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CORRELATION ANALYSIS OF EVALUATION METRICS FOR 

MACHINE TRANSLATION 

ABSTRACT 

Machine translation evaluation methods can be roughly divided into three categories: 
manual evaluation, classical morphological evaluation and semantic evaluation based on 
pre-trained model. The automatic evaluation metrics of the latter two categories are 
numerous, from which we select commonly used seven morphological evaluation 
metrics and four semantic evaluation metrics for correlation analysis between each two 
of them. The experimental results of the correlation coefficients of Pearson, Kendall and 
Spearman on 40 machine translation models of bidirectional 20 foreign languages and 
Chinese show that: (1) There is an extremely strong correlation among morphological 
evaluation metrics, indicating that the statistical results of various morphological 
calculation methods tend to be the same on big data. (2) There is a strong correlation 
between semantic evaluation metrics, indicating that although there are semantic spatial 
differences among various pre-trained models, the statistical results on big data also tend 
to be consistent. The above-mentioned ubiquitous correlations largely stem from the 
equivalence of human cognition and the economy of knowledge representation. (3) 
There is also a strong correlation between morphological and semantic evaluation 
metrics, which shows that the deep “semantics” of various commercial hypes at present 
is just another high-level “morphology”. Because the Turing computing system can use 
symbols and operations to directly represent and accurately process morphologies, but 
can only simulately represent and approximately process semantics using symbols and 
operations. (4) For each correlation coefficient between any two evaluation metrics, there 
is a significant difference between different languages, which indicates that morphology 
and semantics are inherent attributes of languages, and more optimized evaluation 
metrics of machine translation should be personalized according to the language. 

1 INTRODUCTION 

Machine Translation (MT) is an algorithmic computing process that uses a target natural language form 
to paraphrase the semantics of a source natural language. MT research has puzzled human beings for a 
long time. It was not until the emergence of deep learning and language big data that the laboratory 
translation quality of rule-based MT and statistical MT was changed, and almost perfect and usable 
translation was obtained. Because of this, the research of MT evaluation to judge the quality of 
translation has been accompanied by MT research and has experienced a long history, resulting in many 
MT evaluation methods. 

Up to now, MT evaluation methods can be roughly divided into three categories: manual evaluation, 
classical morphological evaluation and semantic evaluation based on pre-trained model. 

The input of manual evaluation is usually a sentence pair of <SSen, TSen.MT>. Here, the SSen denotes 
a source language sentence, and the TSen.MT denotes a machine-translated target language sentence. 
Human experts give a binary judgment of GOOD or BAD, or a score belonging to the interval of [0, 
100] on the semantic fit of the two sentences according to their own knowledge of language and culture 
(Liu, 2022). 

Manual evaluation is not only time-consuming and laborious but also has personality deviations among 
different experts. Therefore, a morphological evaluation method that hardly requires human 
participation has been proposed. The input of this classical method is a triple of <SSen, TSen.MT, 
TSen.M>. Here, the newly added TSen.M denotes a manual-translated reference sentence of the target 
language. The morphological evaluation method outputs a morphological similarity score belonging to 
the [0, 1] interval only through the morphological calculation between sentences in the triple, and 
estimates the semantic fit degree of machine-translated sentence accordingly. 

With the successful application of deep learning and language big data, a semantic evaluation method 
based on pre-trained models has been proposed. The input of this method adds a pre-trained model on 
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the basis of the input triple of morphological evaluation. Through the pre-trained model, the machine-
translated sentence and the manual-translated reference sentence are embedded into two vectors, and 
then the similarity between the two vectors is calculated, and a semantic similarity score belonging to 
the [0, 1] interval is output, according to which the semantic fit degree of the machine-translated 
sentence is directly judged. 

The automatic evaluation metrics of the latter two categories are numerous (Lee, 2023), and we hope 
to re-examine the correlation between these metrics through quantitative analysis, and further elaborate 
the relationship between morphology and semantics. 

2 AUTOMATIC EVALUATION METRICS 

In this paper, we have chosen commonly used seven morphological evaluation metrics and four 
semantic evaluation metrics. 

2.1 MORPHOLOGICAL EVALUATION METRICS 

The first morphological evaluation metric we choose is the famous BLEU, which has almost become 
an internationally recognized standard for MT research papers and application systems. In this paper, 
the BLEU refers to the classic BLEU4 score. We then choose two morphological evaluation metrics, 
TER and CHRF, which represent the translation edit rate (Post, 2018) and the character-level chrF2 
score (Popović, 2015), respectively. Due to space limitations, we will not repeat the above three well-
known morphological evaluation metrics for MT. 

Because any morphological similarity between two strings can be regarded as a morphological 
evaluation metric for MT. Therefore, we also choose four morphological evaluation metrics (Leven, 
Jaccard, Dice, Cosine) between the machine-translated sentence y’ and the manual-translated reference 
sentence y. 

Leven ൌ 1 െ
𝐿𝑒𝑣𝑒𝑛𝐷𝑖𝑠ሺy, y′ሻ

𝑀𝑎𝑥ሺ𝐿𝑒𝑛ሺyሻ, 𝐿𝑒𝑛ሺy′ሻሻ
 (1)

The Levenshtein morphological evaluation metric (Leven) is based on the edit distance proposed by 
Soviet mathematician Vladimir Levenshtein in 1965. The edit distance is the minimum number of edit 
operations required to convert one string to another, including replacements, insertions, and 
deletions. The Leven is calculated as shown in formula (1), where LevenDis(y, y’) represents the token-
level Levenshtein edit distance between the manual-translated reference sentence y and the machine-
translated sentence y’, Len(y) and Len(y’) represent the length of the sentence y and the sentence y’ 
respectively, that is, the number of tokens contained in each. Leven values range from 0 to 1, and the 
higher the value, the more similar the morphology of the two sentences. 

Jaccard ൌ
#ሺ𝑇𝑜𝑘𝑒𝑛𝑆𝑒𝑡ሺyሻ ∩ 𝑇𝑜𝑘𝑒𝑛𝑆𝑒𝑡ሺyᇱሻሻ
#ሺ𝑇𝑜𝑘𝑒𝑛𝑆𝑒𝑡ሺyሻ ∪ 𝑇𝑜𝑘𝑒𝑛𝑆𝑒𝑡ሺyᇱሻሻ

 (2)

The Jaccard morphological evaluation metric (Jaccard) is based on the proportion of commonality 
between finite sample sets, that is the ratio of the size of the intersection of two sets to the size of the 
union of the two sets. When both sets are empty, the Jaccard value is defined as 1. This statistic used for 
gauging the similarity and diversity of sample sets was developed by American geologist Grove Karl 
Gilbert in 1884. The Jaccard is calculated as shown in formula (2), where TokenSet(y) and TokenSet(y’) 
respectively represent the token set obtained after the tokenization process of the manual-translated 
reference sentence y and the machine-translated sentence y’, and #(∙) represents the number of elements 
in the set. Jaccard values range from 0 to 1, and the higher the value, the more similar the morphology 
of the two sentences. 

Dice ൌ
2 ∗ #ሺ𝑇𝑜𝑘𝑒𝑛𝑆𝑒𝑡ሺyሻ ∩ 𝑇𝑜𝑘𝑒𝑛𝑆𝑒𝑡ሺyᇱሻሻ
#ሺ𝑇𝑜𝑘𝑒𝑛𝑆𝑒𝑡ሺyሻሻ  #ሺ𝑇𝑜𝑘𝑒𝑛𝑆𝑒𝑡ሺyᇱሻሻ

 (3)

The Dice morphological evaluation metric (Dice), also known as Sørensen-Dice metric, is a measure of 
set similarity published independently by American ecologist and geneticist Lee Raymond Dice and 
Danish botanist Thorvald Sørensen in 1945 and 1948, respectively. The Dice is calculated as shown in 
formula (3), where the definitions of TokenSet(y), TokenSet(y’), and #(∙) are the same as in formula (2). 
Dice values also range from 0 to 1, the higher the value, the more similar the morphology of the two 
sentences. 

Cosine ൌ
𝑻𝒐𝒌𝒆𝒏𝑭𝒓𝒆𝒒𝑽𝒆𝒄ሺyሻ ∙ 𝑻𝒐𝒌𝒆𝒏𝑭𝒓𝒆𝒒𝑽𝒆𝒄ሺy′ሻ

||𝑻𝒐𝒌𝒆𝒏𝑭𝒓𝒆𝒒𝑽𝒆𝒄ሺyሻ||||𝑻𝒐𝒌𝒆𝒏𝑭𝒓𝒆𝒒𝑽𝒆𝒄ሺy′ሻ||
(4)



Published as a conference paper at ICLR 2025 

The cosine morphological evaluation metric (Cosine) is the classical cosine value between two token 
frequency vectors. The Cosine is calculated as shown in formula (4), where TokenFreqVec(y) and 
TokenFreqVec(y’) represent the token frequency vectors of sentences y and y’, respectively. Because 
the token frequency is always non-negative, the value of Cosine belongs to [0, 1], and the higher the 
value, the more similar the morphology of the two sentences. 

2.2 SEMANTIC EVALUATION METRICS 

Similar to the morphological evaluation metrics, we can also implement the semantic evaluation metrics 
by calculating the semantic similarity between two sentences in the same language. Specifically, first, 
we use the Sentence Transformer1 to generate two embedding vectors of Embed(m, y’) and Embed(m, 
y) from the machine-translated sentence y’ and the manual-translated reference sentence y supported 
by the pre-trained model m (Peters, 2018). Secondly, the cosine similarity between the two sentence 
embedding vectors in the pair <Embed(m, y’), Embed(m, y)> is calculated in the semantic evaluation 
metric. Finally, the similarity is normalized to the [0, 1] interval according to the formula (5) as the 
semantic similarity (SS) score between the two sentences in the sentence pair <x, y>. Any Sentence-
BERT series of pre-trained models2 that support sentence embedding can be used for the SS score 
calculation. The serial models use siamese and triplet network structures to derive semantically 
meaningful sentence embeddings. This representation easily supports cosine similarity calculation and 
greatly reduces computational overhead while maintaining the accuracy of BERT. 

SSሺm, y′, yሻ ൌ
𝐶𝑜𝑠𝑆𝑖𝑚ሺ𝑬𝒎𝒃𝒆𝒅ሺm, y′ሻ, 𝑬𝒎𝒃𝒆𝒅ሺm, yሻሻ  1

2
(5)

Table 1 provides an overview of four pre-trained models all-distilroberta-v1, all-MiniLM-L6-v2, all-
mpnet-base-v2, and all-roberta-large-v1. They are all trained on a large and diverse dataset of over 1 
billion training pairs, and they are all all-round model tuned for many use cases, which can be directly 
used in semantic evaluation metrics. We abbreviate the semantic evaluation metrics of the 
corresponding models according to the formula (5) as Distil = SS(all-distilroberta-v1,y’,y), MiniLM = 
SS(all-MiniLM-L6-v2,y’,y), Mpnet = SS(all-mpnet-base-v2,y’,y), and Roberta = SS(all-roberta-large-
v1,y’,y), respectively. 

Table 1:  Pre-trained Model Overview 
Pre-trained Model 
(Base Model) 

Max Sequence
Length

Dimensions
Model Size

(MB)
Speed

Sentence Embedding 
Performance

Semantic Search 
Performance

Avg. Performance 

all-distilroberta-v1 
(distilroberta-base) 512 768 290 4,000 68.73 50.94 59.84 

all-MiniLM-L6-v2 
(nreimers/MiniLM-L6-H384-uncased) 

256 384 80 14,200 68.06 49.54 58.80 

all-mpnet-base-v2 
(microsoft/mpnet-base) 

384 768 420 2,800 69.57 57.02 63.30 

all-roberta-large-v1 
(roberta-large) 

256 1,024 1,360 800 70.23 53.05 61.64 

Among the four pre-trained models mentioned above: The all-distilroberta-v1 is a smaller pre-trained 
general-purpose language representation model. During its pretraining phase, knowledge distillation is 
leveraged to reduce the size of a BERT model by 40%, while retaining 97% of its language 
understanding capabilities and being 60% faster (Sanh, 2020). The all-MiniLM-L6-v2 is a deep self-
attention distillation model that uses the formula (6) to minimize the KL difference between the self-
attention distributions of teachers and students and can effectively compress pre-trained models based 
on large Transformers (Wang, 2020). The monolingual model of the deep self-attention distillation 
method outperforms the optimal baseline under different parameter sizes of the student model. The all-
mpnet-base-v2 model that can see a full sentence leverages the dependency among predicted tokens 
through permuted language modeling and takes auxiliary position information as input, which can 
reduce the position discrepancy, and outperform masked language modeling and permuted language 
modeling by a large margin (Song, 2020). The all-roberta-large-v1 is an improved BERT model based 
on a replication study of the BERT hyperparameter choices, which can achieve state-of-the-art results 
on GLUE, RACE, and SQuAD (Liu, 2019). 

𝐿 ൌ
1
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The four pre-trained models in Table 1 have been extensively evaluated for their quality to embedded 
sentences (Sentence Embedding Performance) and to embedded search queries & paragraphs (Semantic 

                                                            
1 https://www.sbert.net 
2 https://huggingface.co/models 
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Search Performance). The Sentence Embedding Performance is average performance on encoding 
sentences over 14 diverse tasks from different domains. The Semantic Search Performance is 
performance on 6 diverse tasks for semantic search: encoding of questions and paragraphs up to 512 
word pieces. While the Avg. Performance is the average of Sentence Embedding Performance and 
Semantic Search Performance. The higher the value of all three performance metrics, the better the 
performance. The data in Table 1 show that the all-distilroberta-v1 model has the longest Max Sequence 
Length (512); the all-mpnet-base-v2 model provides the best quality (63.30) in Avg. Performance; the 
all-roberta-large-v1 model provides the best quality (70.23) in Sentence Embedding Performance; while 
the all-MiniLM-L6-v2 model is the smallest (80MB) but has the fastest speed (14,200), 3.5 times the 
speed of all-distilroberta-v1, 5 times the speed of all-mpnet-base-v2, and more than 17 times the speed 
of all-roberta-large-v1 and still offers good quality. 

3 CORRELATION ANALYSIS 

Correlation analysis usually refers to the numerical statistics of two or more interrelated variables, so as 
to measure the closeness of the correlation between variables. Among the many correlation analysis 
methods, the Pearson correlation coefficient method, the Kendall correlation coefficient method, and 
the Spearman correlation coefficient method are widely used to measure the correlation between two 
variables. We use the above three correlation coefficient methods to quantitatively analyze the 
correlation between any two of the 11 automatic evaluation metrics in the previous section. 

3.1 FRAMEWORK 

Figure 1:  Correlation Analysis Framework 

Figure 1 shows our proposed correlation 
analysis framework, which mainly includes 
two machine translators (XZho Machine 
Translator and ZhoX Machine Translator) 
that support bidirectional translation between 
language X and Chinese, one group of 7 
morphological evaluation metrics (Leven, 
Jaccard, Dice, Cosine, TER, CHRF, and 
BLEU), one group of 4 semantic evaluation 
metrics based on pre-trained models (Distil, 
MiniLM, Mpnet, and Roberta), and three 
correlation analyzers (Pearson Correlation 
Analyzer, Kendall Correlation Analyzer, and 
Spearman Correlation Analyzer). 

When a set of sentence pairs arrives, each pair 
of sentences <XSen, ZhoSen> is taken out in 
turn, and XSen and ZhoSen are processed in 
parallel. For the sentence XSen, first, the 
sentence is sent to the XZho Machine 
Translator, and the translated sentence is 
ZhoSen.MT. Then, the calculating units of the 
7 morphological evaluation metrics and the 4 
semantic evaluation metrics receive 
ZhoSen.MT and ZhoSen concurrently, and 
synchronously calculate and output 11 scores 
belonging to the [0, 1] interval (Leven,
Jaccard, Dice, Cosine, TER, CHRF, BLEU, 
Distil, MiniLM, Mpnet, and Roberta). 
Finally, the three correlation analyzers 
receive the above 11 scores respectively, 
calculate the correlation coefficients between 
each two kinds of score, and output a 
visualized heat map. For the sentence 
ZhoSen, the processing is the same as above, 
except for the MT direction. 

3.2 CORRELATION COEFFICIENTS 

Pearson correlation coefficient developed by Karl Pearson from a related idea in the 1880s, the ratio 
between the covariance of two variables X and Y and the product of their standard deviations, is often 
used to measure the linear correlation between two sets of data {x0, x1, ..., xn-1} and {y0, y1, ..., yn-1}. 
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Given n pairs of data {(x0, y0), (x1, y1), ..., (xn-1, yn-1)} consisting of the two data sets, the sample Pearson 
correlation coefficient rp is defined as formula (7). Where n is the sample size, xi, yi are the sample points, 
and �̅� , 𝑦ത  are the sample means. This coefficient is essentially a normalized measurement of the 
covariance, so its value belongs to [-1, 1]. Where a negative value indicates a negative linear correlation, 
that is, as the value of one variable increases, the other decreases; A positive value indicates a positive 
linear correlation, that is, as the value of one variable increases, the other also increases; zero indicates 
that there is no linear relationship between the two variables. 

𝑟 ൌ
∑ ሺ𝑥 െ �̅�ሻሺ𝑦 െ 𝑦തሻିଵ

ୀ

ට∑ ሺ𝑥 െ �̅�ሻଶିଵ
ୀ ට∑ ሺ𝑦 െ 𝑦തሻଶିଵ

ୀ

 (7)

The applicable scenario of the Pearson correlation coefficient is a continuous variable with normal 
distribution. According to the central limit theorem, when the sample size is large enough (exceeds 
500), the data can be considered to be approximately normally distributed. But as with covariance 
itself, the Pearson correlation coefficient can only reflect a linear correlation of variables and ignores 
many other types of relationships or correlations. That is to say when rp =0 can only mean that there 
is no linear relationship between variables, and it is not sure whether there are other correlations. 
While the other two rank correlation coefficients are not limited by sample size and normal 
distribution of samples. 

Kendall correlation coefficient developed by Maurice Kendall in 1938, a statistic used to measure the 
ordinal association between two measured quantities, is a rank correlation coefficient. It is a measure 
of rank correlation: the similarity of the orderings of the data when ranked by each of the quantities. 
Let (x0, y0), (x1, y1), ..., (xn-1, yn-1) be a set of observations of the joint random variables X and Y, such 
that all the values of (xi) and (yi) are unique, the Kendall correlation coefficient rk is defined as formula 
(8). Where n is the sample size, xi, yi are the sample points, and sgn(∙) is the sign function. This 
definition shows that the value of the Kendall correlation coefficient belongs to [-1, 1]. If the 
agreement between the two rankings is perfect the coefficient has value 1. If the disagreement 
between the two rankings is perfect the coefficient has value -1. If X and Y are independent random 
variables and not constant, then the expectation of the coefficient is zero. 

𝑟 ൌ
2

𝑛ሺ𝑛 െ 1ሻ
 𝑠𝑔𝑛ሺ𝑥 െ 𝑥ሻ𝑠𝑔𝑛ሺ𝑦 െ 𝑦ሻ
ழ

 (8)

Spearman correlation coefficient is also a rank correlation coefficient, which is named after the 
English psychologist Charles Spearman. The Spearman correlation between two variables is equal to 
the Pearson correlation between the rank values of those two variables. For a sample of size n, the n 
raw scores xi, yi are converted to ranks rank(xi), rank(yi). Then the two new variables rank(xi) and 
rank(yi) are brought into formula (7) to obtain the Spearman correlation coefficient rs shown in 
formula (9). Where rank(∙) is the ranking function that maps the original score to a positive integer, 
so the sample mean 𝑟𝑎𝑛𝑘ሺ𝑥ሻതതതതതതതതതതത ൌ 𝑟𝑎𝑛𝑘ሺ𝑦ሻതതതതതതതതതതത. Based on the rank(∙) function, the Spearman correlation 
coefficient rs can be reduced to formula (10). 

𝑟௦ ൌ
∑ ሺ𝑟𝑎𝑛𝑘ሺ𝑥ሻ െ 𝑟𝑎𝑛𝑘ሺ𝑥ሻതതതതതതതതതതതሻሺ𝑟𝑎𝑛𝑘ሺ𝑦ሻ െ 𝑟𝑎𝑛𝑘ሺ𝑦ሻതതതതതതതതതതതሻିଵ

ୀ

ට∑ ሺ𝑟𝑎𝑛𝑘ሺ𝑥ሻ െ 𝑟𝑎𝑛𝑘ሺ𝑥ሻതതതതതതതതതതതሻଶିଵ
ୀ ට∑ ሺ𝑟𝑎𝑛𝑘ሺ𝑦ሻ െ 𝑟𝑎𝑛𝑘ሺ𝑦ሻതതതതതതതതതതതሻଶିଵ

ୀ

 (9)

𝑟௦ ൌ 1 െ
6 ∑ ሺ𝑟𝑎𝑛𝑘ሺ𝑥ሻ െ 𝑟𝑎𝑛𝑘ሺ𝑦ሻሻଶିଵ

ୀ

𝑛ሺ𝑛ଶ െ 1ሻ
 (10)

Among the above three correlation coefficients, the Pearson correlation coefficient rp focuses on 
measuring the linear correlation between the original variables, the Kendall correlation coefficient rk 
focuses on measuring the rank correlation between the original variables, and the Spearman 
correlation coefficient rs focuses on measuring the linear correlation between the ranks of the original 
variables. Therefore, the prerequisite for the Pearson correlation coefficient is the highest, and the 
Kendall correlation coefficient is more suitable for relatively ordered variables, while the Spearman 
correlation coefficient is not sensitive to outliers and is more suitable for any type of variable. The 
strength of the correlation is determined by the value of |r|. The usual 5 grades include: extremely 
weak correlation (|r|∈[0.00, 0.19]), weak correlation (|r|∈[0.20, 0.39]), moderate correlation (|r|∈
[0.40, 0.59]), strong correlation (|r|∈[0.60, 0.79]), extremely strong correlation (|r|∈[0.80, 1.00]). 
There are also 3 grades including: weak correlation (|r|∈[0.10, 0.30]), moderate correlation (|r|∈
(0.30, 0.50)), strong correlation (|r|∈[0.50, 1.00]). 
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4 EXPERIMENT 

In order to quantitatively analyze the correlation between morphological and semantic evaluation 
metrics of multiple languages, we first implemented a bidirectional MT experimental system between 
20 foreign languages and Chinese, which includes 40 neural MT (NMT) models. Secondly, we 
prepared 20 datasets of XZho sentence pairs with a capacity of 200,000 pairs respectively. Where X 
belongs to the above set of 20 foreign languages, and Zho denotes Chinese. Thirdly, with the support 
of MT from the 20 languages to Chinese in the upper half of Figure 1, we carry out a correlation 
analysis experiment based on Chinese text and obtain the characteristics of Chinese. Finally, with the 
support of MT from Chinese to the 20 languages in the lower half of Figure 1, we carry out correlation 
analysis experiments based on texts in various languages and obtain the characteristics of these 
languages. 

4.1 MT EXPERIMENTAL SYSTEM 

Figure 2:  Multiloop Incremental Bootstrapping 
Framework 

Considering the diversity of object languages 
and the generalization of results, we use the 
industrial-grade multiloop incremental 
bootstrapping (MIB) idea to implement
multilingual MT experimental system (Liu, 
2023). This idea of semi-supervised 
incremental learning data augmentation 
idea, which promotes the advantages of 
supervised learning (Liu, 2017) and 
unsupervised learning (Liu, 2016), firstly 
uses appropriate bilingual corpus to train 
good bidirectional MT models; secondly 
fully taps the potential of Internet 
monolingual big data, and uses the trained 
MT models to translate monolingual 
sentences twice to incrementally construct a 
bilingual pseudo-corpus; thirdly the 
bilingual pseudo-corpus is used to enhance 
the initial bilingual corpus; Finally, the 
above process is loop-repeated based on the 
enhanced bilingual corpus, until the trained 
MT model meets the optimal performance 
requirements. 

Figure 2 shows the MIB framework, which mainly includes an MT Model Trainer, two machine 
translators (XZho Machine Translator, ZhoX Machine Translator), several Crawlers, a 
Similarity Scorer, and a Corpus Truncator. The MIB route is made up of multiple improvement 
loops. Step: We need to prepare an XZho (language X to Chinese) corpus of sentence pairs named 
XZhoCorpus. Step: The MT Model Trainer receives the XZhoCorpus, and trains out two MT 
models respectively from language X to Chinese and from Chinese to language X. Step: A group 
of parallel Crawlers continuously crawl language X texts from the Internet, and build a super-large-
scale language X sentence corpus (XCorpus). Step: The XZho Machine Translator translates 
each language X sentence (XSen) in XCorpus into the Chinese sentence (ZhoSen) according to the 
XZho MT model, and collects them to form a Chinese sentence corpus (ZhoCorpus). Step: The 
ZhoX Machine Translator translates the Chinese sentence (ZhoSen) in ZhoCorpus back into the 
language X sentence (XSen’) according to the ZhoX MT model, and collects them to form a language 
X sentence corpus (XCorpus’). Step: The Similarity Scorer calculates the similarity between the 
source sentence XSen and the result sentence XSen’ flowing through the two machine translators. 
Step: The Corpus Truncator sorts the corresponding sentence pair <XSen, ZhoSen> according 
to the similarity between XSen and XSen’, and truncates the TopN sentence pairs with the highest 
similarity to form a new XZho corpus of sentence pairs (XZhoCorpus’). Step: The XZhoCorpus’ 
is merged into the XZhoCorpus. The first closed loop is completed from the Step to the Step, 
and then the second loop is started from the Step again, and so on. The above multiple loops are 
used together to implement the complete MIB framework. 

According to the framework in Figure 2, we use an open-source training module of sequence-to-
sequence NMT model3 to implement the MT Model Trainer. The hparams of the NMT model 
mainly include the number of neurons (num_units = 512), the number of encoding and decoding 

                                                            
3 https://github.com/tensorflow/nmt 
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layers (num_encoder_layers = num_decoder_layers = 4), the batch size (batch_size = 512), and the 
beam search width (beam_width = 10), while others remain the default values. The 20 languages of 
Arabic (Ara), Czech (Ces), English (Eng), Filipino (Fil), French (Fra), Indonesian (Ind), Italian (Ita), 
Kazakh (Kaz), Khmer (Khm), Kyrgyz (Kir), Lao, Malay (Msa), Myanmar (Mya), Polish (Pol), 
Russian (Rus), Slovak (Slk), Spanish (Spa), Thai (Tha), Ukrainian (Ukr), Vietnamese (Vie) are 
selected and their morphological processing tools are implemented respectively. 

Table 2:  BLEU Values of NMT Models 
Language Pair BLEU Language Pair BLEU Language Pair BLEU Language Pair BLEU 
AraZho 44.26 LaoZho 32.12 ZhoAra 35.37 ZhoLao 23.08 
CesZho 45.14 MsaZho 34.32 ZhoCes 34.26 ZhoMsa 28.22 
EngZho 48.54 MyaZho 32.60 ZhoEng 39.23 ZhoMya 32.55 
FilZho 45.74 PolZho 44.85 ZhoFil 30.51 ZhoPol 34.39 
FraZho 47.59 RusZho 40.92 ZhoFra 36.88 ZhoRus 34.17 
IndZho 45.90 SlkZho 44.79 ZhoInd 39.19 ZhoSlk 35.28 
ItaZho 41.57 SpaZho 47.83 ZhoIta 34.65 ZhoSpa 37.12 
KazZho 38.26 ThaZho 38.95 ZhoKaz 28.75 ZhoTha 32.79 
KhmZho 37.77 UkrZho 44.94 ZhoKhm 27.62 ZhoUkr 33.37 
KirZho 35.03 VieZho 38.51 ZhoKir 26.55 ZhoVie 32.05 

We fixed the total number of loops and the increment of sentence pairs (TopN) to 11 and 1,000,000 
respectively. The corpus of sentence pairs (XZhoCorpus) for each language and Chinese, that is, the 
initial training set, contains 5,000,000 sentence pairs, while the final training set will contain 
15,000,000 sentence pairs after the execution of 11 loops. We also equip an additional 100,000 
sentence-pair development set and 100,000 sentence-pair test set for each language. For each 
language, the initial training set is the same distribution as the development set and the test set, which 
are divided from the same corpus by simple random sampling. While the Crawler captures from the 
open domain to form the monolingual sentence corpus (XCorpus), which is independent of the initial 
training set. To ensure the high availability of the Top1,000,000 pseudo-corpus, monolingual 
sentences at least 10 times TopN are captured in each loop, and then the Top1,000,000 sentence pairs 
are truncated based on the Levenshtein similarity score. The BLEU values of bidirectional NMT 
models4 between the 20 languages and Chinese are shown in Table 2. Among them, the BLEU values 
of the English-Chinese and Chinese-English NMT models are the highest, with 48.54 and 39.23, 
respectively. The BLEU values of the Lao-Chinese and Chinese-Lao NMT models are the lowest, at 
32.12 and 23.08, respectively. 

4.2 EXPERIMENTAL RESULTS IN CHINESE 

We run MT and correlation analysis experiments on the 20 datasets of XZho sentence pairs. For each 
pair of sentences <XSen, ZhoSen> in each XZho dataset, in Chinese space, we calculate the values 
of the 7 morphological evaluation metrics and the 4 semantic evaluation metrics between the Chinese 
sentence ZhoSen and the Chinese translation sentence ZhoSen.MT from XSen sentence. And then 
we perform Pearson correlation analysis on these 11 variables and calculate the Pearson correlation 
coefficients between any two variables in the {Distil, MiniLM, Mpnet, Roberta, Leven, Jaccard, Dice, 
Cosine, TER, CHRF, BLEU} set respectively. The 20 Pearson correlation heatmaps shown in Figure 
3 (A) were finally drawn. 

(A) Thumbnails (B) VieZho 

Figure 3:  Pearson Correlation Coefficient Heatmap in Chinese 

From Figure 3 (A), we can see that the statistical results on the 20 datasets of sentence pairs are 
basically the same. Without losing generality, we selected the correlation heatmap of VieZho 
(Vietnamese-Chinese) shown in Figure 3 (B) from the thumbnails for detailed analysis. First, a 
                                                            
4 Anonymous due to review requirements 
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conspicuous orange cross against a purple grid background, which shows that except for the smaller 
the TER value, the better the performance of the MT model, the other 10 variables are all the larger 
the value, the better the performance of the MT model. Secondly, the red 7×7 grids on the lower right 
of Figure 3 (B) show that there is an extremely strong correlation among morphological evaluation 
metrics, indicating that the statistical results of various morphological calculation methods tend to be 
the same on big data. For example, the correlation coefficient of Jaccard and Dice is 0.99, that of 
CHRF and BLEU is 0.99, that of Dice and Cosine is 0.95, and that of Jaccard and Cosine is 0.94. 
There is an extremely strong linear correlation in these 4 groups. In particular, the two groups with a 
correlation coefficient of 0.99 can almost be replaced with each other. Thirdly, the green 4×4 grids 
on the upper left of Figure 3 (B) show that there is a strong correlation between semantic evaluation 
metrics, indicating that although there are semantic spatial differences among various pre-trained 
models, the statistical results on big data also tend to be consistent. For example, the correlation 
coefficient of MiniLM and Mpnet is 0.90. The above-mentioned ubiquitous correlations largely stem 
from the equivalence of human cognition and the economy of knowledge representation. Furthermore, 
it is easy to find that the color grid of the whole figure tends to be dark (purple or orange), and light 
colors account for a small proportion. That is, the absolute values of all correlation coefficients were 
greater than 0.5, indicating a strong linear correlation between all 11 variables. The values of 
correlation coefficients between the morphological evaluation metrics and the semantic evaluation 
metrics range from 0.51 to 0.85, which shows that the deep “semantics” of various commercial hypes 
at present is just another high-level “morphology”. The Turing computing system can use symbols 
and operations to directly represent and accurately process morphologies, but can only simulately 
represent and approximately process semantics using symbols and operations. 

Table 3:  Average Pearson Correlation Coefficient in Chinese 
 Distil MiniLM Mpnet Roberta Leven Jaccard Dice Cosine TER CHRF BLEU 
Distil 1.0000 0.6140 0.6378 0.6737 0.6334 0.7915 0.8083 0.8221 -0.7357 0.7034 0.7234 
MiniLM 0.6140 1.0000 0.8877 0.4973 0.5192 0.6422 0.6562 0.6522 -0.5946 0.5637 0.5797 
Mpnet 0.6378 0.8877 1.0000 0.5246 0.4971 0.6319 0.6503 0.6519 -0.5803 0.5518 0.5687 
Roberta 0.6737 0.4973 0.5246 1.0000 0.5228 0.6636 0.6810 0.6923 -0.6094 0.5794 0.5960 
Leven 0.6334 0.5192 0.4971 0.5228 1.0000 0.7796 0.7635 0.7385 -0.8634 0.8220 0.8330 
Jaccard 0.7915 0.6422 0.6319 0.6636 0.7796 1.0000 0.9876 0.9323 -0.8745 0.8710 0.8820 
Dice 0.8083 0.6562 0.6503 0.6810 0.7635 0.9876 1.0000 0.9495 -0.8705 0.8372 0.8540 
Cosine 0.8221 0.6522 0.6519 0.6923 0.7385 0.9323 0.9495 1.0000 -0.8532 0.8226 0.8393 
TER -0.7357 -0.5946 -0.5803 -0.6094 -0.8634 -0.8745 -0.8705 -0.8532 1.0000 -0.8305 -0.8651 
CHRF 0.7034 0.5637 0.5518 0.5794 0.8220 0.8710 0.8372 0.8226 -0.8305 1.0000 0.9858 
BLEU 0.7234 0.5797 0.5687 0.5960 0.8330 0.8820 0.8540 0.8393 -0.8651 0.9858 1.0000 

We further calculated the arithmetic mean of Pearson correlation coefficients on the 20 datasets of 
sentence pairs. As shown in Table 3, the average Pearson correlation coefficient is almost the same 
as the Pearson correlation coefficient in each dataset of sentence pairs, which further indicates that 
this is an inherent attribute of the Chinese language itself. 

(A) Thumbnails (B) VieZho 

Figure 4:  Kendall Correlation Coefficient Heatmap in Chinese 

Table 4:  Average Kendall Correlation Coefficient in Chinese 
 Distil MiniLM Mpnet Roberta Leven Jaccard Dice Cosine TER CHRF BLEU 
Distil 1.0000 0.4533 0.4721 0.5238 0.4830 0.6339 0.6339 0.6497 -0.5887 0.5859 0.5874 
MiniLM 0.4533 1.0000 0.7352 0.3745 0.3898 0.4825 0.4825 0.4767 -0.4562 0.4441 0.4462 
Mpnet 0.4721 0.7352 1.0000 0.3940 0.3820 0.4823 0.4823 0.4801 -0.4519 0.4461 0.4481 
Roberta 0.5238 0.3745 0.3940 1.0000 0.4062 0.5264 0.5264 0.5336 -0.4853 0.4867 0.4877 
Leven 0.4830 0.3898 0.3820 0.4062 1.0000 0.5850 0.5850 0.5609 -0.7524 0.6315 0.6436 
Jaccard 0.6339 0.4825 0.4823 0.5264 0.5850 1.0000 1.0000 0.8085 -0.7302 0.6990 0.6962 
Dice 0.6339 0.4825 0.4823 0.5264 0.5850 1.0000 1.0000 0.8085 -0.7302 0.6990 0.6962 
Cosine 0.6497 0.4767 0.4801 0.5336 0.5609 0.8085 0.8085 1.0000 -0.7047 0.6948 0.6903 
TER -0.5887 -0.4562 -0.4519 -0.4853 -0.7524 -0.7302 -0.7302 -0.7047 1.0000 -0.7037 -0.7336 
CHRF 0.5859 0.4441 0.4461 0.4867 0.6315 0.6990 0.6990 0.6948 -0.7037 1.0000 0.9185 
BLEU 0.5874 0.4462 0.4481 0.4877 0.6436 0.6962 0.6962 0.6903 -0.7336 0.9185 1.0000 
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(A) Thumbnails (B) VieZho 

Figure 5:  Spearman Correlation Coefficient Heatmap in Chinese 

Table 5:  Average Spearman Correlation Coefficient in Chinese 
 Distil MiniLM Mpnet Roberta Leven Jaccard Dice Cosine TER CHRF BLEU 
Distil 1.0000 0.6282 0.6496 0.7098 0.6599 0.8192 0.8192 0.8344 -0.7761 0.7734 0.7759 
MiniLM 0.6282 1.0000 0.9006 0.5294 0.5488 0.6623 0.6623 0.6561 -0.6310 0.6164 0.6191 
Mpnet 0.6496 0.9006 1.0000 0.5537 0.5385 0.6615 0.6615 0.6594 -0.6253 0.6180 0.6208 
Roberta 0.7098 0.5294 0.5537 1.0000 0.5674 0.7097 0.7097 0.7186 -0.6626 0.6641 0.6663 
Leven 0.6599 0.5488 0.5385 0.5674 1.0000 0.7607 0.7607 0.7393 -0.8945 0.8098 0.8167 
Jaccard 0.8192 0.6623 0.6615 0.7097 0.7607 1.0000 1.0000 0.9414 -0.8973 0.8739 0.8727 
Dice 0.8192 0.6623 0.6615 0.7097 0.7607 1.0000 1.0000 0.9414 -0.8973 0.8739 0.8727 
Cosine 0.8344 0.6561 0.6594 0.7186 0.7393 0.9414 0.9414 1.0000 -0.8790 0.8719 0.8695 
TER -0.7761 -0.6310 -0.6253 -0.6626 -0.8945 -0.8973 -0.8973 -0.8790 1.0000 -0.8762 -0.8984 
CHRF 0.7734 0.6164 0.6180 0.6641 0.8098 0.8739 0.8739 0.8719 -0.8762 1.0000 0.9905 
BLEU 0.7759 0.6191 0.6208 0.6663 0.8167 0.8727 0.8727 0.8695 -0.8984 0.9905 1.0000 

We also performed Kendall correlation analysis and Spearman correlation analysis on the above 11 
variables and calculated the Kendall correlation coefficients and Spearman correlation coefficients 
between any two variables in the {Distil, MiniLM, Mpnet, Roberta, Leven, Jaccard, Dice, Cosine, 
TER, CHRF, BLEU} set respectively. Figure 4 is the Kendall correlation coefficient heatmap, and 
Table 4 is the average Kendall correlation coefficient. Figure 5 is the Spearman correlation coefficient 
heatmap, and Table 5 is the average Spearman correlation coefficient. The experimental results of 
Kendall correlation analysis and Spearman correlation analysis are consistent with those of Pearson 
correlation analysis. 

4.3 EXPERIMENTAL RESULTS IN 20 LANGUAGES 

In the same way, we also ran MT from Chinese to language X on the above-mentioned 20 XZho 
datasets of sentence pairs, and performed correlation analysis experiments on 11 variables in the 
{Distil, MiniLM, Mpnet, Roberta, Leven, Jaccard, Dice, Cosine, TER, CHRF, BLEU} set, trying to 
explore the morphological and semantic characteristics of these 20 languages. Finally, the Pearson, 
Kendall, and Spearman correlation coefficient heatmaps shown in Figure 6 were drawn. 

 
(A) Pearson Correlation Coefficient (B) Kendall Correlation Coefficient (C) Spearman Correlation Coefficient 

Figure 6:  Correlation Coefficient Heatmaps in 20 Languages 

Observing the heatmaps of the above 20 languages, it is found that the correlation among the 
morphological evaluation metrics or that among the semantic evaluation metrics of each language is 
significant, while the correlation between the morphological and semantic evaluation metrics is quite 
different. We straightforwardly divided it into three grades according to the values of correlation from 
high to low. The first grade: Latin alphabet or similar Latin alphabet languages, includes Ces, Eng, 
Fil, Fra, Ind, Ita, Msa, Pol, Slk, Spa, and Vie, a total of 11 languages; The second grade: Arabic 
alphabet and Cyrillic alphabet languages, includes Ara, Kaz, Kir, Rus, and Ukr; The last grade: non-
universal alphabet language, includes Khm, Lao, Mya, and Tha. Further analysis shows that the value 
of the correlation coefficient is approximately proportional to the morphological processing ability 
of the corresponding language in the experimental MT system. 
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To sum up, in order to overcome the personality deviation of manual evaluation and improve the 
evaluation efficiency, people put forward a morphological evaluation method based on a manual-
translated reference sentence. Because of the diversity of human language, especially the large 
number of synonyms, people have to provide multiple manual-translated reference sentences to 
alleviate it. Unfortunately, so far, most MT evaluation datasets only provide one manual-translated 
reference sentence. With the emergence of pre-trained models, people can basically implement the 
processing of synonymous sentences with only one manual-translated reference sentence through 
semantic similarity matching in big data space. We believe that this so-called semantic evaluation is 
nothing more than more ingenious morphological statistics in the big data space. 

5 CONCLUSION 

This paper focuses on the issue of MT evaluation and quantitatively analyzes the correlation between 7 
morphological evaluation metrics and 4 semantic evaluation metrics by using the Pearson correlation 
coefficient, the Kendall correlation coefficient, and the Spearman correlation coefficient. The analysis 
results of 21 languages show that for any language, there is a strong correlation among various 
evaluation metrics of the language, and the so-called deep “semantics” is just another high-level 
“morphology” under the current Turing computing system. Among different languages, the correlation 
between morphological evaluation metrics and semantic evaluation metrics is significantly different, 
and the value of the same correlation coefficient is approximately proportional to the morphological 
processing ability of the corresponding language. At present, our experimental MT system has a 
decreasing morphological processing ability of the Latin alphabet or similar Latin alphabet languages, 
the Arabic alphabet and Cyrillic alphabet languages, and non-universal alphabet languages. We believe 
that the ability to deal with the inherent morphological attributes of the language determines the 
translation effect of the MT model on the inherent semantic attributes of the language. 

Future research is devoted to expanding the number of languages for quantitative analysis, breaking 
through the limitation of the MT domain, and studying the quantitative relationship between language 
morphology and semantics at a more general level. Since the morphology and semantics of a language 
are closely related, what are those irrelevant parts? We found that the so-called semantics of pre-trained 
models is just morphology, so can we further guess that “The semantics of language do not exist at all?” 
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