances in Neural
589 Information Processing Systems (NeurIPS) Workshops*, N/A, 2013.

590

591 Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
592 In *NeurIPS*, N/A, 2017a.

593

594 Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
595 *Advances in neural information processing systems*, 30, 2017b.

596

597 Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. Towards parameter-efficient tuning
598 of large-scale pretrained language models. In *Findings of the Association for Computational
599 Linguistics (ACL)*, pp. 2069–2080, N/A, 2022.

594 Zhenyu Hou, Xiao Liu, Yukuo Cen, Yuxiao Dong, Hongxia Yang, Chunjie Wang, and Jie Tang.
 595 Graphmae: Self-supervised masked graph autoencoders. In *Proceedings of the 28th ACM*
 596 *SIGKDD Conference on Knowledge Discovery and Data Mining*, pp. 594–604, 2022.

597

598 Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, An-
 599 drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp.
 600 In *International conference on machine learning*, pp. 2790–2799. PMLR, 2019.

601 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 602 and Weizhu Chen. Lora: Low-rank adaptation of large language models. *arXiv preprint*
 603 *arXiv:2106.09685*, 2021.

604

605 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 606 Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. *ICLR*, 1(2):3, 2022.

607

608 Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
 609 and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. *arXiv*
 610 *preprint arXiv:2005.00687*, 2020a.

611

612 Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure
 613 Leskovec. Strategies for pre-training graph neural networks. In *International Conference*
 614 *on Learning Representations*, 2020b. URL <https://openreview.net/forum?id=HJ1WWJSFDH>.

615

616 Ziniu Hu, Yuxiao Dong, Kuansan Wang, Kai-Wei Chang, and Yizhou Sun. Gpt-gnn: Generative
 617 pre-training of graph neural networks. In *Proceedings of the 26th ACM SIGKDD international*
 618 *conference on knowledge discovery & data mining*, pp. 1857–1867, 2020c.

619

620 Kexin Huang, Ying Jin, Emmanuel Candes, and Jure Leskovec. Uncertainty quantification over
 621 graph with conformalized graph neural networks. In *NeurIPS*, volume 36, 2024.

622

623 Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. Adaptive mixtures of
 624 local experts. *Neural computation*, 1991.

625

626 Michael I Jordan and Robert A Jacobs. Hierarchical mixtures of experts and the em algorithm.
 627 *Neural computation*, 6(2):181–214, 1994.

628

629 Suyeon Kim, Dongha Lee, SeongKu Kang, Seonghyeon Lee, and Hwanjo Yu. Learning topology-
 630 specific experts for molecular property prediction. In *AAAI*, volume 37, pp. 8291–8299, 2023.

631

632 Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *arXiv preprint*
 633 *arXiv:1412.6980*, 2014.

634

635 Thomas Kipf and Max Welling. Variational graph auto-encoders. *ArXiv*, abs/1611.07308, 2016.

636

637 Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
 638 networks. In *International Conference on Learning Representations*, 2017. URL <https://openreview.net/forum?id=SJU4ayYgl>.

639

640 Yoonho Lee, Annie S Chen, Fahim Tajwar, Ananya Kumar, Huaxiu Yao, Percy Liang, and Chelsea
 641 Finn. Surgical fine-tuning improves adaptation to distribution shifts. In *NeurIPS 2022 Work-*
 642 *shop on Distribution Shifts: Connecting Methods and Applications*, 2022. URL <https://openreview.net/forum?id=uhGi8kOgtU>.

643

644 Jure Leskovec and Rok Sosič. Snap: A general-purpose network analysis and graph-mining library.
 645 *ACM Transactions on Intelligent Systems and Technology (TIST)*, 8(1):1–20, 2016.

646

647 Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
 648 tuning. *arXiv preprint arXiv:2104.08691*, 2021.

649

650 Shengrui Li, Xueling Han, and Jing Bai. Adaptergnn: Parameter-efficient fine-tuning improves gen-
 651 eralization in gnns. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38,
 652 pp. 13600–13608, N/A, 2024.

648 Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. *arXiv*
 649 *preprint arXiv:2101.00190*, 2021.
 650

651 Yujia Li, Richard Zemel, Marc Brockschmidt, and Daniel Tarlow. Gated graph sequence neural
 652 networks. In *ICLR*, N/A, 2016.

653 Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mohta, Tenghao Huang, Mohit Bansal, and
 654 Colin Raffel. Few-shot parameter-efficient fine-tuning is better and cheaper than in-context learn-
 655 ing. *arXiv preprint arXiv:2205.05638*, 2022.
 656

657 Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig. Pre-
 658 train, prompt, and predict: A systematic survey of prompting methods in natural language pro-
 659 cessing. *arXiv preprint arXiv:2107.13586*, 2021a.

660 Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding, Yujie Qian, Zhilin Yang, and Jie Tang. Gpt
 661 understands, too. *ArXiv*, abs/2103.10385, 2021b.
 662

663 Zemin Liu, Xingtong Yu, Yuan Fang, and Xinming Zhang. Graphprompt: Unifying pre-training
 664 and downstream tasks for graph neural networks. *Proceedings of the ACM Web Conference 2023*,
 665 2023a.

666 Zemin Liu, Xingtong Yu, Yuan Fang, and Xinming Zhang. Graphprompt: Unifying pre-training and
 667 downstream tasks for graph neural networks. *arXiv preprint arXiv:2302.08043*, 2023b.
 668

669 Zheyuan Liu, Chunhui Zhang, Yijun Tian, Erchi Zhang, Chao Huang, Yanfang Ye, and Chuxu
 670 Zhang. Fair graph representation learning via diverse mixture-of-experts. In *WWW*, 2023c.
 671

672 Siqu Long, Feiqi Cao, Soyeon Caren Han, and Haiqing Yang. Vision-and-language pretrained mod-
 673 els: A survey. *IJCAI*, 2022.

674 Li Ma, Haoyu Han, Juanhui Li, Harry Shomer, Hui Liu, Xiaofeng Gao, and Jiliang Tang. Mixture
 675 of link predictors. *arXiv preprint arXiv:2402.08583*, 2024.
 676

677 Haitao Mao, Zhikai Chen, Wenzhuo Tang, Jianan Zhao, Yao Ma, Tong Zhao, Neil Shah, Mikhail
 678 Galkin, and Jiliang Tang. Graph foundation models. *CoRR*, 2024a.

679 Haitao Mao, Zhikai Chen, Wenzhuo Tang, Jianan Zhao, Yao Ma, Tong Zhao, Neil Shah, Mikhail
 680 Galkin, and Jiliang Tang. Position: Graph foundation models are already here. In *Forty-first*
 681 *International Conference on Machine Learning*, 2024b.
 682

683 Pantelis Papageorgiou, Haitz Sáez de Ocáriz Borde, Anastasis Kratsios, and Michael M Bronstein.
 684 Graph low-rank adapters of high regularity for graph neural networks and graph transformers. In
 685 *First Workshop on Scalable Optimization for Efficient and Adaptive Foundation Models*, 2025.
 686

687 Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn: Geometric
 688 graph convolutional networks. In *International Conference on Learning Representations*, 2019.

689 Michael Poli, Stefano Massaroli, Clayton M Rabideau, Junyoung Park, Atsushi Yamashita, Hajime
 690 Asama, and Jinkyoo Park. Continuous-depth neural models for dynamic graph prediction. *arXiv*
 691 *preprint arXiv:2106.11581*, 2021.
 692

693 Xipeng Qiu, Tianxiang Sun, Yige Xu, Yunfan Shao, Ning Dai, and Xuanjing Huang. Pre-trained
 694 models for natural language processing: A survey. *Science China Technological Sciences*, 63:
 695 1872 – 1897, 2020.

696 Bharath Ramsundar, Peter Eastman, Pat Walters, and Vijay Pande. *Deep learning for the life sci-
 697 ences: applying deep learning to genomics, microscopy, drug discovery, and more*. O'Reilly
 698 Media, 2019.
 699

700 Scott C Ritchie, Stephen Watts, Liam G Fearnley, Kathryn E Holt, Gad Abraham, and Michael
 701 Inouye. A scalable permutation approach reveals replication and preservation patterns of network
 702 modules in large datasets. *Cell systems*, 3(1):71–82, 2016.

702 Yu Rong, Yatao Bian, Tingyang Xu, Weiyang Xie, Ying Wei, Wenbing Huang, and Junzhou Huang.
 703 Self-supervised graph transformer on large-scale molecular data. *Advances in Neural Information*
 704 *Processing Systems*, 33:12559–12571, 2020.

705

706 Timo Schick and Hinrich Schütze. Exploiting cloze-questions for few-shot text classification and
 707 natural language inference. In *Conference of the European Chapter of the Association for Com-*
 708 *putational Linguistics*, 2020a.

709 Timo Schick and Hinrich Schütze. It’s not just size that matters: Small language models are also
 710 few-shot learners. *NAACL*, 2020b.

711

712 Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
 713 Collective classification in network data. *AI magazine*, 29(3):93–93, 2008.

714

715 Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and
 716 Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. In
 717 *ICLR*, 2017.

718

719 Teague Sterling and John J Irwin. Zinc 15-ligand discovery for everyone. *Journal of chemical*
 720 *information and modeling*, 55(11):2324–2337, 2015.

721

722 Fan-Yun Sun, Jordan Hoffmann, Vikas Verma, and Jian Tang. Infograph: Unsupervised and
 723 semi-supervised graph-level representation learning via mutual information maximization. *arXiv*
 724 *preprint arXiv:1908.01000*, 2019.

725

726 Mingchen Sun, Kaixiong Zhou, Xin He, Ying Wang, and Xin Wang. Gppt: Graph pre-training and
 727 prompt tuning to generalize graph neural networks. In *Proceedings of the 28th ACM SIGKDD*
 728 *Conference on Knowledge Discovery and Data Mining*, pp. 1717–1727, 2022.

729

730 Jie Tang, Jimeng Sun, Chi Wang, and Zi Yang. Social influence analysis in large-scale networks.
 731 In *Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and*
 732 *data mining*, pp. 807–816, 2009.

733

734 Petar Veličković, William Fedus, William L Hamilton, Pietro Liò, Yoshua Bengio, and R Devon
 735 Hjelm. Deep graph infomax. *arXiv preprint arXiv:1809.10341*, 2018.

736

737 Petar Velickovic, William Fedus, William L. Hamilton, Pietro Lio', Yoshua Bengio, and R. Devon
 738 Hjelm. Deep graph infomax. *ICLR*, 2019.

739

740 Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
 741 Bengio. Graph attention networks. In *ICLR*, N/A, 2018.

742

743 Haotao Wang, Ziyu Jiang, Yuning You, Yan Han, Gaowen Liu, Jayanth Srinivasa, Ramana Rao
 744 Kompella, and Zhangyang Wang. Graph mixture of experts: Learning on large-scale graphs with
 745 explicit diversity modeling. In *NeurIPS*, 2023.

746

747 Qitian Wu, Wentao Zhao, Zenan Li, David P Wipf, and Junchi Yan. Nodeformer: A scalable graph
 748 structure learning transformer for node classification. *Advances in Neural Information Processing*
 749 *Systems*, 35:27387–27401, 2022.

750

751 Qitian Wu, Chenxiao Yang, Wentao Zhao, Yixuan He, David Wipf, and Junchi Yan. DIFFormer:
 752 Scalable (graph) transformers induced by energy constrained diffusion. In *The Eleventh Interna-*
 753 *tional Conference on Learning Representations*, 2023a. URL [https://openreview.net/](https://openreview.net/forum?id=j6zUzrapY3L)
 754 [forum?id=j6zUzrapY3L](https://openreview.net/forum?id=j6zUzrapY3L).

755

756 Shirley Wu, Kaidi Cao, Bruno Ribeiro, James Zou, and Jure Leskovec. Graphmetro: Mit-
 757 igating complex distribution shifts in gnns via mixture of aligned experts. *arXiv preprint*
 758 *arXiv:2312.04693*, 2023b.

759

760 Xuansheng Wu, Kaixiong Zhou, Mingchen Sun, Xin Wang, and Ninghao Liu. A survey of graph
 761 prompting methods: Techniques, applications, and challenges. *arXiv preprint arXiv:2303.07275*,
 762 2023c.

756 Jun Xia, Lirong Wu, Jintao Chen, Bozhen Hu, and Stan Z Li. Simgrace: A simple framework for
 757 graph contrastive learning without data augmentation. In *Proceedings of the ACM Web Conference 2022*, pp. 1070–1079, 2022a.
 759

760 Jun Xia, Yanqiao Zhu, Yuanqi Du, and Stan Z Li. A survey of pretraining on graphs: Taxonomy,
 761 methods, and applications. *arXiv preprint arXiv:2202.07893*, 2022b.
 762

763 Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
 764 networks? In *International Conference on Learning Representations (ICLR)*, N/A, 2019.
 765

766 Zelin Yao, Chuang Liu, Xianke Meng, Yibing Zhan, Jia Wu, Shirui Pan, and Wenbin Hu. Da-moe:
 767 Addressing depth-sensitivity in graph-level analysis through mixture of experts. *arXiv preprint
 768 arXiv:2411.03025*, 2024.
 769

770 Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen. Graph
 771 contrastive learning with augmentations. *NeurIPS*, 2020.
 772

773 Yuning You, Tianlong Chen, Yang Shen, and Zhangyang Wang. Graph contrastive learning auto-
 774 mated. In *International Conference on Machine Learning*, pp. 12121–12132. PMLR, 2021.
 775

776 Jiazu Yu, Yunzhi Zhuge, Lu Zhang, Ping Hu, Dong Wang, Huchuan Lu, and You He. Boost-
 777 ing continual learning of vision-language models via mixture-of-experts adapters. In *CVPR*, pp.
 778 23219–23230, 2024.
 779

780 Elad Ben Zaken, Shauli Ravfogel, and Yoav Goldberg. Bitfit: Simple parameter-efficient fine-tuning
 781 for transformer-based masked language-models. *arXiv preprint arXiv:2106.10199*, 2021.
 782

783 Dingyi Zeng, Wanlong Liu, Wenyu Chen, Li Zhou, Malu Zhang, and Hong Qu. Substructure aware
 784 graph neural networks. In *AAAI*, volume 37, pp. 11129–11137, N/A, 2023.
 785

786 Hanqing Zeng, Muhan Zhang, Yinglong Xia, Ajitesh Srivastava, Andrey Malevich, Rajgopal Kan-
 787 nan, Viktor Prasanna, Long Jin, and Ren Chen. Decoupling the depth and scope of graph neural
 788 networks. *Advances in neural information processing systems*, 34:19665–19679, 2021.
 789

790 Zaixi Zhang, Qi Liu, Hao Wang, Chengqiang Lu, and Chee-Kong Lee. Motif-based graph self-
 791 supervised learning for molecular property prediction. *Advances in Neural Information Process-
 792 ing Systems*, 34:15870–15882, 2021.
 793

794 Qifang Zhao, Weidong Ren, Tianyu Li, Hong Liu, Xingsheng He, and Xiaoxiao Xu. Graphgpt:
 795 Generative pre-trained graph eulerian transformer. In *Forty-second International Conference on
 796 Machine Learning*.
 797

798 Yanping Zheng, Lu Yi, and Zhewei Wei. A survey of dynamic graph neural networks. *Frontiers of
 799 Computer Science*, 19(6):196323, 2025.
 800

801 WANG Zhili, DI Shimin, CHEN Lei, and ZHOU Xiaofang. Search to fine-tune pre-trained graph
 802 neural networks for graph-level tasks. In *2024 IEEE 40th International Conference on Data
 803 Engineering (ICDE)*, pp. 2805–2819. IEEE, 2024.
 804

805 Kaixiong Zhou, Xiao Huang, Qingquan Song, Rui Chen, and Xia Hu. Auto-gnn: Neural architecture
 806 search of graph neural networks. *Frontiers in big Data*, 5:1029307, 2022.
 807

808 Chenyi Zi, Haihong Zhao, Xiangguo Sun, Yiqing Lin, Hong Cheng, and Jia Li. Prog: A graph
 809 prompt learning benchmark. In *The Thirty-eight Conference on Neural Information Processing
 Systems Datasets and Benchmarks Track*, 2024. URL <https://openreview.net/forum?id=wqo6xEMyk9>.
 810

810 **MOLE-GNN: MIXTURE OF EXPERT BASED PARAMETER-EFFICIENT**
 811 **FINE-TUNING FOR GRAPH NEURAL NETWORKS (TECHNICAL APPENDIX)**
 812

813 **THE USE OF LARGE LANGUAGE MODELS (LLMs)**
 814

815
 816 No Large Language Models (LLMs) were used in conducting the research presented in this pa-
 817 per. However, we employed an LLM (ChatGPT) solely for editorial purposes, including refining
 818 grammar, spelling, word choice, and overall clarity of the manuscript.

819
 820 **A RELATED WORK**
 821

822 **Graph Neural Networks.** GNNs are designed to process graph-structured data through message
 823 passing to update node representations. State-of-the-art (SOTA) models include GatedGCN Li et al.
 824 (2016), GCN Kipf & Welling (2017), GAT Veličković et al. (2018), GIN Xu et al. (2019), and
 825 GraphSAGE Hamilton et al. (2017a). Recent advances focus on enhancing information aggrega-
 826 tion, such as SAGIN Zeng et al. (2023) multi-level subgraph encoding and CF-GNNs Huang et al.
 827 (2024) conformal prediction. However, most GNNs use a fixed layer depth, limiting their adaptabil-
 828 ity to graphs of varying scales and complexities.

829 **Pre-trained GNN Models.** Inspired by the success of pre-trained models in NLP and vision, recent
 830 research has increasingly focused on pre-trained GNNs Qiu et al. (2020); Long et al. (2022); Xia
 831 et al. (2022b). These methods use self-supervised learning to extract meaningful representations
 832 from large-scale pre-training graphs. GAE Kipf & Welling (2016) learns via edge prediction, while
 833 DGI Velickovic et al. (2019) and InfoGraph Sun et al. (2019) maximize mutual information between
 834 graph-level and substructure-level representations. Hu *et al.* Hu et al. (2020a) use attribute masking
 835 and context prediction for molecular and protein property pre-training. GROVER Rong et al. (2020)
 836 and MGSSL Zhang et al. (2021) focus on motif prediction to leverage molecular domain knowledge.
 837 Graph contrastive learning methods like GraphCL You et al. (2020) and JOAO You et al. (2021) em-
 838 ploy diverse augmentations for effective representation learning. However, existing methods face
 839 challenges like catastrophic forgetting, overfitting with limited data, and fixed layer configurations
 840 that fail to adapt to graph scale variations.

841 **Mixture of Expert Models.** The Mixture-of-Experts (MoE) framework, originally introduced by
 842 Jacobs *et al.* Jacobs et al. (1991); Jordan & Jacobs (1994), involves training specialized expert net-
 843 works. Aljundi *et al.* Aljundi et al. (2017) and Shazeer *et al.* Shazeer et al. (2017) propose expert
 844 selection via auto-encoder and sparse gating, respectively. MoE modules are now widely used in
 845 computer vision Dai et al. (2021); Yu et al. (2024) and NLP Fedus et al. (2022); Du et al. (2022). In
 846 recent times, the integration of MoE techniques with GNNs has gained prominence. For example,
 847 TopExpert Kim et al. (2023) employs clustering-based gating, GMoE Wang et al. (2023) captures
 848 multi-hop information, and G-FAME Liu et al. (2023c) emphasizes fairness. Link-MoE Ma et al.
 849 (2024) and GraphMETRO Wu et al. (2023b) tackle task specialization and distribution shifts, while
 850 DA-MoE Yao et al. (2024) adapts the depth of the GNN to adapt graph scale variations. However,
 851 most MoE-GNNs are trained from scratch with a large number of parameters and do not use pre-
 852 trained GNNs as experts.

853 **Graph-Prompt Tuning Methods.** Prompt tuning methods, originating in NLP, adapt pre-trained
 854 models to downstream tasks by modifying inputs rather than model architecture Liu et al. (2021a);
 855 Lester et al. (2021). Variants include prefix-tuning Li & Liang (2021), which updates task-specific
 856 parameters per layer; adapter tuning Houlsby et al. (2019); Chen et al. (2022b), which inserts bot-
 857 tleneck adapters; BitFit Zaken et al. (2021), which tunes only bias terms; and LoRA Hu et al.
 858 (2022), which uses low-rank decomposition. These techniques have also been increasingly adopted
 859 in GNNs Wu et al. (2023c). GPPT Sun et al. (2022) introduces a framework tailored to node-level
 860 tasks, while MoLCPT Diao et al. (2022) targets molecular graphs by embedding motif infor-
 861 mation. GPF Fang et al. (2022) and GraphPrompt Liu et al. (2023b) improve parameter efficiency
 862 but struggle to match full fine-tuning performance in standard settings. Recently, AdapterGNN Li
 863 et al. (2024) extends adapter-based tuning to GNNs by integrating lightweight adapters into each
 864 layer, enabling efficient adaptation with minimal parameter updates. Despite these advances, exist-
 865 ing parameter-efficient methods use a fixed layer configuration for all graphs, limiting their ability to
 866 adapt to varying data scales within a dataset. To overcome this, we propose an adapter-based MoE
 867 framework that employs pre-trained GNNs as experts within a MoE architecture. By integrating

864 tunable adapters into each expert, our approach addresses key challenges such as *depth sensitivity*,
 865 catastrophic forgetting, and overfitting, offering a more flexible and scalable fine-tuning strategy.
 866

867 B DATASETS 868

869 Here, we provide a detailed description of the pre-training datasets and downstream tasks used in
 870 our experiments.
 871

872 **Pre-training Datasets.** For pre-training our GNN experts, we use three domains of unlabeled data:
 873 two million molecules from ZINC15 Sterling & Irwin (2015), 395K protein ego-networks from
 874 PPI data, and general graph datasets grouped into academic and social categories for our inductive
 875 learning experiments. The academic set includes NetRep Ritchie et al. (2016) and two DBLP
 876 datasets from SNAP Leskovec & Sosić (2016) and NetRep, while the social set comprises Facebook
 877 and IMDB graphs from NetRep and the LiveJournal dataset from SNAP. Table 9 provides detailed
 878 statistics for each datasets. In pre-training for transductive learning (i.e., node classification), we
 879 use the ogbn-arxiv dataset from the Open Graph Benchmark (OGB) Hu et al. (2020a), a large-scale
 880 citation network comprising over 169K computer science papers (nodes) and 1.1M citation links
 881 (edges). For link prediction tasks, we likewise use ogbn-arxiv to pre-train the GNN experts.
 882

Dataset	Academia	DBLP(SNALP)	DBLP(NetRep)	IMDB	Facebook	LiveJournal
$ V $	137,969	317,080	540,486	896,305	3,097,165	4,843,953
$ E $	739,984	2,099,732	30,491,158	7,564,894	47,334,788	85,691,368

883 Table 9: Statistics of datasets for pre-training on general graphs.
 884
 885

886 **Downstream Tasks Datasets.** For inductive graph classification settings, we use eight molecular
 887 property prediction datasets Hu et al. (2020b): BACE (1.5K), BBBP (2.0K), ClinTox (1.4K),
 888 HIV (41K), SIDER (1.4K), Tox21 (7.8K), MUV (93K), and ToxCast (8.5K). We categorize BACE,
 889 BBBP, ClinTox, and SIDER as small-scale datasets; Tox21 and ToxCast as medium-scale; and HIV
 890 and MUV as large-scale. In addition, we include the PPI dataset (88K) Hu et al. (2020b), which
 891 is also large-scale. Following prior work Hu et al. (2020b), we adopt the *scaffold split* Ramsundar
 892 et al. (2019) for all molecular graph datasets and the *species split* for biological datasets. For
 893 transductive node classification, we evaluate MoLE-GNN on five standard benchmarks: Cora, Cite-
 894 seer, PubMed Sen et al. (2008), Wisconsin, and Texas Pei et al. (2019); Tang et al. (2009). The
 895 first three are citation networks, where nodes represent documents and edges denote citation links;
 896 these datasets are homophilic. The latter two are webpage hyperlink networks, where nodes are
 897 webpages and edges correspond to hyperlinks; these datasets are heterophilic. We use a standard
 898 random 50%, 25%, and 25% split for train/val/test. For link prediction, we evaluate on four
 899 standard benchmarks: Cora, Citeseer, PubMed, and ogbl-ddi. Cora, Citeseer, and PubMed are
 900 smaller graphs, whereas ogbl-ddi is substantially larger with more nodes and edges. We follow fixed
 901 train/validation/test splits of 85%, 5%, and 10% for the first three datasets, and use the official splits
 902 provided by the OGB benchmark Hu et al. (2020a) for ogbl-ddi. **For the large-scale datasets ogbn-
 903 arxiv, ogbn-proteins, and ogbn-products, we follow the official train/validation/test splits provided
 904 by the OGB benchmark Hu et al. (2020a).** A detailed description of all downstream task datasets is
 905 provided in Table 10.
 906

907 C BASELINE MODELS 908

909 We compare the results of our model MoLE-GNN against fully fine-tuned GNNs. We first de-
 910 scribe the pre-training and fine-tuning based models, along with prompt-based and adapter-based
 911 approaches. Subsequently, we provide a brief overview of MoE-based models employed in the con-
 912 text of GNNs.
 913

914 **Pre-train & Fine-tune based Learning Methods.** Recently, researchers have explored transfer
 915 learning for GNNs, where models are pre-trained with self-supervised or unsupervised objectives
 916 and then fine-tuned on downstream tasks. Hu et al. Hu et al. (2020b) introduced pre-training stra-
 917 tegies such as EdgePred and AttrMasking, followed by full fine-tuning on molecular and biological
 918 property prediction datasets in inductive settings. Similarly, for inductive learning experiments on

	Dataset	Graphs	Avg.nodes	Avg.edges	Features	Node classes	Task (I / T / L)	Category
918	Cora	1	2,708	5,429	1,433	7	T/L	Homophilic
919	PubMed	1	19,717	88,648	500	3	T/L	Homophilic
920	CiteSeer	1	3,327	9,104	3,703	6	T/L	Homophilic
921	Wisconsin	1	251	515	1703	5	T	Heterophilic
922	Texas	1	183	325	1703	5	T	Heterophilic
923	ogbn-arxiv	1	169,343	1,166,243	128	40	T	Large-scale
924	ogbn-proteins	1	132,534	39,561,252	8	2	T	Large-scale
925	ogbn-products	1	2,449,029	61,859,140	100	47	T	Large-scale
926	ogbl-ddi	1	4,267	1,334,889	0	—	L	—
927								
928	Dataset	Graphs	Avg.nodes	Avg.edges	Features	Graph classes	Task (I / T / L)	Domain
929	BACE	1513	34.1	73.7	18	1*	I	small molecule
930	BBBP	2039	24.1	51.9	23	1*	I	small molecule
931	ClinTox	1477	26.2	55.8	38	2*	I	small molecule
932	HIV	41127	25.5	54.9	61	1*	I	small molecule
933	SIDER	1427	33.6	70.7	50	27*	I	small molecule
934	Tox21	7831	18.6	38.6	61	12*	I	small molecule
935	MUV	93087	24.2	52.6	15	17*	I	small molecule
936	ToxCast	8576	18.8	38.5	63	617*	I	small molecule
937	PPI	88000	49.4	890.8	10	40*	I	proteins
938	IMDB-B	1000	19.8	96.5	0	2	I	social network
939	IMDB-M	1500	13.0	65.9	0	3	I	social network
940	COLLAB	5000	74.5	2457.2	0	3	I	social network
941	RDT-B	2000	429.6	497.8	0	2	I	social network
942	RDT-M	5000	508.5	594.9	0	5	I	social network
943								

Table 10: Statistics of all datasets. Settings: T—transductive (node classification), I—inductive (graph classification), and L—link prediction. An asterisk (*) indicates the number of prediction tasks.

social network graphs, we consider the pre-training strategies proposed by Qiu *et al.* Qiu et al. (2020), namely GCC (E2E) and GCC (MoCo). For inductive learning, we employ two pre-trained graph transformers, NodeFormer Wu et al. (2022) and DIFFFormer-s Wu et al. (2023a), as adapter-based baselines, and a pre-trained graph convolutional network (GCN) as the prompt-based baseline. For link prediction, we used the pre-trained NAGphormer Chen et al. (2022a) as the fine-tuning baseline.

Graph Prompt and Adapter based Learning Methods. Here, we consider GPF Fang et al. (2022) as the graph prompt based method to compare against our method MoLE-GNN. We did not consider other related works such as GPPT Sun et al. (2022) and GraphPrompt Liu et al. (2023b), as they are either inefficient or fail to deliver satisfactory performance without a few-shot setting for graph classification tasks, as observed by Li *et al.* Li et al. (2024). For node classification task (transductive learning), we consider the prompt tuning methods presented in ProG Zi et al. (2024), including GPPT Sun et al. (2022), All-in-one Zi et al. (2024), GraphPrompt Liu et al. (2023b), and GPF, as baseline prompt tuning-based methods. We consider the state-of-the-art PEFT models, namely (IA)³ Liu et al. (2022), BitFit Zaken et al. (2021), LoRA Hu et al. (2021), Adapter Chen et al. (2022b), AdapterGNN Li et al. (2024), and GConv-Adapter Papageorgiou et al. (2025) as baseline Adapter based models to compare our MoE-based model MoLE-GNN. Additionally, we adopt domain-specific MoE models, including TopExpert Kim et al. (2023) for inductive learning and Link-MoE for link prediction, as baselines.

MoE-based Learning Methods. Here, we consider two state-of-the-art MOE-based GNN models, GMoEWang et al. (2023) and DA-MoEYao et al. (2024), as baseline models for comparing with our model, MoLE-GNN. GMoE employs multiple experts within each layer, while DA-MoE uses a dynamic MoE-based technique to capture information from the input graph.

972 D DETAILS OF PRE-TRAINED GNN MODELS
973
974

975 **Pre-Trained Models: Inductive** For inductive learning experiments, we employ a five-layer Graph
976 Isomorphism Network (GIN) backbone Hu et al. (2020b). On molecular graphs, we evaluate seven
977 pre-training strategies. EdgePred Hamilton et al. (2017b) masks and reconstructs edges to predict
978 their existence, while AttrMasking and ContextPred Hu et al. (2020b) focus on attribute prediction
979 and structural context, respectively. GraphCL You et al. (2020) introduces a contrastive framework
980 for unsupervised graph representation learning, and SimGRACE Xia et al. (2022a) leverages a GNN
981 and its perturbed counterpart as dual encoders to generate correlated views without requiring data
982 augmentation. GCC (E2E) and GCC (MoCo) Qiu et al. (2020) employ self-supervised techniques to
983 learn universal network properties across multiple graphs. For all the pre-trained models, we utilized
984 the default checkpoints provided in their official repositories.

985 **Pre-Trained Models: Transductive** For the transductive learning experiments, we utilized the
986 NodeFormer Wu et al. (2022) and DIFFFormer-s Wu et al. (2023a) GT architectures. Both mod-
987 els are pre-trained using the ogbn-arxiv dataset from the Open Graph Benchmark (OGB) Hu et al.
988 (2020b). Pre-training on this large, structurally diverse dataset enables the models to learn expres-
989 sive node representations and capture key structural patterns in citation networks, thereby enhancing
990 their transferability when fine-tuned on downstream tasks. For NodeFormer, we set the model with
991 32 hidden channels, 5 layers, and a single attention head, employing an identity transformation
992 for the relation bias and a regularization weight of 0.1. The training employed Gumbel-Softmax
993 sampling to enhance message passing, alongside batch normalization and residual connections. Op-
994 timization was performed with a learning rate of 0.01, no weight decay, and a batch size of 10,000
995 over 100 epochs. Similarly, DIFFFormer-s was pre-trained with 64 hidden dimensions across 5 lay-
996 ers, employing a single attention head and setting the residual balance parameter α to 0.5. We
997 adopt batch normalization and residual connections, together with graph positional embeddings.
998 The attention mechanism uses a simple kernel in which queries and keys are normalized before
999 computing dot-product attention. Training is regularized with a dropout rate of 0.2 and weight de-
1000 cay of 0.01, using a learning rate of 0.001, a batch size of 10,000, and 1,000 training epochs. For
1001 both NodeFormer and DIFFFormer-s, we follow the original papers Wu et al. (2022; 2023a) for all
1002 hyperparameters and architectural settings, ensuring consistency with their implementations. For
1003 graph prompt-based benchmarks, we adopt DGI Veličković et al. (2018) and GraphMAE Hou et al.
1004 (2022). DGI maximizes mutual information between node- and graph-level representations to learn
1005 informative embeddings, while GraphMAE reconstructs masked features to capture deep node rep-
1006 resentations. We use Prog Zi et al. (2024) as an open-source framework to obtain the pre-trained
1007 models for both methods.

1008 **Pre-Trained Models: Link Prediction** For link prediction experiments, we adopt NAG-
1009 phormer Chen et al. (2022a) as the underlying graph transformer architecture. The model is pre-
1010 trained with the GraphMAE strategy Hou et al. (2022), from which we extract node embeddings.
1011 We employ the ogbn-arxiv dataset from OGB, a large-scale social network benchmark, aligning with
1012 our downstream tasks that also focus on social networks such as Cora, Citeseer, and PubMed. We
1013 configure the NAGphormer model with a hidden dimension of 128, 3 layers, 3 hops, and 8 attention
1014 heads. For NAGphormer, we adopt the hyperparameter and architectural configurations from the
1015 original paper Chen et al. (2022a) to ensure consistency with its implementation.

1016 E IMPLEMENTATION DETAILS OF MOLE-GNN
1017

1018 All our experiments are performed on computing servers equipped with NVIDIA A6000 (48GB)
1019 and NVIDIA A100 (80GB) GPUs. We train our MoLE-GNN with freezing backbone GNN models
1020 for 100 epochs both for graph and node classification tasks. We consider Adam Kingma & Ba
1021 (2014), batch size of 256 and learning rate of 0.001. We run our MoLE-GNN model ten times with
1022 different random seeds and report the mean and standard deviation of the obtained ROC-AUC scores
1023 and accuracy to demonstrate the consistency of the results. We use PyTorch and PyG Fey & Lenssen
1024 (2019) to conduct all experiments in this work. For the adapter hyperparameter used in each expert
1025 GNN model, the bottleneck dimension is set to 15, and the initial value of the learnable scaling
parameter is 0.01.

1026	1027	Pre-training Method	Tuning Method	Datasets (Accuracy \uparrow)				
				IMDB-B	IMDB-M	COLLAB	RDT-B	RDT-M
1028	1029	GCC (E2E)	Full Fine-tune (100%)	<u>72.9</u> \pm 0.03	<u>47.9</u> \pm 0.02	<u>76.5</u> \pm 0.02	<u>83.2</u> \pm 0.01	<u>49.8</u> \pm 0.02
			GPF (0.80%)	<u>69.4</u> \pm 0.03	<u>45.7</u> \pm 0.02	<u>79.8</u> \pm 0.01	<u>73.3</u> \pm 0.03	<u>47.6</u> \pm 0.03
			AdapterGNN (26.7%)	<u>72.6</u> \pm 0.03	<u>47.4</u> \pm 0.02	<u>72.2</u> \pm 0.02	<u>82.4</u> \pm 0.03	<u>47.1</u> \pm 0.03
			MoLE-GNN (ours) (8.3%)	76.9 \pm 0.01	54.7 \pm 0.01	78.5 \pm 0.01	85.5 \pm 0.02	51.6 \pm 0.01
1032	1033	GCC (MoCo)	Full Fine-tune (100%)	<u>74.5</u> \pm 0.02	<u>52.2</u> \pm 0.01	<u>79.8</u> \pm 0.01	<u>82.9</u> \pm 0.01	<u>49.9</u> \pm 0.02
			GPF (0.80%)	<u>73.9</u> \pm 0.01	<u>50.9</u> \pm 0.02	80.0 \pm 0.01	<u>83.0</u> \pm 0.01	<u>51.1</u> \pm 0.02
			AdapterGNN (26.7%)	<u>74.4</u> \pm 0.03	<u>50.8</u> \pm 0.03	<u>79.0</u> \pm 0.01	<u>83.7</u> \pm 0.02	<u>45.6</u> \pm 0.02
			MoLE-GNN (ours) (8.3%)	77.4 \pm 0.02	54.8 \pm 0.01	<u>78.8</u> \pm 0.01	<u>84.4</u> \pm 0.03	<u>51.4</u> \pm 0.01

Table 11: Test Accuracy (%) performances on graph classification benchmarks with different tuning methods and pre-trained GNN models. Results are reported as mean \pm standard deviation of Accuracy. The best result is in **bold**, and the second best model is underlined.

1040	1041	Pre-training Method	Tuning Method	Datasets (ROC-AUC \uparrow)				
				Cora	Citesser	Pubmed	Wisconsin	Texas
1042	1043	DGI	Full Fine-tune (100%)	<u>78.7</u> \pm 7.1	<u>85.0</u> \pm 3.1	93.2 \pm 0.4	<u>58.7</u> \pm 4.9	<u>48.2</u> \pm 4.7
			GPPT (3.8%)	<u>50.0</u> \pm 1.0	<u>50.0</u> \pm 1.6	<u>50.2</u> \pm 0.1	<u>65.2</u> \pm 3.2	<u>56.2</u> \pm 0.1
			All-in-one (5.7%)	<u>47.9</u> \pm 1.6	<u>53.4</u> \pm 5.5	<u>49.4</u> \pm 2.2	<u>73.5</u> \pm 7.4	<u>67.7</u> \pm 7.4
			GraphPrompt (0.01%)	<u>70.1</u> \pm 0.7	<u>55.9</u> \pm 0.8	<u>50.8</u> \pm 0.2	<u>71.9</u> \pm 4.8	<u>56.4</u> \pm 3.1
1045	1046	GraphMAE	GPF (0.57%)	<u>48.4</u> \pm 0.01	<u>59.9</u> \pm 0.1	<u>76.3</u> \pm 0.1	<u>89.0</u> \pm 1.0	<u>69.8</u> \pm 0.2
			MoLE-GNN (ours) (6.4%)	97.2 \pm 0.2	97.7 \pm 0.6	<u>92.8</u> \pm 0.3	95.8 \pm 8.0	<u>87.9</u> \pm 9.8
			Full Fine-tune (100%)	<u>86.8</u> \pm 2.6	<u>87.0</u> \pm 0.6	93.5 \pm 0.3	<u>57.9</u> \pm 6.8	<u>50.2</u> \pm 4.9
			GPPT (3.8%)	<u>56.5</u> \pm 1.6	<u>60.0</u> \pm 0.8	<u>85.7</u> \pm 0.7	<u>63.3</u> \pm 8.6	<u>49.6</u> \pm 0.03
1048	1049	GraphMAE	All-in-one (5.7%)	<u>56.3</u> \pm 0.9	<u>67.6</u> \pm 1.2	<u>85.2</u> \pm 0.7	<u>69.2</u> \pm 6.7	<u>51.8</u> \pm 10.6
			GraphPrompt (0.01%)	<u>60.2</u> \pm 2.6	<u>60.9</u> \pm 1.2	<u>82.9</u> \pm 1.0	<u>66.8</u> \pm 8.8	<u>48.9</u> \pm 9.2
			GPF (0.57%)	<u>81.5</u> \pm 2.1	<u>78.6</u> \pm 0.6	<u>90.1</u> \pm 0.3	<u>89.7</u> \pm 7.6	<u>63.5</u> \pm 4.7
			MoLE-GNN (ours) (6.4%)	<u>68.2</u> \pm 3.4	<u>72.8</u> \pm 3.7	<u>92.2</u> \pm 0.3	<u>96.0</u> \pm 8.0	<u>88.0</u> \pm 9.8

Table 12: Test performances on node classification benchmarks with different tuning methods and pre-trained GNN models. The best result is in **bold**, and the second best model is underlined.

1055	1056	Strategy Name	Fine-tuning Scenarios		Key Properties			Automated
			GNN	Graph Task	Fine-tuning Cost	Parameter Efficiency	Scalability	
1057	1058	Conventional GNNs	GCN	✓	Node/Edge/Graph	High	Low	Low
			GIN	✓	Node/Edge/Graph	High	Low	Low
			GAT	✓	Node/Edge/Graph	High	Low	Low
1059	1060	NAS / AutoGNNs	GraphNAS (Gao et al., 2019)	✓	Node/Graph	Very High	Moderate	Moderate
			Auto-gnn (Zhou et al., 2022)	✓	Node/Graph	Very High	Moderate	Moderate
1061	1062	Foundation Models	S2PGNN (Zhilic et al., 2024)	✓	Graph	Very High	Low	Low
			AdapterGNN (Li et al., 2024)	✓	Graph	Low	High	Low
1063	1064	MoE-style GNNs	DA-MoE (Yao et al., 2024)	✓	Node/Edge/Graph	Medium	Moderate	Moderately High
			TopExpert (Kim et al., 2023)	✓	Graph	Medium	Moderate	Moderately High
		Proposed	MoLE-GNN	✓	Node/Edge/Graph	Low	Very High	High

Table 13: Comparison of strategy families in terms of fine-tuning scenarios and key properties. Fine-tuning cost reflects the overall computational overhead to adapt a pre-trained GNN to downstream tasks. MoLE-GNN achieves low fine-tuning cost while maintaining very high parameter efficiency and scalability.

F ADDITIONAL RESULTS

We present additional results covering inductive learning on social network graphs, a comparison of MoLE-GNN with graph prompt-based methods, and the application of MoLE-GNN to few-shot learning in both inductive and transductive settings.

Inductive Learning On Social Network Graphs. We evaluate the performance of MoLE-GNN under inductive learning settings, with results summarized in Table 11. Across all social network datasets, MoLE-GNN consistently surpasses full fine-tuning in graph classification. Specifically, it attains 77.2% Accuracy on IMDB-B (a 4.75% gain over 73.7%), 50.1% on IMDB-M (9.38%), COLLAB (0.64%), RDT-B (2.17%), and RDT-M (3.20%), respectively. Furthermore, MoLE-GNN outperforms the graph-prompt baseline GPF on four out of five datasets, achieving an average improvement of 5.88%. Moreover, MoLE-GNN outperforms the current SOTA graph-specific PEFT method, AdapterGNN, by 5.88%, marking a substantial gain over conventional PEFT approaches.

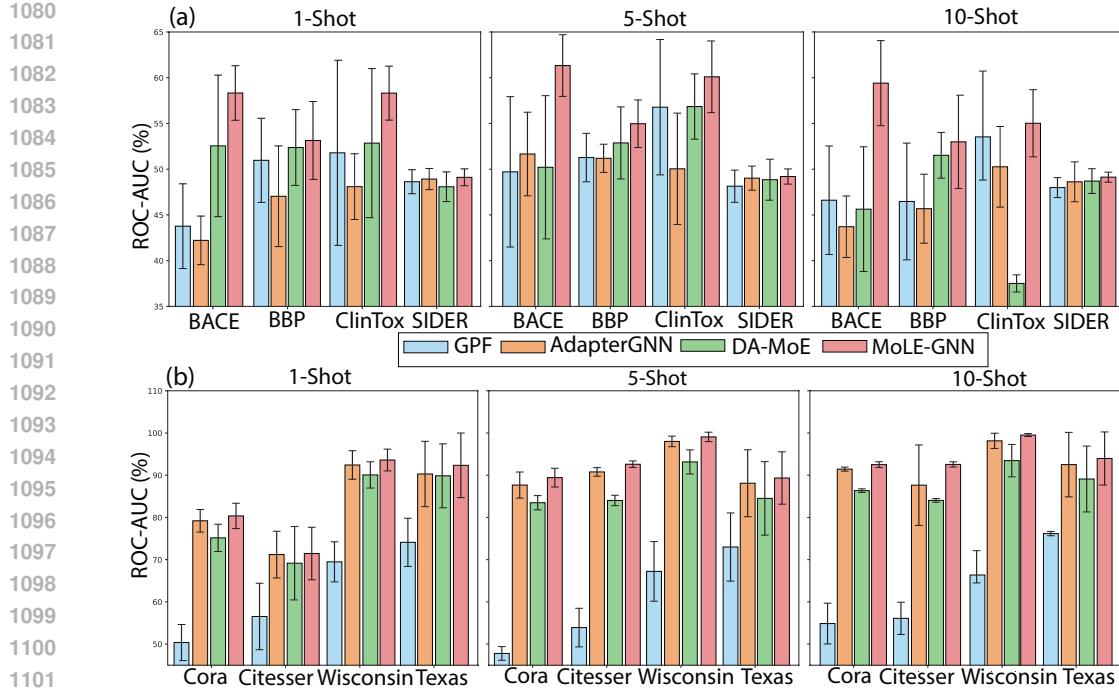


Figure 5: Performance comparison among the prompt-based method (GPF), the adapter-based method (AdapterGNN), the MoE-based method (DA-MoE), and our proposed method (MoLE-GNN) under few-shot settings for both graph classification and node classification tasks. Results are reported for 1-shot, 5-shot, and 10-shot scenarios across both tasks. Standard deviations are represented as error bars on top of the corresponding bar plots.

Transductive Learning Results. We evaluate the performance of MoLE-GNN under transductive learning settings against state-of-the-art graph prompt learning methods, with results summarized in Table 12. MoLE-GNN consistently achieves superior ROC-AUC performance compared to all state-of-the-art graph prompt learning methods.

Few-shot Performance on Inductive and Transductive Learning Settings. In recent times, prompt tuning has been well accepted for its effectiveness in addressing few-shot downstream tasks (Brown et al., 2020; Schick & Schütze, 2020b;a; Liu et al., 2021b; 2023a). GPF Fang et al. (2022) is designed for graph classification in few-shot settings but fails to generalize to node classification tasks under the same setting. Similarly, AdapterGNN Li et al. (2024) does not address either graph or node classification in few-shot scenarios. In contrast, DA-MoE Aghdam et al. (2024), a MoE-based model, does not exhibit this limitation. In this work, we perform graph and node classification tasks under few-shot settings using MoLE-GNN. For inductive (graph classification) task, we consider four small molecule datasets these are BACE, BBBP, ClinTox, and SIDER. From Fig. 5 (a) we observe that MoLE-GNN model outperforms all the baseline models by a significant improvement of 10.83% in terms of ROC-AUC score on all four inductive datasets. For transductive (node classification) tasks, we consider four datasets, these are Cora, Citeseer, Wisconsin, and Texas. From Fig. 5 (b) we observe that MoLE-GNN model outperforms all the baseline models by a margin of 1.82% on all four node classification datasets. The hybrid combination of our framework balances task-specific adaptation (via adapters) and structural flexibility (via the MoE). This synergy allows the model to focus on the most relevant depth and expert pathways without overfitting, making it robust in low-data regimes.

Wall-Clock Efficiency and Runtime Analysis. We measure the average per-epoch and total wall-clock time (over 100 epochs) for various MoE-based tuning strategies across six datasets (BBBP, Tox21, ToxCast, SIDER, ClinTox, and BACE). As shown in Table 14, our model, MoLE-GNN, achieves the lowest per-epoch and wall-clock times among all graph-based MoE methods, while also requiring the fewest trainable parameters compared to all baseline MoE approaches.

	Method	Per-Epoch Time (seconds)	Wall-Clock (100 epochs, Minutes)	Inference Time (seconds)	Params (M)
1134	GMoE	2.17	3.61	1.25	14.9
1135	DA-MoE	1.68	2.80	0.94	29.8
1136	TopExpert	1.21	2.02	0.75	2.51
1137	MoLE-GNN	0.45	0.75	0.33	0.39
1139					

Table 14: Comparison of per-epoch, total wall-clock (100 epochs), along with trainable parameters across different MoE-based tuning strategies.

	BACE	BBBP	ClinTox	
1143	Dense Experts	73.1 ± 9.8	67.5 ± 5.9	76.8 ± 4.9
1144	Sparse Experts	81.6 ± 0.8	73.2 ± 0.8	80.0 ± 1.5
1145				
1146				
1147				

Table 15: Performance analysis of the different expert mechanisms used in MoLE-GNN. The best results are highlighted in **bold**. “Dense Experts” refers to the selection of all available experts in MoLE-GNN, while “Sparse Experts” indicates that only a subset of the experts is selected.

G ABLATION STUDY

Ablation Study on the Impact Across GNN Backbones Here, we evaluate the performance of MoLE-GNN using different GNN backbones within each expert, including GCN, Graph Attention Network (GAT), GraphSAGE, and our default choice, GIN. As shown in Table 16, the best performance is achieved when GIN is used as the backbone in each expert. Moreover, this configuration requires updating only a small portion of the backbone parameters while still delivering optimal results.

Backbones in MoLE-GNN	BACE	BBBP	ClinTox	Sider	Total Params (M)	Trainable Params (M)	Trainable %	
1162	GCN	<u>76.7 ± 2.6</u>	<u>66.3 ± 2.5</u>	<u>58.3 ± 2.4</u>	<u>61.1 ± 1.4</u>	2.54M	0.39M	15.4
1163	GAT	<u>71.4 ± 3.1</u>	<u>65.5 ± 1.4</u>	<u>55.4 ± 5.5</u>	<u>60.6 ± 0.9</u>	4.43M	0.39M	8.8
1164	GraphSAGE	<u>69.8 ± 2.8</u>	<u>66.4 ± 3.1</u>	<u>55.9 ± 0.7</u>	<u>59.7 ± 1.7</u>	2.54M	0.39M	15.4
1165	GIN	81.6 ± 0.8	73.2 ± 0.8	80.0 ± 1.5	62.8 ± 0.6	7.7M	0.39M	5.1
1166								
1167								

Table 16: Performance analysis of different GNN backbones used in MoLE-GNN. We observe that MoLE-GNN built on top of GIN outperforms other backbones while tuning only 5.1% of the total parameters. Best performing model is **bold** and second best is underlined in terms of ROC-AUC.

Expert Diversity: How Crucial is Heterogeneity Among Experts. To evaluate the importance of expert heterogeneity in MoLE-GNN, we compare configurations with homogeneous and heterogeneous experts. In the homogeneous settings, all experts share the same GNN architecture and are pre-trained on identical data. Specifically, we consider three configurations where each expert consists of (i) a 1-layer GNN, (ii) a 3-layer GNN, or (iii) a 5-layer GNN. In contrast, the heterogeneous version of MoLE-GNN employs experts with different depths and receptive fields, combining multiple GNN backbones that specialize in diverse aggregation patterns. As shown in Table 18, the heterogeneous expert design consistently achieves the best performance across all datasets, outperforming every homogeneous configuration by a notable margin (average ROC-AUC 77.9% vs. 72.2% for the best homogeneous setup). This demonstrates that structural diversity among experts is crucial to MoLE-GNN’s success: varied depths and receptive fields allow different experts to capture complementary subgraph patterns, which the gating mechanism dynamically integrates for each input graph. When all experts share identical architectures and pretraining, the mixture degenerates into redundant feature extractors, limiting the benefits of the mixture-of-experts formulation. Hence, expert heterogeneity is a key factor that enhances both representational richness and generalization ability in MoLE-GNN.

	Tuning Method	BACE	BBBP	ClinTox	ToxCast	Avg.
1189	MoLE-GNN (GNN + adapter MLP)	75.4 \pm 3.3	66.2 \pm 3.6	69.3 \pm 4.5	63.1 \pm 0.3	68.5
1190	MoLE-GNN	81.6 \pm 0.8	73.2 \pm 0.8	80.0 \pm 1.5	64.3 \pm 0.2	77.9

Table 17: Performance analysis on full fine tuning of MoLE-GNN (GNNs + adapter MLP) between MoLE-GNN, where only tunes adapter MLPs and the GNNs remain freeze, which is our proposed framework. Best performing model is **bold** and second best is underlined in terms of average ROC-AUC.

	Expert Configuration	BACE	BBBP	ClinTox	ToxCast	Avg.
1198	Homogeneous Experts	1-layer GNNs	71.9 \pm 0.8	65.8 \pm 0.6	68.0 \pm 2.1	54.1 \pm 0.4
1199		3-layer GNNs	79.9 \pm 0.4	70.9 \pm 0.7	76.6 \pm 1.7	61.2 \pm 0.3
1200		5-layer GNNs	80.8 \pm 0.3	72.4 \pm 0.5	72.9 \pm 1.5	56.9 \pm 0.6
1201	Heterogeneous Experts	MoLE-GNN	81.6 \pm 0.8	<u>73.2</u> \pm 0.8	<u>80.0</u> \pm 1.5	64.3 \pm 0.2

Table 18: Effect of expert diversity in MoLE-GNN. Comparison between homogeneous experts (five identical GNN experts with 1, 3, or 5 layers each) and heterogeneous experts (MoLE-GNN with varied GNN backbones). Results are reported in ROC-AUC (%). Best results are highlighted in **bold**.

Ablation Study on Full MoLE-GNN Fine-Tuning. In this section, we evaluate the effect of full fine-tuning in MoLE-GNN, where we update the entire GNN backbone of each expert in addition to the adapters. We compare this with our default parameter-efficient variant of MoLE-GNN, in which only the adapters are trained while all expert backbones remain frozen. As shown in Table 17, the parameter-efficient MoLE-GNN consistently outperforms the full-tuning variant. We also observe that fully tuning all experts often leads to negative transfer, likely because each expert already contains a pretrained GNN backbone and overriding these pretrained weights disrupts their specialization. Furthermore, full fine-tuning requires 7.7M trainable parameters, whereas our design uses only 0.39M parameters—just 5.1% of the full-tuning model.

Impact of Dense Expert Selection Varying the number of top selected experts (i.e., k) allows the model to adaptively capture patterns across different GNN layers. As shown in Table 15, we observe that optimal performance in these datasets is achieved when MoLE-GNN employs sparse expert selection rather than using all experts densely. Specifically, compared to the dense expert configuration in MoLE-GNN, the sparse expert variant in MoLE-GNN (proposed model) achieved notable performance gains of 11.6%, 8.4%, and 4.2% across the three datasets, respectively. These improvements explain the ability of sparse experts to effectively capture aggregation information at various GNN layers.

# Experts	BACE	BBBP	ClinTox	ToxCast
1	62.8	64.4	56.0	59.1
2	71.6	65.9	71.6	61.4
3	75.1	70.6	75.7	62.5
4	80.4	72.4	78.1	63.2
5	81.6	73.2	80.0	64.3

Table 19: The sensitivity analysis on the choice of experts on four graph classification datasets.

Sensitivity Analysis on the Selection of the Number of Experts We conduct a sensitivity analysis on the number of experts used in the MoLE-GNN framework (Section 3 in main text). To this end, we performed an ablation study on four graph classification datasets. Experiments were conducted with varying numbers of expert GNNs, and the results are presented in Fig. 19. From the figure, we observe that the best ROC-AUC (%) is obtained with five experts (we cannot perform sensitivity analysis for six experts, as pre-trained GNNs can have a maximum of five layers of GNNs

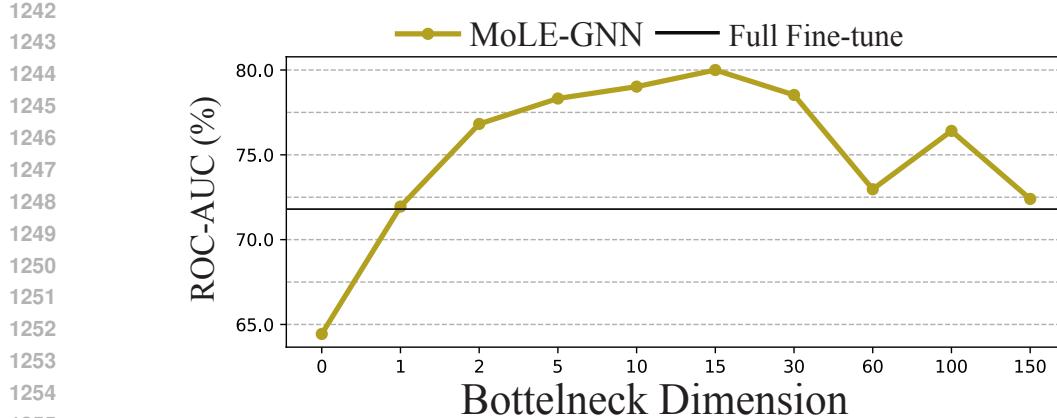


Figure 6: Performances with different bottleneck dimensions. 0 represents identical mapping. Here we consider ClinTox to perform this experiment.

Bottleneck MLP Dim.	Datasets (ROC-AUC \uparrow)				
	Bace	BBBP	ClinTox	SIDER	Avg
0	73.1 \pm 2.4	62.8 \pm 1.2	64.4 \pm 1.3	58.4 \pm 1.7	64.7
4	74.6 \pm 0.9	66.0 \pm 0.5	70.1 \pm 1.8	59.4 \pm 1.5	67.5
15	81.6 \pm 0.8	73.2 \pm 0.8	80.0 \pm 1.5	62.8 \pm 0.6	74.4
64	75.2 \pm 0.9	65.2 \pm 0.5	76.3 \pm 3.5	58.4 \pm 0.4	68.8
100	74.2 \pm 3.6	63.2 \pm 1.4	76.4 \pm 2.0	58.3 \pm 0.7	68.1
150	72.8 \pm 0.4	62.6 \pm 0.2	72.4 \pm 4.0	58.7 \pm 0.5	66.6

(a) Graph classification tasks.

Bottleneck MLP Dim.	Datasets (Accuracy \uparrow)			
	Cora	Citesser	Pubmed	Avg
0	79.0 \pm 1.7	73.4 \pm 1.1	80.0 \pm 0.6	77.8
4	81.7 \pm 1.2	74.2 \pm 1.0	86.8 \pm 0.6	80.9
15	85.6 \pm 1.0	77.3 \pm 0.7	89.3 \pm 0.3	84.1
64	81.5 \pm 1.1	72.9 \pm 1.2	85.8 \pm 0.3	80.1
100	78.7 \pm 1.0	70.1 \pm 0.6	84.3 \pm 0.3	77.7
150	70.7 \pm 1.5	68.7 \pm 0.8	82.7 \pm 0.4	74.0

(b) Node classification tasks.

Table 20: Effect of adapter bottleneck dimension on graph classification 20a and node classification 20b tasks. Small to moderate bottleneck sizes improve performance over the no-adapter baseline, while excessively large bottlenecks reduce accuracy. Our default setting (15) consistently achieves the best average performance across all tasks, indicating that balanced adapter capacity is crucial for stable gains.

as discussed in Section D). Consequently, we selected five expert GNNs in our MoE framework MoLE-GNN for all our experiments.

Ablation Study on Adapter MLP Capacity across different tasks. Table 20 shows that increasing the adapter’s bottleneck MLP dimension leads to overfitting on both graph classification and node classification tasks. As seen in Tables 20a and 20b, our default bottleneck dimension of 15 consistently achieves the strongest average ROC-AUC across all datasets. In contrast, setting the bottleneck size to 0 causes MoLE-GNN to underfit, while an excessively large dimension of 150 results in overfitting and degraded performance. Since the underlying GNN MLP layers belong to a pre-trained backbone and remain frozen during both training and inference, we adjust only the adapter bottleneck dimension in this ablation to control the effective capacity of the tunable parameter space.

Bottleneck Dimension Fig. 6 that reducing the bottleneck dimension to limit the size of tunable parameter space can improve the generalization ability of the model. But when the size of is too small, the model may suffer from underfitting, which can restrict its performance. Therefore, selecting bottleneck dimension of 15, which present 5.1% of all parameters, yields the best performance. Meanwhile, a dimension of 1, which accounts for only 0.5% of all parameters, can surpass the results of full fine-tuning.