
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

LargePiG for Hallucination-FreeQuery Generation: Your Large
Language Model is Secretly a Pointer Generator

Anonymous Author(s)∗

ABSTRACT
Recent research on query generation has focused on using Large
Language Models (LLMs), which despite bringing state-of-the-art
performance, also introduce issues with hallucinations in the gen-
erated queries. In this work, we introduce relevance hallucina-
tion and factuality hallucination as a new typology for hallucina-
tion problems brought by query generation based on LLMs. We
propose an effective way to separate content from form in LLM-
generated queries, which preserves the factual knowledge extracted
and integrated from the inputs and compiles the syntactic structure,
including function words, using the powerful linguistic capabili-
ties of the LLM. Specifically, we introduce a model-agnostic and
training-free method that turns the Large Language Model into
a Pointer-Generator (LargePiG), where the pointer attention dis-
tribution leverages the LLM’s inherent attention weights, and the
copy probability is derived from the difference between the vocab-
ulary distribution of the model’s high layers and the last layer. To
validate the effectiveness of LargePiG, we constructed two datasets
for assessing the hallucination problems in query generation, cov-
ering both document and video scenarios. Empirical studies on
various LLMs demonstrated the superiority of LargePiG on both
datasets. Additional experiments also verified that LargePiG could
reduce hallucination in large vision language models and improve
the accuracy of document-based question-answering and factual-
ity evaluation tasks. The source code and dataset are available at
https://anonymous.4open.science/r/LargePiG-7674.
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1 INTRODUCTION
Query generation is an automatic process of generating queries ac-
cording to the content presented in documents or videos, which not
only facilitates information retrieval from documents [12, 35, 48]
but also serves applications like short video platforms by creating
queries that attract user engagements. There has been notable ad-
vancement in query generation using LLMs [5, 12, 36, 39]. However,
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employing LLMs for query generation often introduces hallucina-
tion issues. Factuality hallucination refers to inaccuracies in the
facts presented in the generated queries, often occurring when the
inputs include knowledge not covered by the LLM’s pre-training
data. For example, being misled by the latest facts in the news
documents can make LLMs generate queries that conflict with ac-
tual events. Relevance hallucination occurs when the generated
queries, although factually correct, are irrelevant to the inputs [15].
Both types of hallucinations are not mutually exclusive, with some
generated queries exhibiting both issues (see appendix A.1 for the
experimental validation of hallucination classification).

Previous research has primarily focused on reducing relevance
hallucinations through post-processing methods [5, 12, 15], with-
out addressing hallucinations at the source of generation. With
the expanding range of applications for query generation on short-
video platforms, generating “related search” based on video content
to attract user clicks and enhance user engagement has become
crucial for these platforms. Figure 1 presents some examples of
“related search” on short-video platforms, each of which has hun-
dreds of millions of users 1. If a generated query exhibits relevance
hallucinations, users may not click the query as clicking on “related
search” will not find content related to the video, diminishing user
interest. Conversely, if a query demonstrates factuality hallucina-
tions (without relevance hallucinations), it might initially attract
users’ interest through clickbait but fail to deliver content related
to the hallucinatory facts, thereby degrading the user experience.
Therefore, the queries we generate need to be relevant to the video
content, factually accurate, and sufficiently novel to attract user
clicks and improve user engagement.

Unlike other generation tasks, query generation primarily relies
on the inputs. Thus, decoupling the content and form at the output
end of LLMs, ensuring that the factual content of the generated
queries mainly comes from the inputs and that the syntax and
other forms are organized by LLMs, is key to keeping the generated
query truthful and reducing hallucination issues. To this end, we
propose to use the Pointer Generator (PG) technology, a sequence-
to-sequence model that integrates extraction (pointing to words
in the input) and generation (creating new words) strategies to
enhance the accuracy and relevance of the generated text [42, 46].
The PG model, combines pointer attention distribution (determin-
ing the model’s focus on different parts of the inputs), vocabulary
distribution (the probability distribution for choosing the next word
from a fixed vocabulary), and copy probability (deciding whether to
generate a word from the vocabulary distribution or copy directly
from the input), not only increases the probability of mentioning
facts presented in the inputs and decreases the likelihood of gen-
erating unrelated facts but also ensures the correctness of syntax
and other forms generated by LLMs. Although PG technology has

1TikTok: www.tiktok.com; Kwai: www.kuaishou.com; Xiaohongshu: www.
xiaohongshu.com.

1

https://anonymous.4open.science/r/LargePiG-7674
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
www.tiktok.com
www.kuaishou.com
www.xiaohongshu.com
www.xiaohongshu.com
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(a) Relevance Hallucination: The video is
from TikTok, where the “related search” at
the top presents a certain relevance hallucina-
tion, as the person in the video is playing an
electric piano rather than an electric guitar.

(b) Factuality Hallucination: The video is
from Kwai, where the “related search”
presents a certain factuality hallucination.
Singapore itself is a country, so it is illog-
ical to ask which country’s nationality it
belongs to.

(c) Truthful Query: The video is from Xi-
aohongshu, where the “related search” at
the top present is relevant and factual.

Figure 1: Examples of query generation in real applications across different short video platform.

been applied in query generation tasks with traditional language
models [19, 47], considering the enormous parameter size and train-
ing resource consumption of LLMs, adopting the traditional PG
scheme, which requires learning pointer attention distribution and
copy probability, may not only disrupt the original representations
of LLMs but also diminish their generalization capability.

Facing the above challenge, we propose a novel PG implemen-
tation that can achieve PG functionality within LLMs without re-
quiring additional training. Our method is based on two core ob-
servations: (1) Attention modules are more ‘truthful’ than other
modules in LLMs (e.g., FFN modules), allowing the intrinsic atten-
tion weights towards the input sequence within LLMs to serve as
the PG’s pointer attention distribution; (2) LLMs generate different
types of words (function words and factual knowledge words) with
distinct patterns [10, 41]. When generating function words, the
vocabulary distribution obtained from the high layers of LLMs is
relatively consistent, whereas, for factual knowledge words, the
vocabulary distribution from the high layers of LLMs shows signifi-
cant differences. Further analyzing the internal mechanism behind
the occurrence of different patterns in LLMs, we find that this
pattern is rooted in the difference in the amount of information
between function words and factual knowledge words in human
linguistics. We relaxed the requirement for LLMs to generate the
correct words, only needing them to identify the type of word to be
generated and calculate the copy probability through the difference
between the vocabulary distribution of the model’s high layers and
the last layer.

Based on this concept, we propose that Large Language Models
can essentially act as an implicitPointer-Generator (LargePiG ),
better addressing the hallucination issues in query generation. Our
method has several notable advantages: Firstly, it preserves LLMs’
powerful capabilities and generalizability, as it does not require
significant modifications to the model architecture or additional
training. Secondly, by simplifying the implementation process of
PG, our method reduces additional computational and resource re-
quirements, making it more efficient and easy to implement. Lastly,
this approach retains the advantages of PG, achieving decoupling of
content and form at the output end of LLMs, making the generated
content faithful to the inputs.

To better assess the capability of LargePiG in solving hallucina-
tion issues within query generation, we introduce TruthfulVQG and
TruthfulDQG, two challenging Truthful Query Generation bench-
marks gathered from video and document scenarios, respectively.
Experiments on these datasets demonstrate that LargePiG is capa-
ble of increasing the factuality and relevance of various LLM-based
query generation methods across different LLMs. More experiments
on the LLaVA [24] family validate the effectiveness of LargePiG
in addressing hallucination issues in query generation within mul-
timodal scenarios. Further experiments on relevance testing and
factuality evaluation demonstrate that LargePiG can individually
address relevance hallucination and factuality hallucination. Effi-
ciency analysis shows that LargePiG causes negligible latency in

2
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the query generation process, proving the practical applicability of
LargePiG.

We summarize the major contributions of this paper as follows:
(1) We identify the relevance and factuality hallucination issues

in query generation, which are crucial for ensuring effective “related
search” in short-video platforms.

(2) We propose LargePiG, a training-free, and model-agnostic
decoding method that mitigates query generation hallucinations
without modifying LLM architectures, ensuring ease of deployment.

(3) We introduce two truthful query generation benchmarks,
TruthfulVQG and TruthfulDQG, and demonstrate through ex-
tensive experiments the effectiveness of LargePiG in reducing hal-
lucinations while maintaining efficiency.

2 RELATEDWORK
Large language models based query generation. Query gener-
ation is vital for improving information retrieval systems and user
experience on short video platforms. Doc2Query [35] implements
this concept using a sequence-to-sequence model for generating
queries based on document contents. Advancing this, UDP [40]
utilizes LLMs in a zero-shot setting to predict query likelihood
from text passages. Building on this, PQGR [12] and InPars [5]
introduce few-shot and contrastive example approaches, enhanc-
ing the contextual awareness of query generation. AQG [25] fur-
ther develops LLM adaptability to query generation by employing
LoRA [17] for fine-tuning with real user queries and context, along-
side other parameter-efficient methods like soft-prompt tuning and
adapters [36, 37]. Additionally, UDAPDR [39] explores efficiency by
combining large and small models to generate and refine queries.
Our work addresses hallucination in query generation, introduc-
ing LargePiG, a novel decoding method applicable to LLM-based
query generation approaches to reduce relevance and factuality
hallucination.

Hallucination mitigation in large language models. Large
Language Models exhibit a critical tendency to produce halluci-
nations, resulting in content that is inconsistent with real-world
facts or user inputs. Hallucination mitigation strategies can be data-
driven, involving more refined filtering of pretraining data [28]
or high-quality instruction-tuning datasets [52] to reduce the like-
lihood of LLMs learning hallucinatory knowledge. Alternatively,
approaches from the input side, such as Retrieval Augmented Gen-
eration, utilize data to reduce LLM-generated hallucinations by
grounding the model with an external knowledge base [14]. How-
ever, Retrieval Augmented Generation is not well-suited for tasks
like query generation, as there is no explicit need for external re-
trieval content. Our LargePiG method focuses on reducing halluci-
nation for the query generation task from the generation side, trans-
forming the LLM into a pointer generator by leveraging intrinsic
features of the LLM to separate content and form in LLM-generated
queries. Unlike DoLa [10], which contrasts between transformer
layers to correct the next word’s probability, LargePiG derives the
copy probability from the difference between the vocabulary distri-
bution of the model’s high layers and the last layer. Moreover, these
hallucination mitigation methods are orthogonal to the LargePiG
approach taken in this paper and could potentially be used in con-
junction to mitigate hallucinations further.

3 METHOD
Current Large Language Models are fundamentally based on the
Transformer decoder-only architecture. Initially, the input text is to-
kenized and transformed into numerical vectors by the embedding
layer. Given a sequence of input tokens as 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑡−1},
where the input tokensmay include the instruction 𝐼 = {𝑥1, . . . , 𝑥𝑚−1},
the source document𝐷 = {𝑥𝑚, . . . , 𝑥𝑛}, and part of generated query
𝑄 = {𝑥𝑛+1, . . . , 𝑥𝑡−1}, the embedding layer first converts these to-
kens into a series of vectors 𝐻0 = {ℎ (0)1 , . . . , ℎ

(0)
𝑡−1}. After passing

through multiple Transformer Decoder Layers, 𝐻𝑁 is processed by
a Classification Layer, usually composed of a layer of linear layers
and softmax, mapping to the vocabulary distribution.

To address the hallucination issues present in LLM-based query
generation, we propose to incorporate themechanism of the Pointer-
Generator to enhance the model’s faithfulness to the factual knowl-
edge containedwithin the source document𝐷 . The Pointer-Generator
combines the original decoding vocabulary distribution 𝑃vocab of
the LLM with the newly introduced pointer attention distribution
𝑃source, the latter representing the probability distribution over the
source document 𝐷 . Furthermore, the Pointer-Generator includes a
copy probability 𝑝copy, which determines whether the model selects
the next word from a predefined vocabulary or directly copies a
word from the source document. We propose to use this mechanism
to ensure that the factual content in the generated query mainly
comes from 𝐷 and that the syntax and other forms are organized
by LLMs, significantly reducing the occurrence of hallucinations.

Unlike previous approaches that required retraining the pointer-
generator model to learn the pointer attention distribution and
copy probability, we propose LargePiG, a plug-in and training-free
method, to implement pointer-generator decoding within LLMs
(see Figure 2). The pointer attention distribution can utilize the
LLM’s intrinsic attentionweights towards the source document (§ 3.1);
the vocabulary distribution comes from the output of the original
LLM, ensuring the generative capability of the model (§ 3.2); and the
copy probability is derived from the difference between the vocabu-
lary distribution of the model’s high layers and the last layer (§ 3.3).
Finally, we delve into the rationality of why LargePiG can implicitly
transform LLM into a pointer generator (§ 3.4).

3.1 LargePiG: Pointer Attention Distribution
The core module of Large Language Models consists of 𝑁 stacked
Transformer layers. Each Transformer layer contains a self-attention
module and feedforward neural networks (FFN) to process the em-
bedded vectors, allowing the model to focus on the most relevant
parts of the input dynamically. As the vectors in 𝐻0 pass through
each Transformer layer, they are successively transformed, with
the output of the layer 𝑗 represented as 𝐻 𝑗 . In this process, taking
the layer 𝑗 as an example, 𝐻 𝑗−1, the output of the layer ( 𝑗 − 1),
first passes through the 𝑗-th layer’s self-attention module. Here, we
take Multi-Head Attention (MHA) as an example, which can be eas-
ily generalized to Multi-Query Attention [43] and Grouped-Query
Attention [2]:

MHA = Concat(head1, . . . , head𝑀 )𝑊𝑂 , (1)

head𝑖 = 𝐴𝑖 (𝐻 𝑗−1𝑊𝑄

𝑖
, 𝐻 𝑗−1𝑊𝐾

𝑖 , 𝐻 𝑗−1𝑊
𝑉
𝑖 ), (2)

3
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Figure 2: The architecture of the proposed plug-in and training-freemethod LargePiG. Pointer AttentionDistribution (§ 3.1) from
the LLM’s self-attention weights, Vocabulary Distribution (§ 3.2) from the output of the original LLM, Copy Probability (§ 3.3)
from the difference between the vocabulary distribution of the model’s high layers and the last layer.

𝐴𝑖 (𝑄,𝐾,𝑉 ) = 𝐴𝑤𝑖 𝑉 , 𝐴
𝑤
𝑖 = softmax

(
𝑄𝐾𝑇
√
𝑑

)
, (3)

where 𝐴𝑤
𝑖
denotes the attention weights of MHA, with 𝑀 as the

number of heads,𝑊𝑄/𝐾/𝑉 /𝑂 are learnable parameters and
√
𝑑 are

scaling factor. Since each head captures a unique attention pattern,
we aggregate these by averaging: 𝐴𝑤 = 1

𝑀

∑𝑀
𝑖=1𝐴

𝑤
𝑖
, enabling a

unified representation of attention mechanisms across heads.
In the context of LargePiG, computing the pointer attention dis-

tribution 𝑃source primarily focuses on the attention weights from
the last token in 𝐻 𝑗−1 (i.e., 𝐴𝑤𝑡−1) to the tokens of the source docu-
ment𝐷 . As the source document𝐷 corresponds to tokens from𝑚 to
𝑛 in the input sequence, we use 𝐴𝑤

𝑡−1,𝑚:𝑛 to compute 𝑃source. First,
for the values in 𝐴𝑤

𝑡−1,𝑚:𝑛 , we normalize them to ensure their sum
equals one, forming a probability distribution. Since we are only
concerned with the tokens corresponding to the source document
in 𝐴𝑤 and we already know this is extracted from a larger softmax
function, direct normalization suffices. Let this normalized vector
be P𝑚:𝑛 :

P𝑚:𝑛 =
𝐴𝑤
𝑡−1,𝑚:𝑛∑𝑛

𝑖=𝑚 𝐴
𝑤
𝑡−1,𝑖

(4)

Next, we construct the probability distribution to match the
vocabulary distribution. We depart from traditional PG by not con-
sidering new word emergence, focusing on maintaining LLM gen-
eration fidelity to input while acknowledging the prevalent use of

sentence-piece tokenization [23]. LetV be the vocabulary of the
LLM. The probability distribution for each token 𝑥𝑖 in 𝑃source within
V comes from the corresponding attention weight in P𝑚:𝑛 . There-
fore, for each token 𝑥𝑖 in the vocabulary V , its pointer attention
distribution 𝑃source (𝑥𝑖 ) is defined as:

𝑃source (𝑥𝑖 )+ =

{
P𝑚:𝑛 [ 𝑗] for all 𝑗 where 𝑥 𝑗 = 𝑥𝑖 and 𝑥 𝑗 ∈ 𝐷
0 otherwise

(5)
Thus, the probability 𝑃source (𝑥𝑖 ) for each 𝑥𝑖 ∈ 𝐷 directly corre-

sponds to the normalized attention weight P𝑚:𝑛 , while the proba-
bility for vocabulary token not in 𝐷 is 0.

3.2 LargePiG: Vocabulary Distribution
The generation of the vocabulary distribution in the LargePiG
model is seamlessly integrated with the output of the original LLM.
This integration is achieved through the model’s final component,
an affine transformation layer commonly called the classification
layer. This layer maps the output of the last Transformer layer 𝐻𝑁 ,
to the vocabulary distribution 𝑃vocab over the vocabulary set V .
The probability distribution for the next token 𝑥𝑡 given the preced-
ing sequence 𝑥<𝑡 , is computed by applying a softmax function to
the affine-transformed output:

𝑃vocab (𝑥𝑡 ) = 𝑞𝑁 (𝑥𝑡 | 𝑥<𝑡 ) = softmax
(
𝜙

(
ℎ
(𝑁 )
𝑡−1

))
𝑥𝑡
, 𝑥𝑡 ∈ V

(6)
4
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where ℎ (𝑁 )
𝑡−1 is the output vector from the last Transformer layer for

the position (𝑡 − 1) in 𝐻𝑁 , and 𝜙 (·) performs the affine transforma-
tion to project this vector into the vocabulary space. The subscript
𝑥𝑡 indicates that we extract the probability corresponding to the
token 𝑥𝑡 from the softmax output. This approach ensures that the
generative capabilities of the underlying LLM are preserved within
our LargePiG framework. Through this methodology, LargePiG
leverages the extensive linguistic and syntactic knowledge of the
LLM, thereby significantly retaining the richness and fluency of
the generated query.

3.3 LargePiG: Copy Probability
The copy probability in our LargePiGmodel leverages the difference
between the vocabulary distribution of the LLM’s high layers and
the last layer. For the layer 𝑗 , we also compute the vocabulary
distribution using 𝜙 (·) as follows, where J is a set of candidate
layers and this operation is called early exiting [41, 44]:

𝑞 𝑗 (𝑥𝑡 | 𝑥<𝑡 ) = softmax
(
𝜙

(
ℎ
( 𝑗 )
𝑡−1

))
𝑥𝑡
, 𝑗 ∈ J . (7)

Based on the findings of Chuang et al. [10] and early exit decoding
research [13, 41], when LLMs generate function words (e.g., auxil-
iary verbs, prepositions, conjunctions), the vocabulary distribution
𝑞 𝑗 (𝑥𝑡 | 𝑥<𝑡 ) stabilizes at high layers. In contrast, when generating
factual knowledge words (e.g., names, places, dates), the vocabulary
distribution continues to evolve at high layers. In the query gen-
eration task, we expect the factual content in the generated query
primarily comes from the source document, while syntax and other
forms are organized by the LLM. This implies we can use the vo-
cabulary distribution 𝑞𝑁 (𝑥𝑡 | 𝑥<𝑡 ) from the last transformer layer
as an anchor layer, and by calculating the distributional differences
with the vocabulary distributions from other high layers, deter-
mining whether LLM is generating factual knowledge words or
function words. A larger distributional difference suggests a higher
likelihood of generating factual knowledge words. Since our goal
is to ensure that the factual content of the generated query mainly
comes from the input document, the copy probability should be
higher in such cases, and vice versa. Therefore, the copy probability
can be calculated as follows:

𝑝cp = O𝑗∈J𝑑
(
𝑞𝑁 (𝑥𝑡 | 𝑥<𝑡 ) , 𝑞 𝑗 (𝑥𝑡 | 𝑥<𝑡 )

)
, (8)

where O can be an average 1
| J |

∑
, a max, or a min operation,

𝑑 (·, ·) is a distributional distance measure such as Jensen-Shannon
Divergence [10, 32], and J is the set of high-layers around the
anchor layer. We can control the intensity of copying by adjusting
O and J . A larger range of J and O being max increases the
likelihood of copying, while a smaller range of J and O being min
decreases it.

The final distribution generated by LargePiG is given by:

𝑃LargePiG (𝑥𝑡 ) = 𝑝cp𝑃source (𝑥𝑡 ) + (1 − 𝑝cp)𝑃vocab (𝑥𝑡 ). (9)

3.4 Exploring the Internal Mechanisms of
LargePiG

The key to LargePiG’s functionality lies in LLM’s ability to correctly
reflect the current generated token’s attention weights towards

the source document and generate factual knowledge words and
function words in the pattern we mentioned in § 3.3.

Regarding the pointer attention distribution, we analyzed
the causes of hallucinations in query generation in § 1, concluding
that the attention modules in LLMs are more ‘truthful’ than the
FFN modules and classification layer. The factuality hallucina-
tion mainly arises from the LLM’s insufficient knowledge about
the source document. Some studies have shown that knowledge is
mainly stored in the FFN module of the transformer layer in pre-
trained language model [11]. Even if the self-attention module cor-
rectly focuses on the relevant token, the FFN module may still pro-
duce factuality hallucinations due to insufficient pre-training [31].
Moreover, Jiang et al. [20] found that MLP modules have a more
significant impact on incorrect outputs than attention modules, in-
dicating that in the transformer layers of LLMs, attention modules
are more ‘truthful’ than FFN modules. The relevance hallucina-
tion can be attributed to the softmax bottleneck issue inherent in
LLMs [7, 51], where the model predicts the probability of each word
across the entire vocabulary, struggling to differentiate between
words that are almost equally likely in a given pre-training context
but have different meanings in the current situation. The softmax
bottleneck primarily stems from the final classification layer, which
is structurally unrelated to the attention module in the transformer
layer we use. In Appendix A.2, we further experimentally verify
that the attention modules in LLMs are more ’truthful’ than the
FFN modules and the classification layer.

Regarding the copy probability, we delve deeper into the
findings of [10, 41], questioning why LLM predictions for function
words stabilize at high layers’ vocabulary distributions, while pre-
dictions for factual knowledge words do not. Research on early exit
decoding [13, 41, 44] has demonstrated that different data samples
(tasks) possess varying complexities. For multi-layer stacked deep
models, such as ResNet [16] and LLaMA [45], simple tasks may
only require shallow layers for completion, whereas complex tasks
demand the involvement of all layers. The scaling law [22] and
the emergence ability [49] also testify to this, with the model’s
ability to solve more complex tasks increasing alongside its size and
layer number. Returning to our task, predicting function words can
exit at shallower layers, while predicting factual knowledge words
requires deeper layers, indicating that predicting function words is
simpler, whereas predicting factual knowledge is more complex.

Why is predicting function words simpler, and predicting fac-
tual knowledge more complex? Achille et al. [1] demonstrated that
tasks with greater information content are more complex. Since
LLMs learn from human language, if we can verify that factual
knowledge words in human language convey more information
than function words, then the pattern mentioned above is deter-
mined by the nature of human language itself. Our experimental
analysis within our TruthfulVQG and TruthfulDQG benchmarks
investigated the semantic impact of removing factual knowledge
words versus function words, with experimental details provided
in Appendix A.3. The results show that on both datasets, removing
factual knowledge words causes a greater decrease in semantic
similarity scores with the original sentence compared to function
words. These findings confirm that factual knowledge words con-
tribute more significantly to the sentence’s informational content
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Table 1: Performance comparisons between LargePiG and the baselines. The boldface represents the best performance. ‘†’
means improvements are significant (paired t-test at 𝑝-value < 0.05).

Qwen1.5 7B Chat LLaMA2 7B Chat

Model TruthfulVQG TruthfulDQG TruthfulVQG TruthfulDQG

MC1 MC2 MC3 MC1 MC2 MC3 MC1 MC2 MC3 MC1 MC2 MC3

Base 40.35 66.97 37.70 27.34 85.77 39.83 52.94 75.12 46.01 33.72 71.61 34.29
+ CD 35.79 63.43 36.49 24.25 85.60 37.99 – – – – – –
+ DoLa 37.97 64.73 35.68 23.52 85.05 37.09 52.79 75.25 46.10 35.09 69.97 33.19
+ LargePiG 41.49† 68.12† 38.92† 29.91† 89.33† 42.18† 54.56† 76.15† 47.20† 37.23† 70.95 36.93†

PQGR 43.61 70.08 41.26 25.86 77.23 36.86 52.22 74.21 45.60 32.28 65.74 31.41
+ CD 41.71 66.10 40.69 23.84 77.90 35.58 – – – – – –
+ DoLa 40.13 66.50 38.24 23.79 76.51 35.67 51.83 73.69 44.54 31.92 64.41 31.52
+ LargePiG 45.52† 70.79† 42.54† 27.12† 79.20† 38.35† 52.87† 74.87† 46.27† 34.66† 68.34† 34.21†

InPars 44.35 70.77 41.56 26.09 78.82 37.37 52.53 74.53 45.85 30.66 64.43 30.32
+ CD 43.91 68.90 39.82 24.06 77.20 35.69 – – – – – –
+ DoLa 40.35 66.90 38.48 24.48 77.57 36.96 51.59 74.33 44.86 29.87 63.97 29.52
+ LargePiG 46.26† 71.51† 42.82† 27.34† 81.17† 38.53† 53.03† 74.74 46.20† 33.70† 67.30† 33.36†

AQG 40.50 67.26 37.85 27.41 85.86 39.93 54.00 75.92 46.87 34.82 71.62 34.42
+ CD 36.79 63.36 33.44 24.23 83.56 37.96 – – – – – –
+ DoLa 37.99 64.65 35.62 25.59 85.28 39.21 52.79 75.25 46.10 33.02 70.96 33.17
+ LargePiG 41.56† 68.13† 39.06† 29.99† 89.58† 42.35† 54.84† 76.73† 47.76† 37.09† 71.04 36.82†

than function words, highlighting the complexity of predicting fac-
tual knowledge words. Verifying that the pattern found in [10, 41],
rooted in the linguistic properties of human language, is a princi-
ple that holds true across multiple languages, even though initial
studies focused on English scenarios. Our subsequent experiments
expanded this understanding to multiple languages, validating the
feasibility of employing this pattern for calculating copy probabil-
ity in LargePiG. For further analysis of the effectiveness of copy
probability in LargePiG, see Appendix A.3.

4 EXPERIMENT
4.1 Experimental Settings
Datasets. To quantitatively assess the truthful query generation
capabilities of LargePiG in both video (e.g., TikTok) and document
(e.g., Bing Search) scenarios, considering the absence of relevant
datasets, we constructed two challenging benchmarks named Truth-
fulVQG and TruthfulDQG. These benchmarks correspond to for-
mats similar to TruthfulQA [29], crafted from video (Chinese cor-
pus) and document (English corpus) respectively, to validate the
model’s query generation truthfulness. The construction of the
benchmarks utilized a combination of LLM and manual methods.
The completed data format is shown in Table 8 of Appendix A.5,
where “Bad queries” are those containing either relevance hallucina-
tions or factuality hallucinations or both, “Good queries” are those
without any hallucinations, and “Best query” represents the optimal
query. The construction process is detailed in Appendix A.4 and

Appendix A.5, and the statistical results of the datasets are shown
in Table 9.

Metrics. To evaluate LLMs in truthful query generation, we inde-
pendently compute each reference query’s log-probability. Drawing
inspiration from the evaluation metrics of TruthfulQA-MC [10, 29],
the metrics used to assess the truthfulness of the model-generated
queries includeMC1 (the percentage of all data where the best query
log-probability is greater than all bad queries log-probability), MC2
(normalized total probability assigned to the set of good queries),
and MC3 (the percentage of all good queries where each good query
log-probability is greater than all bad queries log-probability).

Models and Baselines.We employed two types of backbone
LLMs, Qwen1.5 7B chat [3] and LLaMA2 7B chat [45], and uti-
lized four LLM-based query generation approaches, including (1)
Base: using the backbone LLMs to directly generate queries in a
zero-shot manner; (2) PQGR [12]: prompting the LLM with 8 in-
context examples to generate queries, which achieves more suitable
queries compared to the Base approach; (3) Inpars [5]: includes
not only good queries in the in-context examples but also bad
queries to enable the model to generate better queries through
comparison; (4) AQG [25]: employ LoRA [17] to fine-tuning the
LLM using real-world user-input queries and context data to en-
hance the model’s query generation capability. The implementation
details of these LLM-based query generation approaches are in Ap-
pendix A.6. Our approach, LargePiG, is model-agnostic and can
be applied to different LLM-based query-generation methods, re-
ducing the relevance and factuality hallucinations associated with
model-generated queries. The implementation details of LargePiG
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Table 2: Experimental results on multimodal data.

Model MC1 MC2 MC3

LLaVA-7B 58.40 80.45 51.54
+ LargePiG 59.80 81.74 52.94

LLaVA-13B 57.20 79.18 50.74
+ LargePiG 58.10 79.93 51.26

are provided in Appendix A.7. For baseline models, we compared
LargePiG with recent closely related work aimed at reducing hallu-
cinations in LLMs: DoLa [10], which enhances factuality in LLMs
by decoding through contrasting layers, and Contrastive Decod-
ing (CD) [27], which improves factuality in LLMs’ generations by
leveraging the contrasts between LLMs of different sizes, selecting
tokens that maximize their log-likelihood difference. For Qwen1.5
7B chat, we chose Qwen1.5 1.8B chat [3] as the contrast model
for CD. Since there is no smaller-sized model for LLaMA2 7B chat,
we could not perform CD experiments on this model. DoLa, CD,
and LargePiG are all training-free decoding methods for reducing
hallucinations in LLM generation, making them fair for comparison.

4.2 Results
Main result. As shown in Table 1, LargePiG has demonstrated
improvements across two datasets, various backbone methods, and
different metrics, validating LargePiG’s ability to enhance the truth-
fulness of LLM-based query generation methods. The effectiveness
observed across datasets in different languages further corrobo-
rates the analysis presented in Section 3.4. Moreover, our method
has surpassed CD and DoLa, which even exhibited negative gains
on some datasets. The primary reason is that query generation
primarily relies on the factual knowledge in the inputs, requiring
less generated factual knowledge from the model, whereas DoLa
and CD stimulate the model’s knowledge by contrasting shallow
layers’ logits with deep layers’ logits or contrasting large LLM’s
logits with small LLM’s logits, which may lead to the generation of
facts that do not align with the context. In the following analysis
experiments, we will further discuss the respective advantages of
CD, DoLa and LargePiG, and analyze in detail from the perspec-
tives of relevance hallucinations and factuality hallucinations how
LargePiG can improve the truthfulness of LLM generation. Further
verification in Appendix A.13 confirmed that queries generated by
LargePiG exhibit higher similarity to the real queries. Additionally,
human evaluation and case studies in Appendix A.13 showed that
LargePiG not only reduced relevance and factual hallucinations in
the generated queries but also made them more appealing to users.

Multimodal result. LargePiG is effective not only on large lan-
guage models but can also be applied to Large Vision-Language
Models (LVLM), further enhancing the truthfulness of query gener-
ation that integrates both vision and language modalities. We se-
lected the recently popular large vision-language model LLaVA [24]
as the backbone model. Detailed method descriptions about the im-
plementation can be found in Appendix A.8. To validate LargePiG’s
ability to address hallucination issues in multimodal query genera-
tion tasks, we compiled a multimodal version of the TruthfulVQG

Table 3: Experiment results on FACTOR.

LLaMA-7B LLaMA-13B

Model News Wiki News Wiki

Base 58.3 58.6 61.1 62.6
+ CD [26] - - 62.3 64.4
+ DoLa [10] 62.0 62.2 62.5 66.2
+ LargePiG 71.0 60.4 72.1 63.1
+ DoLa + LargePiG 63.4 64.7 65.3 68.8

dataset, named TruthfulVQG-M. Experimental results on LLaVA-
7B/13B, shown in Table 2, indicate that the truthfulness of queries
generated by LargePiG surpasses those produced by the original
decoding method, confirming the effectiveness of LargePiG in mul-
timodal tasks. We also observed that LLaVA-13B performs less ef-
fectively than LLaVA-7B, a potential reason being that in the video
query generation task, due to the high noise level in video content,
the more complex LLaVA-13B model might be more sensitive to
noise. Furthermore, short videos contain some new content not
present in the pre-training data, which could lead to easier overfit-
ting to the training data in a zero-shot scenario, thus resulting in
suboptimal performance compared to LLaVA-7B.

4.3 Analysis
LargePiG’s ability to reduce factuality hallucinations. To
specifically validate LargePiG’s capability to address factual hallu-
cinations, we selected the News and Wiki categories of FACTOR
dataset [33], which assesses LLMs’ factuality in long-paragraph
settings by completion task. The News’ ground-truth answers are
based on facts from news content, which LLMs may not have suf-
ficiently learned during training; the Wiki contains general facts
well-learned during pre-training, allowing LLMs to respond based
on pre-trained knowledge and also to learn from the context. To
ensure a fair comparison with DoLa, we chose LLaMA-7B and
LLaMA-13B as the backbone LLMs following DoLa’s setting.

The experimental results shown in Table 3 demonstrate that on
the News dataset, LargePiG successfully enhanced the copy ability
of Base models to address hallucinations, thereby significantly out-
performing other methods that solely rely on the model’s intrinsic
pre-trained knowledge and original context understanding capa-
bilities. Given the feature of the Wiki dataset, although the results
for LargePiG on Wiki do not surpass other methods that stimu-
late the model’s own pre-trained knowledge, they still exceed the
base model, validating the contribution of LargePiG’s copy ability
to resolving hallucinations. Moreover, LargePiG can be combined
with state-of-the-art methods that are based on the model’s pre-
trained knowledge, achieving advancements beyond the current
state of the art (i.e., +DoLa + LargePiG > +DoLa). This suggests that
LargePiG’s copy ability can be synergistically integrated with the
model’s inherent pre-trained knowledge.

LargePiG’s ability to reduce relevance hallucinations. To
independently verify LargePiG’s capability to resolve relevance
hallucinations, we generated queries using different models and

7



813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference’17, July 2017, Washington, DC, USA Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

0 20 40 60 80 100

AQG

InPars

PQGR

Base

68% 32%

70% 30%

73% 27%

72% 28%

w/ LargePiG Win Rate
w/o LargePiG Win Rate

Figure 3: Semantic similarity win rate of Qwen1.5-7B-Chat
with LargePiG vs without LargePiG on TruthfulVQG.

Table 4: Relevancewin rate comparison betweenQwen1.5-7B-
Chat with LargePiG and without LargePiG on TruthfulVQG.

Model LargePiG Win Original Model Win Tie

Base 827 70 103
PQGR 749 181 70
InPars 805 141 54
AQG 831 73 96

then encoded them and the corresponding context using the cur-
rent state-of-the-art text representation model BGE [50] to calcu-
late their cosine semantic similarity. The pairwise comparisons of
cosine similarity are presented on Figure 3, demonstrating that
LargePiG notably outperforms the baseline models. The results on
TruthfulDQG are detailed in Appendix A.9, which presents similar
conclusions to those found in the experiments on TruthfulVQG.
This indicates that LargePiG effectively reduces the relevance hal-
lucinations of query generation. In addition, we used GPT-4o (from
OpenAI) to assess LargePiG’s ability to reduce relevance halluci-
nations (see prompt in Appendix A.11). Considering time and API
cost factors, we sampled 1000 data points from TruthfulVQG for
evaluation. The experiments in Table 4, judged by GPT-4o, further
confirm that LargePiG can mitigate relevance hallucinations.

LargePiG’s ability to copy. To validate whether LargePiG has
a stronger copy ability compared to the original LLM decoder, we
tested the performance of LLM with and without the addition of
LargePiG on tasks that require copying from the inputs. Following
the setting of Jelassi et al. [18] for validating LLMs’ copy capability,
we selected the SQuAD question-answering dataset [38], which pro-
vides text paragraphs along with several questions pertaining to the
text and features various inputs lengths. We conducted experiments
on Qwen1.5-7B-Chat, reported the F1 score, and classified ques-
tions into short and long categories based on whether their length
exceeded 200 words. The results on Figure 4 show that LargePiG
significantly improved the F1 score on Qwen1.5-7B-Chat, with more
pronounced improvements for scenarios with long inputs, indicat-
ing that LargePiG indeed enhances the copy ability of LLMs. Similar
results on LLaMA2-7B-Chat are shown in Appendix A.10.

Short Long Overall
Input Length

35.0

37.5

40.0

42.5

45.0

47.5

50.0

52.5

55.0

Sc
or

es

Qwen1.5 7B
Qwen1.5 7B + LargePiG
Improvement

Figure 4: Comparison of the Copying Ability between
Qwen1.5-7B-Chat and Qwen1.5-7B-Chat with LargePiG on
the SQuAD dataset.

Table 5: Decoding latency (ms/token).

Baseline DoLa LargePiG

Base / AQG 95.9 (×1.00) 99.9 (×1.04) 101.8 (×1.06)
InPars 135.1 (×1.00) 142.4 (×1.05) 139.8 (×1.03)
PQGR 142.0 (×1.00) 148.3 (×1.04) 149.1 (×1.05)

Efficiency analysis.We use NVIDIA V100-32G GPUs and 52-
core Intel(R) Xeon(R) Gold 6230R CPUs at 2.10GHz machine to
analyze the efficiency of original decoding (baseline), DoLa, and
LargePiG when applied across different query generation models.
The decoding time of LargePiG in LLaMA2-7B models increases
by a maximum of 6% compared to the baseline and is on par with
the decoding time of DoLa, as shown in Table 5 (experiments on
Qwen1.5-7B are detailed in Appendix A.12). The results demon-
strate that LargePiG can enhance the truthfulness of query gen-
eration with negligible additional time consumption, proving the
practical applicability of LargePiG.

5 CONCLUSIONS
LLM-based query generation significantly improves query quality
and user experience in information retrieval systems, but it also
introduces hallucination challenges, hindering its application in
emerging use cases such as “related search”. To address these, we
propose LargePiG, a training-freemethod transforming an LLM into
a Pointer-Generator. LargePiG separates content and form in LLM-
generated queries, using input knowledge for fact generation and
LLM capabilities for syntactic structure. It combines self-attention
weights for pointer attention distribution, LLM original output as
vocabulary distribution, and high-layer vocabulary distribution for
copy probability. Our empirical evaluations on the proposed Truth-
fulVQG and TruthfulDQG datasets confirm LargePiG’s effectiveness
in reducing hallucination on query generation tasks.

8



929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

LargePiG for Hallucination-FreeQuery Generation: Your Large Language Model is Secretly a Pointer Generator Conference’17, July 2017, Washington, DC, USA

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] Alessandro Achille, Giovanni Paolini, Glen Mbeng, and Stefano Soatto. 2021.

The information complexity of learning tasks, their structure and their distance.
Information and Inference: A Journal of the IMA 10, 1 (2021), 51–72.

[2] Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico
Lebron, and Sumit Sanghai. 2023. GQA: Training Generalized Multi-Query
Transformer Models from Multi-Head Checkpoints. In Proceedings of the 2023
Conference on Empirical Methods in Natural Language Processing. 4895–4901.

[3] Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan,
Wenbin Ge, Yu Han, Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji
Lin, Dayiheng Liu, Gao Liu, Chengqiang Lu, Keming Lu, Jianxin Ma, Rui Men,
Xingzhang Ren, Xuancheng Ren, Chuanqi Tan, Sinan Tan, Jianhong Tu, Peng
Wang, Shijie Wang, Wei Wang, Shengguang Wu, Benfeng Xu, Jin Xu, An Yang,
Hao Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi Yuan, Zheng
Yuan, Jianwei Zhang, Xingxuan Zhang, Yichang Zhang, Zhenru Zhang, Chang
Zhou, Jingren Zhou, Xiaohuan Zhou, and Tianhang Zhu. 2023. Qwen Technical
Report. arXiv preprint arXiv:2309.16609 (2023).

[4] Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng, Jianfeng Gao, Xiaodong
Liu, Rangan Majumder, Andrew McNamara, Bhaskar Mitra, Tri Nguyen, et al.
2016. Ms marco: A human generated machine reading comprehension dataset.
arXiv preprint arXiv:1611.09268 (2016).

[5] Luiz Bonifacio, Hugo Abonizio, Marzieh Fadaee, and Rodrigo Nogueira. 2022.
Inpars: Unsupervised dataset generation for information retrieval. In Proceedings
of the 45th International ACM SIGIR Conference on Research and Development
in Information Retrieval. 2387–2392.

[6] Zheng Cai, Maosong Cao, Haojiong Chen, Kai Chen, Keyu Chen, Xin Chen, Xun
Chen, Zehui Chen, Zhi Chen, Pei Chu, et al. 2024. Internlm2 technical report.
arXiv preprint arXiv:2403.17297 (2024).

[7] Haw-Shiuan Chang, Zonghai Yao, Alolika Gon, Hong Yu, and Andrew Mccallum.
2023. Revisiting the Architectures like Pointer Networks to Efficiently Improve
the Next Word Distribution, Summarization Factuality, and Beyond. In Findings
of the Association for Computational Linguistics: ACL 2023. 12707–12730.

[8] Xiang Chen, Chenxi Wang, Yida Xue, Ningyu Zhang, Xiaoyan Yang, Qiang Li,
Yue Shen, Jinjie Gu, and Huajun Chen. 2024. Unified Hallucination Detection for
Multimodal Large Language Models. arXiv preprint arXiv:2402.03190 (2024).

[9] I-Chun Chern, Steffi Chern, Shiqi Chen, Weizhe Yuan, Kehua Feng, Chunting
Zhou, Junxian He, Graham Neubig, Pengfei Liu, et al. 2023. FacTool: Factuality
Detection in Generative AI–A Tool Augmented Framework for Multi-Task and
Multi-Domain Scenarios. arXiv preprint arXiv:2307.13528 (2023).

[10] Yung-Sung Chuang, Yujia Xie, Hongyin Luo, Yoon Kim, James R Glass, and
Pengcheng He. 2023. DoLa: Decoding by Contrasting Layers Improves Factuality
in Large LanguageModels. In The Twelfth International Conference on Learning
Representations.

[11] Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao Chang, and Furu Wei. 2022.
Knowledge Neurons in Pretrained Transformers. In Proceedings of the 60th
Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers). 8493–8502.

[12] Zhuyun Dai, Vincent Y Zhao, Ji Ma, Yi Luan, Jianmo Ni, Jing Lu, Anton Bakalov,
Kelvin Guu, Keith Hall, and Ming-Wei Chang. 2022. Promptagator: Few-shot
Dense Retrieval From 8 Examples. In The Eleventh International Conference on
Learning Representations.

[13] Siqi Fan, Xin Jiang, Xiang Li, Xuying Meng, Peng Han, Shuo Shang, Aixin Sun,
YequanWang, and ZhongyuanWang. 2024. Not all Layers of LLMs are Necessary
during Inference. arXiv preprint arXiv:2403.02181 (2024).

[14] Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yi Dai,
Jiawei Sun, and Haofen Wang. 2023. Retrieval-augmented generation for large
language models: A survey. arXiv preprint arXiv:2312.10997 (2023).

[15] Mitko Gospodinov, Sean MacAvaney, and Craig Macdonald. 2023. Doc2query–:
When less is more. In European Conference on Information Retrieval. Springer,
414–422.

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep resid-
ual learning for image recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition. 770–778.

[17] Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean
Wang, Lu Wang, and Weizhu Chen. 2022. LoRA: Low-Rank Adaptation of Large
Language Models. In International Conference on Learning Representations.
https://openreview.net/forum?id=nZeVKeeFYf9

[18] Samy Jelassi, David Brandfonbrener, Sham M Kakade, and Eran Malach. 2024.
Repeat after me: Transformers are better than state space models at copying.
arXiv preprint arXiv:2402.01032 (2024).

[19] Xin Jia, Wenjie Zhou, Xu Sun, and Yunfang Wu. 2021. Eqg-race: Examination-
type question generation. In Proceedings of the AAAI conference on artificial
intelligence, Vol. 35. 13143–13151.

[20] Che Jiang, Biqing Qi, XiangyuHong, Dayuan Fu, Yang Cheng, FandongMeng, Mo
Yu, Bowen Zhou, and Jie Zhou. 2024. On Large Language Models’ Hallucination
with Regard to Known Facts. arXiv preprint arXiv:2403.20009 (2024).

[21] Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019. Billion-scale similarity
search with GPUs. IEEE Transactions on Big Data 7, 3 (2019), 535–547.

[22] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess,
Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural languagemodels. arXiv preprint arXiv:2001.08361 (2020).

[23] Taku Kudo and John Richardson. 2018. SentencePiece: A simple and language
independent subword tokenizer and detokenizer for Neural Text Processing. In
Proceedings of the 2018 Conference on Empirical Methods in Natural Language
Processing: System Demonstrations. 66–71.

[24] Chunyuan Li, Cliff Wong, Sheng Zhang, Naoto Usuyama, Haotian Liu, Jianwei
Yang, Tristan Naumann, Hoifung Poon, and Jianfeng Gao. 2024. Llava-med: Train-
ing a large language-and-vision assistant for biomedicine in one day. Advances
in Neural Information Processing Systems 36 (2024).

[25] Xingxuan Li, Ruochen Zhao, Yew Ken Chia, Bosheng Ding, Shafiq Joty, Soujanya
Poria, and Lidong Bing. 2023. Chain-of-knowledge: Grounding large language
models via dynamic knowledge adapting over heterogeneous sources. In The
Twelfth International Conference on Learning Representations.

[26] Xiang Lisa Li, Ari Holtzman, Daniel Fried, Percy Liang, Jason Eisner, Tatsunori
Hashimoto, Luke Zettlemoyer, and Mike Lewis. 2022. Contrastive decoding:
Open-ended text generation as optimization. arXiv preprint arXiv:2210.15097
(2022).

[27] Xiang Lisa Li, Ari Holtzman, Daniel Fried, Percy Liang, Jason Eisner, Tatsunori
Hashimoto, Luke Zettlemoyer, and Mike Lewis. 2023. Contrastive Decod-
ing: Open-ended Text Generation as Optimization. In Proceedings of the 61st
Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (Eds.). As-
sociation for Computational Linguistics, Toronto, Canada, 12286–12312. https:
//doi.org/10.18653/v1/2023.acl-long.687

[28] Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie Del Giorno, Suriya Gunasekar,
and Yin Tat Lee. 2023. Textbooks are all you need ii: phi-1.5 technical report.
arXiv preprint arXiv:2309.05463 (2023).

[29] Stephanie Lin, JacobHilton, andOwain Evans. 2022. TruthfulQA:MeasuringHow
Models Mimic Human Falsehoods. In Proceedings of the 60th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers). 3214–
3252.

[30] Fuxiao Liu, Tianrui Guan, Zongxia Li, Lichang Chen, Yaser Yacoob, Dinesh
Manocha, and Tianyi Zhou. 2023. Hallusionbench: You see what you think? or
you think what you see? an image-context reasoning benchmark challenging
for gpt-4v (ision), llava-1.5, and other multi-modality models. arXiv preprint
arXiv:2310.14566 (2023).

[31] Ang Lv, Kaiyi Zhang, Yuhan Chen, Yulong Wang, Lifeng Liu, Ji-Rong Wen,
Jian Xie, and Rui Yan. 2024. Interpreting Key Mechanisms of Factual Recall in
Transformer-Based Language Models. arXiv preprint arXiv:2403.19521 (2024).

[32] ML Menéndez, JA Pardo, L Pardo, and MC Pardo. 1997. The jensen-shannon
divergence. Journal of the Franklin Institute 334, 2 (1997), 307–318.

[33] Dor Muhlgay, Ori Ram, Inbal Magar, Yoav Levine, Nir Ratner, Yonatan Belinkov,
Omri Abend, Kevin Leyton-Brown, Amnon Shashua, and Yoav Shoham. 2023.
Generating benchmarks for factuality evaluation of language models. arXiv
preprint arXiv:2307.06908 (2023).

[34] Cheng Niu, Yuanhao Wu, Juno Zhu, Siliang Xu, KaShun Shum, Randy Zhong,
Juntong Song, and Tong Zhang. 2024. RAGTruth: A Hallucination Corpus for
Developing Trustworthy Retrieval-Augmented LanguageModels. In Proceedings
of the 62nd Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers). Association for Computational Linguistics, Bangkok,
Thailand.

[35] Rodrigo Nogueira, Wei Yang, Jimmy Lin, and Kyunghyun Cho. 2019. Document
expansion by query prediction. arXiv preprint arXiv:1904.08375 (2019).

[36] Zhiyuan Peng, XuyangWu, and Yi Fang. 2023. Soft prompt tuning for augmenting
dense retrieval with large language models. arXiv preprint arXiv:2307.08303
(2023).

[37] Zhiyuan Peng, Xuyang Wu, Qifan Wang, Sravanthi Rajanala, and Yi Fang. 2024.
Q-PEFT: Query-dependent Parameter Efficient Fine-tuning for Text Reranking
with Large Language Models. arXiv preprint arXiv:2404.04522 (2024).

[38] Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018. KnowWhat You Don’t Know:
Unanswerable Questions for SQuAD. In Proceedings of the 56th Annual Meeting
of the Association for Computational Linguistics (Volume 2: Short Papers), Iryna
Gurevych and Yusuke Miyao (Eds.). Melbourne, Australia, 784–789. https:
//doi.org/10.18653/v1/P18-2124

[39] Jon Saad-Falcon, Omar Khattab, Keshav Santhanam, Radu Florian, Martin Franz,
Salim Roukos, Avirup Sil, Md Sultan, and Christopher Potts. 2023. UDAPDR:
Unsupervised Domain Adaptation via LLM Prompting and Distillation of
Rerankers. In Proceedings of the 2023 Conference on Empirical Methods in
Natural Language Processing. 11265–11279.

[40] Devendra Sachan, Mike Lewis, Mandar Joshi, Armen Aghajanyan, Wen-tau
Yih, Joelle Pineau, and Luke Zettlemoyer. 2022. Improving Passage Retrieval
with Zero-Shot Question Generation. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing. 3781–3797.

9

https://openreview.net/forum?id=nZeVKeeFYf9
https://doi.org/10.18653/v1/2023.acl-long.687
https://doi.org/10.18653/v1/2023.acl-long.687
https://doi.org/10.18653/v1/P18-2124
https://doi.org/10.18653/v1/P18-2124


1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference’17, July 2017, Washington, DC, USA Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

[41] Tal Schuster, Adam Fisch, Jai Gupta, Mostafa Dehghani, Dara Bahri, Vinh Tran, Yi
Tay, and Donald Metzler. 2022. Confident adaptive language modeling. Advances
in Neural Information Processing Systems 35 (2022), 17456–17472.

[42] Abigail See, Peter Liu, and Christopher Manning. 2017. Get To The Point: Sum-
marization with Pointer-Generator Networks. In Association for Computational
Linguistics. https://arxiv.org/abs/1704.04368

[43] Noam Shazeer. 2019. Fast transformer decoding: One write-head is all you need.
arXiv preprint arXiv:1911.02150 (2019).

[44] Surat Teerapittayanon, Bradley McDanel, and Hsiang-Tsung Kung. 2016.
Branchynet: Fast inference via early exiting from deep neural networks. In 2016
23rd international conference on pattern recognition (ICPR). IEEE, 2464–2469.

[45] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yas-
mine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhos-
ale, et al. 2023. Llama 2: Open foundation and fine-tuned chat models. arXiv
preprint arXiv:2307.09288 (2023).

[46] Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. 2015. Pointer networks.
Advances in neural information processing systems 28 (2015).

[47] Siyuan Wang, Zhongyu Wei, Zhihao Fan, Yang Liu, and Xuanjing Huang. 2019.
A multi-agent communication framework for question-worthy phrase extraction
and question generation. In Proceedings of the AAAI conference on artificial
intelligence, Vol. 33. 7168–7175.

[48] Yujing Wang, Yingyan Hou, Haonan Wang, Ziming Miao, Shibin Wu, Qi Chen,
Yuqing Xia, Chengmin Chi, Guoshuai Zhao, Zheng Liu, et al. 2022. A neural cor-
pus indexer for document retrieval. Advances in Neural Information Processing
Systems 35 (2022), 25600–25614.

[49] Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian
Borgeaud, Dani Yogatama, Maarten Bosma, Denny Zhou, Donald Metzler, et al.
2022. Emergent Abilities of Large Language Models. Transactions on Machine
Learning Research (2022).

[50] Shitao Xiao, Zheng Liu, Peitian Zhang, and Niklas Muennighof. 2023. C-pack:
Packaged resources to advance general chinese embedding. arXiv preprint
arXiv:2309.07597 (2023).

[51] Zhilin Yang, Zihang Dai, Ruslan Salakhutdinov, and William W Cohen. 2018.
Breaking the Softmax Bottleneck: A High-Rank RNN Language Model. In
International Conference on Learning Representations.

[52] Chunting Zhou, Pengfei Liu, Puxin Xu, Srinivasan Iyer, Jiao Sun, Yuning Mao,
Xuezhe Ma, Avia Efrat, Ping Yu, Lili Yu, et al. 2024. Lima: Less is more for
alignment. Advances in Neural Information Processing Systems 36 (2024).

A APPENDIX / SUPPLEMENTAL MATERIAL
A.1 Experimental Verification of Hallucination

Classification
Our hallucination classification for generated query is grounded in
real-world observations, aiming to help readers better understand
the distinct types of hallucinations present in query generation.
This categorization is intended to offer valuable insights for future
research in this domain. To further validate our classification, we
conducted an analysis experiment using the TruthfulVQG dataset
(Detailed in Section 4.1). In this experiment, we encoded both the
generated queries and corresponding video content using BGE [50]
and computed the cosine similarity to obtain a Semantic Simi-
larity score. The results demonstrate that factual hallucinations
can occur independently, even in the absence of relevance hallu-
cinations, highlighting the need to decouple these two types of
hallucinations for more precise handling.

The experimental results in Table 6 confirm that factual hallu-
cinations can persist even with high semantic similarity scores.
This finding underscores the importance of treating relevance and
factual hallucinations separately to improve query generation and
retrieval quality.

A.2 Evaluation of attention modules are more
‘truthful’ than FFN modules

In section 3.4, we propose that Attention modules are more ‘truth-
ful’ than other modules in LLMs (e.g., FFN modules). To validate

this core observation, we conducted experiments on the RAGTruth
dataset, which is a word-level hallucination corpus in various tasks
within the Retrieval-augmented generation (RAG). The RAGTruth
dataset contains responses from various LLMs that exhibit halluci-
nations in RAG scenarios, with manually annotated hallucination
spans, hallucination types, and hallucination reasons. The RAG
scenario is similar to the query generation scenario, as both in-
volve generation based on input content, approximating the query
generation context.

Specifically, in our validation experiments, we selected data from
RAGTruth [34] where LLaMA2-7B-Chat exhibited hallucinations.
Using LangChain 2, a widely used open-source toolkit, we applied
the RecursiveCharacterTextSplitter to segment the input retrieved
document into different spans. We then calculated whether the
attention module attended span (mean pooling the attention scores
then selecting the input span with the highest score) of LLaMA2-
7B-Chat during the generation of hallucination spans could identify
the hallucination spans in the response. This evaluation was based
on GPT4-o (from OpenAI) using the following prompt:

Prompt: { external context + query}

Respond: {response}

Conflict Span: { Conflict Span}
Conflict Type: { Conflict Type}
Reason: {Reason}

Given the following context information : "{Attend Span
↩→ }", can this support the existence of a
↩→ conflict in the response? Please answer with "
↩→ Yes" or "No" and give the reason on the
↩→ newline.

The results are shown in Table 7. We found that, in most cases,
the attention modules of LLMs can attend to the correct input
spans to identify hallucinations in the response. This indicates that
hallucinations in LLMs are caused by other modules in LLMs (e.g.,
FFN modules), thereby proving the core observation that Attention
modules are more ‘truthful’ than other modules in LLMs.

A.3 Implementation Details of Words Information
In the experiments concerning word information, we conducted
tests using the TruthfulVQG and TruthfulDQG benchmarks con-
structed in this paper. For English in the TruthfulDQG benchmark,
we used Spacy 3 for tokenization and part-of-speech tagging, while
for TruthfulVQG (Chinese corpus), we employed Jieba 4 andHanlp 5.
Factual knowledge words include organizations, personal names,
locations, and dates. Function words include auxiliary verbs, prepo-
sitions, determiners, conjunctions, and coordinating conjunctions.
Subsequently, on both datasets, we removed an equal number of
factual knowledge words and function words and then utilized
BGE embeddings [50] to align and compare the cosine similarity

2https://www.langchain.com/.
3https://spacy.io
4https://github.com/fxsjy/jieba
5https://www.hanlp.com
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Table 6: Semantic similarity scores across query types, highlighting that factual hallucinations can occur despite high similarity
with relevant content.

Type Max Semantic Similarity Min Semantic Similarity Average Semantic Similarity
Facticity hallucination queries 0.8492 0.3792 0.6479

Facticity truth queries 0.8607 0.2647 0.6482
Random similarity N/A N/A 0.2709

Table 7: Proportion of data where Llama2 7B Chat attention
heads attend to the correct information.

Attention heads attend Attention heads mis-attend

77.5% 22.5%

between the modified sentences and the original sentences. The
results are shown below:

• In the TruthfulDQG benchmark, removing factual knowl-
edge words resulted in a similarity score of 0.7741, while
removing function words led to a higher similarity score of
0.9296.

• In the TruthfulVQG benchmark, the removal of factual
knowledge words produced a similarity score of 0.7415,
compared to 0.9477 when function words were eliminated.

The results show that on both datasets, removing factual knowl-
edge words causes a greater decrease in semantic similarity scores
with the original sentence compared to function words. These find-
ings confirm that factual knowledge words contribute more signifi-
cantly to the sentence’s informational content than function words,
highlighting the complexity of predicting factual knowledge words.
Verifying that the pattern found in [10, 41], rooted in the linguistic
properties of human language, is a principle that holds true across
multiple languages, even though initial studies focused on English
scenarios.

Why Can LLM Identify Factual Knowledge Words and
Function Words?

Considering that LLMs can only directly learn to predict the
next word in the natural language training corpus, they may not
have an intuitive concept of what constitutes factual knowledge
words and function words. Therefore, we conducted an intrinsic
frequency analysis of factual knowledge and function words on the
TruthfulDQG benchmark. The statistical results are shown below:

• Number of different words in function words: 228
• Number of different words in factual knowledge words:

3263
• Total number of words in function words: 33849
• Total number of words in factual knowledge words: 6026
• Average occurrence of function words: 148.46
• Average occurrence of factual knowledge words: 1.85

These results show that function words appear much more fre-
quently than factual knowledge words, particularly evident from
their average occurrences. It is evident that due to the substantially
larger training data of function words compared to factual knowl-
edge words, LLMs can predict function words at shallower layers
while predicting factual knowledge words need deeper layers.

Another Perspective on the Effectiveness of Copy Proba-
bility in LargePiG.

Besides the patternwementioned above, Jiang et al. [20] observes
that in hallucinated cases, the output token’s information rarely
shows abrupt increases and maintains consistent superiority in
high layers of the LLMs. This corresponds to cases in LargePiG
where there is a higher copy probability, thus enabling the reduction
of hallucinations by copying factual knowledge words from the
source document. This further demonstrates the capability of the
copy probability in LargePiG to address the issue of hallucinations.

A.4 Details about Dataset Collection
The TruthfulVQG dataset is collected from a real short video plat-
form used by over one billion users. The TruthfulDQG dataset is
adapted from the MS-MARCO dataset [4]. The data processing for
TruthfulVQG is more complex than TruthfulDQG’s. Thus, we will
use TruthfulVQG as an example to illustrate the process.

Data Collection:
The raw data was collected from Search Click Data and Post-

Watch Search Data, and the final processed public data does not
include any user search information, only video content, and LLM-
generated queries.

• Collected Data Source:
– Search Click Data (30,000 samples): We collect

30,000 samples of users’ clicked videos after search-
ing the corresponding queries with data flowing from
query to video.

– Post-Watch Search Data (10,000 samples): We col-
lect 10,000 samples of users’ searched queries after
watching the corresponding videos, which is a smaller
subset compared to click data, with data flowing from
video to query.

• Criteria for Inclusion:
– Search Click Data: Include only data with positions

greater than one and less than twenty to mitigate posi-
tion bias of the top results and low relevance of farther
results.

– Post-Watch SearchData: Include only data with total
count numbers greater than five to ensure relevance
to previously viewed videos.

Components of Video Content:

• Title: Accurate representation of video content.
• Video Dialogue Text (ASR): Prone to noise but contain

detailed information about the video.
• Video Text Information (OCR): More reliable than ASR

and contains more information than Title.
11
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Data Preprocessing: Remove examples lacking textual features,
containing sensitive words, or background music that affect ASR
results.

Next, we will use LLMs to generate multiple queries for data
annotation of all videos. To enable the LLMs have the ability to
generate high-quality queries, we first fine-tuned these LLMs. Then,
we combined them with the original LLMs to generate queries.

Model Fine-Tuning:
• Models Used:

– Qwen1.5 7B Chat [3] and InternLM 7B Chat [6] 6:
Among the strongest for Chinese language capabilities.

• Purpose:
– Employing multiple LLMs ensures diversity in gener-

ated queries, reducing the risk of repetitive queries
that single model sampling might produce.

Data Utilization and Query Generation
• Sort data by video quality scores and select the top 10,000

samples for query generation (Generation is time-intensive,
approximately 40 hours per week. Hence, only the top en-
tries are used).

• Approximately 20+ queries are generated per video using
the following prompt.

Query Generation Prompt:

instruction : Based on the video ' s title , dialog text , and
↩→ text information within the video , generate a
↩→ relevant and engaging search query. This query
↩→ should accurately reflect the video content ,
↩→ adhere to factual information , and stimulate user
↩→ interest to drive clicks . Ensure the query is
↩→ concise and contains key information points .

input : Title : { Title content }
Dialog text : {Dialog text content }
Text information : {Text information content }
Query:

output : {Query content}

This prompt is also used in our experiments to generate queries 7.

A.5 Details about Dataset Annotation.
During the data annotation section, we first performed further
cleaning and filtering of the data. We utilized a combination of
LLM and manual annotation to label TruthfulDQG and Truthful-
VQG. This hybrid approach of LLM and manual annotations has
been employed in numerous works on hallucination benchmark
annotation [8, 30].

A.5.1 Phase One: Filter Dataset. Remove sensitive words and per-
form heuristic query quality filtering based on repetitiveness and
length scores.

A.5.2 Phase Two: Relevance Assessment. This phase focuses on
detecting relevance hallucination by measuring the relevance of
generated queries to the video content.

6We replace InternLM 7B Chat with LLaMA2 7B Chat on TruthDQG.
7As the TruthfulVQG is a Chinese Dataset, we translate the prompt from Chinese
using ChatGPT-4.

Similarity Calculations
(1) Embedding-Based Similarity: Utilizes BAAI BGE Em-

bedding [50] and cosine similarity to compute similarity
scores between text embeddings.

(2) Word-Based Similarity: Employs Jieba for text segmenta-
tion and calculates similarity using the Jaccard similarity 8.

WeightingMethodAdjusts relevance scoring based on the ASR
noise level:

ASR Score = 0.6 × cos(ASR,OCR) + 0.4 × cos(ASR,Title)

Query Scoring =



0.34 × (Query,Title)+
0.33 × (Query,ASR)+
0.33 × (Query,OCR), if ASR Score > 0.5

0.4 × (Query,Title)+
0.2 × (Query,ASR)+
0.4 × (Query,OCR), if ASR Score > 0.3

0.5 × (Query,Title)+
0.1 × (Query,ASR)+
0.4 × (Query,OCR), otherwise

A.5.3 Phase Three: Factuality Assessment. Detecting the factuality
hallucination of the generated queries by using LLM-based fact-
checking methods–Self-Check (4-shot CoT) and FacTool [9].

Self-Check (4-shot CoT). We implement Self-Check (4-shot
CoT) using the larger andmore powerful LLMQwen1.5-72B-Chat [3]
to detect queries’ factuality hallucination. The prompt is shown
below 9:

You will receive a query generated by another model. Your
↩→ task is to check whether this query contains any
↩→ factual errors . Please refer to the examples and
↩→ guidelines below when evaluating the query:
− If the query accurately reflects verifiable facts , it

↩→ should be considered factually correct .
− If the query contains misleading or inaccurate

↩→ information , it should be considered factually
↩→ incorrect .

− If you cannot determine the accuracy of the query, or
↩→ if the query requires more context for
↩→ evaluation , it should be considered
↩→ indeterminate .

− Your response must follow the specified format,
↩→ containing two keys: "reasoning" ( the process
↩→ of reasoning) and " factuality " ( the judgment
↩→ of factuality , where True if the query is
↩→ factually correct or does not involve factual
↩→ information ; False if the query contains
↩→ factual errors ; No if indeterminate ) .

You must respond only in the format described below.
↩→ Do not reply in any other form. Adding any
↩→ content that violates the response format is
↩→ prohibited . Start your response with '{{'.

8https://scikit-learn.org/stable/modules/generated/sklearn.metrics.jaccard_score.
html
9As the TruthfulVQG is a Chinese Dataset, we translate the prompt from Chinese
using ChatGPT-4.
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[Response Template]:
{{
"reasoning ": "Reason whether the query is factual .

↩→ Think through step by step .",
" factuality ": "True if the query is factually correct

↩→ or does not involve factual information ;
↩→ False if the query contains factual errors ;
↩→ No if indeterminate ."

}}

Examples:
1. [Query]: "Collapse of a tunnel in Antarctica "
{{
"reasoning ": "This query contains a factual error .

↩→ Given the extremely low temperatures in
↩→ Antarctica , constructing tunnels is
↩→ extremely difficult , and based on current
↩→ knowledge, there are no tunnels in
↩→ Antarctica , thus a collapse cannot occur .",

" factuality ": False
}}

2. [Query]: "The Asian Games in Hangzhou will open on
↩→ September 23, 2023"

{{
"reasoning ": "The factuality of this query cannot be

↩→ determined with the information at hand; it
↩→ requires consultation of the latest official
↩→ announcements or news sources to verify the
↩→ specific opening date .",

" factuality ": No
}}

3. [Query]: "How to make scrambled eggs with tomatoes"
{{
"reasoning ": "This query is not about the

↩→ truthfulness of a statement but requests a
↩→ recipe , therefore it does not involve
↩→ factual errors .",

" factuality ": True
}}

4. [Query]: "Messi is Argentine"
{{
"reasoning ": "This query is factually correct . Lionel

↩→ Messi is a well−known football player born
↩→ in Argentina, a fact that is widely known
↩→ and can be verified through reliable sources
↩→ .",

" factuality ": True
}}

Below is the given query −
[Query]: {}

Advanced Fact-Checking. For indeterminate cases after Self-
Check, we use advanced fact-checking tools FacTool [9]withQwen1.5

72B Chat [3] and Serper 10 to further check queries’ factuality based
on external data sources from Google Search. The prompt is shown
below 11:

You are an excellent assistant .
You will receive a piece of text . Your task is to

↩→ identify any factual errors within this text .
When judging the factuality of the given text , you may

↩→ refer to provided evidences if necessary .
These evidences could be helpful . Some evidences might

↩→ contradict each other . You must be
careful when using evidences to assess the factuality

↩→ of the given text .
The response should be a dictionary containing three

↩→ keys − "reasoning ", " factuality ",
" error ", and " correction ", corresponding to the

↩→ reasoning , whether the given text is
true (Boolean value − True or False ) , the factual error

↩→ present in the text , and the
corrected text .
Below is the given text
[ text ]: {query}
Below is the provided evidence
[evidences ]: {evidence}
You should respond only in the format described below.

↩→ Do not return any other content .
Start your response with '{{'.
[response format ]:
{{
"reasoning ": "Why is the given text factual or not?

↩→ Be careful when you claim
something is not factual . When you claim something is

↩→ not factual , you must provide
multiple pieces of evidence to support your decision

↩→ .",
" error ": " If the text is factual , then None;

↩→ otherwise , describe the error .",
" correction ": " If there is an error , then the

↩→ corrected text .",
" factuality ": " If the given text is factual , then

↩→ True; otherwise , False ."
}}

Finally, the completed data format is shown in Table 8, and the
statistics of TruthfulVQG and TruthfulDQG are shown in Table 9.

Human Assessment. To further ensure the relevance and fac-
tual accuracy of the query, we request three annotatorswith graduate-
level qualifications to manually evaluate the "good queries" to con-
firm factuality and relevance to the context, ensuring they are both
engaging and appropriate.

10The website of Serper is https://serper.dev/.
11As the TruthfulVQG is a Chinese Dataset, we translate the prompt from Chinese
using ChatGPT-4.
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Table 8: Description of data fields in TruthfulVQG and TruthfulDQG.

Video / Document Content Best query Good Queries Bad Queries
Data Type string string [string] [string]
Description Description of the video / document content Best query (factual and most relevent) Array of good queries Array of bad queries

Table 9: Statistics of TruthfulVQG and TruthfulDQG. # denotes the average number.

Dataset Data Count # Good Queries # Bad Queries # Total Queries Language
TruthfulVQG 4,148 3.82 4.75 8.56 Chinese
TruthfulDQG 2,718 4.04 4.00 8.05 English

A.6 Implementation Details of LLM-based
Query Generation Approaches

The prompts used on TruthfulDQG for different LLM-based query
generation approaches are shown below (The prompts used on
TruthfulVQG are just different in the instruction, which has been
demonstrated on Appendix A.4):

Base / AQG:

Given the following document, generate a concise , factual
↩→ and relevant query that a user might type into a
↩→ search engine to find this information .

Document: {Document contents}.
Related Query:

PQGR:

Given the following document, generate a concise , factual
↩→ and relevant query that a user might type into a
↩→ search engine to find this information .

Example 1:
Document: {Document contents}.
Related Query: {The query relevant and factual to document

↩→ contents }.
...
Example 9:
Document: {Document contents}.
Related Query:

InPars:

Given the following document, generate a concise , factual
↩→ and relevant query that a user might type into a
↩→ search engine to find this information .

Example 1:
Document: {Document contents}.
Related Query: {The query relevant and factual to document

↩→ contents }.
Hallucination Query: {The query irrelevant and unfactual to

↩→ document contents }.
...
Example 4:
Document: {Document contents}.
Related Query:

The size of the dataset for LoRA fine-tuning AQG is 10,000 pairs.
The fine-tuning targets the q_proj and v_proj within the trans-
former layers. The learning rate is set to 5e-5, the per-device train
batch size is 4, and the gradient accumulation steps are 4.

A.7 Implementation Details of LargePiG.
We run all the experiments on machines equipped with NVIDIA
V100 GPUs and 52-core Intel(R) Xeon(R) Gold 6230R CPUs at
2.10GHz. We utilize the Huggingface Transformers package to
conduct experiments. During the decoding of responses from the
language models, we employ random sampling with a temper-
ature of 0.8 and a maximum of 256 new tokens to generate re-
sponses. The rest of the parameters use the models’ default set-
tings. As for selecting the layer to calculate the pointer attention
distribution, we used the last layer’s attention weights by com-
paring them with other layers. As for selecting the words to cal-
culate the pointer attention distribution, we recommend filtering
the function words in the input using tools detailed in Appen-
dix A.3. Considering that the Jensen-Shannon divergence is usually
small in the high-dimensional space of vocabulary distribution,
we scale the copy probability 𝑝cp in LargePiG by a factor of 𝛼 . To
ensure that the scaled 𝑝𝑐𝑝 remains within a reasonable range, we
clip its value to be less than 0.5, thus maintaining a balance be-
tween copy and generation. The value of 𝛼 is selected from the
set [100, 500, 1000]. The O𝑗∈J in Equation 8 is selected as max

𝑗∈J
,

and J comprises the last 8 or 16 layers of the backbone LLMs,
excluding the anchor layer which is the last layer (for increased effi-
ciency, either even or odd numbered layers may be selected). We use
two-fold validation to select the hyper-parameters. The LLaMA2-
7B-Chat can be downloaded from https://huggingface.co/meta-
llama/Llama-2-7b-chat-hf. The Qwen1.5-7B-Chat can be down-
loaded from https://huggingface.co/Qwen/Qwen1.5-7B-Chat. Due
to the limited Chinese training corpus of LLaMA2-7B-Chat, we used
Llama2-Chinese-7b-Chat on TruthfulVQG, which can be down-
loaded from https://huggingface.co/LinkSoul/Chinese-Llama-2-7b.

A.8 Details about LargePiG Applied to LLaVA
The architecture of LLaVA [24] is straightforward, comprising only
a Vision Encoder, Projection, and Language Model, with training
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(a) Video cover one. Map tokens: Cat, gray, black,
elve, eyes, sitting ...

(b) Video cover two. Map tokens: pan-
das, white, fang, gry, Chinese ...

Figure 5: An example of two video covers mapped to tokens, where we have ignored other irrelevant words and the "_" character
before some tokens.

conducted in two stages: Stage 1: Pre-training for Feature Align-
ment, and Stage 2: Fine-tuning End-to-End. A key issue when ap-
plying LargePiG to LLaVA concerns how to map image tokens
to text tokens, thus establishing an attention distribution based
on the source content. Considering during the Feature Alignment
stage, the primary task is aligning the image features H𝑣 with the
pre-trained LLM word embeddings, we propose mapping each im-
age token to the closest text token in the embedding space when
computing the Pointer Attention Distribution. In the implementa-
tion, we utilize the faiss vector database [21] to store text token
embeddings and retrieve the corresponding tokens using image
token embeddings, allowing for rapid retrieval of relevant tokens.
Case studies shown in Figure 5 reveal that this retrieval method
can accurately reveal the main information in the images, although
many noise tokens are also retrieved. Therefore, we apply rule-
based filtering to remove tokens with low similarity to the text part
and construct the attention distribution using the remaining tokens
together with the text tokens.

A.9 More results on LargePiG’s Ability to
Reduce Relevance Hallucinations

More results on LargePiG’s ability to reduce relevance hallucina-
tions are shown in Figure 6 and the left of Figure 7, both LLaMA2-
7B-Chat and Qwen1.5-7B-Chat with LargePiG can generate more
semantic relevance queries with the document / video contents,
indicating that LargePiG is effective in reducing the relevance hal-
lucinations of query generation.

A.10 More Results on LargePiG’s Copy Ability
The results of LargePiG with LLaMA2-7B-Chat on the SQuAD
question-answering dataset are shown on the right of Figure 7,
which also show that LargePiG significantly improved the F1 score
on LLaMA2-7B-Chat, with more pronounced improvements for sce-
narios with long inputs, indicating that LargePiG indeed enhances
the copy ability of LLMs.

A.11 Prompt for relevance evaluation by
GPT4-o

The evaluation prompt are shown below:

You will be given a description of a video and queries
↩→ generated by the baseline model and the LargePiG
↩→ model based on the video description . Your task is
↩→ to determine which model generates higher−quality
↩→ queries . When evaluating the queries , please
↩→ refer to the following guidelines :

1. Are the queries relevant to the video description ?
2. You must reply only in the format described below.

↩→ Adding any extra content that violates the reply
↩→ format is prohibited .

Begin your reply with '{{'.

[Reply Template]:
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Figure 6: Results of LLaMA2-7B-Chat without LargePiG vs with LargePiG on TruthfulDQG. Left: Overall semantic similarity
scores. Right: Win rate with LargePiG compared against without LargePiG.
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Right: Performance of LLaMA2-7B-Chat vs LLaMA2-7B-Chat + LargePiG on SQuAD.

{{
'win_model': 'LargePiG (LargePiG generated query is more

↩→ relevant ) or Baseline ( Baseline generated query is
↩→ more relevant ) or Tie (both models generated
↩→ similar queries ) ',

' reason ': 'The reason for determining the winning model in
↩→ the previous statement '

}}

Video description : `{}`

Baseline generated query: `{}`

LargePiG generated query: `{}`

A.12 More Results on Efficiency Analysis
Table 10 shows the decoding latency for differentmodels onQwen1.5-
7B. It is evident that compared to LLaMA2-7B, the inference latency
of Qwen1.5-7B is significantly reduced. Therefore, the addition of
DoLa or LargePiG, although increasing the time cost compared

to LLaMA2-7B, still shows a relatively small overall increase. The
maximum increase in time cost is about 10%, which is within an
acceptable range.

A.13 Generated Query Quality Evaluation
To verify the quality of queries generated by LargePiG compared
with the baseline models, we first encode the generated queries
and the corresponding user-input queries using BGE Embedding.
Subsequently, we compute the cosine similarity to compare the
semantic similarity between queries generated by different models
and those input by users. As can be observed from Table 11 and 12,
queries generated by LargePiG exhibit higher similarity to actual
user input queries, thereby confirming the high quality of LargePiG-
generated queries from a semantic relevance perspective.

To further validate the performance of LargePiG in real-world
scenarios, we compared it with the online query generation model
(A 7 billion parameter transformer decoder-only model) of a short-
video platform with billions of users, observing the performance of
the online model after integrating LargePiG. In the offline evalua-
tion, we retrieved the results generated by the online model along
with the corresponding input data (totaling 1108 samples) and
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Table 10: Decoding latency (ms/token) on Qwen1.5-7B.

Baseline DoLa LargePiG

Base / AQG 64.21 (×1.00) 70.67 (×1.10) 68.56 (×1.07)
InPars 69.54 (×1.00) 75.82 (×1.09) 76.50 (×1.10)
PQGR 82.26 (×1.00) 92.45 (×1.12) 89.49 (×1.09)

Table 11: Semantic Evaluation of Generated Query Quality on the Qwen1.5 7B Chat.

Qwen1.5 7B Chat Qwen1.5 7B Chat + LargePiG

Base PQGR InPars AGQ Base PQGR InPars AGQ

TruthfulDQG 0.6751 0.6629 0.6586 0.6858 0.7086 0.6893 0.6725 0.7077
TruthfulVQG 0.6143 0.5983 0.5957 0.6102 0.6260 0.6074 0.6056 0.6247

Table 12: Semantic Evaluation of Generated Query Quality on the LLaMA2 7B Chat.

LLaMA2-7B-Chat LLaMA2-7B-Chat + LargePiG

Base PQGR InPars AGQ Base PQGR InPars AGQ

TruthfulDQG 0.6574 0.6561 0.6561 0.6568 0.6850 0.6897 0.6979 0.6870
TruthfulVQG 0.5898 0.5687 0.5674 0.5898 0.6003 0.5792 0.5875 0.5953

Table 13: Human and LLM evaluations of the queries gener-
ated by LargePiG and the original online model.

Baseline Win LargePiG Win Tie

Count Number 54 1031 23

conducted generation after adding LargePiG to the online model.
Subsequently, we employed a collaborative approach of LLM and
human evaluation. Initially, the Qwen1.5-72B-Chat was used to
determine whether LargePiG wins, the base model wins, or if it is a
tie, providing reasons for each. Then, two human evaluators with
graduate-level qualifications reviewed the LLM’s outputs, correct-
ing any erroneous assessments made by the LLM, thereby enhanc-
ing the overall efficiency and accuracy of the evaluations. Combined
with experimental results on Table 13 and case studies (translated
from Chinese) below, it was demonstrated that adding LargePiG
not only reduced the relevance and factual hallucinations in the
generated queries but also made them more attractive to users, fur-
ther validating the effectiveness of LargePiG. From the analysis of
case studies, we found that the reason why LargerPiG can generate
queries that are more attractive to users may be the interpolation
of vocabulary distribution, which can reduce the probability of
generating an end token. Moreover, during the query generation
process, there is a consistent high alignment with the video content.
Consequently, the generated queries are more detailed and specific,
thereby attracting more user clicks.

Evaluation Prompt:

You will receive a video ' s description , along with queries
↩→ generated by the baseline model and the LargePiG
↩→ model based on that video description . Your task
↩→ is to determine which model produced the higher
↩→ quality query. When evaluating the queries , please
↩→ refer to the following guidelines :

− Whether the query is relevant to the video
↩→ description

− Whether the query is factually accurate
− Whether the query can attract user interest
− You must reply only in the format described

↩→ below. Do not respond in any other
↩→ form. Adding any extra content that
↩→ violates the reply format is
↩→ prohibited . Start your reply with
↩→ '{{'.

[Reply Template]:
{{
"win_model": "LargePiG ( if LargePiG generated a

↩→ better query) or Baseline ( if
↩→ Baseline generated a better query) or
↩→ Tie ( if both models generated similar
↩→ queries ) ",

"reason ": "The reason for the previous winning
↩→ model decision"

}}
Video description : {}
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Query generated by baseline : {}
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Case studies:
Example One:

video_content : Video Category: Film and Television . Video
↩→ Tags: Mermaid. Video Title : The most terrifying
↩→ hunters often appear in the guise of their prey,
↩→ horror thriller mermaid series #FastTalkingFilm #
↩→ KuaishouCinemaSuperstarPlan #FilmCommentary.
↩→ Video Cover: Fish Cost. Video Author: Firebird Films
↩→ ,

Baseline :
1. Mermaid Movie,
2. Mermaid Movie Commentary,
3. Mermaid Movie Episode One,
4. Commentary on the First Episode of Mermaid,
5. Complete Mermaid Movie Online Viewing,
6. First Part of Mermaid,
7. Second Part of Mermaid Movie,
8. Complete Mermaid Movie Online Viewing Uncut,

LargePiG:
1. Mermaid Movie,
2. Mermaid Movie Online Viewing,
3. Complete Mermaid Video,
4. Horror Mermaid Movie,
5. High Definition Online Viewing of Mermaid Movie,
6. Free High Definition Online Viewing of Horror

↩→ Mermaid Movie,
7. Uncut Super High Definition Online Viewing of

↩→ Mermaid Movie,
8. Mermaid Movie Commentary,

Judge Result :
win_model: LargePiG,
reason: The LargePiG's queries contain more specific

↩→ information , such as 'horror movie' and ' free
↩→ high definition online viewing ,' which more
↩→ accurately reflect the video ' s theme (horror
↩→ thriller ) and are likely to generate more user
↩→ interest . Additionally , it offers a variety of
↩→ viewing options , such as the uncut super high
↩→ definition version , which may be more
↩→ appealing to users .

Example Two:

video_content : Video category : Film and TV show; Video tags
↩→ : Farewell Song; Video title : Xiao Zhe argues with
↩→ An Duo, An Duo proposes divorce, and they are
↩→ destined to break up! #CatchTheNewDrama #
↩→ WebDramaFarewellSong; Video cover: Attending an
↩→ international music festival ; Video creator : Old
↩→ Friend Qi ( recruiting apprentices ) ,

Baseline :
1. Farewell Song TV series ,
2. Farewell Song episode 36 finale ,
3. Farewell Song An Duo and Xiao Zhe,

4. Farewell Song TV series online viewing,
5. An Duo and Xiao Zhe,
6. An Duo Xiao Zhe,
7. Where to watch Farewell Song TV series ,
8. Farewell Song finale ,
9. An Duo Xiao Zhe arguing.

LargePiG:
1. Farewell Song TV series ,
2. Farewell Song An Duo and Xiao Zhe,
3. An Duo and Xiao Zhe arguing,
4. An Duo and Xiao Zhe divorce,
5. An Duo Farewell Song,
6. Xiao Zhe An Duo,
7. Xiao Zhe Farewell Song An Duo finale ,
8. Xiao Zhe An Duo divorce truth .

Judge Result :
win_model: LargePiG,
reason: The LargePiG model generated queries are more

↩→ specific , incorporating key events from the
↩→ video description (arguing, divorce ) which
↩→ better reflect the video content and engage
↩→ user interest , such as 'An Duo and Xiao Zhe
↩→ arguing ', 'An Duo and Xiao Zhe divorce ', 'Xiao
↩→ Zhe An Duo divorce truth '. In contrast , the
↩→ Baseline queries , although relevant , do not
↩→ sufficiently highlight the conflicts and plot
↩→ developments in the video , such as ' finale '
↩→ and ' online viewing ', which are more general
↩→ and factually incorrect .

Example Three:

video_content : Video Category: Anime Video Tags: Ultraman
↩→ Video Title : Episode 4 | Go Ahead, Ultraman Zero!
↩→ Performed by: Shota Minami / voyager Lyrics by:
↩→ Hideki Tamiya/Koki Konishi Composed by: Tomohiro
↩→ Yamaguchi Edited by: Ultraman Information Master
↩→ Ultraman Golden Songs Zero Edition #Ultraman #
↩→ ZeroUltraman 15th Anniversary Video Cover: Go
↩→ Ahead Ultraman Zero Performance by: voyager / Shota
↩→ Minami Composed by: Tomohiro Yamaguchi Lyrics by:
↩→ Hideki Tamiya/Koki Konishi Edited by: Ultraman,
↩→ Information Master Video Author: Ultraman
↩→ Information Master,

Baseline :
Go Ahead, Ultraman Zero,
Ultraman Zero,
Go Ahead, Ultraman Zero Song,
Complete Lyrics of Ultraman Zero Theme Song,
Go Ahead, Zero,
Original Singer of Go Ahead, Ultraman Zero,
How to Sing Go Ahead, Ultraman Zero Song,
Original Sound of Go Ahead, Zero,
Ultraman Zero Go Ahead,

LargePiG:
Go Ahead, Ultraman Zero,
Original Singer of Go Ahead, Ultraman Zero Song,
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How to Sing Go Ahead, Ultraman Zero Song.,
Ultraman Zero Go Ahead,
Original Singer of Go Ahead, Ultraman Zero Ultraman

↩→ Zero Song .,
Judge Result :

win_model: LargePiG,
reason: LargePiG's queries are more specific ,

↩→ containing more information related to the
↩→ video content such as 'Go Ahead, Ultraman Zero
↩→ Anime Episode One', which can stimulate user
↩→ interest and provide a richer background
↩→ related to the video . In contrast , Baseline ' s
↩→ queries , while related to the video theme, are
↩→ more generic and do not specify details such
↩→ as the original singer or anime episodes .
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