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ABSTRACT

We present Federated Timeline Synthesis (FTS), a novel framework for training
generative foundation models across distributed timeseries data applied to elec-
tronic health records (EHR). At its core, FTS represents patient history as tokenized
Patient Health Timelines (PHTs), language-agnostic sequences encoding temporal,
categorical, and continuous clinical information. Each institution trains an autore-
gressive transformer on its local PHTs and transmits only model weights to a central
server. The server uses the generators to synthesize a large corpus of trajectories and
train a Global Generator (GG), enabling zero-shot inference via Monte Carlo simu-
lation of future PHTs. We evaluate FTS on five clinically meaningful prediction
tasks using MIMIC-IV data, showing that models trained on synthetic data gener-
ated by GG perform comparably to those trained on real data. FTS has the potential
to offer strong privacy guarantees, scalability across institutions, and extensibility
to diverse prediction and simulation tasks especially in healthcare, including coun-
terfactual inference, early warning detection, and synthetic trial design. We publish
the code at https://anonymous.4open.science/r/fts-paper.

1 INTRODUCTION

Recent breakthroughs in self-supervised learning on large-scale text corpora, most notably the GPT
family, have demonstrated the transformative potential of foundation models. However, extending
these successes to healthcare presents unique challenges. Beyond strict privacy regulations (e.g.,
GDPR, CCPA) and data-sovereignty constraints, clinical data is fragmented across institutional
silos and marked by substantial heterogeneity. Patient populations vary in demographics, disease
prevalence, and progression of medical interventions; documentation practices differ significantly
between institutions; and the language used in electronic health records (EHRs) is often domain-
specific, inconsistently structured, and highly variable. These factors pose significant obstacles to
training centralized, homogeneous foundation models in healthcare. To address these challenges
and enable scalable clinical modeling, we introduce Federated Timeline Synthesis (FTS), a privacy-
preserving, communication-efficient framework for training generative transformers across distributed
clinical data. At the core of FTS is a language-agnostic representation of medical information through
tokenized Patient Health Timelines (PHTs), designed to capture the longitudinal, quantitative, and
multimodal structure of real-world healthcare data.

Patient Health Timelines and Zero-Shot Inference A patient’s longitudinal record can be modeled
as an ordered sequence of clinical events, each transformed into one or more discrete tokens per
event, analogous to subword tokens in natural language processing (NLP) Kraljevic et al. (2024);
Renc et al. (2024); Zhou & Barbieri (2025). To capture the irregular timing of healthcare interactions,
time-interval tokens, drawn from a predefined set of nominal bins (e.g., 5 min, 20 min, 1 h, . . . , 1 yr),
can be incorporated into the timeline Renc et al. (2024). Continuous measurements (e.g., laboratory
results, vital signs) can be quantized into population-based quantile tokens, preserving relative value
rankings without revealing exact magnitudes. High-cardinality categorical variables (e.g., ICD codes,
medication codes) are tokenized using hierarchical tokenization, where each level of the taxonomy
contributes one or more tokens, analogous to byte-pair encoding in text. Multimodal inputs such as
clinical notes, radiology images, and genomic profiles can be processed through pretrained encoders
(e.g., transformers for text, CNNs for images) to produce fixed-dimensional embedding vectors,
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which are then interleaved into the token sequence. All tokens and embeddings are mapped to a
shared continuous vector space, enabling autoregressive transformer architectures (e.g., GPT-style
models) to learn longitudinal patterns, temporal dependencies, and intermodal relationships. We refer
to this unified, language-agnostic, privacy-aware, temporally resolved tokenized format as the Patient
Health Timeline (PHT) (Fig. 1). Such a representation enables zero-shot inference through Monte
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Figure 1: Tokenization and model training introduce two layers of anonymization.

Carlo simulation of future Patient Health Timelines (fPHTs). Given a partial patient timeline and a
conditioning prompt (e.g., task-specific token or outcome of interest), the model autoregressively
samples multiple plausible future trajectories. Predictions for clinical outcomes are then derived
by aggregating statistics over the generated fPHTs, such as the frequency of a target event, the
distribution of outcome classes, or the average value of a measurement. This approach allows the
model to generalize to previously unseen clinical prediction tasks without requiring task-specific
retraining, supporting flexible deployment across diverse clinical settings and outcome types, even in
the absence of labeled data (see Sec. 2.1 for details).

Federated Learning (FL) Since the introduction of Federated Averaging (FedAvg) by McMahan
et al. (2017), which established that local SGD with periodic model averaging can provably converge
under non-independent, identically, distributed client distributions, federated learning has rapidly
evolved to address five key challenges: statistical heterogeneity, communication efficiency, robustness,
personalization, and privacy. There are many innovations in FL developed over the years like proximal-
based methods such as FedProx Li et al. (2020a) stabilize client updates via regularization, while
control-variate schemes like SCAFFOLD Karimireddy et al. (2020) correct for client drift. For
thorough coverage of state of the art refer to Yurdem et al. (2024); Liu et al. (2024); Ji et al. (2024);
Choi et al. (2024).

Synthetic EHR and Federated Synthesis (FS) Complementary to real-data modeling, synthetic EHR
generation has emerged as a strategy to mitigate privacy concerns and data scarcity. Generative models
such as medGAN Choi et al. (2017) demonstrated the ability to synthesize realistic multi-label patient
records. Subsequent methods introduced temporality and multimodality: EHR-M-GAN Baowaly
et al. (2019) modeled both continuous and discrete sequences from ICU records, improving utility and
realism. Privacy-aware methods such as EHR-Safe Yoon et al. (2023) combine utility and protection
against re-identification. Synthetic data from these models have been used to augment predictive
tasks, boosting performance and enabling cross-institutional studies Torfi et al. (2022); Theodorou
et al. (2023); Zhou & Barbieri (2025). Together, these works highlight the growing role of synthetic
data in training and validating clinical foundation models while addressing privacy, fairness, and
generalizability constraints.

FS is an emerging paradigm that expands the traditional goals of FL by focusing not only on training
shared models but on collaboratively generating synthetic data across distributed clients. Unlike
conventional FL, which aggregates model gradients or weights while keeping raw data local, FS
aims to produce artificial datasets that approximate the statistical properties of decentralized data
without exposing individual records. This synthetic data can then be used for downstream machine
learning tasks, simulation, or model validation in privacy-sensitive domains such as healthcare. Most
approaches to federated synthesis rely on deep generative models, such as GANs and VAEs, trained
across client silos using federated protocols (e.g., FedAvg), with optional privacy enhancements
like differential privacy or secure aggregation Weldon et al. (2021); Behera et al. (2022); Ling et al.
(2024); Little et al. (2023).

EHR Foundation Models Foundation models have recently gained prominence in clinical informat-
ics, leveraging large EHR corpora to learn versatile representations for multiple tasks Vaswani & et al.
(2017); Huang et al. (2019); Lee et al. (2020). Transformer-based architectures originally developed
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for NLP now define the state of the art in EHR modeling Li et al. (2020b); Rasmy et al. (2021). Early
efforts such as BioBERT and ClinicalBERT focused on text; GatorTron later extended transformer
capacity to 8.9B parameters using over 90 billion words of clinical text Yang et al. (2022), achieving
gains in concept extraction and inference tasks. Structured EHR modeling with transformers has also
advanced. BEHRT Li et al. (2020b) incorporated temporality and bidirectionality to improve disease
prediction. Med-BERT Rasmy et al. (2021), pretrained on structured codes from 28 million patients,
achieved consistent improvements on downstream clinical classification tasks. There are great variety
of models developed based on structured and unstructured data Wornow et al. (2023); Renc et al.
(2024); Steinberg et al. (2023).

Federated Timeline Synthesis We introduce FTS, a non-trivial integration of the concepts dis-
cussed above, a federated learning framework in which clients train generative transformers on
their own PHTs. Once trained generator’s parameters are communicated to a central server as
demonstrated in Fig. 2. At the server, this generator can on-demand synthesize customized (to
achieve cohort balancing and and fairness) unlimited token sequences to train Global Genera-
tor (GG) without additional client interaction. By exchanging only model weights, FTS aims to
achieve strong privacy guarantees without expensive cryptographic machinery, substantially re-
duces communication overhead compared to iterative gradient exchanges or bulk synthetic-data
transfers, and does not require task-specific finetuning neither on client or server side due to
zero-shot design of PHTs. The GG model can be deployed back to contributing or new clients
(Fig. 2) to perform zero-shot inference, or generate synthetic PHTs for local model training.

k1

S

GG

Deploy

Aggregate

k2

k3

kK

Figure 2: Federated Time-
line Synthesis (FTS) workflow.
Clients (k1 to kK) train lo-
cal generative transformers on
their PHTs and send trained
generative models to a cen-
tral server. The global gen-
erator (GG) is trained on the
generated output of models.
The trained GG can then be
deployed to both contributing
and unseen sites (S) for zero-
shot inference.

Significance of Federated Timeline Synthesis By converting het-
erogeneous clinical records into a sequence of discrete tokens, in-
terval tokens for time gaps, quantile tokens for continuous variables
(e.g., labs and vitals), and hierarchical tokens for high-cardinality
codes, PHTs offer three key advantages. First, they aim to pro-
vide strong privacy guarantees: raw timestamps and exact values
remain local, and the tokenization process obscures fine-grained
information before any model accesses the data. Real PHTs never
leave the client. Second, they establish a common, language-like
vocabulary that accommodates missingness Qian et al. (2025), irreg-
ular sampling, and inter-institutional heterogeneity in both patient
populations and documentation practices. This enables transformer
models to capture long-range temporal dependencies and causal
event structure using the same mechanisms developed for natural
language modeling. Third, PHTs enable multimodal integration by
embedding clinical notes, images, genomics, and tabular EHR data
into a unified representation, yielding a flexible and extensible input
format for foundation models.
When applied in a federated setting, this tokenized representation
unlocks additional benefits in scalability, generalizability, and de-
ployment flexibility. Because clients exchange only model param-
eters, never gradients or synthetic data, FTS significantly reduces
communication overhead and eliminates the need for task-specific
coordination or retraining. By task-specific coordination, we refer
to the conventional requirement that participating institutions explic-
itly align on the details of each individual predictive task, such as
defining consistent outcome variables, harmonizing label definitions,
preprocessing rules, or configuring task-specific model heads. Such coordination can be burdensome,
especially when institutions differ in coding practices, clinical workflows, or available data. In
contrast, the FTS framework supports general-purpose foundation models trained PHTs, enabling
downstream zero-shot inference across diverse tasks without requiring each site to anticipate or pre-
pare for specific clinical endpoints. This dramatically improves scalability and makes collaborative
model development more feasible in heterogeneous healthcare environments.

The globally aggregated generative model (GG) supports zero-shot inference and can be deployed
across institutions regardless of language or documentation style. It can synthesize unlimited,
customized token sequences or predict future PHTs for zero-shot downstream tasks. The vocabulary-
driven design naturally accommodates emerging data types (e.g., new codes, medications, wearable
signals, social determinants) by extending the token space while preserving backward compatibility
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with previously trained models. Much like LLMs, the GG, operating over PHTs rather than free text,
can serve as a base model for downstream fine-tuning or token-level augmentation, supporting a
flexible and modular development path for clinical AI innovation.

Contributions This paper makes two primary contributions.
First, we introduce Federated Timeline Synthesis (FTS), a framework that combines generative
modeling with federated learning by leveraging patient health timelines (PHTs). Instead of sharing
raw data or model gradients, each institution trains a local autoregressive generator and shares only
synthetic timelines, which are then aggregated into a global generator. This design reduces the need
for direct data exchange and provides a communication-efficient alternative to conventional federated
learning. While FTS has the potential to improve privacy, we emphasize that we do not provide
formal privacy guarantees, and our approach should be viewed as complementary to, rather than a
substitute for, established privacy-preserving methods such as differential privacy.
Second, we implement and empirically evaluate FTS in a controlled setting using the MIMIC-IV
dataset. Specifically, we test whether models trained on synthetic PHTs generated by local client
models can approximate the predictive performance of models trained directly on real data. Our
experiments, focused on several clinical classification tasks, demonstrate that FTS can achieve
performance close to real-data baselines under homogeneous conditions. These results support
the feasibility of synthetic PHTs as a practical proxy for real data in structured clinical prediction
tasks, while also highlighting open challenges around generalization to heterogeneous institutions,
robustness to distributional shifts, and formal privacy analysis.

2 METHODS

Federated Timeline Synthesis requires medical data in tokenized timelines (PHTs) for the purpose of
safety and efficiency. We describe the mathematical formalism of such approach in 2.1. We based
our formulation on Renc et al. (2024). In the next section 2.2, we describe the FTS framework and
provide details of implementation used in this work.

2.1 MEDICAL DATA REPRESENTATION, INFERENCE.

Timeline representation: We model each patient p by a strictly ordered sequence of clinical events
Tp as:

Tp =
(
ep,1, ep,2, . . . , ep,Np

)
,where ep,i =

(
τp,i, yp,i

)
with Timestamp

τp,i ∈ R, (τp,1, sp,1) <lex (τp,2, sp,2) <lex · · · <lex (τp,Np
, sp,Np

),

where <lex denotes lexicographic order, and sp,i ∈ {1, 2, . . . } is a fixed secondary key (e.g. the index
of the event’s name in an alphabetically sorted dictionary) used to break ties when τp,i = τp,i+1. and
Raw payload

yp,i ∈
⋃

m∈{scalar, vector, text, image,... }

Ym or yp,i = ∅,

where Ym is the space of modality m (e.g. a single lab value, a vector of vital signs, a clinical note,
or an image). If yp,i = ∅, that event has no payload.

At this stage, the Tp is simply the ordered sequence of raw events with heterogeneous payloads (or
none) and captures the full, chronological clinical trajectory of patient p.

Patient Health Timeline (PHT) To convert each raw event sequence Tp into a discrete representation
suitable for transformer input, we define a tokenization function T that maps each event ep,i to a
short subsequence of tokens:

T : ep,i 7→ (xp,j , xp,j+1, . . . , xp,j+ki−1), xp,j ∈ V,
where V is the vocabulary of tokens and the index j corresponds directly to the position of the first
token from the event ep,i in the overall patient-level token sequence. Each event typically corresponds
to 1–10 tokens. For example, an event occurring 6 minutes after the previous event, coded by the
ICD-10 code E11.65 (Type 2 diabetes mellitus with hyperglycemia), can be tokenized as:

T (ep,i) =
(
INT5min︸ ︷︷ ︸

∆τ

, E11︸︷︷︸
ICD token 1

, 65︸︷︷︸
ICD token 2

)
.
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Here, the 6-minute interval is rounded to the nearest predefined bin (INT5min), and the ICD code
E11.65 is split into two hierarchical tokens, E11 and 65, resulting in a total of ki = 3 tokens.
Concatenating tokenizations across all events produces the full patient-level token sequence:

xp = (xp,1, xp,2, . . . , xp,Lp
),

and aggregating {xp}Pp=1 over all patients provides the complete training corpus for the generative
transformer. Lp is the length of PHT for patient p.

Types of tokens representing medical data: The vocabulary V is partitioned into four token classes:

Static tokens: Patient-level attributes, time independent or slowly changing, emitted once at the start
(τp,1), such as age bin at the start of PHT, sex, or baseline diagnoses, marital status, socioeconomic
factors. Static tokens are not optimzied in the training and always occupy start of the the timeline.

Hierarchical tokens: Multi-level categorical codes (e.g. ICD-10 “I11.65”) are decomposed into suc-
cessive prefixes: I11 → 65 capturing taxonomic structure. Other examples include the Anatomical
Therapeutic Chemical (ATC) classification system, which provides standardized codes for medica-
tions, indicating their therapeutic purpose and pharmacological class. Similarly, procedure codes such
as CPT (Current Procedural Terminology) or ICD-10-PCS encode medical and surgical procedures
performed on patients. These hierarchical coding systems enable consistent, structured representation
of medications and procedures, facilitating interoperability, predictive modeling, and analysis across
diverse healthcare settings.

Interval tokens: The inter-event gap ∆τi = τp,i − τp,i−1 is binned into one of B nominal durations
(e.g. 5 min, 1 h, 1 d, 1 w, . . . ), yielding INTb. If time interval between events is shorter than some
predefined threshold (typically defined as half of the shortest interval token) no time interval token is
emitted.

Measurement (quantile) tokens: Each continuous measurement v (e.g. a lab value or vital sign) is
discretized into one of Q quantiles via its empirical cumulative distribution function F :

q = min
(
⌊F (v)Q⌋, Q− 1

)
, Q = 10,

and emitted as QNTq . For example, a blood-pressure event ep,i recorded 1 minute after the previous
event would yield

T (ep,i) =
(

BP︸︷︷︸
blood pressure

, QNT5︸ ︷︷ ︸
systolic decile

, QNT7︸ ︷︷ ︸
diastolic decile

)
,

where no interval token is emitted since the 1 min gap is below the minimum 2.5-min threshold
assuming 5 min is the minimum time interval token.

This tokenization preserves event order and heterogeneity, producing a unified sequence of tokens.
Any further embedding (e.g. via token-type embeddings or pretrained encoders) is applied after
tokenization.

Multimodal Embeddings. Some events carry unstructured or high-dimensional data (e.g. clinical
notes, radiology images, or genomic profiles). After tokenization, each such payload y

(m)
p,i is passed

through a pretrained encoder:

z
(m)
p,i = hm

(
y
(m)
p,i

)
∈ Rd, m ∈ {notes, images, genomics},

where hnotes is, for example, a frozen Transformer (e.g. ClinicalBERT), himages a frozen CNN
backbone, and hgenomics a frozen MLP. These vectors z

(m)
p,i are then inserted at the appropriate

sequence positions.

Embedding Layer. Each discrete token xp,j ∈ V is mapped to a trainable embedding via a shared
lookup:

E : V → Rd, ep,j = E(xp,j).

Concatenating the token embeddings {ep,j}
Lp

j=1 with the frozen modality embeddings {z(m)
p,i } in

event order yields the final sequence(
ep,1, . . . , ep,Lp , z

(m)
p,1 , . . .

)
which serves as input to the transformer.

5
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Zero-Shot Probabilistic Inference via Future PHT Simulation Once the global generator fθ∗

has been trained, and optionally fine-tuned using local data from a client not included during the
initial training, we perform probabilistic inference by autoregressively sampling multiple future
continuations, or future Patient Health Timelines (fPHTs), for each patient. Specifically, given an
observed PHT prefix

xp,1:Lp
= (xp,1, . . . , xp,Lp

),

we generate N simulated trajectories

{x̃(n)
p }Nn=1 ∼ fθ∗(· | xp,1:Lp),

sampling tokens sequentially until a predefined stopping criterion is met (e.g., appearance of a target
event token or reaching a maximum simulation horizon).

For binary classification tasks, consider an event E of interest (e.g., inpatient mortality). Let

M =

N∑
n=1

1{E-token ∈ x̃(n)
p }.

The probability of event E is estimated as

P̂ (E | xp,1:Lp
) =

M

N
.

For multiclass classification tasks, suppose the event of interest E has C mutually exclusive classes
(e.g., discharge disposition with classes: home, rehabilitation facility, skilled nursing facility). Letting
Mc represent the number of trajectories ending with class c, we estimate the probability distribution
over classes as

P̂ (E = c | xp,1:Lp
) =

Mc

N
, c ∈ {1, . . . , C}, where

C∑
c=1

Mc = N.

For regression tasks, we predict continuous outcomes by extracting quantitative values from tokens
generated within simulated trajectories. Let vn be the predicted quantitative value from the n-th
simulated trajectory (e.g., lab result, vital sign measurement, time of occurrence). We estimate the
regression outcome as the average:

v̂p =
1

N

N∑
n=1

vn.

Thus, by simulating multiple fPHTs, the method produces zero-shot, scenario-based predictions
that naturally account for uncertainty and temporal dependencies, flexibly accommodating binary,
multiclass, and regression inference tasks in patient trajectory modeling.

2.2 FEDERATED TIMELINE SYNTHESIS FRAMEWORK

Training of Global Generator (GG) We assume K clients, each holding a disjoint set of tokenized
Patient Health Timelines (PHTs), denoted PHTk. On client k, we train a local autoregressive
transformer generator fθk by minimizing the standard negative log-likelihood objective:

Lk(θk) = −
∑

p∈PHTk

Lp∑
j=1

log pθk(xp,j | xp,1:j−1).

Once local training converges, each client transmits its model parameters {θk} to a central server.
The server then uses these generators to produce a large synthetic corpus of pseudo-PHTs P̃HT. This
generation process can be guided by fixing static tokens (e.g., sex, race, or socioeconomic status) to
control characteristics of the synthetic patients. Specifically:

P̃HT =

K⋃
k=1

{x̃k,i}Mi=1 , x̃k,i ∼ fθk(·).

6
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A global generator fθ∗ is then trained on the synthetic corpus P̃HT by minimizing:

Lsyn(θ) = −
∑

x̃∈P̃HT

|x̃|∑
j=1

log pθ(x̃j | x̃1:j−1).

This two-stage process ensures that no raw or fine-grained clinical data ever leaves a client site,
while the globally trained model captures aggregate patterns from all participating institutions. Once
trained, the global generator fθ∗ can be deployed back to contributing clients for local inference or
fine-tuned further on real patient data from non-contributing institutions. The model can also be
adapted to local needs, for example, by adding domain-specific tokens or incorporating unseen data
modalities, without retraining from scratch.

3 EXPERIMENTS AND RESULTS

We evaluate our approach on five clinically relevant downstream tasks (DTs): DRG, SOFA score, 30-
day readmission, ICU admission and in-hospital mortality prediction (see Sec. D for task definitions).
All experiments are conducted on the MIMIC-IV datasetJohnson et al. (2023), which we partition
at the patient level into four splits: orig, test, val1, and val2, using a 90%, 10%, 5%, and
5% ratio, respectively. Our experimental pipeline consists of four stages: (1) splitting the orig
set into subsets, (2) selecting the optimal inference temperature for downstream task evaluation,
(3) tuning the temperature for synthetic data generation, and (4) performing the final evaluation of
hypothetical Federated Synthesis scenarios. Stages (1) and (2) are evaluated on val1 and val2 to
prevent overfitting to the test set, while stages (3) and (4) are carried out on test.

Experimental Details: All models are GPT-style transformers with 3 layers, hidden dimension 768,
and 12 attention heads. We use a dropout rate of 0.3 and a context window of 2048 tokens. Training
is performed using the AdamW optimizer with a learning rate decaying from 6× 10−4 to 1× 10−5

over 50,000 iterations, and we train each model for 300 epochs and choose the checkpoint of the
lowest loss of the last 5 validation evaluations. The effective batch size is 512. All experiments were
run on nodes equipped with 8 NVIDIA A100-SXM4-40GB GPUs and 1T RAM. They training time
varies across datasets from 4 to 30h.

Training Data Division This stage simulates a realistic scenario in which large and small healthcare
facilities have access to differing volumes of electronic health record (EHR) data. For simplicity, we
assume that data formats are fully harmonized across institutions.

Our goal is to identify the point at which model performance begins to degrade due to data scarcity,
recognizing that the MIMIC dataset is sufficiently large for performance to plateau on a subset of
data. To this end, we train models on progressively larger subsets of orig and evaluate them on DTs.
For each setting, we compute the overall performance score across the five tasks (see Sec. E) using
the val1 split.

As shown in Tab. 3, we observe a substantial performance drop consistently across all DTs when
training on 20% of the data, with further degradation at 10%. Based on these results, we define the
following subsets of orig: big (80%), small (20%), and little (10%, a subset of small).
These partitions are used in subsequent experiments to emulate institutions with varying levels of
data availability.

Inference Temperature Selection Zero-shot inference enables the model to express uncertainty by
repeatedly generating future Patient Health Timelines (fPHTs). We conduct a series of experiments
varying the temperature parameter. We train a model on the orig split, and evaluate its performance
using inference temperatures ranging from 0.7 to 1.2 on the val2 split. Detailed results are reported
in Tab. 4. Additionally, we analyze the calibration of the three best-performing temperatures on binary
classification tasks in Fig. 5. The results suggest that all three achieve well-calibrated predictions.
Based on the overall score and calibration curves, we find that an inference temperature of 0.9 yields
the best results.

Synthetic Data Generation Tuning In this work, we aim to transfer knowledge from models trained
on original EHR data without exposing sensitive information. This is enabled by autoregressive
models, that are trained to generate data in the same format they were trained on. The knowledge
transfer occurs through the generation of new PHTs, which we refer to as synthetic.

7
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We hypothesize that the quality and utility of the synthetic data can be influenced by the temperature
parameter used in the generation. Specifically, lower temperatures (e.g., below 1.0) may lead to more
conservative generations that reflect only the most reliable patterns from the training data, potentially
reducing noise. In contrast, higher temperatures (e.g., above 1.0) may introduce greater variability,
potentially improving model robustness on DTs by broadening the data distribution.

To explore this, we generate synthetic versions of the big, small, and little splits using four
temperature settings: 0.7, 0.9, 1.0, and 1.1. Each synthetic dataset is matched in patient count and
demographic distribution to its original counterpart. We evaluate all generated datasets on the test
split and compute the overall score across all DTs. For the performance evaluation, we use the
temperature of 0.9 that we established in the previous experiment. Results are reported in Tab. 5, and
calibration curves in Fig. 6. In addition, we perform a fidelity evaluation of the generated datasets
and we report its results in C.

0.0 0.2 0.4 0.6 0.8 1.0
Overall Score (95% CI)

big
big+small_synth
small+big_synth
little+big_synth

big_synth
big_synth+small_synth

small
little+small_synth

little
small_synth
little_synth
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Figure 3: Overall score for downstream tasks across various training
datasets, including real and synthetic combinations. Each synth
dataset is generated to match the demographic distribution and patient
count of its real counterpart.

The results indicate that
a generation temperature
of 1.0 yields the best per-
formance, and the calibra-
tion is similar across 0.9-
1.1 temperature. Deviating
from this default value al-
ters the token distribution
and occasionally introduces
inconsistencies in the gener-
ated PHTs, such as out-of-
context tokens or underrep-
resentation of specific token
groups. A detailed analysis
of token group frequencies
across temperature settings
is provided in Tab. 7.

Evaluation of Federated
Timeline Synthesis Sce-
narios In the hypothetical
deployment of Federated Synthesis, we consider two primary scenarios: (1) multiple institutions
each contribute a generator trained on their relatively small local dataset to a central server, which
aggregates them into a unified global Generator (GG); (2) a single institution utilizes the GG either
directly for downstream tasks (DTs), or in combination with its own data to enhance the performance.

To evaluate these scenarios, we design experiments that simulate both contributions to and usage of
the GG under varying data availability, and in various combinations with original and synthetically
generated datasets. We report the results for all the setting across all DTs in Fig. 3.

The results demonstrate that synthetic data can substantially enhance model performance in low-
resource settings. Notably, combining a small dataset with synthetic data generated by a model trained
on a larger corpus (small+big synth, little+big synth) significantly boosts performance,
approaching the level achieved by training directly on the big dataset. Moreover, aggregating
synthetic data from multiple sources (big synth+small synth) outperforms using the real
small dataset alone.

It is worth noting that big and big+small synth achieve comparable performance, as indicated
by overlapping confidence intervals. This is consistent with our earlier findings that performance on
downstream tasks plateaus once the training set exceeds the size of the small split. However, it is
also clear that knowledge is not fully preserved in the synthetic data: all models trained exclusively on
synthetic datasets underperform their counterparts trained on real data (e.g., big vs. big synth).
This highlights both the potential and the current limitations of Federated Synthesis in fully capturing
complex clinical patterns.
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4 DISCUSSION AND CONCLUSION

Summary of Results This study introduces FTS, a novel approach to privacy-preserving foundation
model training on distributed EHR data using tokenized PHTs. Our experiments across five clinically
meaningful downstream tasks demonstrate that models trained on synthetic PHTs generated via
FTS retain strong predictive performance. Specifically, models trained on a combination of real
and synthetic data (small+big synth, little+big synth) perform nearly as well as those
trained on the full real dataset (big), significantly outperforming low-resource baselines. Synthetic
datasets also enable performance recovery in small data regimes and support data augmentation
without sharing real patient records. While a performance gap remains between fully synthetic and
fully real datasets, the gap is modest and consistent with the expected information loss in generative
modeling.

Beyond traditional classification and regression Future PHTs support a broad spectrum of predic-
tive, generative, and reasoning tasks in clinical AI. It extends naturally to time-to-event modeling,
such as estimating the time until ICU admission or disease progression. PHTs also facilitate counter-
factual reasoning, where the impact of alternative interventions can be simulated to assess potential
outcomes. Through prompt conditioning and repeated sampling, models trained on PHTs can perform
zero-shot clinical question answering, risk stratification, and early warning detection by identifying
anomalous, high-risk patterns, or rare conditions. Additionally, embeddings extracted from PHTs
can be used for patient similarity search, cohort construction, or phenotyping, uncovering latent
subgroups in the population. The structured token representation also enables data imputation and
missing event reconstruction, improving timeline completeness. Finally, by simulating entire cohorts,
PHTs offer a path toward in silico trial design and the creation of synthetic control arms, supporting
ethical and scalable clinical research without requiring access to sensitive real-world data.

Other applications. Although this framework is developed for healthcare time series, it naturally
generalizes to other domains involving heterogeneous, sparse, and privacy-sensitive temporal data.
Custom tokenization schemes would be required to adapt to specific settings, for example, in financial
markets, where modeling equity price movements from stock quotes, transaction records, and
proprietary signals could benefit from privacy-preserving, federated generative modeling. Potential
applications include financial transaction modeling, user behavior analysis in digital platforms,
industrial sensor monitoring, and longitudinal studies in social sciences. In each case, the core
components of our approach, tokenized timeline representation, local generative modeling, and
federated synthesis, can be adapted to enable scalable, privacy-preserving foundation model training
without centralizing raw time-series data.

Limitations While our study introduces a novel framework for privacy-preserving model training,
several limitations remain. First, we do not provide a formal privacy analysis of the proposed approach.
Although federating via synthetic data generation reduces direct exposure of raw records, it does
not guarantee protection against potential attacks such as membership inference or model inversion.
Formal privacy-preserving mechanisms (e.g., differential privacy or secure aggregation) could be
integrated with our framework, but their impact on utility and performance remains unexplored.
Second, we have not demonstrated generalizability to real-world deployment scenarios, as this would
require access to diverse clinical datasets and large-scale simulations across multiple institutions.
Our experiments are limited to a single dataset, and generalization to heterogeneous data sources,
particularly in the presence of covariate shift or institutional specialization, remains to be explored.
To the best of our knowledge, MIMIC-IV is the only publicly available EHR dataset with sufficient
coverage and granularity to support this type of analysis. While other datasets such as eICU Pollard
et al. (2018) and AmsterdamUMCdb Thoral et al. (2021), they are restricted to the ICU setting
and lack the breadth of MIMIC-IV. Third, our current framework does not incorporate multimodal
information (e.g., clinical notes, imaging), which could further improve both prediction performance
and the clinical realism of synthetic data. Fourth, we use a fixed model architecture across all
settings to ensure consistent capacity across institutions of different sizes. This means that both
small and large institutions train models with the same number of parameters, which may not be
optimal. Exploring model scaling strategies relative to data availability would require extensive
additional experimentation and is left for future work. Finally, while the global generator architecture
provides opportunities for fairness-aware training or demographic balancing, we do not investigate
such approaches in this work. In future work, we plan to address these limitations.
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A TIMELINE IMPLEMENTATION FOR FEDERATED SYNTHETIC EHR
GENERATION

Several timeline representations have been proposed for autoregressive modeling of electronic health
records (EHRs). Among these, Hierarchical Autoregressive Language mOdel (HALO) Theodorou
et al. (2023) and Hierarchy- and Semantics-Guided Transformer (HiSGT) Zhou & Barbieri
(2025) are two notable examples that leverage hierarchical structures and semantic embeddings to
improve fidelity. HALO models patient records as hierarchical timelines with visit-level and code-
level granularity, but its reliance on per-visit tokenization limits its flexibility to capture fine-grained
temporal patterns and to extend beyond diagnoses and selected laboratory tests. HiSGT enhances this
framework by incorporating semantic information from clinical language models and taxonomies,
but it similarly operates on visit-segmented sequences and lacks temporal continuity across events.

In this work, we adopt ETHOS Renc et al. (2024) as the timeline representation for our proposed
Federated Synthesis (FS) framework. Unlike visit-based approaches, ETHOS represents patient
records as flat, continuous sequences of tokens. This design offers several practical advantages:

Extensibility to new data: ETHOS removes the dependency on site-specific visit definitions,
enabling the inclusion of information from outside the hospital setting, such as emergency department
or outpatient visits.

Multimodal support: ETHOS facilitates the incorporation of diverse event types and modalities,
including free-text notes and medical imaging (e.g., chest X-rays), as additional tokens within the
patient timeline.

Proven utility: ETHOS has demonstrated good performance across a wide range of downstream
tasks and currently supports parsing of nearly all structured elements in electronic medical records.

While HALO and HiSGT offer valuable design insights for centralized, visit-based synthetic EHR
generation, ETHOS provides a more generalizable and extensible foundation for federated syn-
thetic data generation. This makes ETHOS our choice for enabling large-scale, cross-institutional
applications of synthetic EHR data.

B COMPUTATIONAL COST OF FEDERATED TIMELINE SYNTHESIS

FTS offers notable computational efficiency compared to traditional federated learning (FL) and
privacy-preserving training frameworks. Conventional FL approaches typically involve iterative gradi-
ent exchanges and frequent synchronization across clients, resulting in substantial communication and
coordination overhead. In contrast, FTS requires only a one-time transmission of trained generator
weights from each client, significantly reducing network traffic and simplifying orchestration.

While FTS is efficient during both the training and communication phases, its inference stage
introduces additional computational overhead. Accurate prediction requires sampling multiple
future Patient Health Timelines (PHTs) per patient to estimate outcome probabilities, which can be
resource-intensive. However, this generative inference is performed only once per patient timeline
and can support a broad range of downstream tasks, effectively amortizing the cost across multiple
applications. Moreover, this overhead is mitigated by the ongoing trend of decreasing computational
costs and increasing hardware efficiency.

C FIDELITY EVALUATION

To quantify the statistical alignment between real and synthetic EHR data, we adopt two recognized
fidelity metrics: Unigram Distribution and Dimension-Wise Correlation. These metrics have been
used in prior works Theodorou et al. (2023); Zhou & Barbieri (2025) to evaluate the preservation of
marginal and patient-level code statistics. Importantly, they do not rely on visit-based tokenization,
making them well-suited to our timeline-based generation framework.

Unigram Code Distribution (R2). The Unigram score measures how well the marginal frequency
of individual medical codes is preserved between real and synthetic datasets. Given the code frequency
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f real
i in the real dataset and f synth

i in the synthetic dataset, the R2 coefficient is computed as:

R2
Unigram = 1−

∑
i

(
f real
i − f synth

i

)2

∑
i

(
f real
i − f̄ real

)2 (1)

where f̄ real is the mean frequency across all codes in the real dataset. Higher R2 values indicate better
alignment with the real code distribution.

Dimension-Wise Correlation (R2). To evaluate patient-level consistency, we compute the
Dimension-Wise (DimWise) correlation. For each patient p, we define a normalized code frequency
vector:

vp =
code counts for patient p
total codes for patient p

(2)

We then average these vectors across all patients in the real and synthetic datasets, obtaining v̄real and
v̄synth, respectively. The R2 coefficient is calculated as:

R2
DimWise = 1−

∑
i

(
v̄real
i − v̄synth

i

)2

∑
i

(
v̄real
i − v̄real

)2 (3)

where v̄real is the mean across all dimensions in the real dataset. This metric assesses how well the
overall patient-level code distributions are preserved.

Metric Selection Justification. While Theodorou et al. (2023); Zhou & Barbieri (2025) have
included bigram and sequential bigram metrics to assess intra-visit and inter-visit code dependencies,
our generation framework produces patient-level sequences without explicit visit segmentation. As
a result, these visit-based metrics are not directly applicable to our evaluation setting. Moreover,
if we were to treat the entire patient timeline as a single “visit” and apply bigram or sequential
bigram calculations, the computational complexity would increase exponentially with sequence
length, making such evaluations computationally infeasible for long patient trajectories. Therefore,
we focus on Unigram and DimWise correlation, which provide scalable and meaningful, visit-agnostic
assessments of statistical fidelity at both the population and patient levels.

Implementation Details. As described in Sec. A, our framework uses PHTs represented as flat,
continuous token sequences. To ensure computational tractability during fidelity evaluation, we
follow the same timeline truncation strategy used in ETHOS and limit each patient timeline to
a fixed maximum length. Specifically, we compute Unigram Code Distribution and Dimension-
Wise Correlation on truncated timelines capped at a predefined timeline size. Additionally, to
comprehensively assess the fidelity of our synthetic data, we perform evaluations on both timeline
datasets, representing continuous patient trajectories, and readmission datasets, which
focus on patient episodes related to hospital readmissions. This dual evaluation provides a holistic
view of the fidelity of our FTS framework across different data structures and clinical contexts.

Evaluation Results. Tab. 1 and Tab. 2 report the fidelity evaluation results on both the timeline
and readmission datasets, respectively. Across different sampling temperatures and data scales (big,
small, little), the model consistently achieves high Unigram and Dimension-Wise R2 scores,
demonstrating strong alignment with the statistical properties of real data. The results show that
temperature 1.0 generally yields the best performance, achieving near-perfect correlation (R2 > 0.99)
across both datasets. While performance on the smaller ”Little” dataset is slightly lower, especially
for the readmission data where R2 drops below 0.95, fidelity remains robust across all configurations.
These results validate the effectiveness of our framework in generating synthetic EHR data that
preserves both population-level and patient-level statistical characteristics under different sampling
and data availability scenarios.
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Temperature
Big Small Little

Unigram DimWise Unigram DimWise Unigram DimWise

0.7 0.930 0.930 0.936 0.937 0.954 0.954
0.9 0.991 0.991 0.992 0.992 0.976 0.976
1.1 0.998 0.998 0.995 0.995 0.955 0.955

1.0 0.999 0.999 0.998 0.998 0.961 0.961

Table 1: Fidelity evaluation results on the timeline dataset across sampling temperatures (0.7, 0.9,
1.1, 1.0) and data scales (Big, Small, Little) for Unigram and Dimension-Wise R2. Temperature
1.0 yields near-perfect correlation (R2 > 0.99) on big and small data, while the little dataset
shows slightly lower but still strong fidelity (around 0.96).

Temperature
Big Small Little

Unigram DimWise Unigram DimWise Unigram DimWise

0.7 0.959 0.978 0.945 0.983 0.795 0.947
0.9 0.995 0.996 0.995 0.997 0.808 0.934
1.1 0.997 0.999 0.995 0.995 0.954 0.979

1.0 0.999 0.999 0.996 0.996 0.854 0.944

Table 2: Fidelity evaluation results on the readmission dataset across sampling temperatures (0.7, 0.9,
1.1, 1.0) and data scales (Big, Small, Little) for Unigram and Dimension-Wise R2. Temperature 1.0
yields near-perfect correlation (R2 > 0.99) on big, while small shows slightly lower fidelity and
the little dataset has much lower Unigram (around 0.85).
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(a) Temperature=0.7 (b) Temperature=0.9

(c) Temperature=1.1 (d) Temperature=1.0

Figure 4: Comparison of unigram code distributions between real and synthetic data for the Big dataset
under different sampling temperatures. Each subplot shows the alignment of code probabilities, with
the red dashed line representing perfect agreement (y = x). As the temperature increases from 0.7 to
1.0, the alignment improves, reaching near-perfect correlation (R2 = 1.00) at temperatures 1.0 and
1.1. This demonstrates the impact of temperature on the fidelity of the generated token distribution,
with higher temperatures leading to better statistical alignment with the real data.
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D DOWNSTREAM TASKS

We evaluate model performance across five clinically meaningful downstream tasks, encompassing
classification and regression settings. All inferences and evaluations are done in zero-shot fashion.

1. DRG Prediction (Multiclass Classification): The model generates a single token repre-
senting the most likely Diagnosis-Related Group (DRG) code associated with a patient’s
hospital stay. The prediction is made based on the entire available patient history up to
the point of admission. DRG codes are used for billing and categorizing hospital cases by
clinical similarity and resource usage. In the case of MIMIC-IV dataset, there are almost
800 possible DRG codes, thus, 800-class classification problem is being solved.

2. SOFA Score Prediction (Regression): This task involves predicting the Sequential Organ
Failure Assessment (SOFA) score, a continuous measure quantifying the extent of a patient’s
organ dysfunction. The model regresses the score based on historical clinical data up to the
time of assessment.

3. 30-day Readmission (Binary Classification): The model predicts whether a patient will be
readmitted to the hospital or die within 30 days of discharge. The generation starts from the
last token indicating hospital discharge and continues forward in time. Both readmission
and in-hospital death are treated as positive outcomes.

4. ICU Admission (Binary Classification): This task predicts whether a patient will be
admitted to the Intensive Care Unit (ICU) or die following a hospital admission. Generation
begins from the last token corresponding to hospital admission. Both ICU admission and
in-hospital death are treated as positive events.

5. In-Hospital Mortality (Binary Classification): The model predicts whether a patient
will die during the hospital stay. Generation starts from the last token related to hospital
admission. Only death is treated as a positive label, making this a more specific and
challenging binary classification task.

E OVERALL SCORE COMPUTATION AND CONFIDENCE INTERVALS

To provide a single, interpretable ranking across our five performance metrics, we define for each
method i a global score Si as an inverse-variance weighted sum of its Min–Max normalized metric
values. Each metric’s variance is estimated directly from its reported 95 % confidence interval, and
the resulting score Si inherits an analytically derived 95 % CI. This procedure ensures that metrics
with tighter uncertainty contribute more to the overall score. Details are provided below

Let mi,k denote the observed value of metric k for method i, with a reported 95% confidence interval
[mlow

i,k , mhigh
i,k ]. We compute a single global score Si and its 95% CI as follows.

We compute the standard error and variance for each metric:

hi,k =
mhigh

i,k −mlow
i,k

2
, σi,k =

hi,k

1.96
, Var(mi,k) = σ2

i,k. (4)

Let
m(1),k = min

i
mi,k, m(N),k = max

i
mi,k.

Define the normalized metric

m̂i,k =
mi,k −m(1),k

m(N),k −m(1),k
∈ [0, 1], (5)

whose variance scales as

Var(m̂i,k) =
σ2
i,k(

m(N),k −m(1),k

)2 . (6)

The optimal weight for metric k in method i is

wi,k =
1/Var(m̂i,k)∑M
ℓ=1 1/Var(m̂i,ℓ)

,

M∑
k=1

wi,k = 1. (7)
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The point estimate of the global score is the weighted sum

Si =

M∑
k=1

wi,k m̂i,k, (8)

and under an independence assumption its variance is

Var(Si) =

M∑
k=1

w2
i,k Var(m̂i,k) =

1∑M
k=1 1/Var(m̂i,k)

. (9)

E.1 95% CONFIDENCE INTERVAL

Finally, a 95% confidence interval for Si is

Si ± 1.96
√
Var(Si). (10)

F EXTENDED RESULTS

DRG Classification SOFA Score Prediction 30-day Readmission ICU Admission In-Hospital Mortality Overall Score
Data Size Accuracy R2 AUC AUC AUC

5% 0.235 [0.225, 0.244] 0.458 [0.420, 0.496] 0.716 [0.704, 0.729] 0.868 [0.858, 0.879] 0.848 [0.813, 0.879] 0.000 [0.000, 0.018]
10% 0.366 [0.354, 0.376] 0.515 [0.476, 0.550] 0.743 [0.731, 0.755] 0.887 [0.878, 0.896] 0.884 [0.850, 0.911] 0.255 [0.234, 0.275]
20% 0.511 [0.501, 0.522] 0.542 [0.508, 0.574] 0.758 [0.745, 0.769] 0.901 [0.892, 0.909] 0.886 [0.857, 0.911] 0.531 [0.511, 0.551]
30% 0.590 [0.578, 0.601] 0.560 [0.525, 0.593] 0.758 [0.747, 0.770] 0.908 [0.900, 0.917] 0.895 [0.863, 0.917] 0.679 [0.658, 0.700]
40% 0.655 [0.645, 0.665] 0.575 [0.541, 0.608] 0.766 [0.755, 0.778] 0.909 [0.901, 0.918] 0.908 [0.884, 0.929] 0.803 [0.784, 0.822]
50% 0.682 [0.673, 0.693] 0.570 [0.535, 0.604] 0.767 [0.755, 0.778] 0.904 [0.894, 0.912] 0.902 [0.875, 0.926] 0.852 [0.833, 0.870]
100% 0.761 [0.752, 0.771] 0.578 [0.545, 0.609] 0.775 [0.764, 0.786] 0.907 [0.898, 0.916] 0.901 [0.875, 0.925] 1.000 [0.981, 1.000]

Table 3: Performance on five downstream tasks, DRG classification, SOFA score prediction, 30-day
readmission, ICU admission and in-hospital mortality, for models trained on subsets of the training
data ranging from 5% to 100%. Each cell reports the mean score with its 95% confidence interval.
The Overall Score column shows the aggregated performance across tasks as defined in Sec. E.

DRG Classification SOFA Score Prediction 30-day Readmission ICU Admission In-Hospital Mortality Overall Score
Temperature Accuracy R2 AUC AUC AUC

0.7 0.750 [0.740, 0.761] 0.570 [0.531, 0.606] 0.751 [0.740, 0.764] 0.913 [0.903, 0.922] 0.905 [0.856, 0.923] 0.758 [0.439, 1.000]
0.8 0.753 [0.743, 0.763] 0.576 [0.537, 0.613] 0.764 [0.753, 0.777] 0.910 [0.902, 0.919] 0.913 [0.879, 0.932] 0.861 [0.561, 1.000]
0.9 0.753 [0.742, 0.762] 0.579 [0.540, 0.613] 0.768 [0.757, 0.780] 0.912 [0.904, 0.920] 0.918 [0.892, 0.939] 0.968 [0.688, 1.000]
1.0 0.749 [0.739, 0.758] 0.580 [0.542, 0.612] 0.763 [0.751, 0.774] 0.911 [0.902, 0.919] 0.918 [0.893, 0.938] 0.846 [0.563, 1.000]
1.1 0.751 [0.741, 0.761] 0.580 [0.541, 0.615] 0.757 [0.745, 0.768] 0.902 [0.893, 0.909] 0.920 [0.899, 0.937] 0.547 [0.270, 0.824]
1.2 0.747 [0.738, 0.757] 0.574 [0.539, 0.608] 0.759 [0.747, 0.771] 0.888 [0.879, 0.896] 0.913 [0.895, 0.929] 0.104 [0.000, 0.384]

Table 4: Performance on five downstream tasks, DRG classification, SOFA score prediction, 30-
day readmission, ICU admission and in-hospital mortality, for models evaluated using inference
temperatures ranging from 0.7 to 1.2. Each cell reports the mean score with its 95% confidence
interval. The Overall Score column shows the aggregated performance across tasks as defined in
Sec. E.
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Figure 5: Calibration curves for three binary downstream tasks (30-day readmission, ICU admission,
and in-hospital mortality) evaluated at inference temperatures of 1.0 (top row), 0.9 (middle row), and
0.8 (bottom row). In each panel, the solid blue line shows the observed event rate with 95% confidence
bands (gray) and the dashed diagonal indicates perfect calibration. The nearly identical Brier scores
across temperatures demonstrate that all temperature variants yield equally good calibration.
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Figure 6: Calibration curves for three binary downstream tasks for model trained on data generated at
temperatures of 1.1 (top row), 1.0 (second row), 0.9 (third row) and 0.7 (bottom row), and inference
temperature of 0.9. In each panel, the solid blue line shows the observed event rate with 95%
confidence bands (gray) and the dashed diagonal indicates perfect calibration. Brier scores are nearly
identical for generation temperatures 1.1, 1.0 and 0.9, while the 0.7 setting shows worse calibration
in all three tasks.
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DRG Classification SOFA Score Prediction 30-day Readmission ICU Admission In-Hospital Mortality Overall Score
Data Temp. Size Accuracy R2 AUC AUC AUC

Original NA big 0.740 [0.733, 0.746] 0.582 [0.553, 0.606] 0.771 [0.763, 0.779] 0.913 [0.906, 0.919] 0.916 [0.897, 0.931] 1.000 [0.976, 1.000]
small 0.504 [0.496, 0.512] 0.565 [0.538, 0.589] 0.757 [0.750, 0.766] 0.909 [0.903, 0.914] 0.893 [0.873, 0.910] 1.000 [0.976, 1.000]

Synthetic

1.0 big 0.648 [0.640, 0.655] 0.559 [0.534, 0.585] 0.753 [0.745, 0.762] 0.899 [0.892, 0.905] 0.909 [0.894, 0.924] 0.418 [0.393, 0.444]
small 0.366 [0.358, 0.373] 0.532 [0.502, 0.558] 0.725 [0.717, 0.733] 0.883 [0.876, 0.890] 0.873 [0.849, 0.891] 0.418 [0.393, 0.444]

0.9 big 0.622 [0.614, 0.629] 0.552 [0.524, 0.579] 0.747 [0.739, 0.756] 0.897 [0.891, 0.904] 0.885 [0.848, 0.905] 0.358 [0.332, 0.384]
small 0.370 [0.362, 0.377] 0.517 [0.491, 0.544] 0.729 [0.720, 0.737] 0.888 [0.881, 0.895] 0.853 [0.828, 0.880] 0.358 [0.332, 0.384]

1.1 big 0.629 [0.622, 0.637] 0.555 [0.529, 0.577] 0.753 [0.744, 0.761] 0.900 [0.893, 0.905] 0.888 [0.869, 0.905] 0.259 [0.234, 0.284]
small 0.322 [0.315, 0.329] 0.534 [0.509, 0.561] 0.726 [0.718, 0.735] 0.888 [0.881, 0.894] 0.885 [0.862, 0.903] 0.259 [0.234, 0.284]

0.7 big 0.550 [0.542, 0.558] 0.522 [0.495, 0.548] 0.726 [0.717, 0.735] 0.890 [0.883, 0.897] 0.848 [0.806, 0.875] 0.000 [0.000, 0.026]
small 0.303 [0.296, 0.310] 0.487 [0.459, 0.514] 0.709 [0.700, 0.718] 0.872 [0.863, 0.880] 0.835 [0.789, 0.866] 0.000 [0.000, 0.026]

Table 5: Performance on five downstream tasks, DRG classification, SOFA score prediction, 30-day
readmission, ICU admission and in-hospital mortality. Models were trained on the original dataset
or on synthetic datasets generated at inference temperatures of 1.0, 0.9, 1.1 and 0.7. For each data
source and temperature, results are shown separately for big and small training sizes. We did not
generate synthetic data for little because the model overfitted at that scale and failed to produce
sensible patient timelines. Each cell reports the score with its 95% confidence interval. The Overall
Score column shows the aggregated performance measure defined in Sec. E.

DRG Classification SOFA Score Prediction 30-day Readmission ICU Admission In-Hospital Mortality Overall Score
Dataset Accuracy R2 AUC AUC AUC

big 0.740 [0.733, 0.746] 0.582 [0.555, 0.608] 0.771 [0.763, 0.779] 0.913 [0.907, 0.918] 0.916 [0.896, 0.930] 1.000 [0.987, 1.000]
big+small synth 0.729 [0.723, 0.736] 0.573 [0.548, 0.598] 0.763 [0.755, 0.771] 0.913 [0.908, 0.919] 0.911 [0.893, 0.926] 0.978 [0.965, 0.991]
small+big synth 0.687 [0.680, 0.695] 0.567 [0.542, 0.590] 0.758 [0.751, 0.766] 0.906 [0.900, 0.912] 0.903 [0.882, 0.919] 0.892 [0.877, 0.906]
little+big synth 0.669 [0.661, 0.676] 0.566 [0.539, 0.590] 0.756 [0.748, 0.764] 0.907 [0.901, 0.912] 0.898 [0.874, 0.916] 0.857 [0.842, 0.871]
big synth 0.648 [0.640, 0.655] 0.559 [0.532, 0.584] 0.753 [0.745, 0.761] 0.899 [0.892, 0.905] 0.909 [0.890, 0.924] 0.813 [0.798, 0.827]
big synth+small synth 0.638 [0.630, 0.645] 0.556 [0.530, 0.580] 0.746 [0.738, 0.755] 0.898 [0.891, 0.904] 0.880 [0.854, 0.901] 0.792 [0.777, 0.806]
small 0.504 [0.496, 0.512] 0.565 [0.538, 0.590] 0.757 [0.749, 0.766] 0.909 [0.903, 0.915] 0.893 [0.871, 0.909] 0.540 [0.525, 0.556]
little+small synth 0.450 [0.442, 0.458] 0.550 [0.524, 0.577] 0.741 [0.733, 0.750] 0.898 [0.891, 0.904] 0.894 [0.873, 0.912] 0.428 [0.412, 0.443]
little 0.364 [0.356, 0.371] 0.527 [0.501, 0.552] 0.736 [0.728, 0.744] 0.896 [0.890, 0.902] 0.905 [0.890, 0.918] 0.261 [0.246, 0.276]
small synth 0.366 [0.358, 0.373] 0.532 [0.502, 0.558] 0.725 [0.716, 0.733] 0.883 [0.876, 0.889] 0.873 [0.850, 0.891] 0.256 [0.241, 0.271]
little synth 0.240 [0.233, 0.247] 0.485 [0.455, 0.514] 0.710 [0.702, 0.719] 0.857 [0.850, 0.864] NA 0.000 [0.000, 0.013]

Table 6: Results on five downstream tasks for models trained on various combinations of original
and synthetic datasets. Names without suffix refer to original data; names ending in synth refer
to purely synthetic data; mixed names (for example, big+small synth) combine original and
synthetic samples. Each cell reports the mean score with its 95% confidence interval. NA indicates
that results could not be generated due to data scarcity and the fixed model size. The Overall Score
column shows the aggregated performance defined in Sec. E.
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Code Group Original Synth temp1 Synth temp0.9 Synth temp0.7 Synth temp1.1
Count N Count N Count N Count N Count N

LAB 72,174,268 200 71,106,715 200 59,794,628 200 60,518,244 200 93,198,749 200
ATC 20,858,757 87 22,795,722 83 12,452,636 83 6,101,998 77 37,949,275 86
ATC 4 20,858,744 12 22,795,876 12 12,452,591 11 6,101,190 11 37,950,129 12
ATC SFX 20,769,779 208 22,705,112 195 12,394,075 184 6,075,559 157 37,832,338 205
Q1 9,494,082 1 8,861,399 1 7,572,188 1 10,245,103 1 11,804,981 1
Q2 8,621,537 1 8,588,113 1 7,134,201 1 6,742,542 1 11,356,270 1
Q3 8,288,665 1 8,283,252 1 6,984,193 1 6,550,402 1 10,732,378 1
Q4 7,616,529 1 7,553,914 1 6,398,353 1 5,986,846 1 9,714,675 1
Q5 7,601,185 1 7,594,698 1 6,539,317 1 6,199,183 1 9,592,139 1
Q7 7,285,786 1 7,300,422 1 6,344,285 1 6,242,105 1 9,191,142 1
Q6 7,213,924 1 7,237,419 1 6,231,882 1 5,928,606 1 9,150,938 1
Q8 6,755,991 1 6,784,355 1 5,858,041 1 5,732,405 1 8,685,969 1
Q9 6,510,118 1 6,482,137 1 5,702,253 1 6,048,333 1 8,233,991 1
ICD CM 6,230,466 2,880 6,622,075 2,577 4,477,122 2,431 1,849,592 2,202 8,643,801 2,750
Q10 5,960,105 1 5,653,703 1 5,257,956 1 7,745,200 1 7,093,716 1
ICD PCS 3,197,383 34 2,942,837 34 2,083,372 34 1,078,723 34 4,133,904 34
VITAL 1,560,547 1 1,589,742 1 2,097,787 1 3,442,893 1 1,129,540 1
1h15m-2h 1,532,311 1 1,595,616 1 953,791 1 438,114 1 2,514,137 1
3h-5h 1,481,319 1 1,401,654 1 954,219 1 649,646 1 1,930,502 1
2h-3h 1,468,528 1 1,467,322 1 912,352 1 455,639 1 2,186,806 1
15m-45m 1,400,879 1 1,524,672 1 850,931 1 383,343 1 2,749,798 1
BMI 1,190,022 10 1,134,606 11 1,583,297 11 2,725,486 11 794,648 11
45m-1h15m 1,147,674 1 1,218,088 1 686,810 1 280,946 1 2,086,068 1
5h-8h 911,451 1 841,629 1 594,188 1 385,975 1 1,110,288 1
5m-15m 907,753 1 1,026,894 1 519,283 1 210,106 1 1,989,240 1
8h-12h 797,169 1 741,521 1 789,513 1 1,206,250 1 769,878 1
TRANSFER 599,818 38 579,025 38 409,007 38 203,179 38 818,548 38
12h-18h 571,804 1 569,864 1 612,846 1 790,878 1 549,053 1
2mt-6mt 367,454 1 388,899 1 469,075 1 740,404 1 324,090 1
=6mt 350,714 1 320,753 1 375,142 1 489,934 1 271,160 1
30d-2mt 340,770 1 363,176 1 426,013 1 530,503 1 303,286 1
INSURANCE 310,529 3 291,693 3 233,662 3 128,742 3 332,829 3
HOSPITAL DISCHARGE 310,529 1 295,194 1 237,341 1 130,433 1 325,726 1
DISCHARGE LOCATION 310,529 10 295,409 10 237,408 10 130,470 10 326,145 10
HOSPITAL ADMISSION 310,529 1 291,589 1 233,632 1 128,740 1 332,467 1
DRG 310,529 770 293,586 749 236,394 741 130,432 698 333,297 763
ADMISSION TYPE 310,529 3 291,654 3 233,661 3 128,746 3 332,627 3
12d-20d 309,052 1 310,314 1 359,927 1 378,336 1 261,646 1
20d-30d 270,656 1 277,064 1 341,095 1 569,284 1 230,988 1
4d-7d 264,533 1 255,286 1 292,271 1 492,847 1 228,224 1
7d-12d 260,717 1 262,237 1 278,118 1 286,115 1 232,108 1
1d-2d 242,652 1 224,712 1 201,722 1 327,574 1 245,670 1
ED REGISTRATION 212,943 1 199,513 1 159,303 1 87,303 1 226,059 1
ED OUT 212,943 1 201,389 1 160,945 1 88,234 1 227,490 1
TIMELINE END 192,773 1 192,773 1 192,773 1 192,773 1 192,773 1
TIMELINE START 192,773 1 192,985 1 192,967 1 192,987 1 193,043 1
2d-4d 179,782 1 166,411 1 153,825 1 126,724 1 169,488 1
18h-1d 179,474 1 172,924 1 130,567 1 69,677 1 214,290 1
HCPCS 101,768 63 95,482 40 68,595 39 28,201 27 120,700 55
ICU DISCHARGE 52,560 1 53,052 1 32,413 1 15,864 1 96,948 1
SOFA 52,560 1 51,917 1 31,963 1 16,068 1 95,691 1
ICU ADMISSION 52,560 1 51,877 1 31,960 1 16,049 1 95,532 1
ICU TYPE 52,560 9 51,894 9 31,962 9 16,059 9 95,654 9
MEDS DEATH 21,022 1 22,423 1 15,050 1 7,515 1 34,980 1
GENDER 0 0 21 2 12 2 3 1 46 2
MARITAL 0 0 16 5 6 3 3 2 77 5
RACE 0 0 24 6 4 3 6 2 116 6

Total 238,780,034 4,367 242,612,649 4,017 183,998,923 3,845 165,768,512 3,525 339,736,051 4,232

Table 7: Token counts and number of unique tokens in each code subgroup for the original dataset
and for synthetic datasets generated at temperatures 1.0, 0.9, 0.7 and 1.1. For each setting, the total
token count (“Count”) and the corresponding unique-token count (“N”) are shown side by side. Note
the unexpected presence of demographic tokens such as GENDER, MARITAL and RACE in the
event timelines, and the higher frequency of TIMELINE START compared to TIMELINE END,
both of which point to glitches in the synthetic data.
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