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Abstract

Diffusion models have become a cornerstone of
generative Al, yet the mechanisms underlying
their generalization remain poorly understood.
If these models were perfectly minimizing their
training loss, they would just generate data be-
longing to their training set, as empirically found
in the overparameterized regime. We revisit
this view by showing that, in overparameterized
diffusion models, generalization in natural data
domains is progressively achieved during training
before the onset of memorization. Our results,
ranging from image to language diffusion models,
systematically support the empirical law that
memorization time is proportional to the dataset
size. Generalization vs. memorization is then best
understood as a competition between time scales.
We show that this phenomenology is recovered in
diffusion models learning a simple probabilistic
context-free grammar, where generalization
corresponds to the hierarchical acquisition of
deeper grammar rules as training time grows, and
the generalization cost of early stopping can be
characterized. We summarize these results in a
phase diagram. Overall, our results support that
a principled early-stopping criterion — scaling
with dataset size — can effectively optimize
generalization while avoiding memorization.

1. Introduction

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al.,
2020) have recently emerged as a transformative paradigm
in Al, enabling the synthesis of high-quality data across a
wide range of modalities — images, videos, text, and com-
plex 3D structures such as molecules and proteins. At the
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heart of this process is the estimation of a score function
(Song & Ermon, 2019; Song et al., 2020): a noise-dependent
vector field that guides denoising by pointing in the direc-
tion of increasing likelihood. Since the score is learned from
the empirical training distribution, minimizing the training
loss leads the model to reproduce the training data itself,
i.e., memorization (Carlini et al., 2023; Somepalli et al.,
2022). This phenomenon is observed in practical settings
and raises significant privacy and copyright concerns, as
models trained on sensitive or proprietary data may inadver-
tently regenerate such content, exposing private information
or violating intellectual property rights (Wu et al., 2022;
Matsumoto et al., 2023; Hu & Pang, 2023). In contrast, gen-
eralization corresponds to the model producing novel sam-
ples that are consistent with, but not identical to, the training
data, thereby approximating the broader target distribution.

Despite the empirical success of diffusion models, the mech-
anisms underlying their ability to generalize remain poorly
understood. A prevailing view — rooted in classical learning
theory — is that generalization depends on underparame-
terization (Yoon et al., 2023; Zhang et al., 2023; Kadkho-
daie et al., 2023): only models that lack the capacity to
memorize their training data are expected to generalize. In
this work, we go beyond this view by demonstrating that
even heavily overparameterized diffusion models exhibit
generalization during training before they start memorizing
the training data. We systematically investigate this phe-
nomenon, showing that generalization and memorization
are not mutually exclusive but unfold as distinct temporal
phases of training. We empirically demonstrate the transi-
tion from generalization to memorization during training in
a range of overparameterized diffusion models on images
and text data. We measure memorization and generalization
metrics and systematically vary the training set size, show-
ing that generalization improves gradually, before the onset
of memorization. We find the empirical law that the onset
of memorization requires a number of training steps that
is proportional to the training set size. We interpret these
findings by studying a diffusion model trained to learn a
simple formal grammar, where the number of training steps
or samples required to generalize is known to be polynomial
in the sequence length (Favero et al., 2025). We show that
for moderate training set sizes, the diffusion model only
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learns the lowest levels of the hierarchical grammar rules —
corresponding to partial generalization — before starting to
memorize. For larger training set sizes, the onset of memo-
rization appears after perfect total generalization is achieved.
These results lead to a phase diagram for memorization and
generalization as a function of sample complexity and time.

On the theoretical level, these findings call for a revision
of the view of generalization in diffusion models as being
solely determined by model capacity, showing that gener-
alization arises dynamically during training in overparame-
terized diffusion models. On the practical level, our results
suggest that early stopping and dataset-size-aware training
protocols may be optimal strategies for preserving general-
ization and avoiding memorization as the size of diffusion
models is scaled up. In fact, meeting privacy and copy-
right requirements with principled procedures is of utmost
importance for the deployment of generative Al, in con-
trast to heuristic procedures that lack quantitative grounding
(Dockhorn et al., 2022; Vyas et al., 2023; Chen et al., 2024).

2. Diffusion Models and the Score Function

Diffusion models are generative models that sample from a
data distribution g(x() by reversing a noise addition process
(Sohl-Dickstein et al., 2015; Ho et al., 2020; Song & Ermon,
2019; Song et al., 2020). The forward process generates
a sequence of increasingly noised data {z;}1<;<7, With
distribution ¢(z1, ..., z7|T0) = Hthl q(z¢|z—1), where t
indicate the time step in [0, ..., T]. At the final time T, 1
corresponds to pure noise. The backward process reverts the
forward one by gradually removing noise and is obtained
by learning the backward transition kernels pg(z;—1|x¢)
using a neural network. Learning these kernels is equivalent
to learning the score function, which is proportional to
the conditional expectation Eq(4,z,) [Zo]. To learn the
score, training is performed by minimizing a bound on the
negative log likelihood of the data E,,,) [~ log pe(zo)].
The loss requires an integral over the target distribution
q(zp). This is estimated with Monte Carlo from P examples
{xéz)}i:L p, associated with the empirical distribution
G(wg) = P71 Zil 0(xo — acg')). Thus, perfectly minimiz-
ing the empirical loss corresponds to learning the empirical
score, which generates §(xzo). As a result, diffusion models
would only generate data of the training set, corresponding
to memorization. Their generalization abilities, therefore,
derive from not perfectly minimizing the empirical loss.

3. Numerical Experiments
In this section, we analyze generalization and memorization

in large vision and text diffusion models.

Vision diffusion models We assess the generalization
and memorization behaviors of vision diffusion models
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Figure 1. Memorization in vision models. Left: Train, validation
loss, and fraction of copied images as a function of training steps
7 for iDDPM models trained on CIFAR10 with training set sizes
P. Right: Samples generated with early stopping at Tmem With a
model trained on 16,384 images.

by considering Improved Denoising Diffusion Probabilis-
tic Models (iDDPMs) (Nichol & Dhariwal, 2021) with a
U-Net architecture (Ronneberger et al., 2015; Salimans
et al., 2017), including attention blocks (Vaswani et al.,
2017). Each model, comprising approximately 0.5B pa-
rameters, is trained on four distinct subsets of the CIFAR-
10 dataset (Krishnan et al., 2017), with training set sizes
P e {2048, 4096, 8192, 16384}. The models are trained
for a total of 262,144 training steps. We track performance
using the losses on the train set and a validation set of 1,024
images. At regular checkpoints, we generate 32,768 images
using each model, and evaluate memorization by calculating
the fraction of generated images that are near-exact repli-
cas of training samples. Specifically, following Yoon et al.
(2023), for a generated image x, we identify the two closest
2" and 2" in Euclidean distance from the training set, and
classify x as a copy if ||z — 2/||2/ ||z — 2"||2 < 1/3.

Results and analysis Figure 1 (left panel) presents the
results of this experiment. Our key findings are as follows:

1. Generalization before memorization: Initially, both
train and validation loss decrease, indicating that the
model is generalizing, i.e., approaching the population
score. Yet, at some time T,em, the two losses bifurcate,
signaling the onset of memorization. After this point,
the number of copies among generated images steadily
increases. By the end of training, all models exhibit some
degree of memorization, with copy rates ranging from
1% for the largest train set to 100% for the smaller ones.

2. Memorization is delayed by larger training sets: The
onset of memorization Ty, Scales approximatively lin-
early with the training set size P (insets of Figure 1).

These observations suggest that early stopping can effec-
tively prevent the model from entering the memorization
phase. As a concrete example, the right panel of Figure 1
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Figure 2. Progressive generalization in vision models. Cos. sim.
between images generated by two diffusion models trained on
disjoint subsets of CelebA of size P = 2,048, as a function of 7.

cosine similarity

displays images generated by a diffusion model trained on
16, 384 images, with early stopping applied. The quality and
diversity of these images are quantified using the Fréchet In-
ception Distance (FID), calculated using Inception v3. The
model achieves an FID score of 5.4, indicating — despite
being strongly overparameterized — robust generalization.

Progressive generalization We extend our analysis by
conducting a second experiment inspired by Kadkhodaie
et al. (2023). Specifically, we train two models on two
non-overlapping subsets D; and Ds of 2,048 images of
CelebA (Liu et al., 2018), a dataset with faces of celebri-
ties, each using an iDDPM. Our setup goes beyond prior
work by dynamically tracking the evolution of the generated
images throughout training, rather than statically only at con-
vergence. This approach provides a detailed view of how
models first approach the population score and then diverge
after entering the memorization phase. We generate samples
from both models at multiple checkpoints during training,
initializing the generations from the same Gaussian random
noise and fixing the stochastic part of the backward trajecto-
ries. Remarkably, initially, the images generated by the two
models are nearly identical, reflecting that the two models
are learning the same score function, even though they are
trained on disjoint data subsets. However, at some time
Tmem, the models begin to diverge. This divergence coin-
cides with the onset of memorization, where the models start
generating images increasingly similar to the ones contained
in their respective training sets. We quantitatively assess this
phenomenon using cosine similarity between whitened im-
ages generated by the two models and their nearest training
images. As shown in Figure 2, before memorization (7 <
Tmem)» the two models generate nearly identical images, in-
dicating that they are dynamically learning the same under-
lying distribution. During memorization (7 > Tyem), the
similarity between the models’ generated images decreases
monotonically, while the similarity between each model’s
generated images and their training set increases. This re-
flects the transition from generalization to memorization.

Our findings extend those of Kadkhodaie et al. by revealing
that the transition from generalization to memorization is not
only a matter of model capacity and final convergence but
is dynamically observable throughout training. In practice,
this further supports the view that early stopping can prevent
the memorization phase and maintain generalization.

Language diffusion models We extend our analysis of
generalization and memorization to language data, using
MD4, a masked diffusion model designed for text (Shi
et al., 2024). Our experiments are conducted on the text8
dataset, a standard benchmark for language modeling
based on Wikipedia, with character-level tokenization. To
the best of our knowledge, this is the first demonstration
of memorization in the language diffusion setting. As
shown in App. E, MD#4 initially generalizes, improving
the log-likelihood on the validation corpus. Yet, at Tyem
the model begins to produce exact or near-exact copies of
training text. Notably, 7y, scales linearly with P.

Summary We have shown empirically that as they train,
diffusion models generate higher and higher quality data,
which are novel. This is true up to an early stopping time
Tmem Where memorization starts, which we found to follow
a remarkably universal empirical law: T,er, ~ P. Having
more data thus allows training longer. We will now study
a controlled model of synthetic data that captures this law.
Most importantly, it will allow us to quantify in detail the
inaccuracy of generations of diffusion models with limited
training, responsible for the inconsistent images in Figure 2.

4. Toy Setting

We consider models trained to generate strings respecting
the rules of a simple grammar, which gives a theoretical
framework to interpret the generalization-memorization
dynamics. Probabilistic Context-Free Grammars (PCFGs)
consist of a vocabulary of latent (nonterminal) symbols and
a vocabulary of visible (terminal) symbols, together with
probabilistic production rules establishing how one latent
symbol generates tuples of latent or visible symbols. The
Random Hierarchy Model (RHM) (Cagnetta et al., 2024)
is a simple PCFG introduced as a theoretical toy model
describing hierarchy and compositionality in data. With
respect to generic PCFGs, it is built with some simplifying
assumptions. Symbols are organized in a regular-tree
topology of depth L and branching factor s. Symbols are
taken from a vocabulary of size v. The production rules
transform one symbol in a node at level ¢ + 1 into a string
of s symbols in its children nodes at level ¢. For each
non-terminal symbol, there are m rules with equal probabil-
ity, which are unambiguous. Rules are sampled randomly
without replacement. The fixed tree topology ensures that
visible data at the leaves are strings of fixed length d = s’,
corresponding to the data dimension d. In analogy with
language modeling, we call visible symbols rokens.

If production rules are known, thanks to the tree structure,
the score function can be computed exactly using the Belief
Propagation (BP) algorithm (Mezard & Montanari, 2009).
Favero et al. (2025) studied the sample complexity for dif-
fusion models based on deep neural networks trained on
finite RHM data. The sample complexity to learn to gen-
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erate valid data depends on the parameters of the model as
P* ~ v mEZt!, which is polynomial in the dimension, i.e.,
P* ~ vmd°8™/1°85 For P < P*, there are regimes of
partial generalization where the generated data are consis-
tent with the rules up to layer ¢. The sample complexity
to learn the rules at layer ¢ scales as P/ ~ v m!T!. When
P > Pj, the number of training steps 7; required to learn
the rules at layer £ is proportional to P;. Complete general-
ization is therefore achieved with 7% oc P* = P;.

We generate P training strings from an RHM. We train a
discrete diffusion model (Austin et al., 2021) with a convo-
lutional net with 2L layers and 8,192 channels. Figure 3
shows the training evolution of a model for v = 16, m = 4,
L =3,s =2 (P* = 4,096). Varying P, the validation
and training losses start decreasing at the same time and
follow the same behavior until separating later in training,
at a time depending on P. Comparing these losses with
the fraction of copies between the generated data and the
training ones, we observe that the increase of the validation
loss corresponds to the onset of memorization. As observed
for real data, we find empirically that memorization requires
a number of training steps Tyem x P. We observe that for
P < 4,096, the fraction of errors, i.e., how many generated
data are not compatible with the rules, decreases only in cor-
respondence with memorization: generated data are valid
according to the grammar rules, but are copies of the training
set. For P > 4,096, instead, the fraction of errors decreases
before the onset of memorization: the model generates valid
data which are not copies, and it is thus generalizing. The
generalizing models (P = 4,096 and P = 16,384) present
a dynamical phase 7" < T < Tpem Where they achieve
nearly perfect generalization before starting to memorize,
which becomes longer as P increases.

Partial generalization For P < P*, the diffusion model
does not have enough data to learn the deeper rules. Yet, it
can still learn the lower levels up to f, with P > ng. In this
case, the model achieves partial generalization, correspond-
ing to learning to generate data with local coherence but lack-
ing a global one, consistent with observations of Figure 2.
In Fig. 4(a), a diffusion model is trained with P = 1,024
training points of an RHM with L = 5 (P* = P ~ 10*).
During training, we generate data and measure if they are
compatible with the rules at level . The errors at £ < 3
decrease at training times depending on ¢, in accordance
with 7, oc P;. However, for £ > 3, the fractions of errors
reach small values only at the onset of memorization Tyem,
when the fraction of copies goes up. This implies that the
model never learns the rules at the deeper levels ¢ = 4,5,
since the number of training data is smaller than the sample
complexity, and generates data with global consistency only
when it starts memorizing. Even without achieving perfect
generalization, diffusion models gradually improve general-
ization during training — before memorizing — by capturing
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Figure 3. RHM. For P = 256, the diffusion model generates valid
data only when it is memorizing the training data. For P = 16384,
instead, the model generalizes, approximately at 7%, before starting
to memorize. The memorization time scales linearly in P (insets).
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(a) Layer-wise learning in the (b) Distance between the out-
RHM before memorization. puts of two-diffusion models
trained on disjoint training sets.

Figure 4. Partial generalization in RHM. (a) The model learns
progressively deeper rules during training. (b) Two models trained
on disjoint training sets learn the same score before memorization.

some structure of the data distribution. For the RHM, it
corresponds to the lowest grammar levels. Hence, the score
function learned before memorization is the same indepen-
dently of the sampling of the training set. In Fig. 4(b), we
train two models on disjoint training sets. We measure the
difference in their outputs during training via the Hellinger
distance, which remains low until it jumps to higher values
when the models start memorizing. The two diffusion mod-
els learn the same score when generalization is improving,
before overfitting their respective empirical scores.

5. Conclusion

We argued that the learning dynamics in diffusion models
is best understood as a competition between time scales, as
summarized in Figure 12. A larger training set implies a
larger memorization time, thus opening a larger time win-
dow to generate more coherent data. These results open
new avenues for fine control of copyright issues, using early
stopping to avoid memorization.
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A. Related work

Memorization in diffusion models Several works have documented the tendency of diffusion models to memorize
the training data (Carlini et al., 2023; Somepalli et al., 2022; 2023; Wang et al., 2024). Dockhorn et al. (2022) propose
a mitigation strategy based on differentially private stochastic gradient descent, while Chen et al. (2024) introduce an
anti-memorization guidance. Yoon et al. (2023); Kadkhodaie et al. (2023); Gu et al. (2025) interpret memorization as an
overfitting phenomenon driven by the large capacity of overparameterized neural networks. In particular, Kadkhodaie
et al. (2023) show that underparametrized models trained on disjoint training sets learn the same score function, therefore
generalizing by sampling the same target distribution; in contrast, overparametrized models memorize their respective
training data.

Theory of diffusion Under mild assumptions on the data distribution, diffusion models achieve a sample complexity
scaling exponentially with data dimension (Block et al., 2020; Oko et al., 2023). The sampling and memorization process has
been studied for Gaussian mixtures and linear manifolds using the empirical score function (Biroli et al., 2024; Ambrogioni,
2023; Achilli et al., 2024; 2025; Li & Chen, 2024). Learning the empirical score function was studied in (Cui et al., 2023;
Shah et al., 2023; Han et al., 2024). The memorization-generalization trade-off in terms of model capacity with random
features was studied in (George et al., 2025). Generalization bounds for early-stopped random features learning simple
score functions were derived in (Li et al., 2023). Biroli & Mézard (2023); Ambrogioni (2023); Biroli et al. (2024) show
for Gaussian mixtures the existence of a characteristic noise level during the diffusion process where the single modes
merge into one. In (Biroli et al., 2024), another noise scale is identified, corresponding to short diffusion times, where the
backward process collapses into the single training data points, associated with memorization. Kamb & Ganguli (2024)
study generalization in vision diffusion models through the inductive bias of translational equivariance and locality.

Diffusion models for hierarchical data For hierarchically structured data, Sclocchi et al. (2024b;a) show that the
reconstruction of high-level features undergoes a phase transition in the diffusion process, while low-level features vary
smoothly around the same noise scale. For the same data model, Favero et al. (2025) show that UNet diffusion models
learn to generate these data by sequentially learning different levels of the grammatical rules, with a sample complexity
polynomial in data dimension. Sclocchi et al. (2024b) show that Bayes-optimal denoising algorithm for hierarchical data
corresponds to belief propagation, Mei (2024) shows that U-Net architectures are able to efficiently approximate this
algorithm. Moreover, Garnier-Brun et al. (2024) show that transformers can implement the same algorithm.

B. Experimental Details
B.1. Vision diffusion models

iDDPM In our experiments, we utilize Improved Denoising Diffusion Probabilistic Models (iDDPMs) for image
generation on the CIFAR-10 and CelebA datasets, following the codebase of Improved DDPMs (Nichol & Dhariwal,
2021): https://github.com/openai/improved-diffusion. Specifically, we train iDDPMs with 256 and
128 channels for CIFAR-10 and CelebA, respectively. Our models are implemented using a U-Net architecture with
attention layers and 3 resolution blocks. We use 4, 000 diffusion steps, a cosine noise schedule, a learning rate of 1074,
and a batch size of 128. Training is performed for 262,144 steps using a hybrid objective (Nichol & Dhariwal, 2021) and
the Adam optimizer with dropout of 0.3.

Stable Diffusion We fine-tune Stable Diffusion v2.1' using the codebase https://github.com/somepago/DCR
from (Somepalli et al., 2022; 2023). The model is pre-trained on LAION-2B (Schuhmann et al., 2022) and consists of a
latent diffusion U-Net architecture with frozen text and autoencoder components. We fine-tune the U-Net for 262,144 steps
on 8,192 images from the LAION-10k dataset at resolution 256 x 256, using a batch size of 16. We employ a constant
learning rate of 5 x 106 with 5,000 warm-up steps and use a single image-caption pair per datapoint.

B.2. Language diffusion models

MD4 Our experiments leverage the codebase of MD4 (Shi et al., 2024), available at https://github.com/
google-deepmind/md4. MD4 is a masked diffusion model that progressively transforms tokens into a special [MASK]
token as training proceeds. Specifically, at each timestep ¢, each non-masked token has a probability 3; of being replaced by

1https ://huggingface.co/stabilityai/stable-diffusion-2-1
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[MASK]. The forward transition process for this model can be formally described using a one-hot encoding of the [V| + 1
states, where the transition matrix is defined as:

Qi = (1 - B)I+ Biley,. (nH

Here I the identity matrix, 1 a vector of ones and e, the one-hot-encoding vector corresponding to the [MASK] symbol.
The entries [Q];; of (), indicate the probability of the token x;, transitioning from state 7 to state 7, i.e., [Q¢]i; = ¢(xk, =
Jlagt—1 = 4). At the final timestep T', all tokens are fully masked, i.e., 7 = [MASK] for every k € [dim(z)]. For our
experiments, we train MD4 using a batch size of 64 and a context size of 256. All other hyperparameters are kept consistent
with the original MD4 implementation.

B.3. Random Hierarchy Model

D3PM For our experiments on the Random Hierarchy Model, we employ convolutional U-Net-based Discrete Denoising
Diffusion Probabilistic Models (D3PMs) (Austin et al., 2021). These models are tasked to predict the conditional expectation
E(xo|x¢), which parameterizes the reverse diffusion process. In particular, we consider a uniform diffusion process
(Hoogeboom et al., 2021; Austin et al., 2021), where, at each timestep ¢, tokens can either stay unchanged or, with
probability 3¢, can transition to some other symbol in the vocabulary. One-hot encoding the |V| states, the forward transition
matrix formally reads:

Q= (1ﬁt)ﬂ+|‘/fj|11f @
Here I is the identity and 1 is a vector of all ones. At the final time 7', the stationary distribution is uniform over the
vocabulary. The convolutional U-Net has L resolution blocks in both the encoder and decoder parts. Each block features
the following specification: filter size s, stride s, 8,192 channels per layer, GeLU non-linearity, skip connections linking
encoder and decoder blocks of matching resolution to preserve multi-scale feature information. We include embedding and
unembedding layers implemented as convolutional layers with a filter size of 1. This architecture is specifically aligned
with the RHM’s hierarchical structure, where the filter size and stride of s in the convolutional layers mirror the branching
factor of the RHM tree. While this design provides practical benefits in terms of training efficiency, it should not alter the
fundamental sample complexity of the problem, as long as the network is sufficiently deep and expressive (Cagnetta et al.,
2024). The networks are initialized with the maximal-update (uP) parameterization (Yang & Hu, 2020), ensuring stable
feature learning even in the large-width regime. We train with Adam with a learning rate of 0.1 and a batch size of 32. For
the diffusion process, we adopt a linear schedule with 1,000 noise levels.

B.4. Hardware
All experiments are run on a single NVIDIA H100 SXM5 GPU with 94GB of RAM.

C. Experiments on Stable Diffusion

We consider Stable Diffusion v2.1 (Ronneberger et al., 2015), a text-to-image latent diffusion model pre-trained on the
LAION-2B dataset(Schuhmann et al., 2022). We fine-tune this model for 262,144 steps on 8,192 samples from the
LAION-10k dataset (Somepalli et al., 2023), using a resolution of 256 x 256. During fine-tuning, the text encoder and
encoder-decoder components are kept frozen. We use a held-out validation set of 1,024 image-text pairs to monitor the
validation loss. Full training details are provided in Appendix B.

To quantify memorization, we follow the protocol of Somepalli et al. (2022) and compute a similarity score for each
generated image based on the cosine similarity of SSCD (Self-Supervised Descriptor for Image Copy Detection) (Pizzi
et al., 2022) features, extracted from a ResNet-50 model. Each score is defined as the similarity between a generated image
and its nearest neighbor in the training set.

5(a) plots the training and validation losses as a function of the training step 7. As observed in the main text, initially, both
losses decrease, indicating generalization: the model output aligns increasingly with the population score. At a critical time
Tmem- the validation loss diverges from the training loss, marking the onset of memorization. Early stopping at this point
can prevent the model from entering the memorization phase.

In 5(b), we report the similarity scores for 200 generated images at two checkpoints: early stopping (7 = 8,192) and the
final training step (7 = 262,144). For reference, we also show the similarity score for real images from the full LAION-10k
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Figure 5. Memorization dynamics in Stable Diffusion. (a) Training and validation losses as a function of training step 7 for Stable
Diffusion fine-tuned on LAION-10k. Both losses initially decrease, indicating generalization, and diverge at the memorization onset
time Tmem- (b) Cosine similarity scores between SSDC ResNet embedding for generated images and their nearest training neighbor at
early stopping (7 = 8,192) and final training (7 = 262,144). The dashed line indicates the mean similarity score between the closest
LAION-10k samples. The sharp increase at late training signals memorization.

M =
2200

Figure 6. Replicates generated by Stable Diffusion. Example generations (left) from the final training checkpoint (7 = 262,144) with
similarity score > 0.5 to their nearest neighbor in the training set (right), confirming memorization.
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Figure 7. FID dynamics. Fréchet Inception Distance (FID) as a function of training step 7 for a DDPM trained on 16,384 CIFAR-10
images. The FID initially decreases, reflecting improved generation quality and diversity, but begins to rise past Tmem as the model starts
copying training examples.

dataset (black dashed line). At the early stopping time, the generated images exhibit diversity similar to that of the dataset.
In contrast, by the end of training, the similarity score increases by a factor of two, indicating memorization.

Finally, in Figure 6, we show representative examples of replicated samples (similarity score > 0.5) from the final checkpoint,
confirming that Stable Diffusion memorized part of its training set.

D. Further Results on iDDPMs

FID dynamics Figure 7 reports the Fréchet Inception Distance (FID) as a function of the training step 7 for a DDPM
trained on 16,384 CIFAR-10 images, consistent with the setup in Figure 1. At each checkpoint, we generate 32,768 samples
and compute the FID against the union of CIFAR-10 standard train and test splits. The FID captures both the quality and
diversity of the generated images. As training progresses, the FID decreases monotonically until the memorization onset
time Tmem, after which it gradually increases — reflecting a loss in sample diversity as the model begins replicating its
training data.

Further examples of generations Figure 8 presents further images sampled from the early stopped iDDPM trained on
16,384 CIFAR-10 images.

Examples of copies Figure 9 shows examples of generated samples (top row) and their nearest neighbors in the training
set (bottom row) for the iDDPM trained on 8,192 CIFAR-10 images. These examples are taken from the end of training,
within the memorization phase, where the model begins to replicate its training data.

E. Experiments on Diffusion LLMs

We extend our analysis of generalization and memorization to language data, using MD4, a masked diffusion model
specifically designed for text (Shi et al., 2024). Our experiments are conducted on the text8 dataset, a standard benchmark
for language modeling based on Wikipedia, with character-level tokenization. To the best of our knowledge, this is the first
demonstration of memorization in the language diffusion setting.

We train MD4 from scratch using a standard GPT-like transformer architecture with approximately 165M parameters.
Following the masked diffusion approach, the model is trained to predict masked tokens in noisy text sequences, effectively
learning a score function over text data. Full details are presented in Appendix B. We use training set sizes P €
{64, 128, 256, 512, 1024} ranging from 16,384 to 262,144 tokens. We track model performance using the validation loss
on 19,531 sentences, which provide a lower bound to the negative log likelihood, and monitor memorization by generating
1,024 text samples at regular training checkpoints.
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Figure 8. CIFAR-10 samples generated with early-stopped model. Additional samples from the iDDPM trained on 16,384 CIFAR-10
images, generated at the early stopping point before memorization. The model produces diverse and high-quality images without
replicating the training data.

5y TS - -
. "
Pas o
" "
\ 1 — _
>

Figure 9. Examples of copies on CIFAR-10. Top: samples generated by the iDDPM trained on 8,192 CIFAR-10 images at the end of
training. Bottom: nearest neighbors from the training set. The model reproduces specific training examples, indicating memorization.
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Results and analysis Figure 10 presents the results
of this experiment. As with the vision diffusion mod-
els, MD4 initially generalizes, improving the log-
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Figure 10. Memorization dynamics in language diffusion models.
Train loss, validation loss, and fraction of copied text as a function of
training steps for GPT-based MD4 models trained on text8 with character-
level tokenization and varying training set sizes P. Both losses decrease
initially, indicating generalization, but diverge at the onset of memoriza-
tion (Tmem ), Where the models start copying training text. Tmem Zrows
linearly with P (insets).

F. The Random Hierarchy Model
F.1. Probabilistic graphical models

In theoretical linguistics, Probabilistic Context-Free Grammars (PCFG) have been proposed as a framework to describe
the hierarchical structure of the syntax of several languages (Chomsky, 1956; Rozenberg & Salomaa, 1997; Pullum &
Gazdar, 1982; Joshi, 1985; Manning & Schiitze, 1999). Moreover, they have been proposed for describing semantic aspects
of images under the name of Pattern Theory (Grenander, 1996; Jin & Geman, 2006; Siskind et al., 2007). PCFGs consist of
a vocabulary of latent (nonterminal) symbols and a vocabulary of visible (terminal) symbols, together with probabilistic
production rules establishing how one latent symbol generates tuples of latent or visible symbols.

The Random Hierarchy Model (RHM) The RHM (Cagnetta et al., 2024) is a simple PCFG introduced as a theoretical toy
model describing hierarchy and compositionality in data. With respect to generic PCFGs, it is built with some simplifying
assumptions:

* Symbols are organized in a regular-tree topology of depth L and branching factor s. The bottom layer, indexed as
¢ = 0, corresponds to the leaves of the tree, which are the visible (terminal) symbols. The upper part of the tree, with
layers £ = 1, ..., L, corresponds to latent (nonterminal) symbols in the data structure.

* Nonterminal symbols are taken from L finite vocabularies (Vy),=1,... 1, of size v for each layer £ = 1, ..., L. Terminal
symbols belong to the vocabulary V = V) of size v.

* The production rules transform one symbol in a node at level ¢ + 1 into a string of s symbols in its children nodes
at level ¢. For each non-terminal symbol, there are m rules with equal probability, which are unambiguous, i.e., two
distinct symbols cannot generate the same s-string. Rules are sampled randomly without replacement and frozen for a
given instance of the RHM. The m strings generated by the same latent symbol are referred to as synonyms.

The fixed tree topology ensures that visible data at the leaves are strings of fixed length d = s”, corresponding to the data
dimension d. In analogy with language modeling, we call visible symbols tokens.
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The number of possible data generated by this model is vm%, therefore exponential in the data dimension. Because of the
random production rules, the tokens of the RHM data have non-trivial correlations reflecting the latent hierarchical structure
(Cagnetta & Wyart, 2024).

F.2. Diffusion on the Random Hierarchy Model

The exact score function of the RHM Because of its correlations, the probability distribution of the RHM data and
its corresponding score function are highly non-trivial. Nevertheless, if the production rules are known, thanks to the
latent tree structure, the score function for any noise level can be computed exactly using the Belief Propagation (BP)
algorithm (Mezard & Montanari, 2009). Given a noisy RHM datum, Belief Propagation computes the marginal probabilities,
conditioned on this noisy observation, of the symbols in any node of the tree. Computing the expectations from these
conditional probabilities at the leaf nodes corresponds to computing the score function, which can be used to reverse a
diffusion process. Moreover, BP also provides a way to sample directly from these posterior probabilities, corresponding to
a perfect integration of the backward diffusion process. The exact sampling of diffusion processes with the RHM data was
studied in (Sclocchi et al., 2024b;a).

Sample complexity Favero et al. (2025) studied the sample complexity for diffusion models based on deep neural networks
trained on finite RHM data. Their main findings are the following.

* The sample complexity to learn to generate valid data depends on the parameters of the model as P* ~ vm’*!, which
is polynomial in the dimension, i.e., P* ~ vmd!°8 ™/ 1985 This scale can be theoretically predicted by comparing the
size of the correlations between tokens and latent features, used in deep architectures for denoising, with their sampling
noise.

* For P < P*, there are regimes of partial generalization where the generated data are consistent with the rules up to
layer £. The sample complexity to learn the rules at layer £ scales as P, ~ vm!tt,

* When P > P;, the number of training steps 7; required to learn the rules at layer / is proportional to P}, therefore
having the same polynomial scaling with the dimension. Complete generalization is therefore achieved with 7%
P* = P} number of training steps.

Notice that the sample complexity depends on the underlying distribution, e.g., the parameters of the grammar, and not on
the specific number of available training samples.

G. Further Results on the RHM

Production rules sampling Figure 11 shows the mean occurrence and centered covariance of the production rules sampled
by a diffusion model trained on P = 16,384 strings (v = 16, m = 4, L = 3, s = 2). The model, trained with early stopping
(T = 32,768), samples all RHM rules with a mean occurrence that is approximately uniform (up to sampling noise); likewise,
the correlations between the cooccurrence of sampled rules show that they are sampled approximately independently.
Therefore, the generated data reproduce the correct data distribution of the RHM, corresponding to generalization.

Phase diagram Figure 12 summarizes the different regimes of generalization and memorization in a phase diagram.
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Figure 11. Sampling of RHM production rules. Mean occurrence (left) and centered covariance (right) of the production rules sampled
by a diffusion model trained on P = 16,384 strings (v = 16, m = 4, L = 3, s = 2). The model, trained with early stopping
(1 = 32,768), samples all RHM rules with a mean occurrence that is approximately uniform (up to sampling noise). Likewise, the
correlations between the cooccurrence of sampled rules show that they are sampled approximately independently.
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Figure 12. Diagram of generalization vs. memorization indicating different regimes as a function of training time 7 and sample
complexity P. In the simplest version of the RHM, learning proceeds by well-distinct steps, while it is smoother for natural data.
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