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Abstract001

Large Language Models (LLMs) demonstrate002
strong generalization and reasoning abilities,003
making them well-suited for complex decision-004
making tasks such as medical consultation005
(MC). However, existing LLM-based methods006
often fail to capture the dual nature of MC,007
which entails two distinct sub-tasks: symptom008
inquiry, a sequential decision-making process,009
and disease diagnosis, a classification prob-010
lem. This mismatch often results in ineffec-011
tive symptom inquiry and unreliable disease012
diagnosis. To address this, we propose DDO,013
a novel LLM-based framework that performs014
Dual-Decision Optimization by decoupling and015
independently optimizing the the two sub-tasks016
through a collaborative multi-agent workflow.017
Experiments on three real-world MC datasets018
show that DDO consistently outperforms ex-019
isting LLM-based approaches and achieves020
competitive performance with state-of-the-art021
generation-based methods, demonstrating its022
effectiveness in the MC task.023

1 Introduction024

Medical Consultation (MC), aiming to automate025

symptom collection and support clinical diagnosis,026

has become a promising application in AI-driven027

healthcare and attracted growing attention (Zhao028

et al., 2024; Hu et al., 2024; Chopra and Shah,029

2025). As shown in Figure 1, MC involves multi-030

turn interactions between an AI doctor and a pa-031

tient, encompassing two core decision-making pro-032

cesses: symptom inquiry—a sequential decision033

task over a large action space—and disease diag-034

nosis—a classification task over a limited set of035

candidate diseases (Chen et al., 2023, 2024). The036

effectiveness of MC hinges on the AI doctor’s abil-037

ity to perform both efficient information seeking038

and accurate disease differentiation.039

Compared to the models used in traditional re-040

inforcement learning (RL)-based methods (Zhong041

et al., 2022; Yan et al., 2023) and generation-based042

Medical Consultation Record 

True Diagnosis: 

- hand, foot, and mouth disease(HFMD)

Implicit Symptoms: 

- fever: True;  vomiting; False; cough: False 

symptom checking

Explicit Symptoms: 

- herpes: True;  loss of appetite: True 

I have herpes on skin and lose appetite. 

Yes, I have a fever these days.

Have you had a fever recently?

You may suffer from HFMD.

Figure 1: An example of a Medical Consultation (MC)
task, where an AI doctor iteratively inquires about ad-
ditional symptoms based on the patient’s initial self-
reported symptoms and ultimately provides a diagnosis.

approaches (Hou et al., 2023; Zhao et al., 2024), 043

large language models (LLMs) provide stronger 044

generalization and more transparent reasoning (Qin 045

et al., 2024; Singh et al., 2024), potentially reduc- 046

ing training costs and improving interpretability 047

for the MC task. However, due to hallucinations 048

and limited domain adaptation, directly applying 049

LLMs to MC often results in inefficient inquiry 050

and unreliable diagnosis. Recent approaches (Hu 051

et al., 2024; Chopra and Shah, 2025) improve in- 052

formation gathering by incorporating LLM-based 053

planning, yet overlook diagnostic optimization. To 054

jointly optimize symptom inquiry and disease di- 055

agnosis, Chen et al. (2024) introduced the Chain- 056

of-Diagnosis (CoD) framework, enabling LLMs 057

to learn both components from CoD training data. 058

Nevertheless, the fundamentally different nature 059

of these two decision-making sub-tasks presents 060

significant challenges for unified optimization. 061

To overcome these limitations, we propose DDO, 062

an LLM-based MC approach that leverages multi- 063
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agent collaboration to decouple and independently064

optimize the two core decision-making compo-065

nents. For symptom inquiry, DDO integrates a066

lightweight RL-based policy agent that generates067

reliable candidate actions, thereby reducing the068

decision-making burden on LLMs. For disease069

diagnosis, DDO derives fine-grained diagnostic070

confidence from LLM logits and enhances disease071

discrimination through a plug-and-play adapter072

trained via in-batch contrastive learning. Experi-073

ments on three real-world MC datasets demonstrate074

that DDO consistently outperforms other LLM-075

based methods and achieves performance on par076

with state-of-the-art (SOTA) generation-based ap-077

proaches, while requiring substantially less training078

overhead. Our contributions are as follows:079

• We introduce DDO, a novel multi-agent080

framework for the MC task, where four col-081

laborative agents enable an effective and trans-082

parent diagnostic MC workflow.083

• DDO decouples and independently opti-084

mizes the two core decision-making pro-085

cesses—symptom inquiry and disease diagno-086

sis—leading to more informative questioning087

and improved diagnostic accuracy.088

• By tuning only a small number of model pa-089

rameters, DDO surpasses other LLM-based090

methods and achieves performance compara-091

ble to SOTA generation-based approaches.092

2 Related Work093

2.1 Medical Consultation Task094

Medical Consultation (MC), a key application of095

AI in medicine (Valizadeh and Parde, 2022), was096

initially formulated as a Markov Decision Process097

(MDP) and optimized using reinforcement learning098

(RL) (Tang et al., 2016; Wei et al., 2018; Kao et al.,099

2018). However, due to the high variability of RL100

agents (Xia et al., 2020), researchers have incorpo-101

rated disease-symptom prior knowledge to enhance102

the decision-making (Xu et al., 2019; Liu et al.,103

2022; Yan et al., 2023) by the agents. HRL (Zhong104

et al., 2022) introduced a hierarchical RL frame-105

work to refine the action space. Additionally, gener-106

ative approaches such as CoAD (Wang et al., 2023),107

MTDiag (Hou et al., 2023) and HAIformer (Zhao108

et al., 2024) leveraged attention mechanisms to en-109

hance optimization efficiency, achieving SOTA per-110

formance in the MC task. AIME (Tu et al., 2024)111

demonstrated the potential of LLMs in medical112

history-taking by learning from realistic medical 113

dialogues. MediQ (Li et al., 2024b) introduced an 114

abstention module to assess whether the collected 115

diagnostic evidence is sufficient. UoT (Hu et al., 116

2024) and MISQ-HF (Chopra and Shah, 2025) 117

aimed to reduce decision uncertainty through LLM- 118

driven planning. CoD (Chen et al., 2024) improved 119

the interpretability of doctor agent’s decisions by 120

generating transparent chained thought processes. 121

2.2 LLMs in Medical Decision-Making 122

LLMs have demonstrated strong potential across 123

various medical applications (Zhou et al., 2024). 124

They are capable of answering medical exam ques- 125

tions (Kim et al., 2024; Shi et al., 2024), collecting 126

patient history (Johri et al., 2024), offering diag- 127

nostic suggestions (Jia et al., 2025; Rose et al., 128

2025), and recommending treatment plans (Li et al., 129

2024a). Leveraging prompt engineering (Zheng 130

et al., 2024; Liu et al., 2024) and domain adaptation 131

techniques (Tian et al., 2024; Wang et al., 2025), 132

their reasoning capabilities have significantly im- 133

proved, leading to more reliable medical decision- 134

making. Moreover, to tackle more complex tasks 135

in the medical domain, recent studies (Kim et al., 136

2024; Bani-Harouni et al., 2024) have explored the 137

use of multiple LLM agents, offering promising di- 138

rections for enabling collaborative decision-making 139

in challenging clinical scenarios. 140

3 Problem Definition 141

A real-world Medical Consultation Record (MCR) 142

is denoted as P = {Sex,S im, dl}, where Sex = 143

{(sex
i , pex

i )}l1i=1 represents explicit symptoms ini- 144

tially reported by the patient, and implicit symp- 145

toms S im = {(sim
j , pim

j )}l2j=1 are elicited through 146

follow-up inquiries by the doctor. The label dl 147

denotes the ground-truth disease of the patient. 148

The MC task simulates a multi-turn interaction 149

process between an AI doctor and a simulated pa- 150

tient, where the AI doctor actively collects diagnos- 151

tic information to facilitate differential diagnosis. 152

Starting from the initial symptoms Sex, the AI doc- 153

tor selectively inquires about additional symptoms 154

Sad to accumulate diagnostic evidence. The interac- 155

tion terminates when sufficient information is col- 156

lected or a predefined maximum number of turns L 157

is reached. The final diagnosis dp is selected from 158

the candidate set D = {d1, d2, . . . , dn} based on 159

the highest diagnostic confidence: 160

dp = argmax
di∈D

confi
(
Sex ∪ Sad, di

)
(1) 161
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Figure 2: Overview of the proposed DDO framework, comprising four collaborative agents operating over a shared
memory to execute the consultation workflow: the Diagnosis Agent estimates disease confidences from LLM logits;
the Policy Agent generates candidate actions via masked sampling; the Inquiry Agent selects the optimal symptom
to query or terminates the consultation; and the Patient Agent responds based on the patient profile.

，

4 Multi-Agent Collaborative Medical162

Consultation in DDO163

To enhance the decision-making capability of164

LLMs in the MC task, the DDO framework inte-165

grates three LLM-based agents—Diagnosis Agent,166

Inquiry Agent, and Patient Agent—alongside an167

RL-based Policy Agent implemented with an actor-168

critic architecture. The Diagnosis Agent employs169

a learnable adapter to enhance the LLM’s ability170

to perform differential diagnosis, while the Policy171

Agent and the Inquiry Agent collaborate to strate-172

gically acquire informative symptoms. All agents173

operate over a shared memory, comprising a static174

component that encodes prior disease-symptom175

knowledge derived from training data and a dy-176

namic component that is continuously updated with177

observed symptoms and diagnostic confidence dur-178

ing the consultation process.179

Each consultation round proceeds through180

four steps: 1) Diagnostic Confidence Estima-181

tion—The Diagnosis Agent estimates confidence182

scores for each candidate disease based on the cur-183

rent diagnostic evidence. 2) Candidate Actions184

Generation—The Policy Agent samples multiple185

interaction actions based on the current state, pro-186

viding a set of reliable choices for the next inquiry.187

3) Optimal Inquiry Action Selection—The In-188

quiry Agent selects the most informative symptom 189

checking action from the candidate actions. 4) Pa- 190

tient Response Simulation—The Patient Agent 191

simulates the patient’s response, indicating the pres- 192

ence or absence of the inquired symptom. 193

4.1 Diagnostic Confidence Estimation 194

4.1.1 Binary Token Probability 195

The Diagnosis Agent estimates the diagnostic con- 196

fidence score confi ∈ (0, 1) for each candidate 197

disease di ∈ D, reflecting the likelihood of di 198

being the correct diagnosis given the current evi- 199

dence. Rather than relying on decoding to gener- 200

ate numeric scores (Li et al., 2024b; Chen et al., 201

2024; Qin et al., 2024), the Diagnosis Agent adopts 202

Binary Token Probability (BTP)—a logit-based 203

method inspired by multiple-choice QA (Detom- 204

maso et al., 2024; Kumar et al., 2024)—to provide 205

a more efficient and interpretable confidence esti- 206

mation for LLMs. 207

Specifically, given a structured prompt that in- 208

tegrates the current evidence with disease-specific 209

knowledge of di retrieved from the shared mem- 210

ory, the LLM-based Diagnosis Agent is instructed 211

to output a single binary token (True/False) in- 212

dicating whether di is a plausible diagnosis. We 213

extract the logits distribution at the position of this 214

binary token and obtain the logits corresponding 215
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to True and False, denoted as logitT and logitF,216

respectively. The diagnostic confidence is finally217

computed via a temperature-scaled softmax over218

the binary logits, where the temperature τ controls219

the sharpness of the logits distribution:220

confi =
exp(logitT/τ)

exp(logitT/τ) + exp(logitF/τ)
(2)221

4.1.2 Calibrating the Diagnostic Confidence222

Diagnostic confidence scores from base LLMs223

often lack discriminative power when candidate224

diseases share overlapping symptoms—e.g., both225

upper respiratory tract infections and pneumonia226

commonly present with fever and cough. Existing227

calibration methods typically require fine-grained228

supervision (Detommaso et al., 2024; Chen et al.,229

2024), such as expert-annotated confidence scores,230

which are often infeasible to implement in clinical231

practice. Instead, we treat diagnosis as a multi-class232

classification task (Ma et al., 2024) and leverage233

ground-truth disease labels dl from Medical Con-234

sultation Records (MCRs) as weak supervision to235

calibrate the diagnostic confidence.236

To construct the calibration training data, we237

generate partial consultation trajectories by trun-238

cating each full MCR at different interaction steps.239

For a training MCR P with k turns, we extract240

(k − lself + 1) sub-trajectories of the form Pc =241

{(s1, p1), . . . , (sc, pc), dl}, where lself is the num-242

ber of self-reported symptoms and c < l. Each243

sub-trajectory Pc serves as a training data.244

We calibrate diagnostic confidence through in-245

batch contrastive learning (Ma et al., 2024), train-246

ing a lightweight adapter using LoRA (Hu et al.,247

2022) to improve the Diagnosis Agent’s ability to248

distinguish among similar diseases. For each pa-249

tient sub-trajectory Pc, the ground-truth diagnosis250

dl is treated as the positive instance, while all other251

candidate diseases serve as negatives. We construct252

a target distribution disttarget = [ϵ, . . . , 1−ϵ, . . . , ϵ],253

where ϵ is a label smoothing constant. The Diagno-254

sis Agent outputs confidence scores {confi}ni=1 us-255

ing the BTP method, yielding a batch-level predic-256

tive distribution distdiag. The calibration objective257

minimizes the KL divergence between the target258

and predicted distributions:259

LKL =

n∑
i=1

disttarget(di) log
disttarget(di)

distdiag(di)
(3)260

4.2 Candidate Actions Generation261

Symptom inquiry poses a significant challenge due262

to the high-dimensional action space, which limits263

the LLM’s ability to identify the most informative 264

symptoms. A natural solution is to reduce decision 265

complexity by supplying a small set of reliable 266

candidate symptoms. Since each inquiry depends 267

only on the current state, the process satisfies the 268

Markov property, making reinforcement learning 269

(RL) well-suited for this task (Sun et al., 2024). 270

Unlike RLHF approaches that fine-tune LLM pa- 271

rameters—such as GRPO (Ramesh et al., 2024) 272

in DeepSeek-R1 (Guo et al., 2025)—we adopt a 273

lightweight RL policy model as an external agent 274

to guide the LLM’s inquiry decisions. 275

4.2.1 Observation State and Action Space 276

In reinforcement learning, the observation state 277

encodes the information available to the agent at 278

each decision step, while the action space defines 279

the set of allowable actions. 280

We define the observation state as S = [p, c], 281

where p ∈ {−1, 0, 1}m is an m-dimensional symp- 282

tom vector indicating absence (−1), unknown sta- 283

tus (0), or presence (1) of each symptom (initialized 284

to 0), and c ∈ Rn is a diagnostic confidence vector 285

over n candidate diseases. 286

The action space A = {ai}m+1
i=1 comprises m 287

inquiry actions—each ai corresponds to check for 288

the i-th symptom—and a termination action am+1 289

to end the consultation. To reflect clinical heuris- 290

tics where physicians prioritize symptoms relevant 291

to likely diagnoses (Stanley and Campos, 2013), 292

we introduce a binary action mask M ∈ {0, 1}m+1 293

to constrain the action space. The mask enables 294

actions (Mi = 1) associated with symptoms rel- 295

evant to the top-w ranked diseases and disables 296

actions that have already selected or deemed irrele- 297

vant (Mi = 0). The final masked action space is: 298

299

Amasked = A⊙M (4) 300

4.2.2 RL Policy Learning 301

We adopt an actor-critic architecture to jointly learn 302

the policy π, which is implemented via multi-layer 303

perceptron (MLP) layers. The policy π outputs a 304

log-probability distribution over actions. Training 305

is conducted using Proximal Policy Optimization 306

(PPO) (Schulman et al., 2017), which maximizes 307

the total reward return R, composed of both short- 308

term and long-term components. 309

The short-term reward Rshort is computed after 310

each doctor-patient interaction: 311

Rshort(St, at, St+1) = freq(at)+rhit+rrank, (5) 312
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where freq(at) denotes the frequency of symptom313

st (corresponding to action at) among the relevant314

symptoms of the ground-truth disease dl, with neg-315

ative values assigned to irrelevant symptoms. The316

term rhit is positive if st is present in the patient317

profile P and negative otherwise. The term rrank318

measures the change in the confidence ranking of dl319

from state St to St+1, assigning positive reward for320

improved ranking, negative for worsened ranking,321

and zero if unchanged.322

The long-term reward Rlong(dp) assesses the fi-323

nal diagnostic prediction dp, yielding a positive324

reward if dp = dl and a negative reward otherwise.325

4.2.3 Masked Sampling for Candidate Actions326

The RL policy model’s sampling nature inherently327

prevents the guarantee of optimal actions. However,328

by performing multiple sampling iterations, we can329

leverage this characteristic to provide the LLM with330

a reliable set of candidate actions, thus avoiding331

decision-making within a large action space.332

Specifically, given the current state S , the Policy333

Agent π samples N actions from the masked ac-334

tion space to construct a candidate action set Acandi335

(Equation 6). If the sampled candidate action set336

includes the termination action am+1, the consulta-337

tion process is terminated.338

Acandi = {ai ∼ π(Amasked | S)}Ni=1 (6)339

4.3 Optimal Inquiry Action Selection340

Upon receiving the candidate action set Acandi, the341

Inquiry Agent selects the most informative inquiry342

action ao, corresponding to symptom so, by follow-343

ing a set of predefined reasoning strategies. Specif-344

ically, it either: (1) attempts to confirm the most345

probable diagnosis by prioritizing symptoms that346

are highly representative of the top-ranked disease,347

or (2) selects the symptom most relevant to the348

currently collected diagnostic evidence. If none349

of the candidate actions meet the selection crite-350

ria, the Inquiry Agent requests the Policy Agent to351

regenerate a new set of actions. By engaging in352

step-by-step reasoning, the Inquiry Agent ensures353

that the selected symptom so maximizes diagnostic354

value while maintaining interpretability and trans-355

parency throughout the decision-making process.356

4.4 Patient Response Simulation357

The Patient Agent responds to each inquiry from358

the Inquiry Agent based on the patient profile P . If359

the queried symptom so is explicitly documented,360

it returns the recorded status po. However, since 361

real-world Medical Consultation Records (MCRs) 362

typically contain only a limited subset of symp- 363

tom annotations, many queried symptoms may be 364

undocumented, leading to ineffective queries and 365

ambiguous responses. 366

To reduce this uncertainty bias, we leverage the 367

disease label dl from the MCR and incorporate 368

clinical knowledge for inference. If the queried 369

symptom is uncommon in the clinical presentation 370

of dl, the agent infers it is likely absent; if the symp- 371

tom is strongly associated with dl, it is inferred to 372

be likely present. Once the presence status po is de- 373

termined, the shared diagnostic memory is updated 374

as: E = E ∪ {(so, po)}. 375

In DDO, the multi-agent collaborative consul- 376

tation proceeds for up to L turns, and terminates 377

either when the turn limit is reached or when the 378

termination action is sampled by the Policy Agent. 379

The disease with the highest diagnostic confidence 380

is then selected as the final diagnosis. 381

5 Experiments 382

5.1 Baselines 383

5.1.1 Traditional Methods. 384

We compare the proposed DDO framework with 385

two state-of-the-art generation-based methods in 386

the MC task: MTDiag (Hou et al., 2023), which 387

independently optimizes symptom inquiry and dis- 388

ease diagnosis, and HAIformer (Zhao et al., 2024), 389

which leverages human-AI collaboration. We ad- 390

ditionally include EBAD (Yan et al., 2023) as a 391

reinforcement learning-based baseline. 392

5.1.2 LLM-Based Methods 393

We compare the DDO framework with three LLM- 394

based methods in the MC task: Uncertainty of 395

Thoughts (UoT) (Hu et al., 2024), Chain-of- 396

Diagnosis (CoD) (Chen et al., 2024), and Direct 397

Prompting (DP). UoT plans future inquiries by 398

computing information gain, while CoD employs 399

instruction tuning to teach LLMs transparent di- 400

agnostic reasoning. In contrast, DP relies solely 401

on the inherent capabilities of the LLM, without 402

prompt engineering or instruction tuning. 403

5.2 Datasets 404

We evaluate the proposed DDO framework and the 405

baseline methods on three real-world medical con- 406

sultation datasets: DXY (Xu et al., 2019), collected 407

from online medical dialogues, and GMD (Liu 408
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et al., 2022) and CMD (Yan et al., 2023), both409

derived from electronic medical records (EMRs).410

Dataset statistics are summarized in Table 1. Other411

dataset details can be found in Appendix A.1.412

Dataset DXY GMD CMD
# Total MCR Samples 527 2,374 5,200
# Disease Types 5 12 27
# Symptom Types 41 118 358
# Avg. Symptoms 4.74 5.55 17.92

Table 1: Dataset statistics, including the number of med-
ical consultation records (MCR), disease types, symp-
tom types, and average recorded symptoms per sample.

5.3 Evaluation Metrics413

Diagnostic Accuracy. We use diagnostic accuracy414

(Acc) as an evaluation metric, which measures the415

proportion of test cases where the ground-truth416

disease is correctly identified from a limited set of417

candidate diseases. This metric reflects the model’s418

ability to perform accurate differential diagnosis.419

Average Turns. The average number of inquiry420

turns Avg.n is calculated as the total number of421

symptom queries divided by the number of test422

samples, reflecting the efficiency and informative-423

ness of the multi-turn consultation process.424

5.4 Implemention Details425

For traditional baselines, we reproduce EBAD and426

HAIformer following their original implementa-427

tions, while results for MTDiag are taken from their428

paper due to unavailable source codes. All LLM-429

based baselines are re-implemented, where UoT430

adopts its pruned version to improve planning effi-431

ciency. The backbone LLMs include the Qwen2.5432

series (Yang et al., 2024), GPT-4o-mini (Achiam433

et al., 2023), and DiagnosisGPT (Chen et al., 2024)434

(especially fine-tuned for CoD). Each LLM-based435

method uses the same LLM for both the doctor436

and patient agents. For CoD and our proposed437

DDO, which require model parameter tuning, lo-438

cally deployed LLMs are used; other LLM-based439

baselines use API-based models. The maximum of440

doctor-patient interaction turns L is set to 10 for all441

the methods. More implementation details can be442

found in the Appendix A.443

5.5 Overall Performance444

Table 2 summarizes the main experimental results445

of the proposed DDO framework and baseline446

methods across the three MC datasets.447

Comparison with Traditional Methods. DDO 448

achieves diagnostic accuracy on par with traditional 449

baselines while substantially reducing training over- 450

head. For instance, the SOTA baseline HAIformer 451

adopts a multi-stage training pipeline requiring hun- 452

dreds of epochs for training its diagnostic module, 453

while DDO only needs a few epochs for confidence 454

calibration—less than one epoch on both the GMD 455

and CMD datasets. This efficiency stems from the 456

strong generalization capabilities of LLMs, which 457

enable effective domain adaptation with a small 458

number of parameter tuning. Moreover, the inher- 459

ent reasoning ability of LLMs contributes to the 460

interpretability of the MC task. 461

Comparison with LLM-based Methods. Com- 462

pared to other LLM-based methods, DDO signif- 463

icantly improves diagnostic effectiveness. After 464

symptom inquiry, it boosts diagnostic accuracy 465

by 24.6%, 11.3%, and 3.2% on the DXY, GMD, 466

and CMD datasets, respectively, over initial diag- 467

noses based only on self-reported symptoms. DDO 468

consistently achieves the highest accuracy, notably 469

94.2% on DXY. The DP baseline reflects the raw 470

inquiry behavior of LLMs, where the lack of ex- 471

ternal guidance results in arbitrary questioning and 472

unreliable diagnoses. UoT improves upon DP by 473

using LLM-based planning to prioritize symptoms 474

with the highest expected information gain. How- 475

ever, its aggressive pruning strategy—eliminating 476

candidate diseases as soon as key symptoms are 477

denied—restricts comprehensive evidence gather- 478

ing, often resulting in a small Avg.n and ultimately 479

limiting diagnostic performance. CoD attempts to 480

jointly optimize symptom inquiry and diagnosis 481

via large-scale synthetic reasoning data but yields 482

negative performance gains. This is likely due to 483

the intrinsic differences between the two sub-tasks, 484

which hinder effective unified learning. In contrast, 485

DDO decouples the two decision-making processes 486

in the MC task, enhancing them separately through 487

a lightweight RL policy and a diagnostic adapter. 488

This modular approach yields substantial gains in 489

diagnostic accuracy. 490

5.6 Ablation Study 491

As shown in Table 3, we perform ablation exper- 492

iments on three MC datasets, using Qwen2.5-7B- 493

Instruct as the LLM backbone. 494

Impact of Diagnostic Adapter. Removing the 495

diagnostic adapter (w/o adapter)—using only the 496

vanilla BTP method to estimate diagnostic confi- 497

dence—results in a drop in diagnostic accuracy, 498
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Method LLM
DXY GMD CMD

Accinit Acc Avg.n Accinit Acc Avg.n Accinit Acc Avg.n
Traditional Methods
EBAD (Yan et al., 2023) - - 72.1 7.0 - 78.7 7.4 - 64.1 9.0
MTDiag (Hou et al., 2023) - - 81.9 9.6 - 85.9 9.6 - - -
HAIformer (Zhao et al., 2024) - - 88.5 1.7 - 90.4 2.0 - 70.9 3.4
LLM-based Methods

DP

Qwen2.5-72B-Instruct 59.6 64.4 9.0 59.8 64.4 9.9 44.2 46.8 9.8
GPT-4o-mini 57.7 61.5 10.0 57.3 65.7 10.0 45.9 49.5 10.0

Qwen2.5-14B-Instruct 54.8 53.8 10.0 55.2 61.1 10.0 42.2 45.7 10.0
Qwen2.5-7B-Instruct 59.6 63.5 10.0 54.8 57.3 10.0 46.8 46.2 10.0

UoT (Hu et al., 2024)

Qwen2.5-72B-Instruct - 67.3 0.1 - 68.6 0.1 - 34.6 0.1
GPT-4o-mini - 64.4 0.1 - 65.3 0.4 - 23.0 1.3

Qwen2.5-14B-Instruct - 60.6 0.2 - 61.1 0.6 - 32.6 1.3
Qwen2.5-7B-Instruct - 61.5 2.2 - 71.1 0.5 - 32.5 1.6

CoD (Chen et al., 2024)
DiagnosisGPT-34B 61.5 53.8 3.9 54.0 44.8 3.6 46.1 34.6 3.7
DiagnosisGPT-6B 61.5 36.9 5.1 56.1 37.2 3.9 46.6 28.5 3.4

DDO(Ours)
Qwen2.5-14B-Instruct 66.3 94.2 10.0 67.8 80.3 9.8 65.3 68.6 10.0
Qwen2.5-7B-Instruct 66.3 87.5 9.9 69.5 79.5 9.6 60.6 63.6 10.0

Table 2: Overall performance of DDO and baseline methods on three public medical consultation (MC) datasets.
Accinit denotes diagnostic accuracy without any symptom inquiry. Bold numbers indicate the best performance,
underlined numbers indicate the second-best. All diagnostic accuracy results are reported as percentages.

Method
DXY GMD CMD

Acc Avg.n Acc Avg.n Acc Avg.n
DDO(Ours) 87.5 9.9 79.5 9.6 63.6 10.0
w/o adapter 86.5 9.9 78.7 9.6 54.2 10.0
w/o policy 77.7 10.0 73.6 10.0 60.3 10.0
w/o masking 83.5 9.9 74.5 10.0 61.8 10.0
w/o retry 83.5 10.0 78.7 9.8 63.0 10.0
w/o decision 84.6 9.8 78.2 9.8 63.2 10.0

Table 3: Ablation results of DDO. w/o adapter denotes
removing the diagnostic adapter. w/o policy and w/o de-
cision use the LLM and RL model for symptom inquiry,
respectively. w/o masking disables action space mask-
ing. w/o retry omits candidate actions regeneration.

with the largest decline observed on the CMD499

dataset. This demonstrates the effectiveness of the500

in-batch contrastive learning–based adapter in en-501

hancing the disease discrimination ability of LLMs.502

Impact of RL-LLM Collaboration. To assess the503

effectiveness of RL-LLM collaborative symptom504

inquiry process, we conduct ablation experiments505

in which symptom inquiry is performed solely by506

the RL policy (w/o decision) or solely by the LLM507

(w/o policy). Results show that both variants per-508

form significantly worse, with the LLM-only vari-509

ant exhibiting a greater performance drop. This510

highlights the advantage of multi-agent collabo-511

ration in DDO for conducting effective symptom512

inquiry. Moreover, removing action space mask-513

ing (w/o masking) or disabling the regeneration514

mechanism for low-quality actions (w/o retry) also515

degrades performance, underscoring their role in516

ensuring reliable inquiry decisions.517

Method
DXY GMD CMD

Accinit Acc Accinit Acc Accinit Acc
Numerical 62.5 78.8 53.6 74.5 29.7 39.4
Numerical-SC 65.4 77.9 54.4 74.9 32.8 45.3
FirstLogit 59.6 70.2 60.3 74.1 40.5 43.7
AvgLogit 42.3 75.0 59.4 74.5 25.2 28.8
BTP 63.5 86.5 63.6 78.7 54.2 54.2
BTP-adapter(Ours) 66.3 87.5 69.5 79.5 60.6 63.6

Table 4: Comparison of diagnostic performance across
different confidence estimation methods for LLMs.

5.7 Evaluation of Diagnostic Performance in 518

LLM Confidence Estimation 519

To further assess the diagnostic effectiveness of our 520

BTP-adapter, we compare it with several alternative 521

confidence estimation methods for LLMs using 522

three MC datasets. All methods are evaluated with 523

the same initial and final symptom sequences, and 524

the results are presented in Table 4. 525

Decoding-based Methods. Numerical and 526

Numerical-SC prompt the LLM to directly gen- 527

erate a confidence score between 0 and 1 (Li 528

et al., 2024b), with SC indicating the use of Self- 529

Consistency (Wang et al., 2022). These approaches 530

show significantly lower diagnostic accuracy than 531

the BTP-adapter, highlighting the limitations of 532

decoding-based confidence estimation and the ad- 533

vantages of our logits-based strategy. 534

Logits-based Methods. Similar to our approach, 535

FirstLogits and AvgLogits (Ma et al., 2025) esti- 536

mate confidence based on the logits of the first 537

generated token. However, their diagnostic perfor- 538

mance is notably inferior to that of the BTP-adapter. 539
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This may be due to their practice of computing con-540

fidence scores for all candidate diseases in a single541

generation process, which can lead to context in-542

terference. In contrast, BTP-adapter independently543

evaluates each candidate diagnosis, effectively mit-544

igating such interference. We also compare against545

the original BTP method without the diagnostic546

adapter. Incorporating the adapter consistently en-547

hances diagnostic accuracy, particularly in the ini-548

tial diagnosis, which is critical for guiding effective549

symptom inquiry during the early stages of MC.550

5.8 Effect of Max Turns L551

As shown in Figure 3, we evaluate the diagnostic552

performance of the DDO framework on the DXY553

and GMD datasets for different maximum interac-554

tion turns (L = 0/5/10/15). The line charts show555

an upward trend, indicating that increasing the max-556

imum number of turns L generally improves diag-557

nostic accuracy. This suggests that the symptom in-558

quiry process in DDO effectively collects critical di-559

agnostic evidence. Notably, the most significant im- 560

provements occur in the early stages, with the gains 561

diminishing as more turns are added—especially 562

evident on the GMD dataset. One possible explana- 563

tion is that DDO prioritizes inquiries for diseases 564

with high initial diagnostic confidence. When the 565

ground-truth disease dl initially ranks lower, addi- 566

tional inquiries may offer diminishing returns in 567

terms of diagnostic accuracy. 568

5.9 Diagnostic Effectiveness of DDO Across 569

Different Diseases 570

To assess diagnostic performance at a fine-grained 571

level, we visualize the diagnostic accuracy before 572

and after symptom inquiry across 12 candidate 573

diseases in the GMD dataset, as shown in Fig- 574

ure 4. The results indicate that multi-turn symp- 575

tom inquiry substantially enhances diagnostic ac- 576

curacy for most diseases. Notably, the final ac- 577

curacy for Coronary Artery Disease and Rhinitis 578

reaches 100%, highlighting the effectiveness of the 579

collaborative symptom collection between the Pol- 580

icy Agent and Inquiry Agent in DDO. However, 581

for certain diseases such as Conjunctivitis and Thy- 582

roiditis, the inquiry process yields no improvement 583

in diagnostic accuracy, and even shows a slight de- 584

cline for Thyroiditis. Further analysis reveals that 585

some MCRs for these diseases include only one or 586

two vague or non-specific self-reported symptoms, 587

making it difficult for the Agents to identify the 588

critical symtpoms needed for accurate prediction. 589

6 Conclusion 590

In this paper, we propose DDO, a novel LLM-based 591

multi-agent collaborative framework designed to 592

address the mismatch between existing LLM-based 593

methods and the dual-decision nature of medical 594

consultation (MC), which involves both sequen- 595

tial symptom inquiry and diagnosis over a con- 596

strained set of candidate diseases. DDO decou- 597

ples these two decision-making processes and op- 598

timizes them independently: it improves disease 599

discrimination through a plug-and-play diagnos- 600

tic adapter, and enhances information gathering 601

via the synergy of an reinforcement learning-based 602

policy agent an LLM-based inquiry agent. Experi- 603

ments on three public MC datasets show that DDO 604

consistently outperforms existing LLM-based base- 605

lines and achieves performance competitive with 606

state-of-the-art generation-based methods, demon- 607

strating its effectiveness in the MC task. 608
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Limitations609

While we propose DDO to enhance the effective-610

ness of LLMs in the medical consultation task, sev-611

eral limitations remain: (1) Inference efficiency:612

DDO relies on multi-agent chain-of-thought rea-613

soning with LLMs at each inquiry step, which leads614

to slower inference compared to traditional deep615

learning methods. (2) Model deployment: Since616

DDO requires training a diagnostic adapter for the617

underlying LLM, it is currently incompatible with618

API-based LLMs and must be deployed with lo-619

cally hosted models. (3) Label granularity: Dur-620

ing confidence calibration, DDO assigns a target621

confidence of 1 to the ground-truth disease and622

a small constant to all others. This hard-labeling623

scheme may hinder the model’s ability to softly624

distinguish between clinically similar diseases.625

Ethical Consideration626

Due to the hallucination problem inherent in large627

language models, they may generate content that is628

not factually accurate. Therefore, the DDO frame-629

work proposed in this paper is intended solely for630

academic research. In real-world scenarios, med-631

ical decisions should always be based on profes-632

sional diagnoses made by qualified physicians.633
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A Other Implementation Details879

A.1 Datasets Details880

We use three public medical consultation (MC)881

datasets—DXY1 (Xu et al., 2019), GMD2 (Liu882

1https://github.com/HCPLab-SYSU/Medical_DS
2https://github.com/lwgkzl/BR-Agent

et al., 2022), and CMD3 (Yan et al., 2023)—which 883

were released for academic research and have been 884

de-identified by their original authors. We reviewed 885

the accompanying papers and code repositories for 886

licensing information: GMD is explicitly provide 887

an MIT license, while DXY and CMD, though 888

lacking formal licenses, clearly state in their papers 889

that the data is intended for public research use. 890

In our study, we strictly follow these terms and 891

use the datasets solely for research purposes. All 892

three datasets are primarily in Chinese, with GMD 893

additionally offering an English version. 894

In the original MC datasets, some instances lack 895

explicit symptoms, leading to insufficient initial in- 896

put for the inquiry process. To ensure meaningful 897

interactions, we filter out these incomplete cases. 898

For validation, we apply stratified sampling to the 899

training sets of DXY and CMD to create devel- 900

opment sets (GMD has already included a prede- 901

fined split). The final train/dev/test splits for DXY, 902

GMD, and CMD are 318/103/103, 1912/239/239, 903

and 3379/671/1342, respectively. 904

Since MCRs in DXY and GMD contain rela- 905

tively few symptoms on average—only 4.74 and 906

5.55 per record, respectively—this sparsity can hin- 907

der the reliable calibration of diagnostic confidence 908

in large language models (LLMs). To address this, 909

we augment MCRs with limited symptoms during 910

the construction of the calibration dataset. Specif- 911

ically, for each training MCR with a small num- 912

ber of symptoms, we sample additional implicit 913

symptoms based on disease knowledge extracted 914

from the training data. This augmentation helps 915

LLMs learn diagnostic patterns from longer, more 916

informative symptom sequences. As a result, the 917

number of calibration training instances becomes 918

2,185 (DXY), 13,598 (GMD), and 54,608 (CMD). 919

To improve training efficiency, we do not include 920

all diseases in each contrastive batch when con- 921

structing confidence calibration data. Instead, each 922

ground-truth disease is paired with four clinically 923

similar candidate diseases for comparison. 924

A.2 Hyperparameters 925

We selected hyperparameters and model check- 926

points on validation dataset, with key hyperparam- 927

eter configurations summarized in Table 5 and Ta- 928

ble 6. For checkpoint selection, we considered over- 929

all top-K diagnostic accuracy and first selected the 930

best-performing BTP adapter. The LLM equipped 931

3https://github.com/YanPioneer/EBAD
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with this adapter was then used as the diagnostic932

model during RL policy training. To reduce train-933

ing costs, we used Qwen2.5-7B-Instruct with the934

BTP adapter as the diagnostic model in RL training.935

For Qwen2.5-14B-Instruct, we directly applied the936

learned RL policy for inference, demonstrating the937

policy’s transferability across different LLMs.938

Hyperparameters DXY GMD CMD
max training epochs 5 1 1

global batch size 8 8 8
learning rate 5e-5 5e-5 5e-5

lora rank 16 16 16
in-bacth group length 5 5 5

Table 5: Hyperparameters for confidence calibration.

Hyperparameters DXY GMD CMD
masking window size 3 4 5

sampling times 6 6 7
actor hidden layers [256,128,128] [256,128,128] [512,256,256]
critic hidden layers [64] [64] [128]

learning rate 5e-5 5e-5 5e-5
batch size 64 128 128

steps per update 1024 2048 2048
epochs 5 5 5

total steps 51200 102400 102400
hitting reward 0.5 0.5 0.5
ranking reward 0.5 0.5 0.5

diagnosis reward 1.0 1.0 1.0
frequency penaty 0.2 0.2 0.2

Table 6: Hyperparameters for RL policy training.

A.3 Model Deployment939

We locally deployed the LLMs used in our DDO940

framework on GPU devices. Specifically, Qwen2.5-941

7B-Instruct was run on an NVIDIA RTX 3090942

GPU, while Qwen2.5-14B-Instruct was run on an943

NVIDIA Tesla V100 GPU. For reproducing the944

Chain-of-Diagnosis baseline (Chen et al., 2024),945

we deployed DiagnosisGPT-6B and DiagnosisGPT-946

34B using 1 and 3 NVIDIA Tesla V100 GPUs,947

respectively. For reproducing EBAD (Yan et al.,948

2023) and HAIformer (Zhao et al., 2024), we used a949

single NVIDIA RTX 3090 GPU. For implementing950

the Direct Prompting baseline and reproducing the951

Uncertainty of Thoughts baseline (Hu et al., 2024),952

we utilized the Qwen2.5-Instruct API provided by953

the Siliconflow platform4 and the ChatGPT API954

provided by the ChatAnywhere platform5.955

Based on Stable-Baselines36, the reinforcement956

learning policy model in DDO is trained and de-957

ployed on a single NVIDIA RTX 3090 GPU.958

4https://www.siliconflow.cn/
5https://chatanywhere.apifox.cn/
6https://github.com/DLR-RM/stable-baselines3

B Standard Errors of Result 959

We report the standard errors of the results for 960

the proposed DDO framework on the three MC 961

datasets in Table 7, based on experiments con- 962

ducted with three different random seeds. For 963

efficiency considerations, we use Qwen2.5-7B- 964

Instruct as the LLM backbone. The comparison 965

between our proposed DDO framework and the 966

baseline methods in the main experiments was per- 967

formed using the random seed that achieved the 968

best overall performance. The standard error under 969

the setting without further symptom inquiries is 0, 970

because our BTP-based confidence scoring method 971

relies solely on the logits of the first generated to- 972

ken. In addition, the hyperparameter do_sample 973

for the BTP process is set to False, ensuring that 974

the model outputs are deterministic for the same 975

input context across different random seeds. 976

Metrics DXY GMD CMD
Accinit 66.3 ± 0.0 69.5 ± 0.0 60.6 ± 0.0
Acc 85.3 ± 1.1 79.6 ± 0.1 63.1 ± 0.4

Table 7: Statistical Results of Standard Errors.

C Case Study 977

Table 8 shows a medical consultation case. The 978

patient initially reported the symptom runny nose, 979

and DDO used this information to conduct multi- 980

ple rounds of symptom inquiries to gather more 981

evidence. In each round, DDO first provides a set 982

of candidate inquiry actions via the Policy Agent. 983

The Inquiry Agent then selects the most appropriate 984

action based on reasoning. The Patient Agent re- 985

sponds with the presence or absence of symptoms 986

based on the Medical Consultation Record (MCR). 987

For symptoms not recorded in the MCR, the Pa- 988

tient Agent infers their likely presence or absence 989

based on the clinical presentation of the disease. 990

The Diagnosis Agent evaluates the diagnostic con- 991

fidence for each candidate disease. In this case, 992

after reaching the maximum number of interaction 993

rounds, the disease with the highest diagnostic con- 994

fidence—allergic rhinitis (AR)—was identified as 995

the patient’s final diagnosis, which aligns with the 996

ground-truth diagnosis in the MCR. 997

D Prompt Templates 998

Tables 9-11 show the prompts used in our DDO 999

framework. Tables 12-15 show the prompts used 1000

in the DP baseline. 1001
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Self Report (Explicit Symptoms): The patient has symptoms of cough, restlessness, and runny nose.
Explicit Symptoms & Implicit Symptoms: {"cough": True, "restlessness": True, "runny nose": True, "anorexia": True,
"short of breath": True}
Disease Label: pneumonia
Candidate Diseases: ["hand-foot-and mouth disease (HFMD)", "upper respiratory tract infection (URTI)", "pneumonia",
"allergic rhinitis (AR)", "diarrhea"]
Diagnostic Confidence of Top Diseases: {"URTI": 0.68, "pneumonia": 0.16, "AR": 0.16}
Turn 1
Candidate Actions: ["check for fever", "check for vomiting", "check for short of breath", "check for pharyngeal discom-
fort"]
Selected Symptom for Inquiry: fever
Selection Reasoning: First, we examine the current diagnostic confidence scores: upper respiratory infection (0.68),
pneumonia (0.16), and allergic rhinitis (0.16). Since upper respiratory infection has a significantly higher confidence, we
prioritize symptoms associated with it. Looking at symptom frequencies for this disease, fever (0.507) is the most common,
followed by vomiting (0.233), throat discomfort (0.164), and short of breath (0.123). Based on Strategy 1, we should ask
the patient about fever next, as it is the most indicative symptom.
Symptom Status: True
Response Reasoning: To assess whether the patient is likely to have the symptom "fever," we examine its frequency
relative to other listed symptoms. A higher frequency—i.e., a higher rank in the sorted list—indicates the symptom is more
typical and thus more likely to be present in the patient. According to the information, "fever" has a frequency of 0.533.
When we sort all symptoms by frequency in descending order, "fever" ranks 3rd, following "cough" (0.883) and "sputum
production" (0.65). This places "fever" in the high-frequency range. Therefore, based on this analysis, we determine the
likelihood of the patient having the symptom "fever" to be high, and the final judgment is True.
Diagnostic Confidence of Top Diseases: {"URTI": 0.45, "pneumonia": 0.45, "HFMD": 0.11}
Turn 2
Candidate Actions: ["check for herpes", "check for sneezing", "check for pharyngeal discomfort", "check for short of
breath", "check for vomiting"]
Selected Symptom for Inquiry: short of breath
Selection Reasoning: The current diagnostic confidence scores are: upper respiratory infection (0.45), pneumonia (0.45),
and hand, foot, and mouth disease (0.11). Since no single disease stands out, we can’t apply Strategy 1. So we use Strategy
2, which selects symptoms related to the patient’s current presentation—cough, irritability, runny nose, and fever. Among
the candidate symptoms (herpes, sneezing, throat discomfort, short of breath, vomiting), short of breath is the most relevant,
as it is strongly associated with pneumonia. Therefore, we choose short of breath as the next symptom to inquiry about.
Symptom Status: True
Response Reasoning: Short of breath is recorded in MCR, which indicates that the patient has this symptom.
Diagnostic Confidence of Top Diseases: {"pneumonia": 0.68, "URTI": 0.16, "HFMD": 0.16}
Turn 3
Candidate Actions: ["check for pulmonary moist rales", "check for bubble-like spitting", "check for sneeze", "check for
vomiting"]
Selected Symptom for Inquiry: pulmonary moist rales
Selection Reasoning: The current diagnostic confidence scores are: pneumonia (0.68), upper respiratory infection (0.16),
and hand, foot, and mouth disease (0.16). Since pneumonia stands out with the highest confidence, we prioritize its typical
symptoms. Among the candidate symptoms—pulmonary moist rales (0.167), bubble blowing (0.167), sneezing (0.117),
and vomiting (0.383)—both pulmonary moist rales and bubble blowing are more specific to pneumonia, despite vomiting
having a higher frequency. Following Strategy 1, we choose pulmonary moist rales as the next symptom to ask the patient.
Symptom Status: False
Response Reasoning: To assess whether the patient is likely to have the symptom pulmonary moist rales, we first examine
its frequency in pneumonia cases and compare it with other symptoms. The frequency of pulmonary moist rales is 0.167.
When we sort all listed symptoms by their frequency in pneumonia, pulmonary moist rales ranks relatively low—below
common symptoms like cough (0.883), sputum production (0.65), and fever (0.533), and only slightly higher than symptoms
like fatigue, loose stools, and sweating. This suggests that pulmonary moist rales is not among the most typical symptoms
of pneumonia. Therefore, we conclude that the patient is less likely to have this symptom, and the judgment is False.
Diagnostic Confidence of Top Diseases: {"pneumonia": 0.68, "URTI": 0.16, "diarrhea": 0.16}
Turn 4
Candidate Actions: ["check for anorexia", "check for vomiting", "check for lethargy"]
Selected Symptom for Inquiry: vomiting
Selection Reasoning: The current diagnostic confidence scores are: pneumonia (0.68), upper respiratory infection (0.16),
and pediatric diarrhea (0.16). Since pneumonia has the highest confidence, we focus on symptoms related to it. Among the
candidate symptoms, vomiting has the highest frequency in pneumonia cases at 0.383, compared to anorexia (0.15) and
fatigue (0.083). Based on this, we choose vomiting as the next symptom to ask the patient about.
Symptom Status: True
Response Reasoning: To determine whether the patient is likely to have the symptom "vomiting," we examine its frequency
among pneumonia patients, which is 0.383. Although this is lower than symptoms like cough (0.883), sputum production
(0.65), fever (0.533), runny nose (0.467), and short of breath (0.433), it is higher than others such as nasal obstruction
(0.267) and irritability (0.233). This indicates that vomiting is relatively common in pneumonia cases. While it may not
be the most typical symptom, its frequency suggests it has moderate representativeness. Therefore, we conclude that the
likelihood of the patient having this symptom is relatively high, and the judgment result is True.
Diagnostic Confidence of Top Diseases: {"pneumonia": 0.68, "URTI": 0.16, "HFMD": 0.16}
Turn 5

13



Candidate Actions: ["check for rash", "check for expectoration", "check for anorexia", "check for herpes", "check for
sneeze"]
Selected Symptom for Inquiry: expectoration
Selection Reasoning: Pneumonia currently has the highest diagnostic confidence (0.68), much higher than upper respiratory
infection and hand-foot-mouth disease (both 0.16). So, we focus on symptoms typical of pneumonia. Among the candidate
symptoms, only expectoration (coughing up phlegm) has a high occurrence in pneumonia (65%), while others like rash,
anorexia, sneezing, and herpes are either rare or not typical. Therefore, the most appropriate next symptom to ask about is
expectoration.
Symptom Status: True
Response Reasoning: To determine whether the patient is likely to have the symptom expectoration, we refer to the
symptom frequency data for pneumonia. The frequency of expectoration is 0.65, which is relatively high—only lower
than cough (0.883) and fever (0.533). This indicates that expectoration is a common and typical symptom of pneumonia.
Therefore, it’s reasonable to conclude that the patient is likely to have this symptom. Final judgment: True.
Diagnostic Confidence of Top Diseases: {"pneumonia": 0.68, "URTI": 0.16, "diarrhea": 0.16}
Turn 6
Candidate Actions: ["check for lethargy", "check for sneeze", "check for nasal obstruction"]
Selected Symptom for Inquiry: nasal obstruction
Selection Reasoning: First, we look at the current diagnostic confidence scores: pneumonia (0.68), upper respiratory
infection (0.16), and pediatric diarrhea (0.16). Since pneumonia has the highest confidence, we prioritize its related
symptoms. Among the candidate symptoms, nasal obstruction (0.267) is more common in pneumonia than listlessness
(0.083) and sneezing (0.033). According to strategy 1, we should select the most typical symptom, so we choose "nasal
obstruction" as the next symptom to ask the patient about. Final answer: choose nasal obstruction as the next symptom to
inquire.
Symptom Status: False
Response Reasoning: To determine whether the patient is likely to have the symptom "nasal obstruction," we examine its
frequency in pneumonia cases. The data shows a frequency of 0.267, which ranks 7th among all listed symptoms: lower
than common ones like cough (0.883), sputum (0.65), and fever (0.533). Since "nasal obstruction" is not among the most
typical symptoms of pneumonia, it is less likely the patient has it. Final judgment: False.
Diagnostic Confidence of Top Diseases: {"pneumonia": 0.66, "URTI": 0.18, "diarrhea": 0.16}
Turn 7
Candidate Actions: ["check for anorexia", "check for lethargy", "check for sneeze"]
Selected Symptom for Inquiry: anorexia
Selection Reasoning: The current diagnostic confidence for diseases is: Pneumonia: 0.66, Upper Respiratory Tract
Infection: 0.18, Pediatric Diarrhea: 0.16. Since pneumonia has the highest confidence, we will focus on pneumonia-related
symptoms. Among the candidate symptoms, anorexia (0.15), lethargy (0.083), and sneezing (0.117) are considered, with
anorexia having the highest frequency. Based on Strategy 1, we will select anorexia as the next symptom to ask the patient.
Symptom Status: True
Response Reasoning: Anorexia is recorded in MCR, which indicates that the patient has this symptom.
Diagnostic Confidence of Top Diseases: {"pneumonia": 0.45, "URTI": 0.45, "diarrhea": 0.11}
Turn 8
Candidate Actions: ["check for sneeze", "check for pharyngeal discomfort", "check for lethargy"]
Selected Symptom for Inquiry: sneeze
Selection Reasoning: The diagnostic confidence for pneumonia and upper respiratory tract infection is the same (0.45),
while pediatric diarrhea is much lower (0.11), so we can’t apply Strategy 1. Instead, we use Strategy 2 and focus on
symptoms related to the patient’s condition. The patient’s symptoms include cough, irritability, runny nose, fever, difficulty
breathing, vomiting, phlegm, and anorexia. Looking at the frequency of candidate symptoms: Sneezing is more common in
upper respiratory tract infection (0.233), while throat discomfort and lethargy appear less frequently across all diseases.
Since sneezing is more related to upper respiratory tract infection and the patient’s symptoms are mostly respiratory,
sneezing helps distinguish between pneumonia and upper respiratory tract infection. Therefore, we should ask about
sneezing next.
Symptom Status: False
Response Reasoning: To determine if the patient is likely to have the symptom ‘sneezing’, we first look at its frequency in
pneumonia and compare it to other symptoms. The frequency of sneezing in pneumonia is 0.117. When we rank all listed
symptoms by frequency, sneezing is 13th with a relatively low frequency. The symptoms with higher frequencies include
cough (0.883), phlegm (0.65), fever (0.533), and others. Given that sneezing ranks low in the list, it is not considered a
typical symptom of pneumonia. Therefore, the conclusion is that the patient is unlikely to have the symptom ‘sneezing’.
Diagnostic Confidence of Top Diseases: {"pneumonia": 0.66, "URTI": 0.18, "diarrhea": 0.16}
Turn 9
Candidate Actions: ["check for pharyngeal discomfort", "check for lethargy"]
Selected Symptom for Inquiry: lethargy
Selection Reasoning: Given the diagnostic confidence for pneumonia (0.66), upper respiratory tract infection (0.18), and
pediatric diarrhea (0.16), we prioritize symptoms related to pneumonia since its confidence is much higher. The candidate
symptoms for pneumonia are lethargy (0.083) and throat discomfort (0.05). Although both have low frequencies, lethargy is
more typical of pneumonia, so we choose it as the next symptom to ask the patient about.
Symptom Status: False
Response Reasoning: Lethargy is not recorded in MCR. This symptom is rarely present in pneumonia, so it is unlikely that
the patient has this symptom.
Diagnostic Confidence of Top Diseases: {"pneumonia": 0.68, "URTI": 0.16, "HFMD": 0.16}
Turn 10
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Candidate Actions: ["check for bubble-like spitting", "check for pulmonary shadow", "check for rash", "check for
pharyngeal discomfort"]
Selected Symptom for Inquiry: bubble-like spitting
Selection Reasoning: Given the diagnostic confidence for pneumonia (0.68), upper respiratory tract infection (0.16),
and hand-foot-and-mouth disease (0.16), we prioritize pneumonia-related symptoms since its confidence is significantly
higher. The candidate symptoms for pneumonia are bubble-like spitting (0.167), lung shadow (0.167), throat discomfort
(0.15), and rash (0.033). Both "bubble-like spitting" and "lung shadow" have the highest occurrence rates, but considering
that bubble-like spitting may directly reflect lung dysfunction, it is likely more valuable. Therefore, we should choose
"bubble-like spitting" as the next symptom to ask the patient about to further confirm pneumonia.
Symptom Status: False
Response Reasoning: To determine if the patient is likely to have the symptom "bubble-like spitting," we first check its
frequency in pneumonia symptoms. The frequency is 0.167. When we rank all symptoms by frequency, "bubble-like
spitting" ranks 9th. The most common symptoms of pneumonia include cough, sputum, and fever, while "bubble-like
spitting" is relatively uncommon. Therefore, it’s not a typical pneumonia symptom. Based on this, we conclude that the
patient is unlikely to have the symptom "bubble-like spitting." The judgment is False.
Diagnostic Confidence of Top Diseases: {"pneumonia": 0.68, "URTI": 0.16, "diarrhea": 0.16}

Table 8: A medical consultation case by DDO. The symptom status of True and False represent the presence and
absence, respectively. "Top Diseases" refers to the diseases with the highest diagnostic confidence, ranked in the
top-w positions, with their diagnostic confidence values being processed using Softmax.

You are an experienced medical expert. The following information is provided to you:

## Patient’s Symptom Presentation
Present symptoms: {positive_symptoms}
Absent symptoms: {negative_symptoms}
## Symptom Knowledge for {candidate_disease}
Symptom occurrence frequencies based on existing diagnosed cases of {candidate_disease}: {empirical_knowledge}

Based on the patient’s symptom presentation and the symptom knowledge of {candidate_disease}, determine whether
this disease can be diagnosed. The presence of relevant symptoms increases diagnostic confidence, while the absence of
relevant symptoms decreases it. The influence of a symptom’s presence or absence on diagnostic confidence increases with
its typicality for the disease. There are two possible outputs: True or False. Output True if you believe the disease can be
diagnosed; output False if it cannot.
Please output only the judgment result, without any additional content.

Table 9: The prompt used to estimate diagnostic confidence by BTP in our DDO framework.

You are an experienced medical expert. Your task is to help select the next symptom to inquire about from a given set of
candidate symptoms, in order to further collect the patient’s symptom information. You are provided with the following
information:

# Current known patient symptom status (already inquired symptoms):
Present symptoms: {positive_symptoms}
Absent symptoms: {negative_symptoms}
# Disease diagnostic confidence (confidence values range from 0 to 1; the higher the value, the more likely the disease):
# Clinical presentation knowledge of diseases (symptom occurrence frequency based on historical case statistics):
{top_diseases_empirical_knowledge}
# Candidate symptoms: {candidate_symptoms}

Based on the above information, choose one suitable symptom from the candidate symptoms to ask next. The symptom
selection strategies are as follows:
Strategy 1 (preferred): If the top-ranked disease has significantly higher diagnostic confidence than the others, choose a
symptom from the candidate list that is relatively typical for the top-ranked disease, to help confirm its likelihood.
Strategy 2: If no candidate symptom fits Strategy 1, choose a symptom that is relatively related to the patient’s current
symptom presentation.
Output format:
If there exists a suitable symptom ‘xx’ in the candidate symptoms, output: Select ‘xx’ as the next symptom to inquire about.
If no suitable symptom exists in the candidate symptoms, output: New candidate symptoms are needed.
Please think step by step.

Table 10: The prompt used to select an inquiry action in our DDO framework.
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You are a patient simulator. The disease that the simulated patient truly has is {disease_label}.

The symptom knowledge of disease {disease_label} is as follows:
Based on statistics from previously diagnosed cases of {disease_label}, the symptom occurrence frequencies are: {empiri-
cal_knowledge}

You need to determine whether the patient is likely to have the symptom {inquiried_symptom} based on the symptom
knowledge of the disease. The judgment should be either True or False:
True indicates that the patient is likely to have the symptom.
False indicates that the patient is unlikely to have the symptom.

The criteria for judgment are as follows:
If the symptom {inquiried_symptom} is relatively typical for the disease {disease_label} (i.e., it ranks high in the symptom
occurrence frequency), then it is considered likely that the patient has the symptom (judgment should be True).
If the symptom is not typical for the disease, then the patient is considered unlikely to have it (judgment should be False).
Please think step by step and decide whether the patient is likely to have the symptom {inquiried_symptom}.

Table 11: The prompt used to simulating the patient’s response in our DDO framework.

You are an experienced medical expert conducting a consultation with a patient.

After several rounds of symptom inquiries, the patient has confirmed the following symptoms: {positive_symptoms}. The
patient has denied the following symptoms: {negative_symptoms}. The diseases you suspect are: {candidate_diseases}.

You need to decide whether to continue asking about symptoms to gather diagnostic evidence or to provide a final diagnosis
based on the symptoms reported and your diagnostic knowledge of the diseases. The decision should be one of the following
two options: (1) Ask about symptoms (2) Diagnose disease. Please provide your decision directly, without any additional
explanation.
Decision:

Table 12: The prompt for deciding interaction action in the DP baseline.

You are an experienced medical expert conducting a consultation with a patient.

The symptoms that have already been inquired about and their status are as follows: The symptoms confirmed by the
patient: {positive_symptoms}. The symptoms denied by the patient: {negative_symptoms}.

To increase diagnostic confidence, you need to choose a symptom to inquire about, ensuring that it has not been previously
inquired about. Please provide the name of the symptom directly, without any additional content.
The symptom to inquire about:

Table 13: The prompt for symptom inquiry in the DP baseline.

You will play the role of a patient diagnosed with {disease}.

Your symptom presentation is as follows: The symptoms you have: {positive_symptoms}. The symptoms you do not have:
{negative_symptoms}.

Based on your symptom presentation, please answer truthfully whether you have the symptom {symptom}. The answer
should be either ‘Yes’ or ‘No’. Please provide the answer directly without any additional content.
Answer:

Table 14: The prompt for simulating the patient’s response in the DP baseline.

You are an experienced medical expert, currently conducting a consultation with a patient.

After several rounds of symptom inquiries: The symptoms confirmed by the patient are: {positive_symptoms}. The
symptoms denied by the patient are: {negative_symptoms}. The diseases you suspect include: {candidate_diseases}.

Please select three diseases from the suspected list above as the diagnosis results, ordered from most to least likely. Provide
the answer in the form of a Python string list, and do not include any additional content.
Top three most likely diseases:

Table 15: The prompt for disease diagnosis in the DP baseline.
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