
VinePPO: Refining Credit Assignment in RL Training of LLMs

Amirhossein Kazemnejad * 1 Milad Aghajohari * 1 Eva Portelance 1 6 Alessandro Sordoni 1 2 Siva Reddy 1 3 4

Aaron Courville † 1 4 5 Nicolas Le Roux † 1 4

Abstract

Large language models (LLMs) are increasingly
applied to complex reasoning tasks that require
executing several complex steps before receiving
any reward. Properly assigning credit to these
steps is essential for enhancing model perfor-
mance. Proximal Policy Optimization (PPO), a
common reinforcement learning (RL) algorithm
used for LLM finetuning, employs value networks
to tackle credit assignment. However, recent ap-
proaches achieve strong results without it, raising
questions about the efficacy of value networks in
practice. In this work, we systematically evaluate
the efficacy of value networks and reveal their sig-
nificant shortcomings in reasoning-heavy LLM
tasks, showing that they often produce poor es-
timate of expected return and barely outperform
a random baseline when comparing alternative
steps. This motivates our key question: Can im-
proved credit assignment enhance RL training for
LLMs? To address this, we propose VinePPO, a
straightforward approach that leverages the flexi-
bility of language environments to compute unbi-
ased Monte Carlo-based estimates. Our method
consistently outperforms PPO and other baselines
across MATH and GSM8K datasets in less wall-
clock time (up to 3.0x). Crucially, it achieves
higher test accuracy for a given training accuracy,
capturing more generalization signal per sample.
These results emphasize the importance of accu-
rate credit assignment in RL training of LLM.

Code available at https://github.com/
McGill-NLP/VinePPO

*Equal contribution †Equal advising 1Mila 2Microsoft Research
3McGill University 4Canada CIFAR AI Chair 5Université de
Montréal 6HEC Montréal. Correspondence to: Amirhossein
Kazemnejad <amirhossein.kazemnejad@mila.quebec>, Milad
Aghajohari <aghajohm@mila.quebec>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

1. Introduction
Reinforcement learning (RL) has become instrumental in
training large language models (LLMs) to solve complex
reasoning tasks such as mathematical problem solving
(DeepSeek-AI et al., 2025), web navigation (Putta et al.,
2024), or code generation (OpenAI, 2024). In these settings,
LLMs often engage in extended reasoning steps, executing
multiple actions to arrive at a solution. However, not all
steps are equally impactful—some contribute significantly,
while others are irrelevant or detrimental. For example, in
Figure 1.a, only step s2 provides a key insight. Indeed,
most reasoning steps generated by a model do not affect
the chance of it solving the problem (Figure 1.b). Identify-
ing the contribution of each action is crucial for improving
model performance. However, this is inherently difficult due
to the significant delay between actions and their eventual
effect. This issue, known as the Credit Assignment (CA)
problem, is a core challenge in RL (Sutton & Barto, 1998).

Proximal Policy Optimization (PPO; Schulman et al. 2017)
addresses credit assignment through a value network (or
critic), a mechanism retained in its application to RL-based
finetuning of LLMs (Ouyang et al., 2022). This network,
typically a separate model initialized from a pretrained
checkpoint, is trained during PPO finetuning to estimate
the expected cumulative rewards (or value) of an interme-
diate action. In Figure 1.b, an ideal value network would
assign high value to step s2 and subsequent steps, where
the model has a high chance of successfully solving the
problem. PPO uses these value estimates to measure the
advantage of each action and update the model accordingly.

However, recent approaches such as DPO (Rafailov et al.,
2023) or GRPO (Shao et al., 2024) simplify PPO’s design
by discarding fine-grained credit assignment and treating
all tokens equally. Despite such simplifications, they often
demonstrate strong performance (Xu et al., 2024; Chang
et al., 2023). This challenges classic RL principles, where
accurate CA is considered critical for optimal performance
(Sutton & Barto, 1998; Greensmith et al., 2001), especially
in tasks with delayed rewards. In this work, we address
this apparent discrepancy by showing that PPO’s credit as-
signment mechanism, the value network, performs poorly
in practice. Our systematic evaluation (Section 7) on tasks

1

https://github.com/McGill-NLP/VinePPO
https://github.com/McGill-NLP/VinePPO

VinePPO: Refining Credit Assignment in RL Training of LLMs

Prompt (s0) p̂(correct|s:t) Advantage

0.4 n/a
Let a and b be nonzero real numbers such that (2 − 7i)(a + bi)
is pure imaginary. Find a

b .

Chain-of-Thought Response

s1 0.4 0.0We can expand the left-hand side to get

s2 1.0 0.6(2 − 7i)(a + bi) = (2a + 7b) + (−7a + 2b)i.

s3 1.0 0.0This is pure imaginary if and only if the real part is 0, i.e.

s4 1.0 0.02a + 7b = 0.

s5 1.0 0.0Then a = − 7
2 b, so a

b = − 7
2 .

(a) A Sample Response

0%

20%

40%

60%

-1.0 -0.5 0.0 0.5 1.0
0%

20%

40%

60%

D
eep

S
eekM

ath
 7B

R
h
oM

ath
 1.1B

(b) Advantage

Figure 1: (Left) A response generated by the model. The notation p̂(correct|s:t) represents the estimated probability of
successfully solving the problem at step t. Here, only step s2 is critical; after this, the model always completes the solution
correctly. (Right) The distribution of advantages, defined as p̂(correct|s:t+1)− p̂(correct|s:t), collected over a subset of
MATH dataset (Hendrycks et al., 2021). Most steps show little or no advantage over the preceding step.

requiring chain-of-thought reasoning reveals that the value
network often provides imprecise estimates and fails to dif-
ferentiate between promising and unproductive steps, which
could explain why simplified approaches achieve compara-
ble results without explicit fine-grained CA.

These findings motivate a central question: If we improve
credit assignment in PPO rather than discarding it, how
much can we enhance the RL training of LLMs? To explore
this, we propose VinePPO (Figure 2), which computes unbi-
ased value estimates of the intermediate states with Monte
Carlo (MC) estimation instead of employing value networks.
Our key insight is that language-based environments allow
us to reset directly to any intermediate state simply by re-
feeding the partial context, enabling efficient MC rollouts
without the massive overhead usually seen in generic RL
environments. VinePPO preserves PPO’s overall framework
but addresses the CA challenge fundamentally.

We empirically evaluate the effectiveness and computational
efficiency of MC value estimation in VinePPO. Across mul-
tiple mathematical reasoning tasks, VinePPO consistently
outperforms PPO and other credit assignment-free baselines.
While its per-iteration runtime is generally slower due to
MC sampling, VinePPO surpasses the peak performance
of baselines with fewer gradient steps and ultimately less
wall-clock time. Importantly, VinePPO achieves higher
test accuracy for a given training accuracy, capturing more
generalization signal per fitted training sample. This is criti-
cal, as genuinely challenging verifiable reasoning tasks are
scarce. These results underscore the importance of CA in
RL-training of LLMs and highlight VinePPO as a straight-
forward alternative to value network-based approaches.

Our contributions are summarized as follows:

• We analyze PPO’s value network in reasoning tasks and
find it often misestimates intermediate values, barely out-
performing a random chance in ranking candidate steps.

• We propose VinePPO, leveraging the flexibility of lan-
guage environments to compute unbiased, MC-based
value estimates without relying on a separate critic.

• We empirically highlights the benefits of refined CA.
VinePPO achieves the peak performance of baselines with
less wall-clock time (up to 3.0x), better KL-divergence
trade-off while exhibiting better generalization slope.

2. Related Work
Credit Assignment in Post-Training of LLM PPO, as
applied in RL from Human Feedback (RLHF, Ouyang et al.
2022), pioneered RL finetuning of LLMs. However, its
computational overhead and hyperparameter sensitivity led
to the development of simpler alternatives. RL-free meth-
ods such as DPO (Rafailov et al., 2023) operate in a bandit
setting, treating the entire response as a single action. Simi-
larly, rejection sampling methods like RestEM (Singh et al.,
2024) finetune on full high-reward responses. RLOO (Ah-
madian et al., 2024) and GRPO (Shao et al., 2024) abandon
PPO’s value network, instead using average reward from
multiple samples as a policy gradient baseline. Recent work
has emphasized finer credit assignment, with Hwang et al.
(2024) and Setlur et al. (2024) introducing MC-based meth-
ods to detect key errors in reasoning chains for use as ad-hoc
mechanisms in DPO. Our work, by contrast, fully embraces
the RL training, with the target of fixing CA in principle.
Parallel efforts have also focused on building better veri-
fiers and reward models for per-step feedback, with recent
attempts to automate their data collection using MC rollouts

2

VinePPO: Refining Credit Assignment in RL Training of LLMs

x

s1

s2

τ2 τ1τ3

RLOO: V̂R(x) = 1
G−1

∑G
2 R(τi)

GRPO: VG(x) =
1
G

∑G
1 R(τi)

b1= V̂R(x) = 1
2 (0 + 1)

= 0.5

b2= V̂R(x) = 1
2 (0 + 1)

= 0.5

RLOO / GRPO

x

s1

s2

τ2 τ1τ3

b1= V̂ϕ(s1)

= 0.1934

b2= V̂ϕ(s2)

= 0.5733

V̂ϕ(st) = ValNet(st;ϕ)

PPO

x

s1

s2

η1

η1

η3

η′
1

η′
1

η′
3

τ2 τ1τ3

b1= V̂MC(s1)

= 0.66

b2= V̂MC(s2)

= 1.00

V̂MC(st) =
1
K

∑
k R(ηk)

VinePPO

Figure 2: Comparison of credit assignment mechanisms applied on training trajectories τi’s, depicted for states s1 and s2.
(Left) RLOO and GRPO both treat all intermediate states equally and use the average return of trajectory group τi ∼ π(·|x)
for the policy-gradient baselines b1 and b2. GRPO additionally normalize these returns to have a unit variance. In the case of
RLOO, the computed baseline could be viewed as MC estimate of value but solely for the initial state. (Middle) PPO trains
a separate model to predict values for each state st. (Right) VinePPO generate auxiliary rollouts ηk ∼ π(·|st) to obtain MC
estimate of state st’s value. Note that ηk’s are only used for value estimation—not to update the policy directly.

(Ma et al., 2023; Uesato et al., 2022; Luo et al., 2024; Wang
et al., 2024). Our method is orthogonal to these methods,
operating within PPO-based training to optimize a given
reward, instead of designing new ones.

Value Estimation in RL and Monte Carlo Tree Search
(MCTS) Deep RL algorithms are typically categorized
into value-based and policy-based methods. Policy-based
methods like PPO usually employ critic networks for value
prediction. An exception is the “Vine” variant of TRPO
(Schulman et al., 2015), which uses MC samples for state
value estimation. The authors, however, note that the Vine
variant is limited to environments that allow intermediate
state resets, rare in typical RL settings1. However, language
generation – when formulated as RL environment – enables
such intermediate reset capabilities. In domains with similar
reset capabilities, such as Go and Chess, MC-based methods
like AlphaGo (Silver et al., 2016) and AlphaZero (Silver
et al., 2017) have emerged. AlphaGo’s architecture includes
a policy, trained using expert moves and self-play, and a
value network that predicts game outcomes. At inference,
it employs tree search guided by MC rollouts and value
network to select optimal moves. AlphaZero advances this
approach by distilling MCTS outcomes into the policy. Re-
cent works have adapted AlphaZero’s principles to LLMs,
employing similar search techniques for inference and tra-
jectory distillation (Xie et al., 2024; Chen et al., 2024; Wan
et al., 2024; Zhang et al., 2024; Hao et al., 2023). While
this is a promising direction, our method is not an MCTS
approach; it uses MC samples solely for value estimation
during PPO training to improve credit assignment.

1This is reflected in the design of Gym (Towers et al., 2024),
which only allows resets to the initial state.

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00
MAE: 0.03

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00
MAE: 0.11

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00
MAE: 0.18

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00
MAE: 0.15

Ground Truth Value

P
re

d
ic

te
d
 V

al
u
e

VinePPO PPO

RLOO GRPO

Figure 3: Distribution of predicted values for each state vs.
ground truth (see Section 7 for details) for DeepSeekMath
7B on the MATH dataset, highlighting the nature of errors:
PPO exhibits biased value predictions, whereas VinePPO
remains unbiased. Note that RLOO/GRPO do not predict
values; we plot their computed baselines against the ground
truth value solely for demonstration.

3. Background
We focus on the RL tuning phase, following Ouyang et al.
(2022); Shao et al. (2024). In this section, we provide an
overview of actor-critic finetuning as implemented in the
standard PPO framework.

3

VinePPO: Refining Credit Assignment in RL Training of LLMs

RL Finetuning In this setup, the policy πθ repre-
sents a language model that generates a response y =
[y0, . . . , yT−1] autoregressively given an input x =
[x0, . . . , xM−1]. The goal of RL finetuning is to maximize
the expected undiscounted (γ = 1) finite-horizon return,
while incorporating a KL-divergence constraint to regular-
ize the policy and prevent it from deviating too far from a
reference policy πref (typically the initial supervised fine-
tuned, SFT, model). The objective can be written as:

J(θ) = Ex∼D,y∼π(·|x) [R(x;y)]− βKL[πθ∥πref], (1)

where D is the dataset of prompts, R(x;y) is the sequence-
level reward function, and β controls the strength of the KL
penalty. Note that the policy πθ is initialized from πref .

Language Environment as an MDP Language gener-
ation is typically modeled as a token-level Markov De-
cision Process (MDP) in an actor-critic setting, where
each response y is an episode. The state at time step
t, st ∈ S, is the concatenation of the input prompt and
the tokens generated up to that point: st = x;y<t =
[x0, . . . , xM−1, y0, . . . , yt−1]. At each time step, the action
at corresponds to generating the next token yt from fixed
vocabulary. The process begins with the initial state s0 = x,
and after each action, the environment transitions to the
next state, st+1 = st; [at], by appending the action at to the
current state st. In this case, since states are always con-
structed by concatenating tokens, the environment dynamics
are known and the transition function is deterministic, i.e.,
P (st+1|st, at) = 1. During the generation process, the
reward rt is set to zero for all intermediate actions at’s,
with the sequence-level reward R(x;y) only applied at the
final step when the model stops generating. A trajectory
τ = (s0, a0, s1, a1, . . .) is therefore a sequence of state-
action pairs, starting from the input prompt until the ter-
minal state. Finally, we define the cumulative return of a
trajectory τ as R(τ) =

∑T−1
t=0 rt = rT−1 = R(x;y).

Policy Gradient Given this MDP formulation, policy gra-
dient methods like PPO maximize Equation 1 by repeatedly
sampling trajectories and taking a step in the direction of the
gradient gpg := ∇θJ(θ) to update the parameters. Policy
gradient gpg takes the following form:

gpg = Eτ∼πθ

[
T−1∑
t=0

∇θ log πθ(at|st)A(st, at)

]
, (2)

where st = x;y<t, at = yt, and A(st, at) is the advantage
function. If A(st, at) > 0, gpg will increase the probability
of action at in state st, and decrease it when A(st, at) < 0.
Intuitively, the advantage function quantifies how much
better action at is compared to average actions taken in state

st under the policy. Formally, it is defined as:

A(st, at) = Q(st, at)− V (st)

= rt + γV (st+1)− V (st). (3)

where Q(st, at) is the state-action value and V (st) is the
per-state value function2. The value function, V (st) :
S → R, offers a long-term assessment of how desir-
able a particular state is under the current policy. For-
mally, it represents the expected cumulative reward ob-
tained from starting in state st and following the policy
thereafter3: V (st) = Eτ∼πθ

[R(τ) | s0 = st] . PPO uses
the same advantage-weighted policy gradient as in Equa-
tion 2, but constrains policy updates through clipping to
ensure stable training. For full details, see Appendix A.

Estimating Advantage via Value Networks In practice,
the advantage A(st, at) is not known beforehand and is
typically estimated by first using a value network V̂ϕ to
approximate the true value function V (st), then substituting
the learned values into Equation 3 or alternative methods
like GAE (Schulman et al., 2016). The value network is
parameterized by ϕ and trained alongside the policy network
πθ. The training objective for the value network minimizes
the mean squared error between the predicted value and the
empirical return:

LV (ϕ) = Eτ∼πθ

[
1

T

∑
t

1

2
(V̂ϕ(st)−Gt)

2

]
, (4)

where Gt =
∑T−1

t′=t rt′ is the empirical return from state
st. PPO uses the same objective for V̂ϕ but applies clipping
for training stability (see Appendix A.1 for details). In
RL-tuning of LLMs, the value network is often initialized
using the initial SFT policy πref (or the reward model when
available), with the language modeling head swapped out
for a scalar head to predict values (Zheng et al., 2023). This
setup leverages the prior knowledge of the pretrained model.

4. Accurate Credit Assignment with VinePPO
As outlined in Section 3, a step in the PPO gradient update
aims to increase the probability of better-than-average ac-
tions while decreasing the probability of those that perform
worse—a process quantified by the advantage A(st, at).
However, the true advantage is generally unknown and must
be estimated, typically by substituting estimates from a
value network into Equation 3. As we will elaborate in
Section 7, value networks are often inaccurate and result in
biased value computation. Fortunately, the language envi-
ronment as an MDP (Section 3) offers a useful property that

2Such derivation is possible as the language environment is
deterministic.

3We drop the dependency on πθ for brevity.

4

VinePPO: Refining Credit Assignment in RL Training of LLMs

allows for unbiased estimation of V (st). Since states are
simply concatenated tokens, we can prompt the language
model πθ to generate continuations from any intermediate
state. This flexibility allows us to explore alternative future
paths from arbitrary points in a generation.

Specifically, computing the advantage requires access to
V (st) = E [R(τ) | s0 = st] . VinePPO obtain an MC es-
timation of this expectation by randomly sampling con-
tinuations and averaging their returns. That is, for each
state st in a training trajectory τ , we utilize the resetting
property and re-feed the partial context corresponding to
st to the current policy to sample K auxiliary rollouts
η1, . . . , ηK ∼ πθ(· | st). The empirical mean of returns
across these rollouts serves as the value estimate:

V̂MC(st) =
1

K

K∑
k=1

R(ηk). (5)

Critically, ηk’s are used exclusively for value estimation and
do not contribute directly to policy gradient updates as we
lack CA on them. Once the value V̂MC(st) is computed, we
estimate the advantages of each action using Equation 3:

ÂMC(st, at) = r(st, at) + γV̂MC(st+1)− V̂MC(st). (6)

For any K ≥ 1, the policy gradient computed using the
advantage estimator ÂMC is an unbiased estimate of the
gradient of expected return gpg. PPO framework then uses
ÂMC to update the policy on trajectory τ .

Variance and computational efficiency represent core trade-
offs in every Monte Carlo estimation. Here, the sampling
parameter K control such tradeoff— increasing K reduces
estimator variance at the expense of increased sampling
demands. In Section 6, we rigorously characterize these
properties for VinePPO.

To enhance the efficiency of ÂMC, we group states within
a reasoning step and compute a single advantage, which is
assigned to all tokens in that step (examples in Appendix B).
This trades off granularity for efficiency, allowing finer reso-
lution with more compute, or coarser estimates with limited
resources. Furthermore, modern LLM inference engines
(Kwon et al., 2023; Zheng et al., 2024) enable rapid on-the-
fly generation4, making our MC-based approach computa-
tionally practical at scale.

By restricting modifications only to the advantage compu-
tation stage of PPO, our approach also isolates the effects
of improved credit assignment, revealing how unbiased ad-
vantage estimation fundamentally alters policy optimization
dynamics compared to value-network baselines.

4Achieving up to 5K tokens/second on a single Nvidia A100
GPU for 7B LLMs in bfloat16.

5. Experimental Setup
Datasets and Pretrained LLMs We conduct experiments
on publicly available LLMs and datasets to ensure repro-
ducibility. We use base versions of DeepSeekMath 7B (Shao
et al., 2024) and RhoMath 1.1B (Lin et al., 2024) which
are pretrained on mathematical and natural language cor-
pora. We chose mathematical reasoning datasets MATH
(Hendrycks et al., 2021), competition-level mathematical
problems, and GSM8K (Cobbe et al., 2021), simpler grade-
school level math word problems. Both datasets are well-
established and present a range of difficulty levels. For each
dataset, we finetune the base LLM on its respective train-
ing set to obtain the initial SFT policy (πref). Throughout
the paper, model names refer ones initialized from these
SFT checkpoints. We employ full-parameter finetuning to
leverage the models’ full capacity (Biderman et al., 2024).

Baselines Our main baseline is the standard PPO frame-
work (Ouyang et al., 2022; Huang et al., 2024), which
VinePPO builds on and improves through better credit as-
signment. We also compare against PPO variants that forego
the credit assignment: RLOO (Ahmadian et al., 2024) and
GRPO (Shao et al., 2024). For RL-free alternatives, we
include RestEM (Singh et al., 2024), a form of iterative re-
jection finetuning (Yuan et al., 2023; Anthony et al., 2017),
and DPO+ (Pal et al., 2024), a working variant of DPO
with strong performance on reasoning. Except VinePPO
and standard PPO, all other baselines omit explicit credit
assignment by design: i.e. they assign the same weight to
all the tokens of a response. All methods use the same SFT
checkpoint to ensure fair comparison. For each experiment,
we choose the best checkpoint based on a held-out valida-
tion set. We compare all methods by accuracy (Pass@1) on
test sets, measuring the correctness of final answers.

Training Details and Hyperparameters We adopt a bi-
nary task reward R that evaluates final answer correctness
against ground truth, following previous work (Pal et al.,
2024; Singh et al., 2024). To ensure fair comparison, all
methods consume the same number of episodes during train-
ing: for each question, we sample eight episodes and go
over the dataset 8 times, yielding 64 episodes per question
across all methods. For PPO, we first conduct an exten-
sive hyperparameter search (such as KL penalty coefficient,
batch size, minibatch size, GAE λ, number of epochs per
iteration) and rigorously implement all established best prac-
tices and well-known techniques (Huang et al., 2024; Ivison
et al., 2024) (Refer to Appendix C.2 for the full list). This
ensures our evaluation reflects PPO’s state-of-the-art con-
figuration and its full potential. VinePPO inherits PPO’s
exact hyperparameters and only modifies the advantage es-
timation, keeping the rest unchanged. This design allows us
to isolate the effect of refined credit assignment. For PPO

5

VinePPO: Refining Credit Assignment in RL Training of LLMs

Init.SFT RestEM RLOO GRPO DPO + PPO VinePPO

40

45

50

55

40.3

42.8
44.5 44.6

46.4

50.1

53.4

Init.SFT RestEM RLOO GRPO DPO + PPO VinePPO
15.0

17.5

20.0

22.5

25.0

15.5

17.3 17.3
17.8

19.2
18.1

23.0

Init.SFT RestEM RLOO GRPO DPO + PPO VinePPO

70

75

80

69.6

72.0

75.3 74.8 74.4

78.9
80.1

Init.SFT RestEM RLOO GRPO DPO + PPO VinePPO

35

40

45

32.8
34.9

36.8 36.4
37.6

42.8

46.0A
cc

u
ra

cy
 (

)
GSM8K

RhoMath 1.1B

MATH

RhoMath 1.1B

DeepSeekMath 7B DeepSeekMath 7B

Figure 4: VinePPO outperforms standard PPO, GRPO, RLOO, and other RL-free baselines on Pass@1 performance on
MATH and GSM8K datasets, while also exhibiting scalability across different model sizes.

0.6 0.7 0.8 0.9

0.40

0.45

0.50

0.55

0.2 0.3 0.4 0.5 0.6

0.150

0.175

0.200

0.225

0.8 0.9

0.69

0.72

0.75

0.78

0.81

0.4 0.5 0.6 0.7
0.32

0.36

0.40

0.44

Train Accuracy

T
es

t
A

cc
u
ra

cy

RhoMath 1.1B - GSM8K RhoMath 1.1B - MATH DeepSeekMath 7B - GSM8K DeepSeekMath 7B - MATH

0.6 0.7 0.8 0.9

0.40

0.45

0.50

0.55

0.2 0.3 0.4 0.5 0.6

0.150

0.175

0.200

0.225

0.8 0.9

0.69

0.72

0.75

0.78

0.81

0.4 0.5 0.6 0.7
0.32

0.36

0.40

0.44

Train Accuracy

T
es

t
A
cc

u
ra

cy

RhoMath 1.1B - GSM8K RhoMath 1.1B - MATH DeepSeekMath 7B - GSM8K DeepSeekMath 7B - MATH

Method VinePPO PPO RLOO GRPO DPO + RestEM

Figure 5: Generalization slope improves with improved credit assignment. VinePPO has steepest generalization: making the
highest generalization gains than baselines when fitting the same amount of training data. On the other end of CA spectrum,
RestEM overfits its training data.

variants (RLOO, GRPO), we closely follow their Hugging-
Face implementations. For these, we initialize with PPO’s
hyperparameters but perform additional tuning to stabilize
training while maintaining the same episode budget. For RL-
free baselines (RestEM, DPO+), we strictly adhere to their
original implementations (Singh et al., 2024; Pal et al., 2024)
and match their sample consumption to other RL methods.
For V̂MC in VinePPO, we conduct a full ablation study on
K in Section 6.1, with K = 9 used as the default setting
unless otherwise specified. To ensure a fair comparison of
compute efficiency, we conduct controlled experiments in
Section 6.2, where all methods are evaluated under identical

hardware and parallelization protocols. Full implementation
details, including hyperparameters and training procedures,
are documented in Appendix C.6 to ensure reproducibility.

6. Results
In this section, we evaluate the effect of better CA on task
performance, efficiency, and generalization dynamics.

6.1. Task Performance

VinePPO consistently outperforms standard PPO throughout
training (Figure C.4) and other baselines (Figure 4) achiev-

6

VinePPO: Refining Credit Assignment in RL Training of LLMs

0 5 10 15 20 25

16%

20%

24%

3.0x Faster

0 25 50 75

32%

36%

40%

44%
1.51x Faster

Wall Clock (Hours)

A
cc

u
ra

cy

RhoMath 1.1B DeepSeekMath 7B

Method

VinePPO

PPO

RLOO

GRPO

Figure 6: Accuracy vs. Wall Clock Time for both methods measured on the same hardware (shown only up to PPO’s final
performance). Despite VinePPO taking longer per iteration (up to 2x for 7B and 5x for 1.1B models), it passes PPO’s peak
performance in fewer iterations and less overall time.

PPO V.P.
(K = 1)

V.P.
(K = 3)

V.P.
(K = 9)

15%

18%

21%

24%

18.1

19.9

21.2

23.0

Increasing Compute

(a) Effect of K on Accuracy

A
cc

u
ra

cy

MATH

0 10 20

16%

20%

3.0x Faster

(b) Effect of K on Efficiency

Wall Clock (Hours)

A
cc

u
ra

cy

RhoMath 1.1B

0 10 20

16%

20%
3.0x Faster

(b) Effect of K on Compute Efficiency

Wall Clock (Hours)

A
cc

u
ra

cy

RhoMath 1.1B

Method V.P.(K = 9) V.P.(K = 3) V.P.(K = 1) PPO

Figure 7: (a) Effect of the number of auxiliary rollouts K for
estimating V̂MC(st) on RhoMath 1.1B and MATH (see Fig-
ure D.11 for GSM8K). Increasing K consistently improves
accuracy. (b) Wall-clock time for the same experiments.
While increased sampling makes each iteration slower, the
reduced variance leads to faster overall convergence.

ing the highest test accuracy on both models and datasets.
Notably, the performance gap widens in MATH which is
more challenging than GSM8K. To confirm that PPO’s lim-
itations are not due to undertrained value networks, we
measured their explained variance, a standard metric for
value function quality, which ranged between 0.7–0.9 across
tasks (Figure D.5), indicating a well-trained critic. Because
the PPO and VinePPO runs only differ in their value esti-
mation, comparing these two isolates the effect of CA. As
shown in Figure D.8, VinePPO reaches higher test accuracy
given a limited KL budget. Additionally, VinePPO is more
robust to higher sampling temperatures (Figure D.10).

6.2. Computational Efficiency

Training on a single trajectory in GRPO, RLOO, RestEM
and DPO+, involves a forward and backward pass. PPO
and VinePPO have extra computations of different types.
PPO uses double GPU memory — the value network needs

112GB for a 7B LLM, considering both model and its opti-
mizer. Additionally, PPO requires a forward pass for value
prediction and a forward-backward pass for value network
training. VinePPO replaces the value network with MC sam-
ples. Since generation is expensive, each step of VinePPO
is slower (up to 5x for RhoMath 1.1B and 2x for DeepSeek-
Math 7B compared to PPO). VinePPO compensates for
slower iterations by making each one more effective through
better CA. Under the same hardware, it achieves higher
test accuracy faster than baselines (Figure 6). Specifically,
VinePPO matches PPO’s peak accuracy in fewer gradient
steps and less wall-clock time. Figure 6 shows RhoMath
1.1B and DeepSeekMath 7B require about 3.0x and 1.51x
less time and 9x and 2.8x fewer steps compared to PPO.
This improvement occurs despite all hyperparameters be-
ing tuned for PPO. Therefore, switching to VinePPO could
enhance the performance within the same compute budget.

6.3. Generalization Slope

High-quality and challenging reasoning tasks are scarce,
making generalization a key challenge. Once a training
instance is fitted, it provides no further signal for gener-
alization. Thus, algorithms that maximize generalization
efficiency are superior—achieving higher test accuracy for
a given train accuracy. As shown in Figure 5, VinePPO
demonstrates the strongest generalization gains compared to
all other baselines. Notably, RestEM overfits near the end.
This aligns with recent findings that RL generalizes while
SFT primarily memorizes (Chu et al., 2025). Overall, allo-
cating more compute to refining credit assignment, rather
than brute-force data fitting, leads to stronger generalization.

6.4. Effect of K

We assess the impact of K, the number of MC samples, by
running an ablation on RhoMath 1.1B, varying K from 1
to 3 and 9. As shown in Figure 7, VinePPO improves with

7

VinePPO: Refining Credit Assignment in RL Training of LLMs

0.0 0.5 1.0

0.06

0.07

0.08

0.09

0.10

0.0 0.5 1.0

0.00

0.01

0.02

0.03

(a) Estimation Error along the Reasoning Chain

Reasoning Progress

M
A
E

PPO VinePPO

300 400 500 600 700
0%

25%

50%

75%

100%

Random Chance

(b) Top Action Identification

Step

A
cc

u
ra

cy

Method

VinePPO

PPO

Figure 8: (a) Visualizing the Mean Absolute Error (MAE) of the value predictions at different point of the reasoning chain.
Value Network in PPO fails to generalize as the reasoning chain progresses, while VinePPO’s value estimates become more
accurate as the model become more deterministic. (b) Accuracy of identifying the top action in a set of five possible next
states. VinePPO consistently outperforms the value network.

higher K since more MC samples reduce the variance of
ÂMC. While high variance of MC estimation could theoret-
ically hinder training, our results show that even small K
values work well in this setting. Interestingly, increasing K
also improves compute efficiency. Although each iteration
takes longer, it becomes more effective. This suggests that
increasing K provides a practical way to leverage additional
computational resources for better performance.

7. Why and How Value Networks Fail
In this section, we analyze the performance gap between
PPO and VinePPO by focusing on their value predic-
tions—their only difference. First, We establish a “ground
truth” value at each reasoning step within trajectories by
running 256 MC samples and averaging the returns. Next,
We compare the value predictions against this ground truth5.
We present the results for DeepSeekMath 7B , our biggest
model, on the MATH dataset (all results in Appendix D.5).

Accuracy Figure 3 presents the distribution of value pre-
dictions at each reasoning step. VinePPO’s estimates are
unbiased, with variance peaking at 0.5 and dropping to zero
at 0 and 1. PPO’s value network shows high bias and often
misclassifies bad states (ground truth near 0) as good and
vice versa. We define a prediction as “correct” if it is within
0.05 of the ground truth. As shown in Figure D.12 PPO’s
value network starts with low accuracy, gradually improving
to 65%. In contrast, VinePPO consistently achieves 70-90%
accuracy throughout training.

Top Action Identification In value-based RL, accurately
ranking actions is more important than accurate value esti-

5The return of sampled trajectory starting from a step is a
bernoulli random variable. Let θ denote the true success probabil-
ity. Our estimator, X̄ = 1

256

∑256
i=1 Xi, has variance θ(1−θ)

256
. At

θ = 0.5 (maximal variance), this becomes 0.25
256

≈ 0.001.

mates. While PPO, a policy-based method, depends heavily
on accurate value estimates, it raises an interesting ques-
tion: Can PPO’s value network still rank actions correctly?
We tested this by sampling five possible next steps from a
shared initial state and measuring whether the method pre-
dicted the next step with the highest ground truth value by
assigning it the highest predicted value. As shown in Figure
8.b, PPO’s value network performs near chance levels for
most of the training, improving only slightly over time. In
contrast, VinePPO consistently identifies the top action with
high accuracy throughout.

Error Per Reasoning Step To understand value estima-
tion dynamics, we plot value estimation error against rea-
soning step position (normalized; 3rd of 10 steps = 0.3).
As shown in Figure 8.a, PPO performs worse as reason-
ing progresses. We hypothesize this is because early steps
resemble training data, allowing the value network to rely
on memorization. Later steps are more diverse and value
network struggles to generalize. VinePPO’s prediction error
decreases with reasoning progression. We attribute this to
greater determinism in later steps, as the model conditions
on a longer context. This stability improves value estimation
from the same number of MC samples.

8. Discussion
We showed that better credit assignment improves RL train-
ing of LLMs. VinePPO is a stepping stone to identify and
fix PPO’s broken credit assignment. It also opens two future
research directions. VinePPO is the first RL post-training
algorithm that scales generalization slope by scaling post-
training compute. Algorithms that have better generalization
trends are valuable given the limited resource of truly chal-
lenging and verifiable reasoning tasks. Second, VinePPO
highlights the value of reconsidering the implicit assump-
tions behind default algorithm implementations borrowed

8

VinePPO: Refining Credit Assignment in RL Training of LLMs

from Deep RL. In Deep RL, we typically start with a random
policy, making it crucial to quickly improve the model’s per-
formance. In this context, it’s more effective to allocate
compute toward gathering additional environment samples
rather than perfecting each gradient update. However, with
an already capable LLM, it is better to spend more com-
pute to make sure we steer its weights carefully. Overall,
we hope VinePPO inspires the community to develop more
effective RL training algorithms for LLMs.

Impact Statement
Our work aims to improve the ability of large language
models to perform complex reasoning tasks, potentially
contributing to advances in fields such as education, scien-
tific research, and software development. At the same time,
more capable reasoning systems could be used irresponsibly,
for instance, by automating sophisticated misinformation
or other harmful applications. We therefore encourage re-
searchers and practitioners to employ appropriate safeguards
when applying our methods. Overall, this paper advances
fundamental techniques in machine learning; its societal im-
pact will depend on responsible deployment and continued
ethical considerations by the community.

Acknowledgements
We thank Matheus Pereira for his efforts on facilitating
experimentation. AC and NR are supported by CIFAR AI
Chair. SR is supported by a Facebook CIFAR AI Chair and
NSERC Discovery Grant program. We thank Mila IDT team
and Digital Research Alliance of Canada for the compute
provided for experimentation.

References
Ahmadian, A., Cremer, C., Gallé, M., Fadaee, M., Kreutzer,

J., Pietquin, O., Üstün, A., and Hooker, S. Back to
Basics: Revisiting REINFORCE-style Optimization for
Learning from Human Feedback in LLMs. In Ku, L.,
Martins, A., and Srikumar, V. (eds.), Proceedings of
the 62nd Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), ACL
2024, pp. 12248–12267, Bangkok, Thailand, 2024. As-
sociation for Computational Linguistics. doi: 10.18653/
V1/2024.ACL-LONG.662. URL https://doi.org/
10.18653/v1/2024.acl-long.662.

Anthony, T., Tian, Z., and Barber, D. Thinking Fast
and Slow with Deep Learning and Tree Search. In
Guyon, I., von Luxburg, U., Bengio, S., Wallach,
H. M., Fergus, R., Vishwanathan, S. V. N., and
Garnett, R. (eds.), Advances in Neural Information
Processing Systems 30: Annual Conference on Neural

Information Processing Systems 2017, December 4-9,
2017, Long Beach, CA,, pp. 5360–5370, USA, 2017.
URL https://proceedings.neurips.cc/
paper/2017/hash/
d8e1344e27a5b08cdfd5d027d9b8d6de-
Abstract.html.

Biderman, D., Ortiz, J. J. G., Portes, J., Paul, M., Greengard,
P., Jennings, C., King, D., Havens, S., Chiley, V., Frankle,
J., Blakeney, C., and Cunningham, J. P. LoRA Learns
Less and Forgets Less. CoRR, abs/2405.09673, 2024.
doi: 10.48550/ARXIV.2405.09673. URL https://
doi.org/10.48550/arXiv.2405.09673.

Chang, J. D., Brantley, K., Ramamurthy, R., Misra, D., and
Sun, W. Learning to generate better than your llm. arXiv
preprint arXiv:2306.11816, 2023.

Chen, G., Liao, M., Li, C., and Fan, K. Al-
phaMath Almost Zero: process Supervision without pro-
cess. CoRR, abs/2405.03553, 2024. doi: 10.48550/
ARXIV.2405.03553. URL https://doi.org/
10.48550/arXiv.2405.03553.

Chu, T., Zhai, Y., Yang, J., Tong, S., Xie, S., Schuur-
mans, D., Le, Q. V., Levine, S., and Ma, Y. Sft mem-
orizes, rl generalizes: A comparative study of foun-
dation model post-training, 2025. URL https://
arxiv.org/abs/2501.17161.

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun,
H., Kaiser, L., Plappert, M., Tworek, J., Hilton, J.,
Nakano, R., Hesse, C., and Schulman, J. Train-
ing Verifiers to Solve Math Word Problems. CoRR,
abs/2110.14168, 2021. URL https://arxiv.org/
abs/2110.14168.

DeepSeek-AI, Guo, D., Yang, D., Zhang, H., Song, J.,
Zhang, R., Xu, R., Zhu, Q., Ma, S., Wang, P., et al.
Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning, 2025. URL https://
arxiv.org/abs/2501.12948.

Greensmith, E., Bartlett, P. L., and Baxter, J. Vari-
ance Reduction Techniques for Gradient Estimates
in Reinforcement Learning. In Dietterich, T. G.,
Becker, S., and Ghahramani, Z. (eds.), Advances in
Neural Information Processing Systems 14 [Neural
Information Processing Systems: Natural and Synthetic,
NIPS 2001, December 3-8, 2001, pp. 1507–1514,
Vancouver, British Columbia, Canada, 2001. MIT Press.
URL https://proceedings.neurips.cc/
paper/2001/hash/
584b98aac2dddf59ee2cf19ca4ccb75e-
Abstract.html.

9

https://doi.org/10.18653/v1/2024.acl-long.662
https://doi.org/10.18653/v1/2024.acl-long.662
https://proceedings.neurips.cc/paper/2017/hash/d8e1344e27a5b08cdfd5d027d9b8d6de-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/d8e1344e27a5b08cdfd5d027d9b8d6de-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/d8e1344e27a5b08cdfd5d027d9b8d6de-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/d8e1344e27a5b08cdfd5d027d9b8d6de-Abstract.html
https://doi.org/10.48550/arXiv.2405.09673
https://doi.org/10.48550/arXiv.2405.09673
https://doi.org/10.48550/arXiv.2405.03553
https://doi.org/10.48550/arXiv.2405.03553
https://arxiv.org/abs/2501.17161
https://arxiv.org/abs/2501.17161
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://proceedings.neurips.cc/paper/2001/hash/584b98aac2dddf59ee2cf19ca4ccb75e-Abstract.html
https://proceedings.neurips.cc/paper/2001/hash/584b98aac2dddf59ee2cf19ca4ccb75e-Abstract.html
https://proceedings.neurips.cc/paper/2001/hash/584b98aac2dddf59ee2cf19ca4ccb75e-Abstract.html
https://proceedings.neurips.cc/paper/2001/hash/584b98aac2dddf59ee2cf19ca4ccb75e-Abstract.html

VinePPO: Refining Credit Assignment in RL Training of LLMs

Hao, S., Gu, Y., Ma, H., Hong, J. J., Wang, Z., Wang,
D. Z., and Hu, Z. Reasoning with Language Model is
Planning with World Model. In Bouamor, H., Pino, J.,
and Bali, K. (eds.), Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Processing,
EMNLP 2023, pp. 8154–8173, Singapore, 2023. Associ-
ation for Computational Linguistics. doi: 10.18653/V1/
2023.EMNLP-MAIN.507. URL https://doi.org/
10.18653/v1/2023.emnlp-main.507.

Hendrycks, D., Burns, C., Kadavath, S., Arora, A., Basart,
S., Tang, E., Song, D., and Steinhardt, J. Measuring
Mathematical Problem Solving With the MATH Dataset.
In Vanschoren, J. and Yeung, S. (eds.), Proceedings
of the Neural Information Processing Systems Track
on Datasets and Benchmarks 1, NeurIPS Datasets and
Benchmarks 2021, 2021. URL https://datasets-
benchmarks-proceedings.neurips.cc/
paper/2021/hash/
be83ab3ecd0db773eb2dc1b0a17836a1-
Abstract-round2.html.

Huang, S., Noukhovitch, M., Hosseini, A., Rasul, K.,
Wang, W., and Tunstall, L. The N+ Implementa-
tion Details of RLHF with PPO: A Case Study on
TL;DR Summarization. CoRR, abs/2403.17031, 2024.
doi: 10.48550/ARXIV.2403.17031. URL https://
doi.org/10.48550/arXiv.2403.17031.

Hwang, H., Kim, D., Kim, S., Ye, S., and Seo, M.
Self-explore to Avoid the Pit: Improving the Rea-
soning Capabilities of Language Models with Fine-
grained Rewards. CoRR, abs/2404.10346, 2024.
doi: 10.48550/ARXIV.2404.10346. URL https://
doi.org/10.48550/arXiv.2404.10346.

Ivison, H., Wang, Y., Liu, J., Wu, Z., Pyatkin, V., Lambert,
N., Smith, N. A., Choi, Y., and Hajishirzi, H. Unpacking
DPO and PPO: Disentangling Best Practices for Learning
from Preference Feedback. CoRR, abs/2406.09279, 2024.
doi: 10.48550/ARXIV.2406.09279. URL https://
doi.org/10.48550/arXiv.2406.09279.

Kwon, W., Li, Z., Zhuang, S., Sheng, Y., Zheng, L., Yu,
C. H., Gonzalez, J., Zhang, H., and Stoica, I. Efficient
Memory Management for Large Language Model Serv-
ing with PagedAttention. In Flinn, J., Seltzer, M. I.,
Druschel, P., Kaufmann, A., and Mace, J. (eds.), Proceed-
ings of the 29th Symposium on Operating Systems Princi-
ples, SOSP 2023, pp. 611–626, Koblenz, Germany, 2023.
ACM. doi: 10.1145/3600006.3613165. URL https:
//doi.org/10.1145/3600006.3613165.

Lewkowycz, A., Andreassen, A., Dohan, D., Dyer, E.,
Michalewski, H., Ramasesh, V. V., Slone, A., Anil, C.,
Schlag, I., Gutman-Solo, T., Wu, Y., Neyshabur, B., Gur-
Ari, G., and Misra, V. Solving Quantitative Reasoning

Problems with Language Models. In Koyejo, S., Mo-
hamed, S., Agarwal, A., Belgrave, D., Cho, K., and Oh,
A. (eds.), Advances in Neural Information Processing
Systems 35: Annual Conference on Neural Information
Processing Systems 2022, NeurIPS 2022, New Orleans,
LA, USA, 2022. URL http://papers.nips.cc/
paper files/paper/2022/hash/
18abbeef8cfe9203fdf9053c9c4fe191-
Abstract-Conference.html.

Lightman, H., Kosaraju, V., Burda, Y., Edwards, H.,
Baker, B., Lee, T., Leike, J., Schulman, J., Sutskever,
I., and Cobbe, K. Let’s Verify Step by Step. In
The Twelfth International Conference on Learning
Representations, ICLR 2024, Vienna, Austria, 2024.
OpenReview.net. URL https://openreview.net/
forum?id=v8L0pN6EOi.

Lin, Z., Gou, Z., Gong, Y., Liu, X., Shen, Y., Xu, R., Lin,
C., Yang, Y., Jiao, J., Duan, N., and Chen, W. Rho-1: Not
All Tokens Are What You Need. CoRR, abs/2404.07965,
2024. doi: 10.48550/ARXIV.2404.07965. URL https:
//doi.org/10.48550/arXiv.2404.07965.

Luo, L., Liu, Y., Liu, R., Phatale, S., Lara, H., Li, Y., Shu,
L., Zhu, Y., Meng, L., Sun, J., and Rastogi, A. Improve
Mathematical Reasoning in Language Models by Au-
tomated Process Supervision. CoRR, abs/2406.06592,
2024. doi: 10.48550/ARXIV.2406.06592. URL https:
//doi.org/10.48550/arXiv.2406.06592.

Ma, Q., Zhou, H., Liu, T., Yuan, J., Liu, P., You,
Y., and Yang, H. Let’s reward step by step: Step-
level reward model as the Navigators for Reason-
ing. CoRR, abs/2310.10080, 2023. doi: 10.48550/
ARXIV.2310.10080. URL https://doi.org/
10.48550/arXiv.2310.10080.

OpenAI. OpenAI o1 System Card, 2024. URL https:
//api.semanticscholar.org/CorpusID:
272684752.

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright,
C. L., Mishkin, P., Zhang, C., Agarwal, S., Slama,
K., Ray, A., Schulman, J., Hilton, J., Kelton, F.,
Miller, L., Simens, M., Askell, A., Welinder, P.,
Christiano, P. F., Leike, J., and Lowe, R. Training
language models to follow instructions with human
feedback. In Koyejo, S., Mohamed, S., Agarwal, A.,
Belgrave, D., Cho, K., and Oh, A. (eds.), Advances
in Neural Information Processing Systems 35: An-
nual Conference on Neural Information Processing
Systems 2022, NeurIPS 2022, New Orleans, LA,
USA, 2022. URL http://papers.nips.cc/
paper files/paper/2022/hash/
b1efde53be364a73914f58805a001731-
Abstract-Conference.html.

10

https://doi.org/10.18653/v1/2023.emnlp-main.507
https://doi.org/10.18653/v1/2023.emnlp-main.507
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html
https://doi.org/10.48550/arXiv.2403.17031
https://doi.org/10.48550/arXiv.2403.17031
https://doi.org/10.48550/arXiv.2404.10346
https://doi.org/10.48550/arXiv.2404.10346
https://doi.org/10.48550/arXiv.2406.09279
https://doi.org/10.48550/arXiv.2406.09279
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3600006.3613165
http://papers.nips.cc/paper_files/paper/2022/hash/18abbeef8cfe9203fdf9053c9c4fe191-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/18abbeef8cfe9203fdf9053c9c4fe191-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/18abbeef8cfe9203fdf9053c9c4fe191-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/18abbeef8cfe9203fdf9053c9c4fe191-Abstract-Conference.html
https://openreview.net/forum?id=v8L0pN6EOi
https://openreview.net/forum?id=v8L0pN6EOi
https://doi.org/10.48550/arXiv.2404.07965
https://doi.org/10.48550/arXiv.2404.07965
https://doi.org/10.48550/arXiv.2406.06592
https://doi.org/10.48550/arXiv.2406.06592
https://doi.org/10.48550/arXiv.2310.10080
https://doi.org/10.48550/arXiv.2310.10080
https://api.semanticscholar.org/CorpusID:272684752
https://api.semanticscholar.org/CorpusID:272684752
https://api.semanticscholar.org/CorpusID:272684752
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html

VinePPO: Refining Credit Assignment in RL Training of LLMs

Pal, A., Karkhanis, D., Dooley, S., Roberts, M.,
Naidu, S., and White, C. Smaug: Fixing Fail-
ure Modes of Preference Optimisation with DPO-
positive. CoRR, abs/2402.13228, 2024. doi: 10.48550/
ARXIV.2402.13228. URL https://doi.org/
10.48550/arXiv.2402.13228.

Putta, P., Mills, E., Garg, N., Motwani, S., Finn, C., Garg,
D., and Rafailov, R. Agent q: Advanced reasoning and
learning for autonomous ai agents, 2024. URL https:
//arxiv.org/abs/2408.07199.

Qwen. Qwen2.5-Math: The world’s leading
open-sourced mathematical LLMs. https:
//qwenlm.github.io/blog/qwen2.5-math/,
2024. Accessed: 2024-09-23.

Rafailov, R., Sharma, A., Mitchell, E., Manning, C. D.,
Ermon, S., and Finn, C. Direct Preference Optimiza-
tion: Your Language Model is Secretly a Reward
Model. In Oh, A., Naumann, T., Globerson, A.,
Saenko, K., Hardt, M., and Levine, S. (eds.), Advances
in Neural Information Processing Systems 36: An-
nual Conference on Neural Information Processing
Systems 2023, NeurIPS 2023, New Orleans, LA,
USA, 2023. URL http://papers.nips.cc/
paper files/paper/2023/hash/
a85b405ed65c6477a4fe8302b5e06ce7-
Abstract-Conference.html.

Schulman, J. Notes on the KL-divergence Ap-
proximation. http://joschu.net/blog/kl-
approx.html, 2020. Accessed: 2024-09-23.

Schulman, J., Levine, S., Abbeel, P., Jordan, M. I., and
Moritz, P. Trust Region Policy Optimization. In Bach,
F. R. and Blei, D. M. (eds.), Proceedings of the 32nd
International Conference on Machine Learning, ICML
2015, volume 37 of JMLR Workshop and Conference Pro-
ceedings, pp. 1889–1897, Lille, France, 2015. JMLR.org.
URL http://proceedings.mlr.press/v37/
schulman15.html.

Schulman, J., Moritz, P., Levine, S., Jordan, M. I., and
Abbeel, P. High-dimensional Continuous Control Using
Generalized Advantage Estimation. In Bengio, Y. and
LeCun, Y. (eds.), 4th International Conference on Learn-
ing Representations, ICLR 2016Proceedings, San Juan,
Puerto Rico, 2016. URL http://arxiv.org/abs/
1506.02438.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A.,
and Klimov, O. Proximal Policy Optimization Algo-
rithms. CoRR, abs/1707.06347, 2017. URL http:
//arxiv.org/abs/1707.06347.

Setlur, A., Garg, S., Geng, X., Garg, N., Smith, V., and
Kumar, A. RL on Incorrect Synthetic Data Scales
the Efficiency of LLM Math Reasoning by Eight-
fold. CoRR, abs/2406.14532, 2024. doi: 10.48550/
ARXIV.2406.14532. URL https://doi.org/
10.48550/arXiv.2406.14532.

Shao, Z., Wang, P., Zhu, Q., Xu, R., Song, J., Zhang,
M., Li, Y. K., Wu, Y., and Guo, D. DeepSeek-
Math: Pushing the Limits of Mathematical Reasoning
in Open Language Models. CoRR, abs/2402.03300,
2024. doi: 10.48550/ARXIV.2402.03300. URL https:
//doi.org/10.48550/arXiv.2402.03300.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L.,
van den Driessche, G., Schrittwieser, J., Antonoglou, I.,
Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe,
D., Nham, J., Kalchbrenner, N., Sutskever, I., Lilli-
crap, T. P., Leach, M., Kavukcuoglu, K., Graepel, T.,
and Hassabis, D. Mastering the game of Go with
deep neural networks and tree search. Nat., 529(7587):
484–489, 2016. doi: 10.1038/NATURE16961. URL
https://doi.org/10.1038/nature16961.

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I.,
Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D.,
Graepel, T., Lillicrap, T. P., Simonyan, K., and Hass-
abis, D. Mastering Chess and Shogi by Self-play with
a General Reinforcement Learning Algorithm. CoRR,
abs/1712.01815, 2017. URL http://arxiv.org/
abs/1712.01815.

Singh, A., Co-Reyes, J. D., Agarwal, R., Anand, A., Patil,
P., Garcia, X., Liu, P. J., Harrison, J., Lee, J., Xu, K.,
Parisi, A. T., Kumar, A., Alemi, A. A., Rizkowsky, A.,
Nova, A., Adlam, B., Bohnet, B., Elsayed, G. F., Sedghi,
H., Mordatch, I., Simpson, I., Gur, I., Snoek, J., Pen-
nington, J., Hron, J., Kenealy, K., Swersky, K., Mahajan,
K., Culp, L., Xiao, L., Bileschi, M. L., Constant, N.,
Novak, R., Liu, R., Warkentin, T., Qian, Y., Bansal, Y.,
Dyer, E., Neyshabur, B., Sohl-Dickstein, J., and Fiedel, N.
Beyond Human Data: Scaling Self-training for Problem-
solving with Language Models. Transactions on Ma-
chine Learning Research, 2024, 2024. URL https:
//openreview.net/forum?id=lNAyUngGFK.

Sutton, R. S. and Barto, A. G. Introduction to
Reinforcement Learning. In Introduction to
Reinforcement Learning, 1998. URL https:
//api.semanticscholar.org/CorpusID:
261579713.

Sutton, R. S., McAllester, D. A., Singh, S., and
Mansour, Y. Policy Gradient Methods for Rein-
forcement Learning with Function Approximation.
In Solla, S. A., Leen, T. K., and Müller, K. (eds.),

11

https://doi.org/10.48550/arXiv.2402.13228
https://doi.org/10.48550/arXiv.2402.13228
https://arxiv.org/abs/2408.07199
https://arxiv.org/abs/2408.07199
https://qwenlm.github.io/blog/qwen2.5-math/
https://qwenlm.github.io/blog/qwen2.5-math/
http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html
http://joschu.net/blog/kl-approx.html
http://joschu.net/blog/kl-approx.html
http://proceedings.mlr.press/v37/schulman15.html
http://proceedings.mlr.press/v37/schulman15.html
http://arxiv.org/abs/1506.02438
http://arxiv.org/abs/1506.02438
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
https://doi.org/10.48550/arXiv.2406.14532
https://doi.org/10.48550/arXiv.2406.14532
https://doi.org/10.48550/arXiv.2402.03300
https://doi.org/10.48550/arXiv.2402.03300
https://doi.org/10.1038/nature16961
http://arxiv.org/abs/1712.01815
http://arxiv.org/abs/1712.01815
https://openreview.net/forum?id=lNAyUngGFK
https://openreview.net/forum?id=lNAyUngGFK
https://api.semanticscholar.org/CorpusID:261579713
https://api.semanticscholar.org/CorpusID:261579713
https://api.semanticscholar.org/CorpusID:261579713

VinePPO: Refining Credit Assignment in RL Training of LLMs

Advances in Neural Information Processing Systems
12, [NIPS Conference, pp. 1057–1063, Denver, Col-
orado, USA, 1999. The MIT Press. URL http:
//papers.nips.cc/paper/1713-policy-
gradient-methods-for-reinforcement-
learning-with-function-approximation.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., Bikel, D., Blecher, L., Canton-Ferrer, C.,
Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu,
J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N.,
Hartshorn, A., et al. Llama 2: Open Foundation and
Fine-tuned Chat Models. CoRR, abs/2307.09288, 2023.
doi: 10.48550/ARXIV.2307.09288. URL https://
doi.org/10.48550/arXiv.2307.09288.

Towers, M., Kwiatkowski, A., Terry, J., Balis, J. U., De Cola,
G., Deleu, T., Goulão, M., Kallinteris, A., Krimmel, M.,
KG, A., et al. Gymnasium: A standard interface for
reinforcement learning environments. arXiv preprint
arXiv:2407.17032, 2024.

Trung, L. Q., Zhang, X., Jie, Z., Sun, P., Jin, X., and
Li, H. ReFT: Reasoning with Reinforced Fine-tuning.
In Ku, L., Martins, A., and Srikumar, V. (eds.), Pro-
ceedings of the 62nd Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), ACL 2024, pp. 7601–7614, Bangkok, Thai-
land, 2024. Association for Computational Linguistics.
doi: 10.18653/V1/2024.ACL-LONG.410. URL https:
//doi.org/10.18653/v1/2024.acl-long.410.

Uesato, J., Kushman, N., Kumar, R., Song, H. F., Siegel,
N. Y., Wang, L., Creswell, A., Irving, G., and Hig-
gins, I. Solving math word problems with process-
and outcome-based feedback. CoRR, abs/2211.14275,
2022. doi: 10.48550/ARXIV.2211.14275. URL https:
//doi.org/10.48550/arXiv.2211.14275.

Wan, Z., Feng, X., Wen, M., McAleer, S. M., Wen, Y.,
Zhang, W., and Wang, J. AlphaZero-like Tree-search
can Guide Large Language Model Decoding and Train-
ing. In Forty-first International Conference on Ma-
chine Learning, ICML 2024, Vienna, Austria, 2024.
OpenReview.net. URL https://openreview.net/
forum?id=C4OpREezgj.

Wang, P., Li, L., Shao, Z., Xu, R. X., Dai, D., Li, Y.,
Chen, D., Wu, Y., and Sui, Z. Math-shepherd: Ver-
ify and reinforce llms step-by-step without human an-
notations. CoRR, abs/2406.06592, 2024. URL https:
//arxiv.org/abs/2312.08935.

Xie, Y., Goyal, A., Zheng, W., Kan, M., Lillicrap, T. P.,
Kawaguchi, K., and Shieh, M. Monte Carlo Tree

Search Boosts Reasoning via Iterative Preference Learn-
ing. CoRR, abs/2405.00451, 2024. doi: 10.48550/
ARXIV.2405.00451. URL https://doi.org/
10.48550/arXiv.2405.00451.

Xu, S., Fu, W., Gao, J., Ye, W., Liu, W., Mei, Z., Wang, G.,
Yu, C., and Wu, Y. Is DPO Superior to PPO for LLM
Alignment? A Comprehensive Study. In Forty-first Inter-
national Conference on Machine Learning, ICML 2024,
Vienna, Austria, 2024. OpenReview.net. URL https:
//openreview.net/forum?id=6XH8R7YrSk.

Yuan, Z., Yuan, H., Li, C., Dong, G., Tan, C., and Zhou, C.
Scaling Relationship on Learning Mathematical Reason-
ing with Large Language Models. CoRR, abs/2308.01825,
2023. doi: 10.48550/ARXIV.2308.01825. URL https:
//doi.org/10.48550/arXiv.2308.01825.

Zhang, D., Zhoubian, S., Yue, Y., Dong, Y., and Tang,
J. ReST-MCTS*: LLM Self-training via Process Re-
ward Guided Tree Search. CoRR, abs/2406.03816, 2024.
doi: 10.48550/ARXIV.2406.03816. URL https://
doi.org/10.48550/arXiv.2406.03816.

Zheng, L., Yin, L., Xie, Z., Sun, C., Huang, J., Yu,
C. H., Cao, S., Kozyrakis, C., Stoica, I., Gonzalez,
J. E., Barrett, C., and Sheng, Y. Sglang: Efficient ex-
ecution of structured language model programs. CoRR,
abs/2312.07104, 2024. URL https://arxiv.org/
abs/2312.07104.

Zheng, R., Dou, S., Gao, S., Hua, Y., Shen, W., Wang, B.,
Liu, Y., Jin, S., Liu, Q., Zhou, Y., Xiong, L., Chen, L., Xi,
Z., Xu, N., Lai, W., Zhu, M., Chang, C., Yin, Z., Weng, R.,
Cheng, W., Huang, H., Sun, T., Yan, H., Gui, T., Zhang,
Q., Qiu, X., and Huang, X. Secrets of RLHF in Large
Language Models Part I: PPO. CoRR, abs/2307.04964,
2023. doi: 10.48550/ARXIV.2307.04964. URL https:
//doi.org/10.48550/arXiv.2307.04964.

Ziegler, D. M., Stiennon, N., Wu, J., Brown, T. B., Rad-
ford, A., Amodei, D., Christiano, P. F., and Irving,
G. Fine-tuning Language Models from Human Pref-
erences. CoRR, abs/1909.08593, 2019. URL http:
//arxiv.org/abs/1909.08593.

12

http://papers.nips.cc/paper/1713-policy-gradient-methods-for-reinforcement-learning-with-function-approximation
http://papers.nips.cc/paper/1713-policy-gradient-methods-for-reinforcement-learning-with-function-approximation
http://papers.nips.cc/paper/1713-policy-gradient-methods-for-reinforcement-learning-with-function-approximation
http://papers.nips.cc/paper/1713-policy-gradient-methods-for-reinforcement-learning-with-function-approximation
https://doi.org/10.48550/arXiv.2307.09288
https://doi.org/10.48550/arXiv.2307.09288
https://doi.org/10.18653/v1/2024.acl-long.410
https://doi.org/10.18653/v1/2024.acl-long.410
https://doi.org/10.48550/arXiv.2211.14275
https://doi.org/10.48550/arXiv.2211.14275
https://openreview.net/forum?id=C4OpREezgj
https://openreview.net/forum?id=C4OpREezgj
https://arxiv.org/abs/2312.08935
https://arxiv.org/abs/2312.08935
https://doi.org/10.48550/arXiv.2405.00451
https://doi.org/10.48550/arXiv.2405.00451
https://openreview.net/forum?id=6XH8R7YrSk
https://openreview.net/forum?id=6XH8R7YrSk
https://doi.org/10.48550/arXiv.2308.01825
https://doi.org/10.48550/arXiv.2308.01825
https://doi.org/10.48550/arXiv.2406.03816
https://doi.org/10.48550/arXiv.2406.03816
https://arxiv.org/abs/2312.07104
https://arxiv.org/abs/2312.07104
https://doi.org/10.48550/arXiv.2307.04964
https://doi.org/10.48550/arXiv.2307.04964
http://arxiv.org/abs/1909.08593
http://arxiv.org/abs/1909.08593

VinePPO: Refining Credit Assignment in RL Training of LLMs

A. Reviewing PPO
PPO, as used in RL tuning of LLMs, formulates language generation as token-level MDP (Section 3), where each response
y is an episode. The state at time step t, st ∈ S, is the concatenation of the prompt and the tokens generated so far:
st = x;y<t = [x0, . . . , xM−1, y0, . . . , yt−1]. The action at corresponds to generating the next token yt from the model’s
vocabulary. Given a prompt x, an episode of this MDP starts from the initial state s0 = x, and with each action taken, the
environment moves to a subsequent state, st+1 = st; [at], by adding the action at to the existing state st. In the language
environment, because states are always formed by concatenating tokens, the environment dynamics are fully known, and the
transition function is deterministic, meaning P (st+1|st, at) = 1. Throughout the generation process, the reward rt is set to
zero for all intermediate actions at, with the sequence-level reward R(x;y) applied only at the final step when the model
stops the generation. That is:

rt = r(st, at) =

{
R(x;y) if t = T − 1, where st+1 = y is terminal,
0 otherwise.

(7)

A trajectory τ = (s0, a0, s1, a1, . . .) thus represents a sequence of state-action pairs that begins at the input prompt and
continues until reaching the terminal state. Finally, the cumulative return of a trajectory τ is defined as R(τ) =

∑T−1
t=0 rt =

rT−1 = R(x;y).

The goal of RL tuning is to maximize the expected return of the model’s responses to prompts in the dataset, as defined
by the reward function R (Equation 1). PPO, similar to other policy gradient methods, achieves this goal by repeatedly
sampling trajectories for a batch of prompt sampled from D and taking multiple optimization steps in the direction of the
gradient gppo to update the parameters. PPO gradient gppo is defined as the gradient of the following loss:

Lppo(θ) = Eτ∼πθk

[
T−1∑
t=0

min

(
πθ(at | st)
πθk(at | st)

Aθk
t , clip(θ)Aθk

t

)
− βKL[πθ ∥ πref]

]
(8)

where πθk is the policy at the previous iteration, ϵ is the clipping parameter, β is the KL penalty coefficient, Aθk
t = Aθk(st, at)

is the advantage estimate for policy πθk , and the clip(θ) function is:

clip(θ) = clip
(

πθ(at | st)
πθk(at | st)

, 1− ϵ, 1 + ϵ

)
. (9)

Note that the KL penalty could be also added to the reward function R. We follow the more recent implementations (Shao
et al., 2024; Qwen, 2024), where it is added to the loss function. The KL term can be computed using the following unbiased
estimator (Schulman, 2020):

K̂L(θ) =
πref(at | st)
πθ(at | st)

− log
πref(at | st)
πθ(at | st)

− 1, (10)

where πref denotes the reference model (initial SFT).

A.1. Value Network

In addition to the policy πθ, PPO also trains a separate value network V̂ϕ to obtain an estimate the true values V (st) of states
st. Parameterized by ϕ, the value network is trained alongside the policy network πθ using the following loss:

LValNet(ϕ) =
1

2
Eτ∼πθ

[
1

T

T−1∑
t=0

max
(∥∥∥V̂ϕ(st)−Gt

∥∥∥2, ∥∥∥clip(ϕ)−Gt

∥∥∥2)] (11)

where V̂ϕk
is the value network at the previous iteration, Gt =

∑T−1
t′=t γ

t′−trt′ is the empirical return from state st, ϵ′ is a
value clipping parameter, and the clip(θ) is defined as:

clip(ϕ) = clip
(
V̂ϕ(st), V̂ϕk

(st)− ϵ′, V̂ϕk
(st) + ϵ′

)
. (12)

In RL-tuning of LLMs, the value network is typically initialized from the initial policy πref (or the reward model, if
available), replacing the language modeling head with a scalar output head to predict values (Zheng et al., 2023) This
approach takes advantage of the base model’s prior knowledge for value estimation.

13

VinePPO: Refining Credit Assignment in RL Training of LLMs

Advantage Estimation Once the estimated values V̂ϕ(st) are obtained, the advantages A(st, at) are computed using the
GAE (Schulman et al., 2016):

A(st, at) ≈ ÂGAE(st, at) (13)

= (1− λ)
(
Â

(1)
t + λÂ

(2)
t + λ2Â

(3)
t + . . .

)
(14)

=

∞∑
l=0

(γλ)lδt+l (15)

=

∞∑
l=0

(γλ)l
(
rt+l + γV̂ϕ(st+l+1)− V̂ϕ(st+l)

)
(16)

where δt = rt + γV̂ϕ(st+1)− V̂ϕ(st) is the temporal difference error, λ is the GAE parameter, and γ is the discount factor.
Also, we have:

Â
(k)
t :=

k−1∑
l=0

γlδt+l = rt + γrt+1 + · · ·+ γk−1rt+k−1 + γkV̂ϕ(st+k)− V̂ϕ(st). (17)

Adjusting the GAE parameter λ allows for a trade-off between bias and variance in the advantage estimates. However,
as we discuss in Appendix C.6, we found that λ = 1 works best in our experiments (similar to the findings of Trung
et al. (2024) and Ahmadian et al. (2024)). In this case, the GAE simplifies to the following form (assuming γ = 1):
ÂGAE(st, at) =

∑T−1
t′=t rt′ − V̂ϕ(st).

B. Reasoning Step Separation Examples
In this section, we outline the methodology used to segment solutions into discrete reasoning steps for the MATH and
GSM8K datasets, as illustrated in Figures B.1 and B.2.

For the MATH dataset, we begin by splitting solutions based on clear natural boundaries such as newline characters or
punctuation marks (e.g., periods or commas). Care is taken to avoid splitting within mathematical expressions, ensuring that
mathematical formulas remain intact. After this initial segmentation, if any resulting step exceeds 100 characters, we further
try to divide it by identifying logical breakpoints, such as equal signs (=) within math mode.

For the GSM8K dataset, we take a simpler approach, segmenting the reasoning steps by newlines alone as with this task
newlines already serve as natural delimiters.

C. Experimental Details
C.1. Datasets

We focus on mathematical reasoning datasets that require step-by-step solutions and are widely used to evaluate the reasoning
capabilities of LLMs. Below is a brief overview of the datasets used in our experiments:

MATH (Hendrycks et al., 2021) The MATH dataset contains problems from high school math competitions, covering a
wide range of topics such as algebra, geometry, and probability. For our experiments, we use the OpenAI split provided by
Lightman et al. (2024), which consists of 500 problems for testing and 12,500 problems for training. We further divide
the training set into 11,500 problems for training and 500 problems for validation. Each problem includes a step-by-step
solution, ending in a final answer marked by \boxed{} in the solution (e.g., “..so the smallest possible value of c is π ”).
This marking allows for verification of the correctness of model-generated responses by comparing the final answer to the
ground truth. We use the scripts provided by Lewkowycz et al. (2022), Lightman et al. (2024), and Shao et al. (2024) to
extract and compare the final answers to the ground truth.

GSM8K (Cobbe et al., 2021) The GSM8K dataset comprises high-quality grade-school math problems, requiring basic
arithmetic or elementary algebra to solve. Although simpler than the MATH dataset, GSM8K is still widely used to assess
the reasoning capabilities of LLMs. It contains 1,319 problems for testing and 7,473 for training. To create a validation set,
we further split the training set into 7,100 problems for training and 373 for validation. Verifying the correctness of model
responses is straightforward, as the final answer is typically an integer, marked by #### in the solution.

14

VinePPO: Refining Credit Assignment in RL Training of LLMs

Prompt
If we express 3x2 + x − 4 in the form a(x − h)2 + k, then what is k?

Response

We complete the square.† First, we factor 3 out of the

terms 3x2 + x to get 3
(
x2 + x

3

)
.† We can square x + 1

6

to get x2 + x
3 + 1

36 , so†

3

(
x
2
+

x

3

)†
= 3

[(
x +

1

6

)2

−
1

36

]†

= 3

(
x +

1

6

)2

−
3

36

†

= 3

(
x +

1

6

)2

−
1

12
,
†

and

3

(
x
2
+

x

3

)
− 4

†
= 3

(
x +

1

6

)2

−
1

12
− 4

†

= 3

(
x +

1

6

)2

−
49

12
.

We see that k =† −
49

12
.†

Prompt
Suppose the roots of the polynomial x2 − mx + n are positive prime integers
(not necessarily distinct). Given that m < 20, how many possible values of n
are there?

Response

Let p and q be the prime roots.† Then, we know that

m = p + q and n = pq.† Since m < 20, the primes p

and q must both be less than 20.†

The primes less than 20 are 2, 3, 5, 7, 11, 13, 17, 19.†

Now we list all possible pairs (p, q) such that p + q < 20,†

remembering to also include the cases in which p = q:†

(2, 2), (2, 3), (2, 5), (2, 7), (2, 11), (2, 13), (2, 17)
†

(3, 3), (3, 5), (3, 7), (3, 11), (3, 13)
†

(5, 5), (5, 7), (5, 11), (5, 13)
†

(7, 7), (7, 11)

There are 7 + 5 + 4 + 2 = 18 pairs in total.† Each pair

produces a value for n, and furthermore,† these values are

all distinct, because every positive integer has a unique prime

factorization.† Thus, there are 18 possible values for n.†

Figure B.1: Examples of solutions separated into its reasoning steps on the MATH dataset. Steps are highlighted using
distinct colors. † denotes the reasoning step boundary.

Prompt
Tobias is buying a new pair of shoes that costs $95. He has been saving up his
money each month for the past three months. He gets a $5 allowance a month.
He also mows lawns and shovels driveways. He charges $15 to mow a lawn and
$7 to shovel. After buying the shoes, he has $15 in change. If he mows 4 lawns,
how many driveways did he shovel?

Response

He saved up $110 total because 95 + 15 = 110†

He saved $15 from his allowance because 3 x 5 = 15†

He earned $60 mowing lawns because 4 x 15 = 60†

He earned $35 shoveling driveways because 110-60-15 = 35†

He shoveled 5 driveways because 35 / 7 = 5.

5†

Prompt
Tim rides his bike back and forth to work for each of his 5 workdays. His work
is 20 miles away. He also goes for a weekend bike ride of 200 miles. If he can
bike at 25 mph how much time does he spend biking a week?

Response

He bikes 20 x 2 = 40 miles each day for work.†

So he bikes 40 x 5 = 200 miles for work†

That means he bikes a total of 200+200 =400 miles for work†

So he bikes a total of 400 / 25=16 hours

16†

Figure B.2: Examples of solutions separated into its reasoning steps on the GSM8K dataset. Steps are highlighted using
distinct colors. † denotes the reasoning step boundary.

C.2. PPO Implementation

To ensure our PPO implementation is robust, and our evaluation reflects its full potential, we have applied a set of well-
established techniques and best practices from the literature (Huang et al., 2024; Ivison et al., 2024; Zheng et al., 2023).
Below, we outline the key implementation details that were most effective in our experiments:

• Advantage Normalization: After calculating the advantages, we normalize them to have zero mean and unit variance,

15

VinePPO: Refining Credit Assignment in RL Training of LLMs

Table 1: Summary of PPO hyperparamters used in the experiments.

Parameter Value

TRAINING

Optimizer AdamW
Adam Parameters (β1, β2) (0.9, 0.999)
Learning rate 1× 10−6

Weight Decay 0.0
Max Global Gradient Norm for Clipping 1.0
Learning Rate Scheduler Polynomial
Warm Up 3% of training steps
Train Steps For MATH dataset 1000 steps (around 8 dataset epochs)
Train Steps For GSM8K dataset 650 steps (around 8 dataset epochs)

GENERAL

Maximum Response Length 1024 tokens
Maximum Sequence Length for RhoMath 1.1B 2048 tokens
Maximum Sequence Length for DeepSeekMath 7B 2500 tokens

PPO

Responses per Prompt 8 Search Space: {8, 16, 32}
Episodes per PPO Step 512 Search Space: {256, 512}
Prompts per PPO Step 512/8 = 64
Mini-batch Size 64
Inner epochs per PPO Step 2 Search Space: {1, 2}
Sampling Temperature 0.6 Search Space: {0.6, 0.8, 1.0}
Discount Factor γ 1.0
GAE Parameter λ 1.0 Search Space: [0.95− 1.0]
KL Penalty Coefficient β 1e-4 Search Space: {1e-1, 1e-2, 3e-3, 1e-4}
Policy Clipping Parameter ϵ 0.2
Value Clipping Parameter ϵ′ 0.2

not only across the batch but also across data parallel ranks. This normalization step is applied consistently in both our
PPO and VinePPOimplementations.

• Reward Normalization: We follow Ivison et al. (2024) and do not normalize the rewards, as the reward structure in
our task is already well-defined within the range of [0, 1]. Specifically, correct responses are assigned a reward of 1,
while incorrect responses receive 0.

• End-of-Sequence (EOS) Trick: As detailed in Appendix A, rewards are only applied at the final token of a response,
which corresponds to the EOS token when the response is complete. For responses that exceed the maximum length,
we truncate the response to the maximum length and apply the reward to the last token of the truncated sequence. We
also experimented with penalizing truncated responses by assigning a negative reward (-1), but this did not lead to
performance improvements.

• Dropout Disabling: During the RL tuning phase, we disable dropout across all models. This ensures that the log
probabilities remain consistent between different forward passes, thereby avoiding stochastic effects that could hurt
training stability.

• Fixed KL Coefficient We use a constant coefficient for the KL penalty. Although the original PPO implementation
for finetining language models (Ziegler et al., 2019) utilized an adaptive KL controller, more recent implementations
typically do not use this approach (Ouyang et al., 2022; Touvron et al., 2023; Xu et al., 2024).

C.3. SFT Models

To ensure a systematic and reproducible evaluation, we create our SFT models πref by finetuning the base pretrained LLMs
(as opposed to their “Instruct” version) on the training splits of the respective datasets. Specifically, we produce four distinct
SFT models: two base LLM (DeepSeekMath 7B and RhoMath 1.1B) across two datasets (MATH and GSM8K). The base
models are finetuned using the Adam optimizer without weight decay. We employ a learning rate warm-up over 6% of

16

VinePPO: Refining Credit Assignment in RL Training of LLMs

Table 2: Summary of RLOO and GRPO hyperparamters used in the experiments.

Parameter Value

TRAINING

Optimizer AdamW
Adam Parameters (β1, β2) (0.9, 0.999)
Learning rate 1× 10−6

Weight Decay 0.0
Max Global Gradient Norm for Clipping 1.0
Learning Rate Scheduler Polynomial
Warm Up 3% of training steps
Train Steps For MATH dataset 1000 steps (around 8 dataset epochs)
Train Steps For GSM8K dataset 650 steps (around 8 dataset epochs)

GENERAL

Maximum Response Length 1024 tokens
Maximum Sequence Length for RhoMath 1.1B 2048 tokens
Maximum Sequence Length for DeepSeekMath 7B 2500 tokens

RL ALGORITHM

Responses per Prompt 8
Episodes per PPO Step 512
Prompts per PPO Step 512/8 = 64
Mini-batch Size 64
Inner epochs per PPO Step 2
Sampling Temperature 0.6
Discount Factor γ 1.0
KL Penalty Coefficient β 3e-3 Search Space: {1e-2, 3e-3, 1e-3, 3e-4, 1e-4}
Policy Clipping Parameter ϵ 0.2

the total training steps. Each model is trained for three epochs with a batch size of 64, and the best checkpoint is selected
based on validation accuracy. For each SFT model, we conduct a hyperparameter sweep over learning rates in the range
{1× 10−7, 3× 10−7, 1× 10−6, 3× 10−6, 1× 10−5, 3× 10−5, 8× 10−5, 1× 10−4} to ensure optimal performance. We
then use these SFT models as the initial checkpoint for training the methods mentioned in our paper.

C.4. Evaluation

We evaluate each method’s performance on the test sets of each dataset. For example, when we report that PPO achieves
42.8% accuracy on the MATH dataset for the DeepSeekMath 7B model, this means the PPO training was initialized with the
SFT model specific to DeepSeekMath 7B on the MATH dataset, and accuracy was measured on the MATH test set. Our
primary evaluation metric is accuracy, specifically Pass@1, which reflects the percentage of correctly answered problems
on the first attempt. This metric is crucial because it represents a realistic user interaction, where the model is expected to
deliver a correct answer without the need for multiple tries. For each evaluation, we sample a response from the model
for a given prompt, using a maximum token length of 1024 and a temperature of 0.35. A response is considered correct if
its final answer matches the ground truth final answer, as detailed in Appendix C.1. Furthermore, each accuracy score is
averaged over 16 evaluation rounds, each conducted with different random seeds. This will ensure a robust and low variance
assessment of model performance.

C.5. Other Baselines

GRPO (Shao et al., 2024) and RLOO (Ahmadian et al., 2024) GRPO replaces PPO’s value network with a policy
gradient baseline computed from the average return of a group of responses to the same input. For each training question
x, all algorithms generates G responses, yielding training trajectories τ1, τ2, . . . , τG ∼ π(·|x) with corresponding returns
R1, R2, . . . , RG. Note that in the case of GRPO, we need to have G > 1. Then, GRPO computes the empirical mean
µx = 1

G

∑G
i=1 Ri and standard deviation σx of these returns. For each trajectory τi, the advantage A(s, a) for all state-action

17

VinePPO: Refining Credit Assignment in RL Training of LLMs

Table 3: Summary of RestEM hyperparamters used in the experiments.

Parameter Value

TRAINING

Optimizer AdamW
Adam Parameters (β1, β2) (0.9, 0.999)
Learning rate 1× 10−6

Weight Decay 0.0
Max Global Gradient Norm for Clipping 1.0
Learning Rate Scheduler Polynomial
Warm Up 3% of training steps

RESTEM

iterations 10
Sampled Responses per Prompt 8 Search Space: {8, 32}
Sampling Temperature 0.6 Search Space: {0.6, 0.8, 1.0}
Checkpoints every # iteration 500 step
Checkpoint Selection until validation improves

Search Space: {until validation improves, best validation}

Table 4: Summary of DPO-Positive hyperparameters used in the experiments.

Parameter Value

TRAINING

Optimizer AdamW
Adam Parameters (β1, β2) (0.9, 0.999)
Learning rate 1× 10−6

Weight Decay 0.0
Max Global Gradient Norm for Clipping 1.0
Learning Rate Scheduler Polynomial
Warm Up 3% of training steps

DPO-POSITIVE

DPO-β 0.1 for MATH, 0.3 for GSM8K
DPO-Positive-λ 50.
Epochs 3 Search Space: {3, 8}
Sampled Responses per Prompt 64 Search Space: {8, 64}
Pairs per prompt 64 Search Space: {8, 64}
Sampling Temperature 0.6

pairs (s, a) ∈ τi is defined as:

A(s, a) =
Ri − µx

σx
.

Notably, this introduces bias in policy gradient estimation because the return Ri of the current trajectory is used in computing
its own baseline. RLOO addresses this bias by employing a leave-one-out strategy for baseline computation. Specifically,
for each trajectory τi, the baseline is computed using the returns of all other trajectories in the group, excluding Ri. Let µ(i)

x

denote the empirical mean of {Rj}j ̸=i. The advantage for all state-action pairs in τi is then computed as:

A(s, a) = Ri − µ(i)
x .

This modification ensures that the baseline for each trajectory is independent of its own return, yielding an unbiased policy
gradient estimate.

DPO+ (DPO-Positive) (Pal et al., 2024) The original DPO method has a failure mode when the edit distance between
positive (correct) and negative (incorrect) responses is small. In these cases, the probability of both responses tends to
decrease. This issue is especially common in reasoning and mathematical tasks, where multiple solution paths may involve
similar equations or steps. Although DPO achieves its goal by reducing the probability of the incorrect response more

18

VinePPO: Refining Credit Assignment in RL Training of LLMs

than the correct one, it ultimately still lowers the likelihood of generating the correct response. This undermines model
performance, making it a failure mode despite partially fulfilling the DPO objective. (Pal et al., 2024; Hwang et al., 2024).
While previous methods mitigated this issue by maintaining a high edit distance between positive and negative response
pairs, DPO-Positive (Pal et al., 2024) addresses it more effectively. It introduces an additional term to the DPO objective,
penalizing any reduction in the probability of the correct response below its probability under the reference model. This
ensures that the correct response is not overly suppressed, even when the edit distance is small. The final objective of
DPO-Positive is::

LDPO-Positive(πθ;πref) = −E(x,yw,yl)∼D

[
log σ

(
β

(
log

πθ(yw|x)
πref(yw|x)

− log
πθ(yl|x)
πref(yl|x)

)
︸ ︷︷ ︸

DPO Original term

− λ ·max

(
0, log

πref(yw|x)
πθ(yw|x)

)
︸ ︷︷ ︸

DPO-Positive additional term

)]
(18)

where λ is a hyperparameter controlling the weight of the additional term keeping the probabilities of correct responses high.
We chose DPO-Positive as a baseline due to its strong performance in (Setlur et al., 2024).

RestEM (Singh et al., 2024) RestEM is an iterative method where, in each iteration, the base model is trained on correct,
self-generated responses from the chosen checkpoint of the previous iteration. RestEM takes gradient steps to maximize
this objective until the fine-tuned model’s accuracy drops on a validation split. The objective of the fine-tuning process is
to maximize the log-likelihood of correct responses. Training the model with a maximum likelihood objective on correct
responses is mathematically equivalent to training the model with REINFORCE (Sutton et al., 1999), without a baseline,
where the entire response is treated as a single action. The reward is 1 when the response is correct, and 0 otherwise.
Specifically, we have:

Ex∼D,y∼π(·|x),R(x;y)=1 [∇θ logPθ(y|x)]︸ ︷︷ ︸
max log-likelihood on correct responses

= Ex∼D,y∼π(·|x) [∇θ logPθ(y|x)R(x;y)]︸ ︷︷ ︸
REINFORCE

(19)

Therefore, maximizing log-likelihood training on correct responses is equivalent to train with policy gradient without precise
credit assignment, such as without advantages for specific actions. In our experiments, we observe the impact of this
limitation in both Figure C.3 and Figure 5 where RestEM overfits on the training data.

C.6. Hyperparameters

In this section, we present a comprehensive overview of the hyperparameters used in our experiments. It’s important to note
that the number of training episodes was carefully selected to ensure that the amount of training data remained consistent
across all methods.

PPO Finetuning LLMs using PPO is known to be sensitive to hyperparameter selection, and finding the optimal settings
is critical for achieving strong performance. To ensure the robustness of our study, we explored hyperparameter values
reported in recent studies (Shao et al., 2024; Zheng et al., 2023; Ivison et al., 2024; Huang et al., 2024) and conducted
various sweeps across a wide range of values to identify the best configuration for our tasks and models. Specifically, we
find the set of hyperparameters that perform best across both MATH and GSM8K using RhoMath 1.1B model. Then, we
employ the optimal set of parameters for the rest of our experiments. The full set of hyperparameters, along with their
respective search spaces, is detailed in Table 1.

VinePPO We utilized the same hyperparameter setup as in the PPO implementation (Table 1) for VinePPO.

RLOO and GRPO Since policy optimization in RLOO and GRPO is similar to PPO, we initialze their hyperparameters
from PPO. This not only ensure we start from a strong set of values, but also allows for a systematic comparison among
these algorithms. We further tune their KL coefficient for stable training. Note that lack of credit assignment mechanism
could lead to high variance policy gradient update, resulting in unstable training (Greensmith et al., 2001). See Table 2 for
the full list.

19

VinePPO: Refining Credit Assignment in RL Training of LLMs

Table 5: Average time spent per each training step for different methods and models measured for MATH dataset

Method Model Hardware Average Training Step Time (s)

PPO RhoMath 1.1B 4 × Nvidia A100 80GB 80
VinePPO RhoMath 1.1B 4 × Nvidia A100 80GB 380

PPO DeepSeekMath 7B 8 × Nvidia H100 80GB 312
VinePPO DeepSeekMath 7B 8 × Nvidia H100 80GB 583

RestEM To ensure fair comparison we equalize the number of sampled responses for training between our RestEM run
and our PPO runs. Therefore, in each RestEM iteration we sample 8 responses per prompt and train for 8 epochs on the
correct responses. To enhance RestEM’s performance, we also conducted a sweep of other reasonable parameters(Table 3).
This included increasing the number of samples to expand the training data and reducing the number of correct responses
per question to minimize overfitting.However, we observed no significant improvement .

DPO+ (DPO-Positive) We adopted the same hyperparameters as those used by Setlur et al. (2024). In addition, we
conducted a search for the optimal value of β to see if using the same β as in our PPO experiments would yield better
performance than the values they recommended. To maintain a fair comparison, we ensured that the number of training
samples in our DPO+ runs matched those in our PPO run where we trained for eight epochs, with each epoch consisting of
training on eight responses per question. To match this, we generated 64 pairs of positive and negative responses given 64
self-generated responses from the base model. (Table 4)

C.7. Compute

All experiments were conducted using multi-GPU training to efficiently handle the computational demands of large-scale
models. For the RhoMath 1.1B model, we utilized a node with 4 × Nvidia A100 80GB GPUs to train both PPO and
VinePPO. For the larger DeepSeekMath 7B model, we employed a more powerful setup, using a node with 8 × Nvidia
H100 80GB GPUs. Additionally, for training DeepSeekMath 7B models with the RestEM approach, we used a node with 4
× Nvidia A100 80GB GPUs. The average training step time for each method on the MATH dataset is presented in Table 5.

C.8. Software Stack

Both PPO and VinePPOrequire a robust and efficient implementation. For model implementation, we utilize the Huggingface
library. Training is carried out using the DeepSpeed distributed training library, which offers efficient multi-GPU support.
Specifically, we employ DeepSpeed ZeRO stage 0 (vanilla data parallelism) for RhoMath 1.1B and ZeRO stage 2 (shared
optimizer states and gradients across GPUs) for DeepSeekMath 7B . For trajectory sampling during RL training, we rely on
the vLLM library (Kwon et al., 2023), which provides optimized inference for LLMs. Additionally, VinePPOleverages
vLLM to generate Monte Carlo samples for value estimation. Specifically, after each RL training iteration, the current
policy’s checkpoint is loaded into vLLM. Then, we use vLLM’s serving API to sample new trajectories and also Monte Carlo
Samples for VinePPO’s value estimation. In our setup, we spawn a separate vLLM engine on each GPU rank. This would
allow for data parallelism during both sample generation and training. This software stack ensures that our experiments are
both efficient and reproducible. For instance, during VinePPO training, we achieve an inference speed of up to 30K tokens
per second using 8 × Nvidia H100 GPUs with the DeepSeekMath 7B model.

C.9. Reproducibility

In this study, all experiments were conducted using open-source libraries, publicly available datasets, and open-weight LLMs.
To ensure full reproducibility, we will release both Singularity and Docker containers, equipped with all dependencies and
libraries, enabling our experiments to be run on any machine equipped with NVIDIA GPUs, now or in the future. Additionally,
we will make our codebase publicly available on GitHub at https://github.com/McGill-NLP/VinePPO

20

https://github.com/McGill-NLP/VinePPO

VinePPO: Refining Credit Assignment in RL Training of LLMs

D. Full Results
D.1. Training Plots

In this section, we present additional training plots for both PPO and VinePPO on the GSM8K dataset, as shown in
Figure D.6. Figure D.7 further illustrates the trade-off between accuracy and KL divergence, while Figure D.9 highlights the
computational efficiency of the models6.

We observe consistent patterns with the results reported in Section 6. Although the performance gap for the DeepSeekMath
7B model is narrower on GSM8K, VinePPO still higher accuracy with significantly lower KL divergence and faster per-
iteration time (this happens because responses to GSM8K problems are typically shorter, making MC estimation quite
fast).

D.2. Explained Variance and Mean Absolute Error (MAE) of Value Prediction During Training

To ensure healthy training runs, we assess value prediction accuracy using explained variance and mean absolute error
(MAE). Explained variance quantifies how much of the variance in ground-truth values is captured by the estimator:

ExplainedVariance = 1−
∑n

g=1(vg − v̂g)
2∑n

g=1(vg − v̄)2
,

where vg are ground-truth values, v̂g are predictions, and v̄ = 1
n

∑n
g=1 vg is the mean of the ground-truth values. The mean

absolute error (MAE) is given by:

MAE =
1

n

n∑
g=1

∣∣vg − v̂g
∣∣.

As shown in Figure D.5, PPO shows improving explained variance and decreasing MAE, indicating stable training.
VinePPO achieves the highest explained variance and lowest MAE. RLOO and GRPO are included solely for demonstration,
illustrating the deviation of their baselines from ground truth value estimates.

D.3. KL Divergence

The RL objective (Equation 1) balances maximizing task performance while constraining deviations from the initial policy
πref , measured by KL divergence. We analyze how VinePPO and PPO navigate this trade-off by plotting task accuracy
against KL divergence KL[πθ∥πref] throughout training (Figure D.8). Results show VinePPO consistently achieves higher
accuracy at same KL divergence, indicating more efficient use of the “KL budget.” This efficiency stems from VinePPO’s
more precise credit assignment. As shown in Figure 1, many advantages are zero, and VinePPO excludes these steps
from the loss. By avoiding unnecessary updates on non-contributing tokens, VinePPO reduces non-essential parameter
adjustments that would inflate KL.

D.4. Temperature Tolerance

Sampling temperature is a critical hyperparameter controlling the randomness of sampled trajectories. At higher temperatures
models generates more diverse trajectories, accelerating early training through increased exploration. However, this diversity
challenges PPO’s value network, requiring generalization over a wider range of states. We compared VinePPO and PPO
using temperatures T ∈ {0.6, 0.8, 1.0} over the initial third of training steps. Figure D.10 shows VinePPO consistently
benefits from higher temperatures, achieving faster convergence. Conversely, PPO fails to benefit from increased exploration
and even diverges at T = 1.0, where trajectories are most diverse.

D.5. Value Prediction Analysis

In this section, we provide additional plots for value analysis. Specifically, Figures D.13 to D.16 demonstrates these plots
for on the MATH dataset, and Figures D.17 to D.20 on the GSM8K dataset.

Furthermore, we present the prediction error per step in Figures D.21 to D.24.

6For GSM8K runs of RhoMath 1.1B , different hardware was used, making direct comparison of wall-clock time not feasible.

21

VinePPO: Refining Credit Assignment in RL Training of LLMs

E. More Examples of Advantages in VinePPO
In addition to Figure 1, we provide more examples of effective advantage computation of VinePPO in Figures E.25 to E.27.

22

VinePPO: Refining Credit Assignment in RL Training of LLMs

0 10000 20000 30000 40000
0.6

0.7

0.8

0 10000 20000 30000 40000

0.41

0.42

0.43

RhoMath 1.1B - GSM8K - RestEM

Global Step

Ac
cu

ra
cy

train test

0 10000 20000 30000 400000.2

0.3

0.4

0.5

0.6

0 10000 20000 30000 40000

0.16

0.17

0.18

RhoMath 1.1B - MATH - RestEM

Global Step

Ac
cu

ra
cy

train test

0 20000 40000

0.80

0.85

0.90

0 20000 40000
0.70

0.71

0.72

0.73

DeepSeekMath 7B - GSM8K - RestEM

Global Step

Ac
cu

ra
cy

train test

0 20000 400000.4

0.5

0.6

0 20000 40000
0.33

0.34

0.35

0.36

0.37

DeepSeekMath 7B - MATH - RestEM

Global Step

Ac
cu

ra
cy

train test

Figure C.3: Performance comparisons across different models and datasets: (a) RhoMath 1.1B on GSM8K, (b) RhoMath
1.1B on MATH, (c) DeepSeekMath 7B on GSM8K, and (d) DeepSeekMath 7B on MATH. The yellow points are chosen
checkpoints based on the RestEM rule. Within each iteration, we train on the generated data of the chosen checkpoint for
eight epochs and then we choose the first place where performance on a validation split drops following Singh et al. (2024)

23

VinePPO: Refining Credit Assignment in RL Training of LLMs

0 200 400 600 800 1000

12%

16%

20%

24%

0 200 400 600 800 1000

32%

36%

40%

44%

Training Step

A
cc

u
ra

cy
 (

)

RhoMath 1.1B DeepSeekMath 7B

Method

VinePPO

PPO

Figure C.4: Comparison of the training behavior between VinePPO and PPO. VinePPO demonstrates consistently higher
accuracy (as measured on the test set of MATH dataset) throughout the training. Refer to Appendix D for more detailed
plots.

200 400 600

0.5

0.6

0.7

0.8

0.9

1.0

0 250 500 750 200 400 600 250 500 750 1000

iteration

ex
p
la

in
ed

˙v
ar

ia
n
ce

RhoMath 1.1B - GSM8K RhoMath 1.1B - MATH DeepSeekMath 7B - GSM8K DeepSeekMath 7B - MATH

method VinePPO PPO RLOO GRPO

200 400 600
0.0

0.1

0.2

0 250 500 750 200 400 600 250 500 750 1000

iteration

m
ae

RhoMath 1.1B - GSM8K RhoMath 1.1B - MATH DeepSeekMath 7B - GSM8K DeepSeekMath 7B - MATH

method VinePPO PPO RLOO GRPO

Figure D.5: Explained Variance and Mean Absolute Error of values. VinePPO demonstrates higher explained variance
in value predictions and lower mean absolute error compared to RLOO, GRPO, and PPO across both datasets. Additionally,
PPO’s value predictions show non-negative explained variance values close to one, indicating stable and effective training.
Note that RLOO and GRPO are included solely for demonstration, illustrating the deviation of their baselines from ground
truth value estimates.

24

VinePPO: Refining Credit Assignment in RL Training of LLMs

0 200 400 600

40%

44%

48%

52%

0 200 400 600

72%

76%

80%

Training Step

A
cc

u
ra

cy
 (

)

RhoMath 1.1B DeepSeekMath 7B

Method

VinePPO

PPO

Figure D.6: Comparison of the training behavior between VinePPO and PPO. VinePPO demonstrates consistently higher
accuracy throughout the training on the GSM8K dataset. Refer to Figure C.4 for MATH dataset.

0 10 20

35%

40%

45%

50%

55%

0 5 10 15 20

70%

75%

80%

KL[ref]

A
cc

u
ra

cy
 (

)

RhoMath 1.1B DeepSeekMath 7B

Method

VinePPO

PPO

Figure D.7: Task accuracy as a function of KL divergence during training on the GSM8K dataset. VinePPO significantly
higher accuracy per KL. Refer to Figure D.8 for MATH dataset.

0 10 20 30

15.0%

17.5%

20.0%

22.5%

0 5 10 15 20

30%

35%

40%

45%

KL[ref]

A
cc

u
ra

cy
 (

)

RhoMath 1.1B DeepSeekMath 7B

Method

VinePPO

PPO

Figure D.8: Task accuracy as a function of KL divergence during training on the MATH dataset. VinePPO achieves higher
accuracy, reflecting more efficient credit assignment and focused updates.

25

VinePPO: Refining Credit Assignment in RL Training of LLMs

0 10 20 30 40
68%

72%

76%

80%

2.2x Faster

Wall Clock (Hours)

A
cc

u
ra

cy

DeepSeekMath 7B

Method
VinePPO

PPO

Figure D.9: Accuracy vs. Wall Clock Time for both methods measured on the same hardware throughout the entire training.
Since the responses to GSM8K problems are short, VinePPO is even faster per-iteration in our setup and it reaches PPO’s
peak performance in fewer iterations and less overall time.

0 100 200 300

30%

35%

40%

45%

Initial SFT

Training Step

Ac
cu

ra
cy

 (
)

Method
VinePPO
PPO

Temparature
0.6
0.8
1.0

Figure D.10: Test set accuracy during training with higher temperature presented for DeepSeekMath 7B and MATH dataset.
VinePPO can tolerate higher temperatures.

PPO VinePPO
(K = 1)

VinePPO
(K = 3)

VinePPO
(K = 9)

48%

50%

52%

54%

56%

50.1 50.1

51.9

53.4

Increasing Compute

(a) Effect of K on Task Performance

A
cc

u
ra

cy

GSM8K

Figure D.11: Ablating the number of auxiliary trajectories K for estimating V̂MC(st) on RhoMath 1.1B and GSM8K.
Increasing K consistently improves task performance. (see Figure 7 for MATH dataset)

26

VinePPO: Refining Credit Assignment in RL Training of LLMs

250 500 750 1000
0%

25%

50%

75%

100%

(a) Value Prediction

Step

A
cc

u
ra

cy

Figure D.12: Value prediction accuracy formulated as a classification problem, where a prediction is considered correct if it
falls within 0.05 of the ground truth.

Figure D.13: Distribution of predicted values for each state vs. ground truth (computed using 256 MC samples) during
training. MAE denotes the Mean Absolute Error (MAE).

27

VinePPO: Refining Credit Assignment in RL Training of LLMs

Figure D.14: Distribution of predicted values for each state vs. ground truth (computed using 256 MC samples) during
training. MAE denotes the Mean Absolute Error (MAE).

Figure D.15: Distribution of predicted values for each state vs. ground truth (computed using 256 MC samples) during
training. MAE denotes the Mean Absolute Error (MAE).

28

VinePPO: Refining Credit Assignment in RL Training of LLMs

Figure D.16: Distribution of predicted values for each state vs. ground truth (computed using 256 MC samples) during
training. MAE denotes the Mean Absolute Error (MAE).

Figure D.17: Distribution of predicted values for each state vs. ground truth (computed using 256 MC samples) during
training. MAE denotes the Mean Absolute Error (MAE).

29

VinePPO: Refining Credit Assignment in RL Training of LLMs

Figure D.18: Distribution of predicted values for each state vs. ground truth (computed using 256 MC samples) during
training. MAE denotes the Mean Absolute Error (MAE).

Figure D.19: Distribution of predicted values for each state vs. ground truth (computed using 256 MC samples) during
training. MAE denotes the Mean Absolute Error (MAE).

30

VinePPO: Refining Credit Assignment in RL Training of LLMs

Figure D.20: Distribution of predicted values for each state vs. ground truth (computed using 256 MC samples) during
training. MAE denotes the Mean Absolute Error (MAE).

0.15

0.20

0.25

0.30

0.15

0.20

0.25

0.12

0.16

0.20

0.08

0.12

0.16

0.20

0.10

0.12

0.14

0.16

0.06

0.07

0.08

0.09

0.10

0.0 0.5 1.0

0.00

0.02

0.04

0.06

0.08

0.0 0.5 1.0

0.00

0.02

0.04

0.06

0.08

0.0 0.5 1.0

0.00

0.02

0.04

0.06

0.0 0.5 1.0

0.00

0.02

0.04

0.06

0.0 0.5 1.0

0.00

0.01

0.02

0.03

0.04

0.05

0.0 0.5 1.0

0.00

0.01

0.02

0.03

Reasoning Progress

M
A
E

PPO @ Step 60 PPO @ Step 120 PPO @ Step 360 PPO @ Step 420 PPO @ Step 840 PPO @ Step 960

VinePPO @ Step 60 VinePPO @ Step 120 VinePPO @ Step 360 VinePPO @ Step 420 VinePPO @ Step 840 VinePPO @ Step 960

Figure D.21: Visualizing the Mean Absolute Error (MAE) of the value predictions in different point of reasoning chain,
plotted for DeepSeekMath 7B on MATH dataset.

31

VinePPO: Refining Credit Assignment in RL Training of LLMs

0.10

0.15

0.20

0.25

0.30

0.15

0.20

0.25

0.09

0.12

0.15

0.18

0.10

0.12

0.15

0.18

0.06

0.08

0.10

0.04

0.05

0.06

0.07

0.08

0.09

0.0 0.5 1.0

0.00

0.02

0.04

0.0 0.5 1.0

0.00

0.01

0.02

0.03

0.04

0.05

0.0 0.5 1.0

0.00

0.01

0.02

0.03

0.04

0.0 0.5 1.0

0.00

0.01

0.02

0.03

0.0 0.5 1.0

0.00

0.01

0.01

0.01

0.02

0.0 0.5 1.0

0.00

0.01

0.01

0.01

Reasoning Progress

M
A
E

PPO @ Step 60 PPO @ Step 180 PPO @ Step 240 PPO @ Step 300 PPO @ Step 480 PPO @ Step 600

VinePPO @ Step 60 VinePPO @ Step 180 VinePPO @ Step 240 VinePPO @ Step 300 VinePPO @ Step 480 VinePPO @ Step 600

Figure D.22: Visualizing the Mean Absolute Error (MAE) of the value predictions in different point of reasoning chain,
plotted for DeepSeekMath 7B on GSM8K dataset.

0.10

0.15

0.20

0.10

0.12

0.15

0.18

0.20

0.05

0.10

0.15

0.20

0.09

0.12

0.15

0.18

0.05

0.10

0.15

0.20

0.08

0.12

0.16

0.20

0.0 0.5 1.0

0.02

0.04

0.06

0.0 0.5 1.0

0.02

0.03

0.04

0.05

0.0 0.5 1.0

0.02

0.03

0.04

0.05

0.06

0.0 0.5 1.0
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.0 0.5 1.0

0.00

0.02

0.04

0.06

0.0 0.5 1.0

0.00

0.01

0.02

0.03

0.04

Reasoning Progress

M
A
E

PPO @ Step 40 PPO @ Step 120 PPO @ Step 320 PPO @ Step 520 PPO @ Step 800 PPO @ Step 880

VinePPO @ Step 40 VinePPO @ Step 120 VinePPO @ Step 320 VinePPO @ Step 520 VinePPO @ Step 840 VinePPO @ Step 920

Figure D.23: Visualizing the Mean Absolute Error (MAE) of the value predictions in different point of reasoning chain,
plotted for RhoMath 1.1B on MATH dataset.

32

VinePPO: Refining Credit Assignment in RL Training of LLMs

0.20

0.30

0.20

0.25

0.30

0.15

0.20

0.25

0.12

0.15

0.17

0.20

0.23

0.14

0.16

0.18

0.15

0.20

0.25

0.0 0.5 1.0

0.00

0.03

0.05

0.08

0.10

0.0 0.5 1.0

0.00

0.03

0.05

0.08

0.0 0.5 1.0

0.00

0.03

0.05

0.08

0.0 0.5 1.0

0.02

0.04

0.06

0.08

0.0 0.5 1.0

0.00

0.02

0.04

0.06

0.0 0.5 1.0
0.00

0.02

0.04

0.06

Reasoning Progress

M
A
E

PPO @ Step 40 PPO @ Step 80 PPO @ Step 160 PPO @ Step 280 PPO @ Step 360 PPO @ Step 480

VinePPO @ Step 40 VinePPO @ Step 80 VinePPO @ Step 160 VinePPO @ Step 280 VinePPO @ Step 360 VinePPO @ Step 480

Figure D.24: Visualizing the Mean Absolute Error (MAE) of the value predictions in different point of reasoning chain,
plotted for RhoMath 1.1B on GSM8K dataset.

Prompt (s0) Advantage

The vertex of the parabola described by the equation y = −3x2 − 30x − 81 is (m,n). What is n?

Response

s1 0.0We can re-write the given equation as y = −3(x2 + 10x) − 81.

s2 0.2To complete the square, we add (−10/2)2 = 25 inside the parentheses:

s3 0.5y = −3(x2 + 10x + 25) − 81 − (−3)(25)

s4 0.0= −3(x + 5)2 − 81 + 75

s5 0.0= −3(x + 5)2 − 6.

s6 0.0The vertex of a parabola in the form a(x − h)2 + k is at the point (h, k),

s7 0.0so the vertex of the given parabola is at the point (−5,−6).

s8 0.0Therefore, n = −6 .

Example of Advantages Computed by VinePPO

Figure E.25: Steps s2 and s3 provide a critical insight for advancing the solution since they provide a way to organize the
equation.

33

VinePPO: Refining Credit Assignment in RL Training of LLMs

Prompt (s0) Advantage

0.4Let f(x) = 2x − 3 and g(f(x)) = 5 − 4x. Find g(4).

Response

s1 0.0We know that g(f(x)) = 5 − 4x.

s2 −0.6So, if we can figure out what f(x) is when x = 4,

s3 0.0we can plug that value into g(f(x)) to find g(4).

s4 0.0Since f(x) = 2x − 3, we have f(4) = 2(4) − 3 = 5.

s5 0.0Therefore, g(f(4)) = g(5) = 5 − 4(5) = 5 − 20 = −15 .

Example of Advantages Computed by VinePPO

Figure E.26: This example demonstrates an error in step s2 where the correct step would be ...what x is when f(x) = 4.
This mistake prevents to model to successfully solve the question after s2.

Prompt (s0) Advantage

Write the expression 4+3c
7 + 2 as a single fraction.

Response

s1 0.0We get a common denominator of 7:

s2 0.04+3c
7 + 2 = 4+3c

7 + 2·7
7

s3 −0.3= 4+3c
7 + 14

7

s4 0.4= 4+3c+14
7

s5 0.0=
18 + 3c

7
.

Example of Advantages Computed by VinePPO

Figure E.27: Steps s3 and s4, despite impacting the probability of solving the question, they are not meaningfully incorrect
or insightful.

34

