
Bootstrapping LLM Agents via Verification

Anonymous ACL submission

Abstract

We present a self-training method that allows001
language model-based agents to improve per-002
formance without distilling proprietary models.003
Existing self-verification methods struggle to004
validate function signatures defined in agent005
prompts. A common failure is the verifier hal-006
lucinating non-existent constraints on function007
calls due to interference between model knowl-008
edge and examples in prompts. To address this,009
we devise a neural-symbolic verification sys-010
tem that prioritizes language models for validat-011
ing solution completeness and pertinence while012
delegating fact checks to a symbolic system.013
We propose bootstrap-by-verification learning014
which combines massive agent trajectory sam-015
pling with our verification for self-training. Ex-016
periments on spreadsheet and web browsing017
benchmarks show the method’s effectiveness.018

1 Introduction019

Large language models (LLMs) have recently020

gained popularity as the engine for autonomous021

agents. Research explores leveraging LLMs022

beyond chatting, writing, and coding for gen-023

eral workplace applications. Proposed agent024

applications include problem solvers like Auto-025

GPT (Richards, 2023) and BabyAGI (Nakajima,026

2023), gameplay agents like Voyager (Wang et al.,027

2023) and GITM (Zhu et al., 2023) and web surf-028

ing agents like WebGPT (Nakano et al., 2022) and029

Mind2Web (Deng et al., 2023).030

Along with the prosperity of agent research, the031

need for LLM customization beyond prompting has032

surged and thus make the annotation for agent be-033

havior of great importance. However, gathering ex-034

pert trajectories for all possible tasks is impractical035

since modern language models are far more knowl-036

edgeable than any human generalist. For example,037

a spreadsheet agent could easily generate a formula038

like VLOOKUP(C2, "A:B", 2, FALSE), which is039

used to search for the value in cell C2 in the first col-040

umn of the range "A:B" and returns a value in the041

same row from the second column. This complex042

Figure 1: Our bootstrapping method verifies predictions
of a base LLM, selects potentially correct ones, and uses
the collected samples to fine-tune the LLM for specific
tasks. Tested on the SheetCopilot (Li et al., 2023a)
spreadsheet benchmark, the bootstrapped LLM shows
significant improvement, approaching GPT-3.5-Turbo
with the help of verifiers.

formula requires serious efforts to come up with 043

even for human experts. Therefore, modern LLMs 044

are generally aligned via reinforcement learning 045

via human feedback(RLHF) (Ouyang et al., 2022), 046

a technique that could leverage the much weaker 047

supervision signals produced by annotators order- 048

ing their preference of different LLM responses for 049

the same request. 050

However, fine-tuning agents differs from chat- 051

bots in needing to handle a wide variety of tasks. 052

While summarization and rewriting bots can lever- 053

age scalable annotation from individuals, it is much 054

harder to imagine finding specialized annotators for 055

niche skills like developing an EDA chip design 056

copilot. The long tail of technical domains makes 057

agent annotation far less scalable than for chatbots. 058

Minimizing human effort in agent data collection 059

is thus critical. 060

This work proposes a bootstrapping by verifica- 061

tion learning method to generate annotation data 062

for LLM agents without human effort. It is mo- 063

tivated by the insight that verifying a solution is 064

often easier than generating one (RSA, 1978; Gold- 065

wasser et al., 1989; Cook, 1971). Though the key 066

insight is proven, two main technical challenges 067

1



arise in utilizing bootstrapping by verification learn-068

ing for LLM agents. First, generating high-quality069

solution proposals using open-source models less070

capable than proprietary ones. We avoid distill-071

ing trajectories from strong proprietary models like072

GPT-4, to better assess method merits. Second,073

designing a procedure to reliably filter incorrect074

solutions and retain correct ones. Self-training re-075

quires high signal-to-noise ratio(SNR) for effective076

bootstrapping.077

To address these challenges, we propose a two-078

step approach: massive agent trajectory1 sampling079

(MATS) to generate diverse, high-quality solution080

proposals, and neural-symbolic verification (NSV)081

to filter out superfluous solutions. Specifically, our082

MATS obtains a large corpus of diverse proposed083

solutions by combining path eliminating rejection084

sampling and trajectory mutation sampling. We085

increase diversity through high temperature decod-086

ing, rejecting trajectories sharing prefix beyond a087

certain ratio with any existing trajectories. We also088

randomly mutate actions in existing trajectories and089

let the agent start generating right after the mutated090

actions. These methods ensure that our proposal091

solution pool is of high diversity. For increasing so-092

lution SNR, we employ both rule-based symbolic093

verifiers and LLM-based neural verifiers for re-094

jecting superfluous solutions generated by massive095

sampling. Specifically we construct a set of verifi-096

cation functions that each is tasked for catching a097

specific type of error in the solution via symbolic098

pattern matching. Moreover, we prompt the neural099

verifiers for checking the completeness of the solu-100

tion and if the precondiitons of certain actions are101

meet. Finally, we retrain our base model after the102

high quality solution corpus are obtain via standard103

instruction tuning approach.104

To address these challenges, we propose a two-105

step approach: massive agent trajectory sampling106

(MATS) to generate diverse, high-quality solution107

proposals, and neural-symbolic verification (NSV)108

to filter out superfluous solutions. Specifically, our109

MATS obtains a large corpus of diverse proposed110

solutions by combining path eliminating rejection111

sampling and trajectory mutation sampling. We112

increase diversity through high temperature decod-113

ing, rejecting trajectories sharing prefix beyond a114

certain ratio with any existing trajectories. We also115

randomly mutate actions in existing trajectories116

and let the agent start generating right after the117

mutated actions. For NSV, we employ rule-based118

symbolic verifiers and LLM-based neural verifiers.119

Symbolic verifiers catch specific error types via120

1We use solution and trajectory interchangeably thereafter.

pattern matching. Neural verifiers check complete- 121

ness and action preconditions. After obtaining a 122

high quality corpus, we retrain our base LLM with 123

standard instruction tuning. This two-step MATS 124

and NSV approach allows generating agent training 125

data without human input. 126

Our contribution could be summarized as fol- 127

lows: 128

• We propose a new self-training method for 129

LLM-based agents by leveraging the boot- 130

strapping by verification approach. 131

• We devise a novel sampling method for sam- 132

pling diverse agent trajectories for solution 133

proposal and a neural-symbolic verification 134

method for improving the signal-to-noise ra- 135

tio of proposed solutions. 136

• We evaluate the proposed bootstrapping learn- 137

ing on multiple complex agent benchmarks 138

with multi-step reasoning. Our method im- 139

proves the codellama-34b based model by 140

15.3% on SheetCopilot (Li et al., 2023a) and 141

by 6.9% on Mind2Web (Deng et al., 2023). 142

2 Related Works 143

2.1 LLM-based Agents 144

Benefiting from vast amounts of human text knowl- 145

edge, large language models (LLMs) have exhib- 146

ited a sign of human-level intelligence. Harnessing 147

the impressive potential of LLMs, a new wave of 148

research attempts to augment LLMs with external 149

tools to build autonomous agents that are capable 150

of solving complex tasks on behalf of humans. No- 151

table examples include VisProg (Gupta and Kem- 152

bhavi, 2022), HuggingGPT (Shen et al., 2023), 153

ReAct (Yao et al., 2022), SheetCopilot (Li et al., 154

2023a), GITM (Zhu et al., 2023), Voyager (Wang 155

et al., 2023), MetaGPT (Hong et al., 2023), and 156

Coscientist (Boiko et al., 2023). These methods 157

typically utilize in-context learning (Brown et al., 158

2020), allowing LLMs to flexibly acquire new 159

skills and knowledge from relevant context and a 160

few demonstrative examples in plain text, without 161

additional training. Additionally, to enhance over- 162

all performance in various tasks that require reason- 163

ing and interaction, Chain of Thoughts (CoT) (Wei 164

et al., 2022) is generally employed to elicit an inter- 165

connected flow of reasoning and decision-making 166

from LLMs. 167

2.2 Self-Improving LLMs 168

As supervised fine-tuning and RLHF are both 169

data-hungry, self-improving LLMs has recently 170

2



gained attention as it is less reliant on human an-171

notations. SPIN (Chen et al., 2024) iteratively172

boosts a weak model by reshaping the training173

process as a two-play game: the main player (the174

LLM after fine-tuning) seeks to differentiate the175

responses of the old LLM from human responses,176

while the opponent (the old LLM) generates re-177

sponses as similar as possible to human ones. This178

method outperforms models trained with extra hu-179

man data or AI feedback. Self-Rewarding (Yuan180

et al., 2024) shares a similar idea: LLMs act as181

instruction-following models generating responses182

and also evaluate their responses via LLM-as-a-183

Judge prompting, obtaining preference data used184

for fine-tuning. Instruction Backtranslation (Li185

et al., 2023b) similarly augments training data186

by generating and selecting synthetic instruction-187

output pairs using the target LLM. Different from188

these works, our method explores self-improving189

LLMs in interactive scenarios where an LLM is190

prompted as an agent that uses external tools to191

solve compositional tasks, such as manipulating192

computer software.193

3 Bootstrapping via Verification194

To bootstrap agent performance for LLMs, we as-195

sume access to a base chat or code language model,196

a set of seed task descriptions, and a symbolic en-197

gine for verifying the correctness of solutions.198

As shown in Figure 2, we want the base model199

to both propose new tasks from seed tasks as well200

as generate a large number of verification solutions.201

We then use symbolic and model-based verifiers for202

grading all the solutions and find the most plausible203

ones for training the next iteration of agent models.204

One full bootstrapping cycle includes a self-205

instructed task generation step, a solution gener-206

ation step, a verification step, and a self-training207

step. We will elaborate each step in the following208

sections.209

3.1 Self-Instructed Task Generation210

To generate a large number of tasks and to avoid211

making design choices towards the test task set, we212

leverage the base model for proposing new task213

descriptions via Self-Instruct (Wang et al., 2022).214

As shown in Figure 2 (a), we randomly sample an215

environment setup from the task pool and prompt216

the base model to come up with new tasks that217

can be done in this environment according to few-218

shot seed task examples. To minimize potential219

data contamination, we use a distinct set of task220

environments(e.g., unseen websites for browsing)221

and perform task-level deduplication to remove222

tasks similar to existing ones. Other more advanced 223

instruction generation approaches like Phi-1 (Gu- 224

nasekar et al., 2023) and Magicoder (Wei et al., 225

2023) may also be applied but this is slightly out 226

of the scope of this work. 227

3.2 Massive Agent Trajectory Sampling 228

To address the challenge of obtaining high-quality 229

supervision signals without distilling proprietary 230

models, we conduct massive solution sampling for 231

our base models at a high temperature to sample 232

high-quality solutions for task descriptions. 233

We argue that language models possess the abil- 234

ity to complete tasks while they probably underper- 235

form due to the lack of proper alignment. Although 236

the potential performance gain underscored by best- 237

of-n solution sampling for coding LLMs has been 238

widely reported (Chen et al., 2021), how to mate- 239

rialize this potential without access to the oracle 240

remains an open problem. Moreover, different from 241

outputting a whole piece of code, agent models gen- 242

erally output a mix of chain-of-thought thinking 243

steps and the actual action trajectories represented 244

in function calls, how to effectively sampling di- 245

verse action trajectories remains an open problem. 246

We propose a path eliminating rejection sam- 247

pling approach for leveraging the more structured 248

action output for LLM-based agents compared with 249

code generation. For a sampled trajectory with N 250

actions TN = {A1, A2, · · · , AN}, we reject it if all 251

prefix of it overlaps with existing solution beyond 252

a certain threshold mint=0,...,T Tt ∩ Texist > τ . 253

Besides sampling based proposal generation, we 254

also leverage trajectory mutation for increasing 255

the solution diversity. For a random trajectory 256

TN = {A1, A2, · · · , AN} in the solution pool, we 257

randomly replace one of its action An with an ac- 258

tion A′ uniformly sampled from the whole solution 259

pool of the same task. We then use the prefix for 260

LLM agents to continue sampling the remaining 261

actions. 262

In Figure 4, we show that as the number of sam- 263

pled solutions increases, the best-of-k success rate 264

for agents completing tasks also improves steadily. 265

Moreover, the potential of massive sampling holds 266

for both a wide range of language models as well 267

as heterogeneous agent tasks from different fields. 268

3.3 Neural-Symbolic Verifier for LLM Agents 269

After we validate the potential of our agents in 270

terms of their ability to generate high-quality best- 271

of-n samples, the next challenge is how to unleash 272

their capability by converting the best-of-n perfor- 273

mance into the best-of-1 performance, without dis- 274

3



Figure 2: Overall framework of our proposed bootstrapping pipeline. The pipeline starts with an open-source
LLM Mi and a small number of seed tasks T . (a) Initially, Mi is prompted to generate more tasks using Self-
Instruct (Wang et al., 2022), and then (b) Mi generates a number of candidate solutions to each task by interacting
with the task-specific tools multiple times. (c) Subsequently, the candidate solutions undergo the symbolic verifier
that employs verification functions to recognize potential errors in each step, which eliminates the solutions with
easy-to-find errors. (d) Afterward, an LLM is prompted to verify the remaining solutions step-by-step to recognize
hard-to-find errors probably related to the task semantics (Verification examples are shown at the bottom). (e) The
task-solution pairs that pass the two verifiers are collected as the fine-tuning data D, which is eventually used to (f)
fine-tune Mi to obtain a more capable model Mi+1. (g) This whole procedure will then be iterated resulting in a
significantly improved LLM agent.

tillation or large-scale human labeling.275

A neural-symbolic verifier is used for evaluating276

the correctness of model-generated solutions. In277

addition to utilize language models for verification278

like existing generate & rank works for math word279

problems (Shen et al., 2021; Cobbe et al., 2021), we280

further harness the power of symbolic verification281

in this work.282

We combine the rigor of a symbolic system and283

the real-world understanding of language models284

for verification. As shown in Figure 7, agents make285

different types of errors. Errors like calling wrong286

APIs or referencing null objects are easily verifiable287

by the symbolic engine while errors like choos-288

ing unrelated APIs or hallucinating meaningless289

actions are more suitable for language model veri-290

fiers.291

Symbolic Verification We borrow the idea of292

symbolic verification from traditional software293

analysis and formal verification systems (King,294

1976; Clarke et al., 1986). Instead of building295

a full-fledged symbolic execution engine that296

could validate preconditions, post conditions, and297

invariants for a piece of code, our symbolic verifier298

simply consists an action parser and a set of299

argument verification functions. The action parser 300

breaks up action function calls into arguments 301

and a set of verification functions validates each 302

argument both syntactically and semantically. Each 303

symbolic verification function is tailored based on 304

explicit logic for a specific task (e.g. spreadsheet 305

and browser) and the syntax of the corresponding 306

output APIs. For instance, in the context of the 307

spreadsheet task, a verification function is designed 308

to check the data integrity for a source range (the 309

cells start from row 2 in column H in Sheet1) of an 310

<Filter(source='Sheet1!H2:H',fieldindex=1 311

,criteria='>250')> action. Similarly, for 312

the browsing task, a verification function 313

is tasked with checking whether the tar- 314

get element [static text] RT News of a 315

<CLICK on [static text] RT News> action 316

clickable. The bottom left corner of Figure 2 317

visually depicts these two functions. 318

The development of these verification functions 319

begins with running the agent on the validation 320

dataset, where we then analyze and catalog errors 321

from the agent’s running log. This hands-on analy- 322

sis allows us to discern patterns and commonalities 323

of errors, informing the creation of a symbolic en- 324

4



gine.325

Symbolic-aided Neural Verification Different326

from existing works that solely rely on language327

models for verification via prompting (Yuan et al.,328

2024) and fine-tuning (Cobbe et al., 2021), we pro-329

pose a symbolic-aided neural verification approach.330

Specifically, we first check the initial solution via331

the verification functions. We then incorporate332

into prompt the symbolic checking results to con-333

duct further checking by language verifier for solu-334

tions passed by symbolic checking. By hinting lan-335

guage models with symbolic checking results, we336

can avoid the language model hallucinating wrong337

replies about facts already been verified. Besides,338

the language models can now focus on generat-339

ing verification that has not been verified symboli-340

cally, effectively reducing the solution space. Our341

language model verifier only checks the complete-342

ness of solutions and whether the action choice is343

aligned with the task instruction. By delegating344

only high tasks with requirements of real-world345

understanding to the LLM verifier, we can greatly346

simplify the task requirement and reduce the risk347

of hallucination.348

3.4 Verification-based Self-Training349

The final step in our bootstrapping cycle is to uti-350

lize verified solutions to further fine-tune the base351

model. This verification-based self-training learns352

from past successful cases, benefiting from the self-353

capabilities unleashed by a symbolic-aided neural354

verifier on massive solution sampling. We initiate355

the process by conducting massive sampling on the356

base model, collecting solutions that have passed357

through the Neural-Symbolic Verifier to constitute358

our training set. We then fine-tune the base model359

on this dataset. In the experiment, we prove that360

these verified solution play a key role in bootstrap-361

ping base model.362

4 Experiments363

4.1 Experimental Settings364

Base Model. We adopt two open-source models,365

CodeLlama-34B-SFT (Rozière et al., 2023)2 and366

Magicoder-S-DS-6.7B (Wei et al., 2023)3.367

Task Dataset We use two challenging public368

benchmarks, SheetCopilot (Li et al., 2023a) and369

Mind2Web (Deng et al., 2023): 1) The SheetCopi-370

lot dataset contains 28 evaluation workbooks and371

989 spreadsheet manipulation tasks, categorized372

into 768 training samples and 221 test samples,373

2https://huggingface.co/Phind/Phind-CodeLlama-34B-v2
3https://huggingface.co/ise-uiuc/Magicoder-S-DS-6.7B

that are applied to these workbooks. Each task 374

specifies a high-level request, involving standard 375

spreadsheet operations. 376

2) The Mind2Web dataset consists of web- 377

browsing tasks derived from 137 websites across 378

various domains. It assesses the ability of agents to 379

follow human instructions for completing complex 380

tasks in web environments. Each step of a task 381

is evaluated independently with the ground truth 382

action history provided, prompting an agent to pre- 383

dict either Click [Id], Type [Id] [Value], or Select 384

[Option]. The cross-website split of this dataset 385

is used in our experiments. Examples of the two 386

benchmarks are shown in Figure 3. 387

Evaluation Metrics SheetCopilot benchmark uses 388

Exec@1 to measure the percentage of solutions 389

executed without throwing exceptions and Pass@1 390

to evaluate functional correctness (Chen et al., 391

2021). To fully evaluate the potentials of the LLM 392

agents, we extend these two metrics to Exec@k and 393

Pass@k. The former is defined as the probability 394

that at least one of the top k-generated solutions 395

for a single task can be executed without excep- 396

tions. The latter is similarly defined. As each step 397

is evaluated independently, we use Element Accu- 398

racy (Elem. Acc.) and Step Success Rate (Step 399

SR) in the Mind2Web benchmark. The former cal- 400

culates the proportion of the predicted elements 401

that match ground truths and the latter calculates 402

the proportion of predicted steps whose predicted 403

element and operation are both correct. Likewise, 404

we also extend these metrics to Elem. Acc.@k and 405

Step SR@k by generating multiple predictions for 406

each test sample. All Pass@1 values are calculated 407

at temperature=0.0 while all Pass@k at tempera- 408

ture=1.0. 409

Compared Methods On the SheetCopilot bench- 410

mark, we compare the performances of the Sheet- 411

Copilot agent with CodeLlama-34B-SFT boot- 412

strapped with our method and GPT-3.5-Turbo 413

which is originally used. On the Mind2Web bench- 414

mark, we compare the performances of the agent 415

provided in this benchmark with verifier-equipped 416

CodeLlama-34B-SFT and GPT-3.5-Turbo/GPT- 417

4 as its backend. We also compare with 418

Synapse (Zheng et al., 2023) which uses few-shot 419

in-context exemplars semantically similar to the 420

task at hand to prompt GPT-3.5-Turbo to generate 421

the next action. 422

Self-Training Details We test the proposed boot- 423

strapping via verification on the SheetCopilot 424

dataset. At each iteration, a target LLM is run 425

on the training split of the SheetCopilot benchmark 426

6 times, generating 4608 task-solution pairs, each 427

5



Figure 3: Examples of the used benchmarks. Left: a SheetCopilot task that requires calculating product sales and
highlighting key data using conditional formatting. Right: a Mind2Web task that requires finding news on Rotten
Tomatoes, a review-aggregation website for movies and television.

of which is a dialog between the user/software and428

the agent (An example is shown in the Appendix).429

Filtered by the two proposed verifiers, each of the430

passed pairs is decomposed into multiple training431

samples. Specifically, a training sample is a dis-432

crete step in the solution process (i.e., a turn in433

the dialog), inclusive of its history. We fine-tune434

the full parameters of the target LLM through su-435

pervised fine-tuning, using the collected training436

samples. An iteration of bootstrapping is run for437

three epochs. The loss is only computed on target438

tokens instead of complete sequences. The learning439

rate is 1e− 5 and the batch size is 1. More details440

are included in the appendix.441

4.2 Comparing with Existing Works442

Spreadsheet Manipulation We test our method443

using CodeLlama-34B-SFT as the target model444

to be bootstrapped and compare it with the raw445

model as well as a baseline (Li et al., 2023a) using446

GPT-3.5-Turbo. Note that these compared mod-447

els are used as the SheetCopilot agent backend to448

run evaluation. The results in Table 1 show that449

the Pass@50 of CodeLlama-34B-SFT is notably450

higher than the Pass@1 of GPT-3.5-Turbo, indicat-451

ing that this open-source model is capable of sam-452

pling functionally correct solutions. After undergo-453

ing 1 iteration of bootstrapping, CodeLlama-34B-454

SFT-Iter1 achieves significant performance gains,455

outperforming its raw model by 15.3 Pass@1. Us-456

ing the proposed verifiers to aid the bootstrapped457

model, the pass@1 of this model is even close to458

that of GPT-3.5-Turbo. These results suggest that459

the target model is progressively aligned with the460

desirable behavior required by spreadsheet manip-461

ulation tasks through fine-tuning with the training462

samples filtered by the proposed verifiers.463

Web Browsing For the Mind2Web benchmark,464

we compare the performances of the target model,465

CodeLlama-34B-SFT, and GPT-3.5-Turbo/GPT-4466

by using these models as the backend of MindAct, 467

the agent provided in this benchmark. We report the 468

performances of the target model that utilizes the 469

proposed verifiers to find the functionally correct 470

solution out of 20 sampled predictions. We also 471

compare with Synapse (Zheng et al., 2023) which 472

uses few-shot in-context exemplars semantically 473

similar to the task at hand to prompt GPT-3.5-Turbo 474

to generate the next action. The results in Table 2 475

illustrate that the target model, CodeLlama-34B- 476

SFT, enjoys clear improvement when generating 477

20 predictions (best of 20) for each test sample 478

although it shows weak web-browsing capability 479

when generating only one prediction. This best-of- 480

20 model also outperforms MindAct with GPT-3.5- 481

Turbo and GPT-4. After being equipped with the 482

proposed verifiers, the target model (CL + Verif.) 483

achieves performance higher than that of the tar- 484

get model, outperforming MindAct (GPT-3.5) and 485

close to Synapse (GPT-3.5). In summary, the re- 486

sults on the two benchmarks indicate that open- 487

source LLMs possess the potential of being lifted 488

to the level of proprietary LLMs on specific do- 489

mains and that the proposed bootstrapping with 490

verification is capable of unleashing this potential. 491

4.3 Evaluating Best-of-K Sampling 492

LLMs To assess the generalizability of our method, 493

we test diverse open-source LLMs by plotting 494

curves that illustrate the metrics calculated by sam- 495

pling multiple predictions at different k. Apart 496

from CodeLlama-34B-SFT, we test a smaller cod- 497

ing model, Magicoder-6.7B, and a small chatting 498

model, Llama2-7B-chat, to observe the potential 499

of various target models. Figure 4(a) demon- 500

strates that CodeLlama-34B-SFT significantly out- 501

performs GPT-3.5-Turbo when k > 6. Addition- 502

ally, despite an extremely low Pass@1, the smaller 503

Magicoder-6.7B demonstrates Pass@50 compara- 504

ble to Pass@1 of GPT-3.5-Turbo, which indicates 505

6



Table 1: Overall performance on the SheetCopilot benchmark. This table compares the target model bootstrapped
with our proposed method and three proprietary LLMs. When using the verifiers, we keep sampling predicted
solutions until one solution passes verificaiton or we exceed the sampling limit (50 solutions), and then consider
the tasks with solutions found within the limit as successful. The target model, CodeLlama-34B-SFT, achieves
impressive Exec@50 and Pass@50 which substantially surpass Exec@1 and Pass@1 of the three proprietary LLMs.
When aided by the verifiers, the target model obtains higher Pass@1. Additionally, our bootstrapping method
unleashes the model’s potential using verification-aided self-training, lifting this target model to a higher level.
Using the verifiers to augment the bootstrapped model introduces further improvement in Pass@1. 10% means that
the experiments are conducted with 10% of the test samples due to the formidable cost of the LLM APIs.

Model Exec@1 Pass@1 Exec@50 Pass@50

CodeLlama-34B-SFT 94.1 22.7 100.0 60.6
CodeLlama-34B-SFT w/ verifiers 94.1 34.5 - -
CodeLlama-34B-SFT-iter1 96.4 38.0 100.0 64.3
CodeLlama-34B-SFT-iter1 w/ verifiers 85.1 41.6 - -

GPT-3.5-Turbo (Li et al., 2023a) 87.3 44.3 - -
GPT-4 (10%) (Li et al., 2023a) 65.0 55.0 - -
Claude (10%) (Li et al., 2023a) 80.0 40.0 - -

Table 2: Overall performance on the cross-website
split of the Mind2web benchmark. The target model,
CodeLlama-34B-SFT (CL), is weaker than all of the
three compared methods. However, this model obtains
notably high metrics when sampling 20 predictions (best
of 20). Using the verifiers (Verif.), the target model
also achieves performance gain, outperforming Min-
dAct (GPT-3.5).

Model Elem. Acc. Step SR

MindAct (CL) 14.7 12.1
MindAct (CL + Best of 20) 54.4 34.8
MindAct (CL + Verif.) 22.6 19.0

MindAct (GPT-3.5) 19.3 16.2
MindAct (GPT-4) 35.8 30.1
Synapse (GPT-3.5) 28.8 23.4

that this smaller model is also likely to be lifted506

to a GPT-3.5-Turbo level by leveraging our boot-507

strapping method. This trend also appears on the508

Mind2Web benchmark. CodeLlama-34B-SFT out-509

performs GPT-4 when k > 5 while the other two510

smaller models achieve performances comparable511

to, or even higher than the level of GPT-3.5-Turbo.512

Overall, the above results on diverse metrics and513

benchmarks suggest that it is possible to leverage514

our bootstrapping method to elevate open-source515

LLMs to a similar level of proprietary LLMs.516

4.4 Ablation Studies517

4.4.1 Evaluating Verifiers518

We justify the efficacy of the proposed verification519

process by 1) inspecting its precision and recall,520

and 2) equipping open-source LLMs with the veri-521

fiers when tested on the two benchmarks.522

Firstly, we apply the proposed verifiers to the523

results of CodeLlama-34B-SFT in 4.2, and calcu-524

late the precision and recall using the verification 525

results. The precisions for the functionally correct 526

samples and the failed ones are 0.40 and 0.86, re- 527

spectively. The recalls for the functionally correct 528

samples and the failed ones are 0.53 and 0.79, re- 529

spectively. We can see that the verifiers achieve 530

higher precision and recall of recognizing failed 531

solutions despite the lower values for the success- 532

ful ones. As the verifiers are designed to recognize 533

potential errors in generated solutions and to reject 534

as many potentially failed solutions as possible, 535

instead of picking correct ones, this imbalance phe- 536

nomenon can be expected. We notice that the preci- 537

sion is higher than the recall for recognizing failed 538

solutions, which is because our verifiers are de- 539

signed to be general enough to recognize common 540

errors. As error types are difficult to enumerate, it is 541

almost impossible to invent all possible rules used 542

to recognize all error types. Therefore, the verifiers 543

can find erroneous solutions precisely while likely 544

to miss the ones with elusive errors. Symmetrically, 545

the recall is higher than the precision for finding 546

successful solutions since another goal of our ver- 547

ifiers is to recognize as many errors as possible 548

without missing successful solutions. Therefore, 549

our verifiers may mistakenly judge failed solutions 550

as correct so as to not miss potentially successful 551

ones. 552

To assess the efficacy of the verifiers, we evalu- 553

ate the target model with and without the proposed 554

verifiers. For the model without verification, the 555

temperature is 0.0; for the model with verification, 556

the temperature is 1.0 and we sample predictions 557

until one prediction passes the verification. Table 3 558

shows that the target model, CodeLlama-34B-SFT, 559

obtains higher Pass@1 when equipped with the 560

7



Table 3: Ablation studies on the proposed verifiers. CodeLlama-34B-SFT, Magicoder-6.7B, and Llama2-7B-chat
are used as the target LLMs. When evaluated without the proposed verifiers, the inference temperature is set to 0.0.
When verifiers are used, the temperature is set to 1.0.

Symbolic
Verifier

LM
Verifier

SheetCopilot Mind2Web
Exec@1 Pass@1 Elem. Acc.@1 Step SR@1

94.1 22.7 14.8 12.1
✓ 97.3 33.1 19.2 16.3
✓ ✓ 91.4 34.5 22.6 19.0

(a) Evaluation on the SheetCopilot benchmark.

(b) Evaluation on the Mind2Web benchmark.

Figure 4: Experiments of Best-of-K sampling. We
test different open-source LLMs on the two bench-
marks by calculating the metrics via best-of-k sam-
pling. On the SheetCopilot benchmark, the largest
model, CodeLlama-34B-SFT surpasses GPT-3.5-Turbo
when k > 6 while the smaller Magicoder-6.7B be-
comes comparable to GPT-3.5-Turbo when k = 50.
The Mind2Web benchmark also exhibits similar trends:
the three open-source LLMs obtain consistent improve-
ments when k increases, with CodeLlama-34B-SFT out-
performing GPT-4 and the other obtaining performances
comparable to, and even surpassing, that of GPT-3.5-
Turbo.

symbolic verifier. Using both verifiers leads to a561

slightly higher Pass@1. Adding the LM verifier562

reduces Exec@1, possibly because this verifier is563

strict, rejecting several potentially correct predic-564

tions. On the Mind2Web benchmark, the proposed565

verifiers also bring consistent improvements. These566

results show that the proposed verifiers are benefi-567

cial for improving open-source LLMs prompted as568

autonomous agents.569

4.4.2 Evaluating Self-Training570

To see to what extent we can enhance the ability of571

open-source LLMs in specific domains, we boot-572

strap the target model, CodeLlama-34B-SFT, and573

Table 4: The impact of solution SNR on self-training
performance.

Model Exec@1 Pass@1

CodeLlama34B-SFT 94.1 22.7
Self-Instruct w/ Verifiers (2185) 96.4 38.0
Self-Instruct w/o Verifiers (2185) 92.8 21.7

observe the variation in its performance. The re- 574

sult in Figure 5 demonstrates that the target model 575

obtains a substantial performance gain with one 576

iteration of self-training, achieving a Pass@1 near 577

the level of GPT-3.5-Turbo. This result validates 578

that our bootstrapping method can effectively gen- 579

erate high SNR solutions to improve the model. 580

Figure 5: The performance of CodeLlama-34B-SFT on
the SheetCopilot benchmark after bootstrapping. With
one iteration of bootstrapping, the target model (CL-
34B-SFT) witnesses significant improvement in both
metrics, increasing Pass@1 by 15.3, near the level of
GPT-3.5-Turbo.

5 Conclusion 581

We present bootstrapping by verification learn- 582

ing for LLM-based agents in this work. Our ap- 583

proach combine a new massive agent trajectory 584

sampling method and a neural-symbolic verifica- 585

tion approach for generating high signal-to-noise 586

solutions for self-training our base model. Experi- 587

ments on multi-steps spreadsheet manipulation and 588

web surfing tasks demonstrate the effectiveness of 589

the proposed methods. We hope this work could 590

bring more research interests into studying how 591

to align agent behavior without large-scale human 592

annotation. 593

8



6 Limitations594

Our method is evaluated on only multi-step bench-595

marks of agent tasks. The importance and signifi-596

cance for automatic alignment for those one-step597

benchmarks like ToolLlama (Qin et al., 2023) is598

not studied in this work.599

References600

1978. A method for obtaining digital signatures and601
public-key cryptosystems. Communications of the602
ACM, 21(2):120–126.603

Daniil A. Boiko, Robert MacKnight, Ben Kline, and604
Gabe Gomes. 2023. Autonomous chemical research605
with large language models. Nature, 624:570 – 578.606

Tom Brown, Benjamin Mann, Nick Ryder, Melanie607
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind608
Neelakantan, Pranav Shyam, Girish Sastry, Amanda609
Askell, et al. 2020. Language models are few-shot610
learners. Advances in neural information processing611
systems, 33:1877–1901.612

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming613
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-614
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,615
Greg Brockman, et al. 2021. Evaluating large616
language models trained on code. arXiv preprint617
arXiv:2107.03374.618

Zixiang Chen, Yihe Deng, Huizhuo Yuan, Kaixuan Ji,619
and Quanquan Gu. 2024. Self-play fine-tuning con-620
verts weak language models to strong language mod-621
els. arXiv preprint arXiv:2401.01335.622

Edmund M Clarke, E Allen Emerson, and A Prasad623
Sistla. 1986. Automatic verification of finite-state624
concurrent systems using temporal logic specifica-625
tions. ACM Transactions on Programming Lan-626
guages and Systems (TOPLAS), 8(2):244–263.627

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,628
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias629
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro630
Nakano, Christopher Hesse, and John Schulman.631
2021. Training verifiers to solve math word prob-632
lems.633

Stephen A. Cook. 1971. The complexity of theorem-634
proving procedures. Proceedings of the third annual635
ACM symposium on Theory of computing.636

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and637
Christopher Ré. 2022. Flashattention: Fast and638
memory-efficient exact attention with io-awareness.639
NeurIPS, 35:16344–16359.640

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen,641
Samuel Stevens, Boshi Wang, Huan Sun, and Yu Su.642
2023. Mind2web: Towards a generalist agent for643
the web. In Thirty-seventh Conference on Neural644
Information Processing Systems Datasets and Bench-645
marks Track.646

Shafi Goldwasser, Silvio Micali, and Charles Rackoff. 647
1989. The knowledge complexity of interactive proof 648
systems. SIAM Journal on Computing, 18(1):186– 649
208. 650

Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio 651
César Teodoro Mendes, Allie Del Giorno, Sivakanth 652
Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo 653
de Rosa, Olli Saarikivi, et al. 2023. Textbooks are all 654
you need. arXiv preprint arXiv:2306.11644. 655

Tanmay Gupta and Aniruddha Kembhavi. 2022. Vi- 656
sual programming: Compositional visual reasoning 657
without training. CVPR, pages 14953–14962. 658

Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu 659
Zheng, Yuheng Cheng, Ceyao Zhang, Jinlin Wang, 660
Zili Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang 661
Zhou, Chenyu Ran, Lingfeng Xiao, Chenglin Wu, 662
and Jürgen Schmidhuber. 2023. Metagpt: Meta pro- 663
gramming for a multi-agent collaborative framework. 664

James C King. 1976. Symbolic execution and program 665
testing. Communications of the ACM, 19(7):385– 666
394. 667

Hongxin Li, Jingran Su, Yuntao Chen, Qing Li, and 668
Zhaoxiang Zhang. 2023a. Sheetcopilot: Bringing 669
software productivity to the next level through large 670
language models. In NIPS. 671

Xian Li, Ping Yu, Chunting Zhou, Timo Schick, Luke 672
Zettlemoyer, Omer Levy, Jason Weston, and Mike 673
Lewis. 2023b. Self-alignment with instruction back- 674
translation. arXiv preprint arXiv:2308.06259. 675

Yohei Nakajima. 2023. Babyagi. https://github. 676
com/yoheinakajima/babyagi. GitHub repository. 677

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, 678
Long Ouyang, Christina Kim, Christopher Hesse, 679
Shantanu Jain, Vineet Kosaraju, William Saunders, 680
Xu Jiang, Karl Cobbe, Tyna Eloundou, Gretchen 681
Krueger, Kevin Button, Matthew Knight, Benjamin 682
Chess, and John Schulman. 2022. Webgpt: Browser- 683
assisted question-answering with human feedback. 684

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, 685
Carroll Wainwright, Pamela Mishkin, Chong Zhang, 686
Sandhini Agarwal, Katarina Slama, Alex Gray, John 687
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller, 688
Maddie Simens, Amanda Askell, Peter Welinder, 689
Paul Christiano, Jan Leike, and Ryan Lowe. 2022. 690
Training language models to follow instructions with 691
human feedback. In Advances in Neural Information 692
Processing Systems. 693

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan 694
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang, 695
Bill Qian, Sihan Zhao, Lauren Hong, Runchu Tian, 696
Ruobing Xie, Jie Zhou, Mark Gerstein, Dahai Li, 697
Zhiyuan Liu, and Maosong Sun. 2023. Toolllm: Fa- 698
cilitating large language models to master 16000+ 699
real-world apis. 700

9

https://api.semanticscholar.org/CorpusID:266432059
https://api.semanticscholar.org/CorpusID:266432059
https://api.semanticscholar.org/CorpusID:266432059
http://arxiv.org/abs/2110.14168
http://arxiv.org/abs/2110.14168
http://arxiv.org/abs/2110.14168
https://api.semanticscholar.org/CorpusID:7573663
https://api.semanticscholar.org/CorpusID:7573663
https://api.semanticscholar.org/CorpusID:7573663
https://openreview.net/forum?id=kiYqbO3wqw
https://openreview.net/forum?id=kiYqbO3wqw
https://openreview.net/forum?id=kiYqbO3wqw
https://api.semanticscholar.org/CorpusID:253734854
https://api.semanticscholar.org/CorpusID:253734854
https://api.semanticscholar.org/CorpusID:253734854
https://api.semanticscholar.org/CorpusID:253734854
https://api.semanticscholar.org/CorpusID:253734854
http://arxiv.org/abs/2308.00352
http://arxiv.org/abs/2308.00352
http://arxiv.org/abs/2308.00352
https://openreview.net/forum?id=tfyr2zRVoK
https://openreview.net/forum?id=tfyr2zRVoK
https://openreview.net/forum?id=tfyr2zRVoK
https://openreview.net/forum?id=tfyr2zRVoK
https://openreview.net/forum?id=tfyr2zRVoK
https://github.com/yoheinakajima/babyagi
https://github.com/yoheinakajima/babyagi
https://github.com/yoheinakajima/babyagi
http://arxiv.org/abs/2112.09332
http://arxiv.org/abs/2112.09332
http://arxiv.org/abs/2112.09332
https://openreview.net/forum?id=TG8KACxEON
https://openreview.net/forum?id=TG8KACxEON
https://openreview.net/forum?id=TG8KACxEON
http://arxiv.org/abs/2307.16789
http://arxiv.org/abs/2307.16789
http://arxiv.org/abs/2307.16789
http://arxiv.org/abs/2307.16789
http://arxiv.org/abs/2307.16789


Toran Bruce Richards. 2023. Auto-gpt. https://701
github.com/Significant-Gravitas/Auto-GPT.702
GitHub repository.703

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle,704
Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi705
Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom706
Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish707
Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wen-708
han Xiong, Alexandre Défossez, Jade Copet, Faisal709
Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier,710
Thomas Scialom, and Gabriel Synnaeve. 2023. Code711
llama: Open foundation models for code.712

Jianhao Shen, Yichun Yin, Lin Li, Lifeng Shang, Xin713
Jiang, Ming Zhang, and Qun Liu. 2021. Generate &714
rank: A multi-task framework for math word prob-715
lems. In Findings of the Association for Computa-716
tional Linguistics: EMNLP 2021, pages 2269–2279,717
Punta Cana, Dominican Republic. ACL.718

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li,719
Weiming Lu, and Yueting Zhuang. 2023. Hugging-720
GPT: Solving AI tasks with chatGPT and its friends721
in hugging face. In Thirty-seventh Conference on722
Neural Information Processing Systems.723

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Man-724
dlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and725
Anima Anandkumar. 2023. Voyager: An open-ended726
embodied agent with large language models. In727
NeurIPS 2023 Foundation Models for Decision Mak-728
ing Workshop.729

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Al-730
isa Liu, Noah A Smith, Daniel Khashabi, and Han-731
naneh Hajishirzi. 2022. Self-instruct: Aligning lan-732
guage model with self generated instructions. arXiv733
preprint arXiv:2212.10560.734

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten735
Bosma, brian ichter, Fei Xia, Ed H. Chi, Quoc V Le,736
and Denny Zhou. 2022. Chain of thought prompt-737
ing elicits reasoning in large language models. In738
Advances in Neural Information Processing Systems.739

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and740
Lingming Zhang. 2023. Magicoder: Source code is741
all you need.742

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak743
Shafran, Karthik R Narasimhan, and Yuan Cao. 2022.744
React: Synergizing reasoning and acting in language745
models. In The Eleventh International Conference746
on Learning Representations.747

Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho,748
Sainbayar Sukhbaatar, Jing Xu, and Jason Weston.749
2024. Self-rewarding language models. arXiv750
preprint arXiv:2401.10020.751

Longtao Zheng, Rundong Wang, Xinrun Wang, and752
Bo An. 2023. Synapse: Trajectory-as-exemplar753
prompting with memory for computer control. In754
NeurIPS 2023 Foundation Models for Decision Mak-755
ing Workshop.756

Xizhou Zhu, Yuntao Chen, Hao Tian, Chenxin Tao, Wei- 757
jie Su, Chenyu Yang, Gao Huang, Bin Li, Lewei Lu, 758
Xiaogang Wang, et al. 2023. Ghost in the minecraft: 759
Generally capable agents for open-world enviroments 760
via large language models with text-based knowledge 761
and memory. arXiv preprint arXiv:2305.17144. 762

A Appendix 763

A.1 More Training details 764

Flash-attention (Dao et al., 2022) and bfloat164 are 765

also utilized to accelerate training. 766

A.2 Task Solution Example 767

We show a example of the SheetCopilot bench- 768

mark used in our experiments in Figure 6. The left 769

column of the figure shows that the agent gener- 770

ates a step-by-step solution according to the sheet 771

state feedback and correctly revises its mistakes 772

using the external atomic action document as well 773

as the error feedback. The incorrect arguments 774

are marked with red rectangles. The right column 775

shows that the sheet state changes corresponding 776

to each step on the left. 777

A.3 Error Types Recognized in Verification 778

To fully assess the effect of the proposed verifiers, 779

we display the proportions of the error types recog- 780

nized in the verification in a Sankey diagram (Fig- 781

ure 7). A large percentage of the errors are found 782

by the symbolic verifier, which include Referring 783

invalid objects, Incomplete Data, Meaningless Ac- 784

tions, Argument errors, and Other common-sense 785

errors. A small number of errors are recognized by 786

the LLM verifier since these errors related to the 787

task semantics occur less frequently. 788

4Bfloat16 is a floating-point number format with 16 bits,
striking a balance between the range of traditional 32-bit
floating-point numbers and the memory efficiency of 16-bit
floating-point numbers.

10

https://github.com/Significant-Gravitas/Auto-GPT
https://github.com/Significant-Gravitas/Auto-GPT
https://github.com/Significant-Gravitas/Auto-GPT
http://arxiv.org/abs/2308.12950
http://arxiv.org/abs/2308.12950
http://arxiv.org/abs/2308.12950
https://doi.org/10.18653/v1/2021.findings-emnlp.195
https://doi.org/10.18653/v1/2021.findings-emnlp.195
https://doi.org/10.18653/v1/2021.findings-emnlp.195
https://doi.org/10.18653/v1/2021.findings-emnlp.195
https://doi.org/10.18653/v1/2021.findings-emnlp.195
https://openreview.net/forum?id=yHdTscY6Ci
https://openreview.net/forum?id=yHdTscY6Ci
https://openreview.net/forum?id=yHdTscY6Ci
https://openreview.net/forum?id=yHdTscY6Ci
https://openreview.net/forum?id=yHdTscY6Ci
https://openreview.net/forum?id=P8E4Br72j3
https://openreview.net/forum?id=P8E4Br72j3
https://openreview.net/forum?id=P8E4Br72j3
https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=_VjQlMeSB_J
http://arxiv.org/abs/2312.02120
http://arxiv.org/abs/2312.02120
http://arxiv.org/abs/2312.02120
https://openreview.net/forum?id=pI6ylnkPAD
https://openreview.net/forum?id=pI6ylnkPAD
https://openreview.net/forum?id=pI6ylnkPAD


Figure 6: A task solution example of the SheetCopilot benchmark.

11



Figure 7: Error breakdown for the codellama-34b-sft model on SheetCopilot tasks.

12


	Introduction
	Related Works
	LLM-based Agents
	Self-Improving LLMs

	Bootstrapping via Verification
	Self-Instructed Task Generation
	Massive Agent Trajectory Sampling
	Neural-Symbolic Verifier for LLM Agents
	Verification-based Self-Training

	Experiments
	Experimental Settings
	Comparing with Existing Works
	Evaluating Best-of-K Sampling
	Ablation Studies
	Evaluating Verifiers
	Evaluating Self-Training


	Conclusion
	Limitations
	Appendix
	More Training details
	Task Solution Example
	Error Types Recognized in Verification


