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Abstract

This paper focuses on causal representation learning (CRL) under a general non-
parametric causal latent model and a general transformation model that maps the
latent data to the observational data. It establishes identifiability and achievability
results using two (stochastic) hard uncoupled interventions per node in the latent
causal graph. Notably, one does not know which pair of intervention environments
have the same node intervened (hence, uncoupled environments). For identifiability,
the paper establishes that perfect recovery of the latent causal model and variables
is guaranteed under uncoupled interventions. For achievability, an algorithm is de-
signed that uses observational and interventional data and recovers the latent causal
model and variables with provable guarantees for the algorithm. This algorithm
leverages score variations across different environments to estimate the inverse of
the transformer and, subsequently, the latent variables. The analysis, additionally,
recovers the existing identifiability result for two hard coupled interventions, that is
when metadata about the pair of environments that have the same node intervened
is known. It is noteworthy that the existing results on non-parametric identifiabil-
ity require assumptions on interventions and additional faithfulness assumptions.
This paper shows that when observational data is available, additional faithfulness
assumptions are unnecessary.

1 Introduction

Consider a causal graph GZ with n nodes generating causal random variables Z ≜ [Z1, . . . , Zn]
⊤.

These random variables are transformed by a function g : Rn → Rd to generate the d-dimensional
observed random variables X ≜ [X1, . . . , Xd]

⊤ according to:

X = g(Z) . (1)

Causal representation learning (CRL) is the process of using the observed data X and recovering
(i) the causal structure GZ and (ii) the unknown transformation g. When interventions are viable, the
process is referred to as CRL from interventions. Addressing CRL consists of two central questions:

• Identifiability, which refers to determining sufficient conditions under which GZ and Z can be
recovered. Identifiability can be non-constructive without specifying how to recover GZ and Z.

• Achievability, which pertains to designing algorithms that can recover GZ and g, while maintaining
identifiability guarantees. Achievability hinges on forming reliable estimates for the function g.

This paper provides both identifiability and achievability results for CRL under stochastic hard
interventions when (i) the transformation g can be any function (linear or non-linear) that is a
diffeomorphism (i.e., bijective such that both g and g−1 are continuously differentiable) onto its
image, and (ii) the causal relationships among elements of Z take any arbitrary form (linear or
non-linear). Specifically, our main contributions are:

• On identifiability, we show that two uncoupled hard interventions per node suffice to guarantee
perfect nonparametric identifiability (up to permutation and element-wise transforms). Specifically,

Accepted to the NeurIPS 2023 Workshop on Causal Representation Learning.



Table 1: Comparison of the results to prior studies in different settings. Only the main results from the papers
that aim both DAG and latent recovery are listed. See Section 2 for exact definitions of perfect DAG and latent
recovery. Additional assumptions (∗:interventional discrepancy and ∗∗: faithfulness) are discussed in Section 3.

Work Transform Latent Model Interv. Obs. Data No. of of Intervs. DAG recovery Latent recovery
[3] Linear Lin. Gaussian Soft Yes 1 per node impossibility impossibility

Linear Lin. Gaussian Hard Yes 1 per node Yes Yes

[4] Polynomial General do Yes 1 per node Yes Yes
Polynomial Bounded RV Soft Yes 1 per node Yes Yes

[1] Linear Non-linear Soft Yes 1 per node Yes Mixing
Linear Non-linear Hard Yes 1 per node Yes Yes

[5] General Lin. Gaussian Hard Yes 1 per node Yes Yes
[6] Polynomial Non-linear Soft Yes 1 per node Yes Yes
[2] General General Hard∗ No 2 coupled per node Yes∗∗ Yes

This General General Hard∗ No 2 coupled per node Yes∗∗ Yes
work General General Hard∗ Yes 2 coupled per node Yes Yes

General General Hard∗ Yes 2 uncoupled per node Yes Yes

we assume the learner does not know which pair of environments intervene on the same node,
hence, uncoupled.

• On achievability, we design an algorithm that leverages variations of the score functions under
interventions for recovering GZ and Z under a general transformation and a causal model.

• While establishing identifiability results, we show that faithfulness assumptions are not required
when observational data is available in contrast to recent results in the literature that require
faithfulness assumptions.

Related work. The recent studies most closely related to the scope of this paper are [1] and [2]. [1]
establishes an inherent connection between score function and CRL, and based on that, designs
a score-based CRL framework. Specifically, using one intervention per node under a non-linear
causal model and a linear transformation, [1] provides both identifiability and achievability results. It
shows that finding the variations of the score functions across different intervention environments
is sufficient to recover linear g and GZ that have non-linear causal structures. We have three major
distinctions from [1] in settings by assuming nonparametric choices of transformations g, a general
latent causal model, and using two hard interventions. The study in [2] considers nonparametric
models for g and the causal relationships and shows that two coupled hard interventions per node
suffice for identifiability. We have two major differences with [2]. First, we assume uncoupled
interventional environments, whereas [2] focuses on coupled environments. Secondly, the approach
of [2] focuses mainly on identifiability (e.g., no algorithm for recovery of the latent variables),
whereas we address both identifiability and achievability. We summarize the main results of other
related studies in Table 1 and defer the details to Appendix A.

Notations. For a vector a, the i-the entry is denoted by ai and [a]i. For a matrix A ∈ Rm×n,
the i-th row is denoted by [A]i, the entry at row i and column j is denoted by [A]i,j . In denotes
the n × n identity matrix. For a positive integer n, we define [n] ≜ {1, . . . , n}. We denote the
Jacobian of a function f : Rn → Rn at point z ∈ Rn by Jf (z). We denote the indicator function
by 1. For a matrix A ∈ Ra×b we use the convention that 1{A} ∈ {0, 1}a×b is defined with entries
[1{A}]i,j = 1{Ai,j ̸= 0}. We use ⊙ to denote the Hadamard product.

2 Problem Setting
The data generating process. Consider latent random variables Z ≜ [Z1, . . . , Zn]

⊤. An unknown
deterministic function g : Rn → Rd generates the observable random variables X ≜ [X1, . . . , Xd]

⊤

from the latent variables according to
X = g(Z) . (2)

We assume that d ≥ n, g is continuously differentiable and a diffeomorphism onto its image.
Otherwise, identifiability is ill-posed. We denote the probability density function (pdf) of Z by p. For
clarity in the analysis, p is assumed to be well-defined.

Latent causal structure. The distribution of latent variables Z factorizes with respect to a DAG
represented by GZ that consists of n nodes. Node i ∈ [n] of GZ represents Zi and p factorizes
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according to
p(z) =

n∏
i=1

pi(zi | zpa(i)) , (3)

where pa(i) denotes the set of parents of node i. For each node i ∈ [n], we also define pa(i) ≜
pa(i) ∪ {i}. Based on the modularity property, a change in the causal mechanism of node i does not
affect those of the other nodes. We also assume that all conditional pdfs {pi(zi | zpa(i)) : i ∈ [n]}
are continuously differentiable with respect to all z variables and p(z) ̸= 0 for all z ∈ Rn.

Intervention models. For each node i ∈ [n], besides the observational mechanism specified by
pi(zi | zpa(i)), we assume that there exist two hard interventional mechanisms specified by qi(zi)
and q̃i(zi). We assume interventional discrepancy [7] among the distributions.

Definition 1 (Interventional discrepancy) Two mechanisms with pdfs p, q : R → R satisfy inter-
ventional discrepancy if

∂

∂u

p(u)

q(u)
̸= 0 , ∀u ∈ R \ T , (4)

where T is a null set (i.e., has Lebesgue measure zero).

We note that [7] shows that for identifiability in the single atomic hard intervention per node setting,
even when the latent graph GZ is known, it is necessary to have an interventional discrepancy between
observational distribution pi and interventional distribution qi, for all zpa(i) ∈ R|pa(i)|.

Interventional environments. We consider two sets of interventional environments denoted by
E ≜ {Em : m ∈ [n]} and Ẽ ≜ {Ẽm : m ∈ [n]}. The set of intervention targets in Em and Ẽm

are unknown, which we denote by Im and Ĩm. We focus on the setting of atomic interventions in
which each node i ∈ [n] is intervened in exactly one environment in E and one environment in Ẽ , i.e.,
I ≜ (I1, . . . , In) and Ĩ ≜ (Ĩ1, . . . , Ĩn) are two unknown permutations of [n].

Definition 2 (Coupled/Uncoupled environments) The two environment sets E and Ẽ are said to be
coupled if for the unknown sets I and Ĩ we know that I = Ĩ, i.e., in environments E i and Ẽ i same
nodes are intervened. The two environments are uncoupled if Ĩ is an unknown permutation of I.

We also adopt the convention that I0 = ∅, and define E0 as the observational environment. We denote
the pdfs of Z under the hard interventions in environments Em and Ẽm, by pm and p̃m, respectively,
which can be factorized as follows. ∀m ∈ [n]:

under Em : pm(z) =
∏
i∈Im

qi(zi)
∏

i∈[n]\Im

pi(zi | zpa(i)) , (5)

under Ẽm : p̃m(z) =
∏
i∈Ĩm

q̃i(zi)
∏

i∈[n]\Ĩm

pi(zi | zpa(i)) . (6)

Score function. Define the score function associated with a probability distribution as the gradient
of its log pdf. We denote the score functions associated with p, pm, and p̃m by s, sm, and s̃m,
respectively. Leveraging the causal structure GZ and the factorizations in (3), (5), and (6), the score
functions in different environments have the following decompositions.

under E0 : s(z) ≜ ∇z log p(z) =

n∑
i=1

∇z log pi(zi | zpa(i)) , (7)

under Em : sm(z) ≜ ∇z log p
m(z) =

∑
i∈Im

∇z log qi(zi) +
∑
i/∈Im

∇z log pi(zi | zpa(i)) , (8)

under Ẽm : s̃m(z) ≜ ∇z log p̃
m(z) =

∑
i∈Ĩm

∇z log q̃i(zi) +
∑
i/∈Ĩm

∇z log pi(zi | zpa(i)) . (9)

Statement of the objective. The objective is to use the observational data X and recover the true
latent variables Z and causal relations among them. We define Ẑ and GẐ as estimates of Z and GZ ,
respectively. To assess the fidelity of the estimate Ẑ with respect to the ground truth Z, we provide
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the following two measures for identifiability. The result in [2, Proposition 3.8] shows that these two
identifiability measures are the best one can ensure based on interventional data without more direct
forms of supervision, e.g., counterfactual data.

Definition 3 (Identifiability) For the identifiability objectives of CRL we define two measures:

1. Perfect DAG recovery: We have perfect DAG recovery if GẐ is isomorphic to GZ .

2. Perfect latent recovery: We have perfect latent recovery if Ẑ(X) is an element-wise diffeomor-
phism of a permutation of Z.

Recovering the latent causal variables hinges on finding the inverse of g based on the observed data
X , which in turn facilitates recovering Z via Z = g−1(X), where g−1 denotes the inverse of g.
Throughout the rest of this paper, we refer to g−1 as the encoder. To estimate g−1, first, we define H
as the set of all possible candidates for it. A function h can be such a candidate if it is invertible; that
is, there exists an associated decoder h−1 such that (h−1 ◦ h)(X) = X . Hence,

H ≜ {h : X → Rn : ∃h−1 : Rn → Rd such that ∀X ∈ X : (h−1 ◦ h)(X) = X} . (10)

Next, corresponding to any pair of observation X and candidate encoder h ∈ H, we define Ẑ(h)
as an auxiliary estimate of Z generated by applying the candidate encoder h on X , i.e.,

Ẑ(h) ≜ h(X) = (h ◦ g)(Z) , ∀ h ∈ H , X ∈ X . (11)

Ẑ(h) inherits its statistical model from the randomness in X and the choice of h. We denote the
score functions of Ẑ(h) under environments E0, Em, and Ẽm by sẐ(·;h), smẐ (·;h), and s̃m

Ẑ
(·;h),

respectively.

3 Identifiability and Achievability Results

In this section, we provide identifiability results under different sets of assumptions and interpret them
vis-á-vis the recent results in the literature. We provide constructive proof for the results by designing
CRL algorithms. The details of the CRL algorithm are summarized in Algorithm 1, which is presented
in Section 4. Our main result is the following theorem, which establishes perfect identifiability is
possible even when the environments corresponding to the same node are not specified in pairs. That
is, not only is it unknown what node is intervened in an environment, additionally the learner also
does not know which two environments intervene on the same node.

Theorem 1 (Uncoupled Environments) By using observational data and interventional data from
two uncoupled environments for which each pair of pi, qi, and q̃i satisfies interventional discrepancy
for all i ∈ [n], identifiability (perfect DAG and latent recovery) is possible. Furthermore, Algorithm 1-
(OPT2) achieves perfect recovery.

Theorem 1 shows that using observational data enables us to resolve any mismatch between the
uncoupled environment sets and shows identifiability in the setting of uncoupled environments.
This generalizes the identifiability result of [2], which requires coupled environments. Furthermore,
Theorem 1 does not require faithfulness whereas [2] requires that the estimated latent distribution is
faithful to the associated candidate graph for all h ∈ H. This is a strong requirement to verify. Even
though it does not compromise the identifiability result, it poses challenges to developing a recovery
algorithm. In contrast, we only require access to the observational data, which is generally the case in
practice. Based on this, we can develop a concrete recovery algorithm provided in Section 4. Next, if
the environments are coupled, we prove identifiability under weaker assumptions on interventional
discrepancy.

Theorem 2 (Coupled Environments) By using interventional data from two coupled environments
that satisfy interventional discrepancy for all i ∈ [n], perfect recovery of the latent variables is
possible. Furthermore, perfect DAG recovery is also possible by adding observational data under the
relevant interventional discrepancy. Furthermore, Algorithm 1-(OPT1) achieves perfect recovery.

In the proof of Theorem 2, we show that the advantage of environment coupling is that it renders
interventional data sufficient for perfect latent recovery, and the observational data is only used
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Algorithm 1 Generalized Score-based Causal Latent Estimation via Interventions (GSCALE-I)

Input: H, samples of X from environment E0 and environment sets E and Ẽ , is_coupled.
Output: Latent variable estimate Ẑ and latent DAG estimate GẐ .

1: Step 1: Compute score differences:(sX − smX), (sX − s̃mX), and (smX − s̃mX) for all m ∈ [n].
2: Step 2: Identify the encoder by minimizing score variations:
3: if is_coupled then
4: Solve (OPT1), select a solution h∗.
5: else ▷ search for the correct coupling
6: for all permutations π of [n] do
7: Temporarily relabel Ẽm to Ẽπm for all m ∈ [n], and solve (OPT2)
8: If there is a solution, select a solution h∗ and break from the loop.
9: end for

10: end if
11: Step 3: Latent estimates: Ẑ = h∗(X).
12: Step 4: Latent DAG recovery: Construct latent DAG GẐ using (16).
13: return Ẑ and GẐ .

for recovering the graph. In the next theorem, we additionally show even for DAG recovery, the
observational data becomes unnecessary if we assume additive noise for our causal models and a
weak faithfulness condition.

Theorem 3 (Dispensing with Observational Data) By using interventional data from two coupled
environments that satisfy interventional discrepancy for all i ∈ [n], identifiability (perfect DAG and
latent recovery) is possible if the latent causal model has additive noise, p is twice differentiable, and
it satisfies the adjacency-faithfulness condition [8] with respect to the original latent graph GZ .

4 GSCALE-I Algorithm

This section serves a two-fold purpose. First, it provides for the constructive proof steps for iden-
tifiability results specified in Theorems 1–2. Secondly, it provides an algorithm that has provable
guarantee for perfect recovery of the latent variables and latent DAG for any general class of functions
(linear and non-linear). We refer to this algorithm as the Generalized Score-based Causal Latent
Estimation via Interventions (GSCALE-I) algorithm.

A key idea of this score-based algorithm is that the changes in the score functions of the latent
variables enable us to find reliable estimates for the inverse of transformation g, which in turn
facilitates estimating Z. On the other hand, we do not have access to the latent variables and can
compute only the scores of the observed variables X . The following result is a corollary of Lemma 3
in Appendix B, and establishes that the changes in the score functions of the latent variables can be
traced from the changes in the score functions of the observed variables. Specifically, we establish
a relationship between the score differences across different observational and/or interventional
environments. For this purpose, we define sX , smX , and s̃mX as the score function of the observed
variable X under E0, Em, and Ẽm, respectively. Given any candidate encoder h, based on (11), the
estimated latent variable Ẑ(h) and X are related through Ẑ(h) = h(X). We use this relationship to
characterize those between the score differences as formalized next.

Lemma 1 (Score Differences) Score differences under different environment pairs are related as:

between E0 and Em : sẐ(ẑ;h)− sm
Ẑ
(ẑ;h) = [Jh−1(ẑ)]⊤(sX(x)− smX(x)) , (12)

between E0 and Ẽm : sẐ(ẑ;h)− s̃m
Ẑ
(ẑ;h) = [Jh−1(ẑ)]⊤(sX(x)− s̃mX(x)) , (13)

between Em and Ẽm : sm
Ẑ
(ẑ;h)− s̃m

Ẑ
(ẑ;h) = [Jh−1(ẑ)]⊤(smX(x)− s̃mX(x)) . (14)

We will show that among all candidate encoders h ∈ H, the ground truth encoder g−1 results in the
minimum number of variations between the score estimates sm

Ẑ
(ẑ;h) and s̃m

Ẑ
(ẑ;h) (see Lemma 4).

To formalize these, corresponding to each candidate encoder h ∈ H we define score change matrices
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Dt(h), Dobs(h), and D̃obs(j) as follows. For all i,m ∈ [n]:

[Dt(h)]i,m ≜ E
[∣∣[sm

Ẑ
(Ẑ;h)]i − [s̃m

Ẑ
(Ẑ;h)]i

∣∣] , (15)

[Dobs(h)]i,m ≜ E
[∣∣[sẐ(Ẑ;h)]i − [sm

Ẑ
(Ẑ;h)]i

∣∣] , (16)

[D̃obs(h)]i,m ≜ E
[∣∣[sẐ(Ẑ;h)]i − [s̃m

Ẑ
(Ẑ;h)]i

∣∣] , (17)

where expectations are under the measures of latent score functions induced by the probability
measure of observational data. The entry [Dt(h)]i,m will be strictly positive only when there is a
set of samples X with a strictly positive measure that renders non-identical scores sm

Ẑ
(ẑ;h) and

s̃m
Ẑ
(ẑ;h). Similar properties hold for the entries of Dobs(h) and D̃obs(h) for the respective score

functions. The algorithm is summarized in Algorithm 1 and its key steps are described next.

Inputs: The inputs of GSCALE-I are the observed data from the observational and interventional
environments, whether environments are coupled/uncoupled, and a set of candidate encoders H.

Step 1 – Score differences: We start by computing score differences (sX − smX), (sX − s̃mX), and
(smX − s̃mX) for all m ∈ [n].

Step 2 – Identifying the encoder: The key property in this step is that the number of variations of
the estimated latent score differences is always no less than the number of variations of the
true latent score differences. We will have two different approaches for coupled and uncoupled
settings.

Step 2 (a) – Coupled environments: We solve the following optimization problem{
min
h∈H

∥Dt(h)∥0

s.t. Dt(h) is a diagonal matrix .
(OPT1)

Constraining Dt(h) to be diagonal enforces that the final estimate Ẑ and Z will be related by
permutation I. We select a solution of (OPT1) as our encoder estimate and denote it by h∗.

Step 2 (b) – Uncoupled environments: In this setting, additionally, we need to determine the
correct coupling between the interventional environment sets E and Ẽ . To do so, we iterate
through permutations π of [n], and temporarily relabel Ẽm to Ẽπm for all m ∈ [n] within each
iteration. Then, we solve the following optimization problem,

min
h∈H

∥Dt(h)∥0

s.t. Dt(h) is a diagonal matrix

1{Dobs(h)} = 1{D̃obs(h)}
1{Dobs(h)} ⊙ 1{D⊤

obs(h)} = In .

(OPT2)

The constraint 1{Dobs(h)} = 1{D̃obs(h)} ensures that a permutation of the correct encoder
is a solution to (OPT2) if the coupling is correct, and the last constraint ensures that Dobs(h)
does not contain 2-cycles. We will show that (OPT2) admits a solution if and only if π is the
correct coupling (see Lemma 6), in which case, we select a solution of (OPT2) as our encoder
estimate and denoted it by h∗.

Remark 1 For the nonparametric identifiability results, having an oracle that solves the func-
tional optimization problems in (OPT1)-(OPT2) is sufficient. For achievability under any desired
class of functions H (e.g., linear, polynomial, and neural networks) these two problems can be
converted to parametric optimization problems.

Step 3 – Latent estimates: The latent causal variables are estimated using h∗ via Ẑ = h∗(X),
where X is the observational data.

Step 4 – Latent DAG recovery: We construct DAG GẐ from Dobs(h
∗) by assigning the non-zero

coordinates of the i-th column of Dobs(h
∗) as the parents of node i in GẐ , i.e.,

paGẐ
(i) ≜

{
j : [Dobs(h

∗)]j,i ̸= 0
}
, ∀i ∈ [n] . (18)
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5 Empirical Evaluations

We empirically evaluate the performance of the GSCALE-I algorithm for recovering the transforma-
tion g and the latent DAG GZ under coupled interventions on synthetic data by solving an ℓ1-relaxation
of the optimization problem (OPT1). The evaluations pursue a two-fold purpose: (i) evaluating the
performance of GSCALE-I, and (ii) showcasing settings for which the existing literature does not
have an achievability result (i.e., a constructive algorithm) and provide only identifiability results for
them. To this end, we focus on a non-polynomial transform g and a non-linear latent model. We
elaborate on the implementation details and provide additional results in Appendix D.

Data generation. To generate GZ we use the Erdős-Rényi model with density 0.5 and n ∈ {5, 8}
nodes, which is generally the size of the latent graphs considered in CRL literature. For the observa-
tional causal mechanisms, we adopt an additive noise model with Zi =

√
Z⊤
pa(i)Ap,iZpa(i) +Np,i ,

where {Ap,i : i ∈ [n]} are positive-definite matrices, and the noise terms are zero-mean Gaussian
variables with variances σ2

p,i sampled randomly from Unif([0.5, 1.5]). For the two hard interventions
on node i, Zi is set to Nq,i ∼ N (0, σ2

q,i) and Nq̃,i ∼ N (0, σ2
q̃,i). We set σ2

q,i = σ2
p,i + 1 and

σ2
q̃,i = σ2

p,i + 2. We consider target dimension values d ∈ {5, 8, 25, 40}. For each (n, d) pair, we
generate 100 latent graphs and N samples of Z per graph, where we set N = 100 for n = 5 and
N = 300 for n = 8. As the transformation, we consider a generalized linear model,

X = g(Z) = tanh(T · Z) , (19)

in which tanh is applied element-wise, and T ∈ Rd×n is a randomly sampled full-rank matrix.

Score functions. The design of GSCALE-I is agnostic to how Step 1 is performed, i.e., any reliable
method for estimating these score differences can be adopted. On the other hand, we note that the
perfect identifiability guarantees formalized in Theorem 2 rely on having perfect score differences. In
our experiments in this section, we adopt a score oracle that computes the score differences in Step 1
by leveraging Lemma 3 and using the ground truth score functions s, sm and s̃m (see Appendix D for
details). Subsequently, we can assess the performance of our novel methodology without inheriting
the errors of the score estimation procedure.

Evaluation metrics. We assess the recovering latent variables by the closeness of latent variable
estimates Ẑ (and parameters of the transform, T̂ ) to ground truth Z (and T ). We report the mean
normalized error rates ∥Z − Ẑ∥2/∥Z∥2 and ∥T − T̂∥F/∥T∥F. For assessing the recovery of the
latent DAG, we report structural Hamming distance (SHD) between the estimate GẐ and true graph
GZ as well as the average precision and recall rates of the true edges.

Observations. Table 2 shows that by using true score differences (sX − smX), (sX − s̃mX), and
(smX − s̃mX), we can almost perfectly recover the latent variables and the latent DAG for n = 5 nodes.
When we consider a larger graph with n = 8 nodes, the normalized Frobenius norm of the error shows
that T̂ explains more than 80% of T correctly. Note that, GZ with n = 8 nodes and density 0.5 has an
expected number of 14 edges. Hence, having an average SHD of less than 2 edges and precision and
recall rates over 0.9 indicate that GSCALE-I yields a high performance at recovering latent causal
relationships even when the transformation estimate is reasonable but not perfect. Finally, we observe
that increasing dimension d of the observational data does not degrade the performance, confirming
our analysis that GSCALE-I is agnostic to the dimension of observations. This is especially important
since the dimension of the observed data is usually much higher than the latent dimension in practice.

Table 2: Recovery of the latent variables and latent DAG using GSCALE-I with a score oracle

n d
∥Z − Ẑ∥2
∥Z∥2

∥T − T̂∥F
∥T∥F

SHD precision recall

5 5 0.03 0.02 0.12 0.99 0.99
5 25 0.03 0.02 0.04 0.99 0.99
5 40 0.04 0.03 0.09 0.99 0.99

8 8 0.16 0.14 1.56 0.92 0.97
8 25 0.20 0.13 1.55 0.93 0.96
8 40 0.21 0.13 1.14 0.96 0.96
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A Related Work

In addition to the studies covered in Section 1, other related studies that focus on the parametric
settings include [3–6]. Specifically, [3] considers linear causal models and proves identifiability
under hard interventions and the impossibility of identifiability under soft interventions. The study
in [4] considers a polynomial transform and shows that it can be reduced to an affine transform by
an autoencoding process and proves identifiability under do interventions or soft interventions on
bounded latent variables. [6] builds on the results of [4], considers polynomial transforms under
non-linear causal models, and proves identifiability under soft interventions. Finally, [5] focuses
on linear Gaussian causal models and extends the results of [3] to prove identifiability for general
transforms. Other studies on the nonparametric settings include [7, 9]. The study in [9] considers
identifying the latent DAG without recovering latent variables, where it is shown that a restricted
class of DAGs can be recovered. The study in [7] assumes that the latent DAG is already known and
recovers the latent variables under hard interventions.

B Score Function Properties under Interventions

In this section, we provide the proofs relating to score functions. First, we provide the following fact
that will be used repeatedly in the proofs.

Proposition 1 Consider two continuous functions f, g : Rn → R. Then,

∃z ∈ Rn f(z) ̸= g(z) ⇐⇒ E
[
|f(Z)− g(Z)|

]
̸= 0 . (20)

Proof If there exists z ∈ Rn such that f(z) ̸= g(z), then (f(z)− g(z)) is non-zero over a non-zero-
measure set due to continuity. Then, E[|f(Z)− g(Z)|] ̸= 0. On the other direction, if f(z) = g(z)
for all z ∈ Rn, then E[|f(Z)− g(Z)|] = 0.

Lemma 2 (Score Changes) Consider environments E0, Em, and Ẽm with unknown intervention
targets Im and Ĩm.

(i) Score functions s and sm (or s̃m) differ in their k-th coordinate if and only if node k or one
of its children is intervened in Em (or Ẽm), i.e.,

E
[∣∣[s(Z)]k − [sm(Z)]k

∣∣] ̸= 0 ⇐⇒ k ∈ pa(Im) ,

and E
[∣∣[s(Z)]k − [s̃m(Z)]k

∣∣] ̸= 0 ⇐⇒ k ∈ pa(Ĩm) .

(ii) Coupled environments Im = Ĩm: In the coupled environment setting, sm and s̃m differ in their
k-th coordinate if and only if k is intervened, i.e.,

E
[∣∣[sm(Z)]k − [s̃m(Z)]k

∣∣] ̸= 0 ⇐⇒ {k} = Im .

(iii) Uncoupled environments Im ̸= Ĩm: Consider two interventional environments Em and Ẽm

with different intervention targets Im ̸= Ĩm. Consider additive noise models, in which

Zi = fp,i(Zpa(i)) +Np,i ,

where functions {fp,i : i ∈ [n]} are general functions and {Np,i : i ∈ [n]} account for noise
terms that have pdfs with full support. Given that p is twice differentiable, the score functions sm
and s̃m differ in their k-th coordinate if and only if node k or one of its children is intervened,

E
[∣∣[sm(Z)]k − [s̃m(Z)]k

∣∣] ̸= 0 ⇐⇒ k ∈ pa(Im, Ĩm) .

Proof

Case (i) The statement directly follows from Lemma 4 of [1].
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Case (ii) Suppose that Im = Ĩm = {i}. Following (8) and (9), we have

sm(z) = ∇z log qi(zi) +
∑

l∈[n]\{i}

∇z log pl(zl | zpa(l)) , (21)

s̃m(z) = ∇z log q̃i(zi) +
∑

l∈[n]\{i}

∇z log pl(zl | zpa(l)) . (22)

Then, subtracting (22) from (21) and looking at k-th coordinate, we have

[sm(z)]k − [s̃m(z)]k =
∂ log qi(zi)

∂zk
− ∂ log q̃i(zi)

∂zk
. (23)

Hence, if k ̸= i, the right-hand side is zero and we have [s(z)]k − [s̃(z)]k = 0 for all z. On the
other hand, if k = i, qi(zi) and q̃i(zi) being distinct implies that there exists z ∈ Rn such that
qi(zi) ̸= q̃i(zi), and by Proposition 1, we have E

[∣∣[sm(Z)]k − [s̃m(Z)]k
∣∣] ̸= 0.

Case (iii) Suppose that Im = {i} and Ĩm = {j}, and i ̸= j. Following (8) and (9), we have

sm(z) = ∇z log qi(zi) +∇z log pj(zj | zpa(j)) +
∑

l∈[n]\{i,j}

∇z log pl(zl | zpa(l)) , (24)

s̃m(z) = ∇z log qj(zj) +∇z log pi(zi | zpa(i)) +
∑

l∈[n]\{i,j}

∇z log pl(zl | zpa(l)) . (25)

Hence, sm and s̃m differ in only the causal mechanism of nodes i and j. Subtracting (25) from (24)
we have

sm(z)− s̃m(z) = ∇z log qi(zi) +∇z log pj(zj | zpa(j))−∇z log qj(zj)−∇z log pi(zi | zpa(i)) ,
(26)

[sm(z)]k − [s̃m(z)]k =
∂ log qi(zi)

∂zk
+

∂ log pj(zj | zpa(j))
∂zk

− ∂ log qj(zj)

∂zk
−

∂ log pi(zi | zpa(i))
∂zk

.

(27)

Proof of E
[∣∣[sm(Z)]k − [s̃m(Z)]k

∣∣] ̸= 0 =⇒ k ∈ pa(i, j): Note that none of the terms
in the right-hand side of (27) is a function of zk if k /∈ pa(i, j). Therefore, all the terms in the
right-hand side of (27) are zero, and we have [sm(z)]k − [s̃m(z)]k = 0 for all z. By Proposition 1,
E
[∣∣[sm(Z)]k − [s̃m(Z)]k

∣∣] = 0. This, equivalently, means that if E
[∣∣[sm(Z)]k − [s̃m(Z)]k

∣∣] ̸= 0,
then k ∈ pa(i, j).

Proof of E
[∣∣[sm(Z)]k−[s̃m(Z)]k

∣∣] ̸= 0 ⇐= k ∈ pa(i, j): We prove it by contradiction. Assume
that [sm(z)]k − [s̃m(z)]k = 0 for all z. Without loss of generality, let i /∈ pa(j).

If k = i . Then, (27) reduces to

0 = [sm(z)]i − [s̃m(z)]i =
∂ log qi(zi)

∂zi
−

∂ log pi(zi | zpa(i))
∂zi

. (28)

If i is a root node, i.e., pa(i) = ∅, (27) becomes (log qi)′(zi) = (log pi)
′(zi) for all zi. Integrating,

we get pi(zi) = Cqi(zi) for some constant C. Since both pi and qi are pdfs, they both integrate to
one, implying C = 1 and pi(zi) = qi(zi), which contradicts the premise that observational and
interventional mechanisms are distinct.
If i is not a root node, consider some l ∈ pa(i). Then, taking the derivative of (28) with respect to
zl, we have

0 =
∂2 log pi(zi | zpa(i))

∂zi∂zl
. (29)

Recall the equation Zi = fp,i(Zpa(i)) + Np,i for additive noise models where the noise term
Np,i has pdf pNi . Then, the conditional pdf pi(zi | zpa(i)) is given by pi(zi | zpa(i)) = pNi(zi −
fp,i(zpa(i))). Denoting the score function of pNi

by tp,i,

tp,i(u) ≜
d

du
log pNi

(u) , (30)
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we have

∂ log pi(zi | zpa(i))
∂zi

=
∂ log pNi(zi − fp,i(zpa(i)))

∂zi
= tp,i(zi − fp,i(zpa(i))) . (31)

Substituting into (29), we obtain

0 =
∂tp,i(zi − fp,i(zpa(i)))

∂zl
(32)

= −
∂fp,i(zpa(i))

∂zl
· (tp,i)′(zi − fp,i(zpa(i))) , ∀z ∈ Rn . (33)

Since l is a parent of i, there exists a fixed Zpa(i) = z∗pa(i) realization for which ∂fi(z
∗
pa(i))/∂z

∗
l

is non-zero. Otherwise, fp,i(zpa(i)) would not be sensitive to zl which is contradictory to l being
a parent of i. Note that Zi can vary freely after fixing Zpa(i). Therefore, for (33) to hold, the
derivative of tp,i must always be zero. However, the score function of a valid pdf with full
support cannot be constant. Therefore, [sm(z)]i − [s̃m(z)]i is not always zero, and we have
[sm(z)]i ̸= [s̃m(z)]i.

If k ̸= i . Then, (27) reduces to

0 = [sm(z)]k − [s̃m(z)]k =
∂ log pj(zj | zpa(j))

∂zk
− ∂ log qj(zj)

∂zk
−

∂ log pi(zi | zpa(i))
∂zk

. (34)

We investigate case by case and reach a contradiction for each case. First, suppose that k /∈ pa(i).
Then, we have k ∈ pa(j), and (34) reduces to

0 = [sm(z)]k − [s̃m(z)]k =
∂ log pj(zj | zpa(j))

∂zk
− ∂ log qj(zj)

∂zk
. (35)

If k = j, the impossibility of (35) directly follows from the impossibility of (28). The remaining
case is k ∈ pa(j). In this case, taking the derivative of the right-hand side of (35) with respect to
zj , we obtain

0 =
∂2 log pj(zj | zpa(j))

∂zk∂zj
, (36)

which is a realization of (29) for k ∈ pa(j) and j in place of l ∈ pa(i) and i, which we proved
to be impossible previously. Therefore, k /∈ pa(i) is not viable. Finally, suppose that k ∈ pa(i).
Then, taking the derivative of the right-hand side of (34) with respect to zi, we obtain

0 =
∂2 log pi(zi | zpa(i))

∂zk∂zi
, (37)

which is again a realization of (29) for l = k, Note that (37) is a specific realization of (29) for
l = k, which we proved to be impossible previously.

Hence, we showed that [sm(z)]k − [s̃m(z)]k cannot be zero for all z values. Then, by Proposition 1
we have E

[∣∣[sm(Z)]k − [s̃m(Z)]k
∣∣] ̸= 0, and the proof is completed.

In the next lemma, we establish a transformation between the score differences across different
environments for any injective mapping f from latent to observed space.

Lemma 3 (Score Difference Transformation) Consider random vectors Y 1, Y 2 ∈ Rr and
W 1,W 2 ∈ Rs that are related through Y 1 = f(W 1) and Y 2 = f(W 2) such that r ≥ s and
f : Rs → Rr is a differentiable and injective function. The difference of the score functions of Y 1

and Y 2, and W 1 and W 2 are related through

sW 1(w)− sW 2(w) = [Jf (w)]
⊤(sY 1(y)− sY 2(y)) , (38)

where y = f(w) and Jf (w) ∈ Rs → Rr is the Jacobian of f at point w ∈ Rs.
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Proof We are given that Y 1 = f(W 1) and Y 2 = f(W 2) where g : Rs → Rr is a differentiable
and injective function. The realizations of W 1 and Y 1, and that of W 2 and Y 2, are related through
y = f(w). Denote the Jacobian matrix of f at point w ∈ Rs by Jf (w), which is an r× s matrix with
entries given by

[Jf (w)]i,j =
∂[f(w)]i
∂wj

=
∂yi
∂wj

, ∀i ∈ [r] , j ∈ [s] . (39)

In this case, the pdfs of W 1 and Y 1 are related through [10]

pW 1(w) = pY 1(y) ·
∣∣det([Jf (w)]⊤ · Jf (w)

)∣∣1/2 . (40)
Next, note that the gradient of f with respect to w ∈ Rs is given by

[∇wf(y)]i =
∂

∂wi
f(y) =

r∑
j=1

∂f(y)

∂yj
· ∂yj
∂wi

=

r∑
j=1

[∇yf(y)]j · [Jf (w)]j,i . (41)

Hence, from (41) and y = f(w), more compactly, we have
∇wf(y) = [Jf (w)]

⊤ · ∇yf(y) . (42)
Next, given the identities in (40) and (42), we find the relationship between score functions of W 1

and Y 1 as follows.
sW 1(w) = ∇w log pW 1(w) (43)

(40)
= ∇w log pY 1(y) +∇w log

∣∣det([Jf (w)]⊤ · Jg(w)
)∣∣1/2 (44)

(42)
= [Jf (w)]

⊤ · ∇y log pY 1(y) +∇w log
∣∣det([Jf (w)]⊤ · Jf (w)

)∣∣1/2 (45)

= [Jf (w)]
⊤ · sY 1(y) +∇w log

∣∣det([Jf (w)]⊤ · Jf (w)
)∣∣1/2 . (46)

Following the similar steps that led to (46) for W 2 and Y 2, we obtain

sW 2(w) = [Jf (w)]
⊤ · sY 2(y) +∇w log

∣∣det([Jf (w)]⊤ · Jf (w)
)∣∣1/2 . (47)

Subtracting (47) from (46), we obtain the desired result
sW 1(w)− sW 2(w) = [Jf (w)]

⊤(sY 1(y)− sY 2(y)) . (48)

Using Lemma 3, we immediately prove Lemma 1 as follows.

Proof of Lemma 1 We denote the scores of estimated latent variables Ẑ(h) under environments
E0, Em and Ẽm by sẐ(ẑ;h), s

m
Ẑ
(ẑ;h), and s̃m

Ẑ
(ẑ;h), respectively. Note that Ẑ(h) = h(X). Then,

by setting f = h−1, Lemma 3 yields that, score differences under different environment pairs are
related as:

between E0 and Em : sẐ(ẑ;h)− sm
Ẑ
(ẑ;h) = [Jh−1(ẑ)]⊤(sX(x)− smX(x)) , (49)

between E0 and Ẽm : sẐ(ẑ;h)− s̃m
Ẑ
(ẑ;h) = [Jh−1(ẑ)]⊤(sX(x)− s̃mX(x)) , (50)

between Em and Ẽm : sm
Ẑ
(ẑ;h)− s̃m

Ẑ
(ẑ;h) = [Jh−1(ẑ)]⊤(smX(x)− s̃mX(x)) . (51)

C Proofs of Identifiability Results

In this section, we first prove identifiability in the coupled environments along with the observational
environment case (Theorem 2). Then, we show that the result can be extended to coupled environ-
ments without observational environment (Theorem 3) and uncoupled environments (Theorem 1).

We use the following equations in the proof of all theorems. For each h ∈ H we define ϕh ≜ h ◦ g.
Then, Ẑ(h) and Z are related as

Ẑ(h) = h(X) = (h ◦ g)(Z) = ϕh(Z) . (52)

Then, by setting f = ϕ−1
h , Lemma 3 yields

between E0 and Em : sẐ(ẑ;h)− sm
Ẑ
(ẑ;h) = [Jϕh

(z)]−⊤(s(z)− sm(z)) , (53)

between E0 and Ẽm : sẐ(ẑ;h)− s̃m
Ẑ
(ẑ;h) = [Jϕh

(z)]−⊤(s(z)− s̃m(z)) , (54)

between Em and Ẽm : sm
Ẑ
(ẑ;h)− s̃m

Ẑ
(ẑ;h) = [Jϕh

(z)]−⊤(sm(z)− s̃m(z)) . (55)
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C.1 Proof of Theorem 2

First, we investigate the perfect recovery of latent variables.

Recovering the latent variables. We recover the latent variables using only the coupled interven-
tional environments {(Em, Ẽm) : m ∈ [n]}. Let ρ be the permutation that takes (1, . . . , n) to I, i.e.,
Iρi = i for all i ∈ [n] and Pρ to denote the permutation matrix that corresponds to ρ, i.e.,

[Pρ]i,m =

{
1 , m = ρi ,

0 , else .
(56)

Since we consider coupled atomic interventions, the only varying causal mechanism across Eρi and
Ẽρi is that of the intervened node in Iρi = Ĩρi = {i}. Then, by Lemma 2(ii), we have

E
[∣∣[sm(Z)]k − [s̃m(Z)]k

∣∣] ̸= 0 ⇐⇒ k = i . (57)

We define the true score change matrix Dt with entries for all i,m ∈ [n],

[Dt]i,m ≜ E
[∣∣[sm(Z)]i − [s̃m(Z)]i

∣∣] . (58)

Then, we have 1{[Dt]:,ρm} = em (where em denotes m-th standard basis vector in Rn), and
1{Dt} = Pρ. Next, we show that the number of variations between the score estimates sm

Ẑ
(ẑ;h) and

s̃m
Ẑ
(ẑ;h) cannot be less than the number of variations under the true encoder g−1, that is n = ∥Dt∥0.

Lemma 4 For every h ∈ H, the score change matrix Dt(h) is at least as dense as the score change
matrix D associated with the true latent variables,

∥Dt(h)∥0 ≥ ∥Dt∥0 = n . (59)

Proof Recall the definition of score change matrix Dt(h) in (15). Using (55), we can write entries
of Dt(h) equivalently as

[Dt(h)]i,m = E
[∣∣[J−⊤

ϕh
(Z)]i(s

m(Z)− s̃m(Z))
∣∣] , ∀ i,m ∈ [n] . (60)

Since ϕh = h ◦ g is a diffeomorphism, [J−⊤
ϕh

(z)] is full rank for all (h, z) ∈ H × Rn. Using
Proposition 7 of [1], for all (h, z), there exists a permutation π(h, z) of [n] with permutation matrix
P1(h, z) such that P1(h, z)J

−⊤
ϕh

(z) has non-zero entries in its diagonal.

Next, recall that interventional discrepancy means that, for each i ∈ [n], there exist a null set Ti ⊂ R
such that [sρi(z)]i ̸= [s̃ρi(z)]i for all zi ∈ R \ Ti (regardless of the value of other coordinates of z).
Then, there exists a null set T ⊂ Rn such that [sρi(z)]i ̸= [s̃ρi(z)]i for all i ∈ [n] for all z ∈ Rn \ T .
We denote this set Rn \ T by Z as follows:

Z ≜ {z ∈ Rn : [sρi(z)]i ̸= [s̃ρi(z)]i ∀i ∈ [n]} . (61)

Then, for all z ∈ Z , h ∈ H, and i ∈ [n], we have

[Dt(h)]πi(h,z),ρi
= E

[(
[J−⊤

ϕh
(Z)]πi(j,z)(s

ρi(Z)− s̃ρi(Z))
∣∣] (62)

= E
[∣∣[J−⊤

ϕh
(Z)]πi(h,z),i([s

ρi(Z)]i − [s̃ρi(Z)]i)
∣∣] . (63)

By definition of π(h, z), for any z ∈ Z , we know that [J−⊤
ϕh

(z)]πi(h,z),i ̸= 0. Furthermore, by
definition of Z , we have [sρi(z)]i− [s̃ρi(z)]i ̸= 0. Then, we have [Dt(h)]πi(h,z),ρi

̸= 0. This implies
that

1{Dt(h)} ≽ P⊤
1 (h, z)Pρ , ∀h ∈ H,∀z ∈ Z . (64)

Therefore, ∥Dt(h)∥0 ≥ ∥Pρ∥0 = n for any candidate h, and the proof is concluded since we have
1{Dt} = Pρ.

The lower bound for ℓ0 norm is achieved if and only if 1{Dt(h)} = Pρ, which is an unknown
permutation matrix. Since the only diagonal permutation matrix is In, the solution set of the
constrained optimization problem in (OPT1) is given by

H1 ≜ {h ∈ H : 1{Dt(h)} = In} . (65)
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Now, consider some fixed solution h∗ ∈ H1. Since 1{Dt(h
∗)} = In ≽ P⊤

1 (h∗, z)Pρ due to
(64), we must have P1(h

∗, z) = Pρ for all z ∈ Z . Then, πi(h
∗, z) = ρi for all i ∈ [n]. We will

show that [J−1
ϕh∗ (z)]j,ρi

= 0 for all z ∈ Rn if j ̸= i. To show this, consider i ̸= j, which implies
[Dt(h

∗)]ρi,ρj
= 0 since 1{Dt(h

∗)} = In. Then, using (60), 1{Dt(h
∗)} = In and Lemma 2(ii), we

have

0 = [Dt(h
∗)]ρi,ρj = E

[∣∣[J−⊤
ϕh∗ (Z)]ρi(s

ρj (Z)− s̃ρj (Z))
∣∣] (66)

= E
[∣∣[J−1

ϕh∗ (Z)]j,ρi
[sρj (Z)]j − [s̃ρj (Z)]j

∣∣] (67)

Note that [sρj (z)]j − [s̃ρj (z)]j ̸= 0 for all z ∈ Z . Hence, if [J−1
ϕh∗ (z)]j,ρi

was non-zero over a
non-zero-measure set within Z , [Dt(h

∗)]ρi,ρj
would be non-zero. Therefore, [J−1

ϕh∗ (z)]j,ρi
= 0 on

a set of measure 1. Since J−1
ϕh∗ is a continuous function, this implies that [J−1

ϕh∗ (z)]j,ρi
= 0 for all

z ∈ Rn. To see this, suppose that [J−1
ϕh∗ (z

∗)]j,ρi
> 0 for some z∗ ∈ Z . Due to continuity, there exists

an open set including z∗ for which [J−1
ϕh∗ (z

∗)]j,ρi
> 0, and since open sets have non-zero measure,

we reach a contradiction. Therefore, if i ̸= j, [J−1
ϕh∗ (z)]j,ρi

= 0 for all z ∈ Rn. Since J−1
ϕh∗ (z) must

be full rank for all z ∈ Rn, we have [J−1
ϕh∗ (z)]i,ρi

̸= 0 for all z ∈ Rn, ∀i ∈ [n].

Then, for any h∗ ∈ H1, [Ẑ(h∗)]ρi
= [ϕh∗(Z)]ρi

is a function of only Zi, and we have

[Ẑ(h∗)]ρi = ϕh∗(Zi) , ∀i ∈ [n] , (68)

which concludes the proof.

Recovering the latent graph Consider the selected solution h∗ ∈ H. We construct the graph GẐ
as follows. We create n nodes and assign the non-zero coordinates of ρj-th column of Dobs(h

∗) as
the parents of node ρj in GẐ , i.e.,

paGẐ
(ρj) ≜

{
ρi : [Dobs(h

∗)]ρi,ρj
̸= 0

}
, ∀j ∈ [n] . (69)

Using (16) and (53), we have

paGẐ
(ρj)

(16)
= {ρi : E

[∣∣[sẐ(Ẑ;h∗)]ρi − [s
ρj

Ẑ
(Ẑ;h∗)]ρi

∣∣] ̸= 0} (70)
(53)
= {ρi : E

[∣∣[J−⊤
ϕh∗ (Z)]ρi(s(Z)− s̃ρj (Z))

∣∣] ̸= 0} (71)

= {ρi : E
∣∣([J−⊤

ϕh∗ (Z)]ρi,i([s(Z)]i − [s̃ρj (Z)]i)
∣∣] ̸= 0} . (72)

Since [J−⊤
ϕh∗ (z)]ρi,i ̸= 0 for all z ∈ Rn, this implies

paGẐ
(ρj) = {ρi : E

[∣∣[s(Z)]i − [s̃ρj (Z)]i
∣∣] ̸= 0} . (73)

From Lemma 2(i), E
[∣∣[s(Z)]i − [s̃ρj (Z)]i

∣∣] ̸= 0 if and only if i ∈ pa(j). Therefore, (69) implies
that ρi ∈ paGẐ

(ρj) if and only if i ∈ pa(j), which shows that GZ and GẐ are related through a graph
isomorphism by permutation ρ, which was defined as I−1.

C.2 Proof of Theorem 3

In the proof of Theorem 2, we showed that coupled hard interventions (without using observational
environment) are sufficient for recovering the latent variables. Then, in this proof, we just focus on
recovering the latent graph. Specifically, we will show that if p is adjacency-faithful to GZ and the
latent causal model is an additive noise model, we can still recover GZ without having access to
observational environment E0. By Lemma 2(iii), true latent score changes across {Eρi , Ẽρj}, i ̸= j
pairs gives us pa(i, j) for every (i, j) pair. First, we will use the perfect latent recovery result to
show that Lemma 2(iii) also applies to estimated latent score changes. Specifically, using (55) and
1{J−1

ϕh∗} = Pρ, we have

[sρi

Ẑ
(ẑ;h∗)]ρk

− [s̃
ρj

Ẑ
(ẑ;h∗)]ρk

= [J−⊤
ϕh∗ (z)]ρk

(sρi(z)− s̃ρj (z)) (74)

= [J−⊤
ϕh∗ (z)]ρk,k ([s

ρi(z)]k − [s̃ρj (z)]k) . (75)
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Note that we found [J−⊤
ϕh∗ (z)]ρk,k ̸= 0 for all z ∈ Rn. Then, we have

E
[∣∣[sρi

Ẑ
(Ẑ;h∗)]ρk

− [s̃
ρj

Ẑ
(Ẑ;h∗)]ρk

∣∣] ̸= 0 ⇐⇒ E
[∣∣[sρi(Z)]k ̸= [s̃ρj (Z)]k

∣∣] ̸= 0 . (76)

Hence, by Lemma 2(iii),

E
[∣∣[sρi

Ẑ
(Ẑ;h∗)]ρk

− [s̃
ρj

Ẑ
(Ẑ;h∗)]ρk

∣∣] ̸= 0 ⇐⇒ k ∈ pa(i, j) . (77)

Let us define the graph Gρ that is related to GZ by permutation ρ, i.e., i ∈ pa(j) if and only if
ρi ∈ paGρ

(ρj). By (77), we have

E
[∣∣[sρi

Ẑ
(Ẑ;h∗)]ρk

− [s̃
ρj

Ẑ
(Ẑ;h∗)]ρk

∣∣] ̸= 0 ⇐⇒ ρk ∈ paGρ
(ρi, ρj) . (78)

In the rest of the proof, we will show how to obtain {paGρ
(i) : i ∈ [n]} using {paGρ

(i, j) : i, j ∈
[n], i ̸= j}. Since Gρ is a graph isomorphism of GZ , it is equivalent to obtaining {pa(i) : i ∈ [n]}
using {pa(i, j) : i, j ∈ [n], i ̸= j}. Note that Ẑi (which corresponds to node i in Gρ) is intervened
in environments E i and Ẽ i.

Define Bi ≜ ∩j ̸=ipa(i, j) and use R ≜ {i ∈ [n] : pa(i) = ∅} to denote the set of root nodes. Note
that pa(i) ⊆ Bi. Hence, i is a root node if |Bi| = 1. Construct the set B ≜ {i : |Bi| = 1}. We
investigate the graph recovery in 3 cases.

1. |B| ≥ 3: For any node i ∈ [n], we have

pa(i) ⊆ Bi ⊆
⋂

j∈R\{i}

pa(i, j) = pa(i) ∪ (
⋂

j∈R\{i}

{j}) = pa(i) . (79)

Note that, the last equality is due to ∩j∈R\{i}{j} = ∅ since there are at least two root nodes
excluding i. Then, Bi = pa(i) for all i ∈ [n] and we are done.

2. |B| = 2: The two nodes in B are root nodes. If there were at least three root nodes, we
would have at least three nodes in B. Hence, the two nodes in B are the only root nodes.
Subsequently, every i /∈ B is also not in R and we have

pa(i) ⊆ Bi ⊆
⋂
j∈R

pa(i, j) = pa(i) ∪ (
⋂
j∈R

{j}) = pa(i) . (80)

Hence, Bi = pa(i) for every non-root node i and we already have the two root nodes in B,
which completes the graph recovery.

3. |B| ≤ 1: First, consider all (i, j) pairs such that |pa(i, j)| = 2. For such an (i, j) pair, at
least one of the nodes is a root node, otherwise pa(i, j) would contain a third node. Using
these pairs, we identify all root nodes as follows. Note that a hard intervention on node
i makes Zi independent of all of its non-descendants, and all conditional independence
relations are preserved under element-wise diffeomorphisms such as ϕh∗ . Then, we infer
that

• if Ẑi ⊥⊥ Ẑj in E i and Ẑi ⊥⊥ Ẑj in Ẽj , then both i and j are root nodes.
• if Ẑi ̸⊥⊥ Ẑj in E i, then i → j and i is a root node.
• if Ẑi ̸⊥⊥ Ẑj in Ẽj , then j → i and j is a root node.

This implies that by using at most two independence tests, we can determine whether i
and j nodes are root nodes. Hence, by at most n independence tests, we identify all root
nodes. We also know that there are at most two root nodes. If we have two root nodes, then
Bi = pa(i) for all non-root nodes, and the graph is recovered. If we have only one root
node i, then for any j ̸= i we have

pa(j) ⊆ Bj ⊆ pa(i, j) = pa(j) ∪ {i} . (81)

Finally, if Ẑj ⊥⊥ Ẑi | ẐBj\i in Ẽj , we have i /∈ pa(j) due to adjacency-faithfulness.
Otherwise, we deduce that i ∈ pa(j). Hence, an additional (n−1) conditional independence
tests ensure to recovery of all pa(j) sets, and the graph is recovered.
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C.3 Proof of Theorem 1

Recall that Ĩ = {Ĩ1, . . . , Ĩn} is the permutation of intervened nodes in Ẽ , so coupling π considered
in (OPT2) is just equal to Ĩ. Similarly to definition of ρ for I in the Proof of Theorem 2, let ρ̃ be
the permutation that takes (1, . . . , n) to Ĩ, i.e., I ρ̃i = i for all i ∈ [n] and Pρ̃ denote the permutation
matrix for the intervention order of the environments {Ẽ1, . . . , Ẽn},

[Pρ̃]i,j =

{
1 , j = ρ̃i ,

0 , else .
(82)

First, we show that if the coupling is incorrect, i.e., ρ ̸= ρ̃, the optimization problem in (OPT2) does
not have a feasible solution.

Lemma 5 If the coupling is incorrect, i.e., ρ ̸= ρ̃, the following optimization problem does not have
a feasible solution. 

min
h∈H

∥Dt(h)∥0

s.t. Dt(h) is a diagonal matrix

1{Dobs(h)} = 1{D̃obs(h)}
1{Dobs(h)} ⊙ 1{D⊤

obs(h)} = In

(OPT2)

Proof We will it prove by contradiction. Suppose that h∗ is a solution to (OPT2). Note that [J−⊤
ϕh∗ (z)]

is full rank for all z ∈ Rn and for any m ∈ [n], the score difference vector (sρi(z) − s̃ρi(z)) is
not identically zero. Then, from (60) and Proposition 1, Dt(h

∗) cannot have any zero columns.
Subsequently, ∥Dt(h

∗)∥0 ≥ n, and since Dt(h
∗) is diagonal, we have 1{Dt(h

∗)} = In. We use
J∗ ≜ J−⊤

ϕh∗ as shorthand. If ρi = ρ̃i for some i ∈ [n], using Dt(h
∗) = In and Lemma 2(ii), for j ̸= i,

we have

0 = [Dt(h
∗)]ρj ,ρi = E

[∣∣[J∗(Z)]ρj (s
ρi(Z)− s̃ρi(Z))

∣∣] = E
[∣∣[J∗(Z)]ρj ,i([s

ρi(Z)]i − [s̃ρi(Z)]i)
∣∣] .

(83)

Recall that [sρi(z)]i − [s̃ρi(z)]i ̸= 0 except for a null set. Then, (83) implies that we have
[J∗(z)]ρj ,i = 0 except for a null set. Since J∗ is continuous, this implies that [J∗(z)]ρj ,i = 0
for all z ∈ Rn. Furthermore, since J∗(z) is invertible for all z, none of its columns can be a zero
vector. Hence, for all z ∈ Rn, [J∗(z)]ρi,i = 0. To summarize, if ρi = ρ̃i, we have

∀z ∈ Rn [J∗(z)]j,i ̸= 0 ⇐⇒ j = ρi . (84)

Now, consider the set of mismatched nodes

A ≜ {i ∈ [n] : ρi ̸= ρ̃i} . (85)

Let a ∈ A be a non-descendant of all the other nodes in A. There exists b, c ∈ A, not necessarily
distinct, such that ρa = ρ̃b and ρc = ρ̃a. In four steps, we will show that Dobs(h

∗)ρa,ρc ̸= 0
and Dobs(h

∗)ρc,ρa ̸= 0, which violates the constraint 1{Dobs(h)} ⊙ 1{D⊤
obs(h)} = In and will

conclude the proof by contradiction.

Before giving the steps, we provide the following argument which we repeatedly use in the rest of the
proof. For any continuous function f : Rn → R, we have

E
[
|f(Z)|

]
̸= 0 ⇐⇒ E

[∣∣f(Z)([s(Z)]a − [sρa(Z)]a)
∣∣] ̸= 0 , (86)

and E
[
|f(Z)|

]
̸= 0 ⇐⇒ E

[∣∣f(Z)([s(Z)]a − [s̃ρc(Z)]a)
∣∣] ̸= 0 . (87)

First, suppose that E
[
|f(Z)|

]
̸= 0. Then, there exists an open set Ψ ⊆ Rn for which f(z) ̸= 0 for

all z ∈ Ψ. Due to interventional discrepancy between pa and qa, there exists an open set within Ψ
for which [sρa(Z)]a − [s(Z)]a ̸= 0. This implies that E

[∣∣f(Z)([sρa(Z)]a − [s(Z)]a)
∣∣] ̸= 0. For the

other direction, suppose that E
[∣∣f(Z)([sρa(Z)]a − [s(Z)]a)

∣∣] ̸= 0, which implies that there exists
an open set Ψ for which both f(z) and [sρa(z)]a − [s(z)]a are non-zero. Then, E

[
|f(Z)|

]
̸= 0, and

we have (86). Similarly, due to ρc = ρ̃a and interventional discrepancy between pa and q̃a, we obtain
(87).
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Step 1: Show that E
[
|[J∗(Z)]ρa,a|

]
̸= 0. First, using (60) and Lemma 2(i), we have

[Dobs(h
∗)]ρa,ρa

= E
[∣∣[J∗(Z)]ρa

(s(Z)− sρa(Z))
∣∣] (88)

= E
[∣∣ ∑

j∈pa(a)

[J∗(Z)]ρa,j([s(Z)]j − [sρa(Z)]j)
∣∣] . (89)

Note that pa(a) ∩ A = {a} since a is non-descendant of the other nodes in A. Consider j ∈ pa(a),
which implies that j /∈ A and ρj = ρ̃j . By (84), we have [J∗(Z)]ρa,j = 0. Then, the equation above
reduces to

[Dobs(h
∗)]ρa,ρa

= E
[
|[J∗(Z)]ρa,a([s(Z)]a − [sρa(Z)]a)|

]
̸= 0 , (90)

since diagonal entries of Dobs(h
∗) are non-zero due to the last constraint in (OPT2). Then, (86)

implies that E[|[J∗(Z)]ρa,a|] ̸= 0.

Step 2: Show that [D̃obs(h
∗)]ρa,ρc ̸= 0. Next, we use ρc = ρ̃a and Lemma 2(i) to obtain

[D̃obs(h
∗)]ρa,ρc = E

[
|[J∗(Z)]ρa(s(Z)− s̃ρc(Z))|

]
(91)

= E
[∣∣ ∑

j∈pa(a)

[J∗(Z)]ρa,j([s(Z)]j − [s̃ρc(Z)]j)
∣∣] (92)

= E
[∣∣[J∗(Z)]ρa,a([s(Z)]a − [s̃ρc(Z)]a)

∣∣] (93)

Using (87) and Step 1 result, we have [D̃obs(h
∗)]ρa,ρc

̸= 0.

Step 3: Show that E
[
|[J∗(Z)]ρc,a|

]
̸= 0. Using (60) and Lemma 2(i), we have

[D̃obs(h
∗)]ρc,ρc

= E
[∣∣[J∗(Z)]ρc

(s(Z)− s̃ρc(Z))
∣∣] (94)

= E
[∣∣ ∑

j∈pa(a)

[J∗(Z)]ρc,j([s(Z)]j − [s̃ρc(Z)]j)
∣∣] (95)

= E
[∣∣[J∗(Z)]ρc,a([s(Z)]a − [s̃ρc(Z)]a)

∣∣] (96)

Since 1{Dobs(h
∗)} = 1{D̃obs(h

∗)}, the diagonal entry [D̃obs(h
∗)]ρc,ρc is non-zero. Then, using

(87) we have E
[
|[J∗(Z)]ρc,a|

]
̸= 0.

Step 4: Show that [Dobs(h
∗)]ρc,ρa

̸= 0. Next, we use ρc = ρ̃a and Lemma 2(i) to obtain

[D̃obs(h
∗)]ρc,ρa

= E
[∣∣[J∗(Z)]ρc

(s(Z)− sρa(Z))
∣∣] (97)

= E
[∣∣ ∑

j∈pa(a)

[J∗(Z)]ρc,j([s(Z)]j − [sρa(Z)]j)
∣∣] (98)

= E
[∣∣[J∗(Z)]ρc,a([s(Z)]a − [sρa(Z)]a)

∣∣] (99)

Using (86) and Step 3 result, we have [Dobs(h
∗)]ρc,ρa ̸= 0.

However, using the constraint 1{Dobs(h
∗)} = 1{D̃obs(h

∗)}, we have [Dobs(h
∗)]ρa,ρc

̸= 0. Then,
[Dobs(h

∗) ⊙ D⊤
obs(h

∗)]ρa,ρc ̸= 0, which violates the last constraint in (OPT2). Therefore, if the
pairing is incorrect, optimization problem (OPT2) has no feasible solution.
Next, we show that if the pairing is correct, i.e., ρ = ρ̃, there exists a solution to (OPT2).

Lemma 6 If the pairing is correct, i.e., ρ = ρ̃, h = ρ−1 ◦ g−1 is a solution to (OPT2), and yields
∥Dt(h)∥0 = n.

Proof We consider the true encoder g−1 under the permutation ρ−1, that is h = ρ−1 ◦ g−1, and show
that it is a solution to (OPT2). First, note that ϕh = ρ−1 ◦ g−1 ◦ g = ρ−1, a simple permutation, and
J−⊤
ϕh

becomes permutation matrix P⊤
ρ . Then, for all i,m ∈ [n] we have

[Dt(h)]ρi,m = E
[∣∣[P⊤

ρ ]ρi(s
m(Z)− s̃m(Z))

∣∣] (100)

= E
[∣∣[sm(Z)]i − [s̃m(Z)]i

∣∣] . (101)
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Then, by Lemma 2(ii), we have [Dt(h)]ρi,m ̸= 0 if and only if i = Im, which means m = ρi and
Dt(h) is a diagonal matrix. Hence, h satisfies the first constraint. Next, consider Dobs(h). For all
i, j ∈ [n], we have

[Dobs(h)]ρi,ρj = E
[∣∣[P⊤

ρ ]ρi(s(Z)− sm(Z))
∣∣] = E

[∣∣[s(Z)]i − [sm(Z)]i
∣∣] . (102)

By Lemma 2(i), we have [Dobs(h)]ρi,ρj ̸= 0 if and only if i = pa(j). Since ρ = ρ̃, similarly, we
have [D̃obs(hρ)]ρi,ρj

̸= 0 if and only if i = pa(j). Therefore, we have 1{Dobs(h)} = 1{D̃obs(h)},
Dobs(h) has full diagonal and it does not have non-zero values in symmetric entries. Hence, h
satisfies the second and third constraints. Therefore, h is a solution to (OPT2) since it satisfies all
constraints and the diagonal matrix Dt(h) has ∥Dt(h)∥0 = n, which is the lower bound established.

Lemmas 5 and 6 collectively prove identifiability as follows. We can search over the permutations

of [n] until (OPT2) admits a solution h∗. By Lemma 5, the existence of this solution means that
pairing is correct. Note that, when the pairing is correct, the constraint set of (OPT1) is a subset of
the constraints in (OPT2). Furthermore, the minimum value of ∥Dt(h)∥0 is lower bounded by n
(Lemma 4), which is achieved by the solution h∗ (Lemma 6). Hence, h∗ is also a solution to (OPT1),
and perfect recovery of latent variables and the latent DAG follows from the proof of Theorem 2.

D Details of Simulations

We perform experiments for the coupled environments setting and using a regularized, ℓ1-relaxed
version of the optimization problem (OPT1). Specifically, in Step 2 of GSCALE-I, we solve the
following optimization problem:

min
h∈H

∥Dt(h)∥1,1 + λ1E∥h−1(h(X))−X∥22 + λ2E∥h(X)∥22 . (OPT3)

In this section, we describe data generation, computation of the ground truth score differences for X ,
justification of the optimization problem in (OPT3) and other implementation details.

Data generation details. To generate GZ we use the Erdős-Rényi model with n ∈ {5, 8} nodes
and density 0.5. For the observational causal mechanisms, we adopt an additive noise model with
Zi =

√
Z⊤
pa(i)Ap,iZpa(i) +Np,i , where {Ap,i : i ∈ [n]} are positive-definite matrices and the noise

terms are zero-mean Gaussian variables with variances σ2
p,i sampled randomly from Unif([0.5, 1.5]).

We construct the positive-definite matrix Ap,i by generating a matrix Bp,i ∈ R|pa(i)|×|pa(i)| by
sampling its entries from Unif([0, 1]) and setting Ap,i = B⊤

p,iBp,i.

For two hard interventions on node i, Zi is set to Nq,i ∼ N (0, σ2
q,i) and Nq̃,i ∼ N (0, σ2

q̃,i),
respectively. We set σ2

q,i = σ2
p,i + 1 and σ2

q̃,i = σ2
p,i + 2. We consider target dimension values

d ∈ {5, 25, 40} for n = 5 and d ∈ {8, 25, 40} for n = 8. For each (n, d) pair, we generate 100
latent graphs, and N samples of Z per environment per graph, where we set N = 100 for n = 5 and
N = 300 for n = 8. As the transformation, we consider a generalized linear model,

X = g(Z) = tanh(T · Z) , (103)

Z = g−1(X) = T+ · arctanh(X) , (104)

in which tanh and arctanh is applied element-wise, and the ground truth parameters T ∈ Rd×n is a
randomly sampled full-rank matrix.

Score function of the quadratic model. Score functions can be computed using (7), (8), and (9).
For additive noise models, all the terms in these equations have closed-form expressions. Specifically,
using (31), we have

[s(z)]i = tp,i(np,i)−
∑

j∈ch(i)

∂fp,j
∂zi

(zpa(j)) · tp,j(np,j) . (105)
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Since the model under investigation The model we investigate is an additive noise model with hard
interventions given by

fp,i(zpa(i)) =
√
z⊤pa(i)Ap,izpa(i) , and Np,i∼ N (0, σ2

p,i) , (106)

fq,i(zpa(i)) = 0 , and Nq,i∼ N (0, σ2
q,i) , (107)

fq̃,i(zpa(i)) = 0 , and Nq̃,i∼ N (0, σ2
q̃,i) . (108)

which implies

tp,i(np,i) = −np,i

σ2
p,i

, and
∂fp,j
∂zi

(zpa(j)) =
[Ap,j ]i · zpa(j)√
z⊤pa(j)Ap,jzpa(j)

, (109)

tq,i(nq,i) = −nq,i

σ2
q,i

, and
∂fq,j
∂zi

(zpa(j)) = 0 , (110)

tq̃,i(nq,i) = −nq̃,i

σ2
q̃,i

, and
∂fq̃,j
∂zi

(zpa(j)) = 0 . (111)

Score functions sm and s̃m can be computed similarly. Subsequently, using Lemma 3, we can
compute the score differences (sX − smX), (sX − s̃mX), and (smX − s̃mX) for all m ∈ [n] via the
equations

[J⊤
g (z)]+(s(z)− sm(z)) = sX(x)− smX(x) , (112)

[J⊤
g (z)]+(s(z)− s̃m(z)) = sX(x)− s̃mX(x) , (113)

[J⊤
g (z)]+(sm(z)− s̃m(z)) = smX(x)− s̃mX(x) . (114)

Implementation and evaluation steps. Similar to the ground truth, we parameterize the candidate
transformations h as

Ẑ = h(X) = U+ · arctanh(X) , (115)

X̂ = h−1(Ẑ) = tanh
(
U · Ẑ

)
, (116)

with parameter U ∈ Rd×n. Note that given this parameterization, the function ϕh(z) = (h ◦ g)(z) is
given by

Ẑ = ϕh(Z) = U+ · T · Z . (117)

Subsequently, the only element-wise diffeomorphism between Z and Ẑ is element-wise scaling,
which corresponds to scaling the columns of the candidate parameter U . Thus, to eradicate the scaling
effect and compare Z and Ẑ directly, we normalize columns of the ground truth parameters T and
the candidate U such that each of their columns has a unit-norm.

We use N samples from the observational environment to compute empirical expectations. Since
the candidate transform h is parameterized by U , we use gradient descent to learn parameters U . To
do so, we relax ℓ0 norm in (OPT1) and instead minimize element-wise ℓ1,1 norm ∥Dt(h)∥1,1. Note
that, scaling up Ẑ(h) by a constant c scales down the score differences by 1/c. Hence, to prevent
the vanishing of the score difference loss trivially, we add the following regularization term to the
optimization objective.

E∥Ẑ(h)∥22 = E∥h(X)∥22 . (118)

We also add a reconstruction loss to ensure that h is an invertible transform,

E∥h−1(h(X))−X∥22 . (119)

In the end, we minimize the objective function

∥Dt(h)∥1,1 + λ1E∥h−1(h(X))−X∥22 + λ2E∥h(X)∥22 , (120)

and denote the final parameter estimate by T̂ . Note that we do not enforce the diagonality constraint
upon Dt(h). Since we learn the latent variables up to permutation, we change this constraint to
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a post-processing step. Specifically, we permute the columns of T̂ to make Dt(h
∗) as close to as

diagonal, i.e., ∥diag(Dt(h
∗)⊙ In)∥1 is maximized.

We set λ1 = 10−4 and λ2 = 1, and solve (OPT3) using RMSprop optimizer with learning rate 10−3

for 3 × 104 steps for n = 5 and 4 × 104 steps for n = 8. Finally, we normalize both T and the
estimate T̂ to compare them at the same scale. To do so, we normalize each column of T and T̂ by
the ℓ2-norm of the respective columns.

Recall that the latent graph estimate GẐ is constructed using 1{Dobs(h
∗)}. We use a threshold λG to

obtain the graph from the upper triangular part of Dobs(h
∗) as follows.

paGẐ
(i) = {j : j < i and [Dobs(h

∗)]j,i ≥ λG} , ∀i ∈ [n] . (121)

We set λG = 0.1 for n = 5 and λG = 0.2 for n = 8.

Increasing observed data dimension d. In Table 2 of Section 5, we have provided evaluations up
to d = 40. In addition, we repeat the similar experiments for d = 100 with n ∈ {5, 8} nodes for 100
latent graphs and N = 100 samples. Table 3 demonstrates the similar results to Table 2. Hence, we
show the scalability of our methodology with respect to the dimensionality of the observed data.

Table 3: Recovery of the latent variables and latent DAG using GSCALE-I with a score oracle

n d
∥Z − Ẑ∥2
∥Z∥2

∥T − T̂∥F
∥T∥F

SHD precision recall

5 100 0.04 0.03 0.02 1.00 0.99

8 100 0.24 0.19 1.50 0.93 0.97
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