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Abstract

We present a self-training method that allows
language model-based agents to improve per-
formance without distilling proprietary models.
Existing self-verification methods struggle to
validate function signatures defined in agent
prompts. A common failure is the verifier hal-
lucinating non-existent constraints on function
calls due to interference between model knowl-
edge and examples in prompts. To address this,
we devise a neural-symbolic verification sys-
tem that prioritizes language models for validat-
ing solution completeness and pertinence while
delegating fact checks to a symbolic system.
‘We propose bootstrap-by-verification learning
which combines massive agent trajectory sam-
pling with our verification for self-training. Ex-
periments on spreadsheet and web browsing
benchmarks show the method’s effectiveness.

1 Introduction

Large language models (LLMs) have recently
gained popularity as the engine for autonomous
agents. Research explores leveraging LLMs
beyond chatting, writing, and coding for gen-
eral workplace applications. Proposed agent
applications include problem solvers like Auto-
GPT (Richards, 2023) and BabyAGI (Nakajima,
2023), gameplay agents like Voyager (Wang et al.,
2023) and GITM (Zhu et al., 2023) and web surf-
ing agents like WebGPT (Nakano et al., 2022) and
Mind2Web (Deng et al., 2023).

Along with the prosperity of agent research, the
need for LLM customization beyond prompting has
surged and thus make the annotation for agent be-
havior of great importance. However, gathering ex-
pert trajectories for all possible tasks is impractical
since modern language models are far more knowl-
edgeable than any human generalist. For example,
a spreadsheet agent could easily generate a formula
like VLOOKUP(C2, "A:B”, 2, FALSE), which is
used to search for the value in cell C2 in the first col-
umn of the range "A:B" and returns a value in the
same row from the second column. This complex
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Figure 1: Our bootstrapping method verifies predictions
of a base LLM, selects potentially correct ones, and uses
the collected samples to fine-tune the LLM for specific
tasks. Tested on the SheetCopilot (Li et al., 2023a)
spreadsheet benchmark, the bootstrapped LLM shows
significant improvement, approaching GPT-3.5-Turbo
with the help of verifiers.

formula requires serious efforts to come up with
even for human experts. Therefore, modern LLMs
are generally aligned via reinforcement learning
via human feedback(RLHF) (Ouyang et al., 2022),
a technique that could leverage the much weaker
supervision signals produced by annotators order-
ing their preference of different LLM responses for
the same request.

However, fine-tuning agents differs from chat-
bots in needing to handle a wide variety of tasks.
While summarization and rewriting bots can lever-
age scalable annotation from individuals, it is much
harder to imagine finding specialized annotators for
niche skills like developing an EDA chip design
copilot. The long tail of technical domains makes
agent annotation far less scalable than for chatbots.
Minimizing human effort in agent data collection
is thus critical.

This work proposes a bootstrapping by verifica-
tion learning method to generate annotation data
for LLM agents without human effort. It is mo-
tivated by the insight that verifying a solution is
often easier than generating one (RSA, 1978; Gold-
wasser et al., 1989; Cook, 1971). Though the key
insight is proven, two main technical challenges



arise in utilizing bootstrapping by verification learn-
ing for LLM agents. First, generating high-quality
solution proposals using open-source models less
capable than proprietary ones. We avoid distill-
ing trajectories from strong proprietary models like
GPT-4, to better assess method merits. Second,
designing a procedure to reliably filter incorrect
solutions and retain correct ones. Self-training re-
quires high signal-to-noise ratio(SNR) for effective
bootstrapping.

To address these challenges, we propose a two-
step approach: massive agent trajectory! sampling
(MATS) to generate diverse, high-quality solution
proposals, and neural-symbolic verification (NSV)
to filter out superfluous solutions. Specifically, our
MATS obtains a large corpus of diverse proposed
solutions by combining path eliminating rejection
sampling and trajectory mutation sampling. We
increase diversity through high temperature decod-
ing, rejecting trajectories sharing prefix beyond a
certain ratio with any existing trajectories. We also
randomly mutate actions in existing trajectories and
let the agent start generating right after the mutated
actions. These methods ensure that our proposal
solution pool is of high diversity. For increasing so-
lution SNR, we employ both rule-based symbolic
verifiers and LLM-based neural verifiers for re-
jecting superfluous solutions generated by massive
sampling. Specifically we construct a set of verifi-
cation functions that each is tasked for catching a
specific type of error in the solution via symbolic
pattern matching. Moreover, we prompt the neural
verifiers for checking the completeness of the solu-
tion and if the precondiitons of certain actions are
meet. Finally, we retrain our base model after the
high quality solution corpus are obtain via standard
instruction tuning approach.

To address these challenges, we propose a two-
step approach: massive agent trajectory sampling
(MATS) to generate diverse, high-quality solution
proposals, and neural-symbolic verification (NSV)
to filter out superfluous solutions. Specifically, our
MATS obtains a large corpus of diverse proposed
solutions by combining path eliminating rejection
sampling and trajectory mutation sampling. We
increase diversity through high temperature decod-
ing, rejecting trajectories sharing prefix beyond a
certain ratio with any existing trajectories. We also
randomly mutate actions in existing trajectories
and let the agent start generating right after the
mutated actions. For NSV, we employ rule-based
symbolic verifiers and LLM-based neural verifiers.
Symbolic verifiers catch specific error types via

'We use solution and trajectory interchangeably thereafter.

pattern matching. Neural verifiers check complete-
ness and action preconditions. After obtaining a
high quality corpus, we retrain our base LLM with
standard instruction tuning. This two-step MATS
and NSV approach allows generating agent training
data without human input.

Our contribution could be summarized as fol-
lows:

* We propose a new self-training method for
LLM-based agents by leveraging the boot-
strapping by verification approach.

* We devise a novel sampling method for sam-
pling diverse agent trajectories for solution
proposal and a neural-symbolic verification
method for improving the signal-to-noise ra-
tio of proposed solutions.

* We evaluate the proposed bootstrapping learn-
ing on multiple complex agent benchmarks
with multi-step reasoning. Our method im-
proves the codellama-34b based model by
15.3% on SheetCopilot (Li et al., 2023a) and
by 6.9% on Mind2Web (Deng et al., 2023).

2 Related Works
2.1 LLM-based Agents

Benefiting from vast amounts of human text knowl-
edge, large language models (LLMs) have exhib-
ited a sign of human-level intelligence. Harnessing
the impressive potential of LLMs, a new wave of
research attempts to augment LL.Ms with external
tools to build autonomous agents that are capable
of solving complex tasks on behalf of humans. No-
table examples include VisProg (Gupta and Kem-
bhavi, 2022), HuggingGPT (Shen et al., 2023),
ReAct (Yao et al., 2022), SheetCopilot (Li et al.,
2023a), GITM (Zhu et al., 2023), Voyager (Wang
et al., 2023), MetaGPT (Hong et al., 2023), and
Coscientist (Boiko et al., 2023). These methods
typically utilize in-context learning (Brown et al.,
2020), allowing LLMs to flexibly acquire new
skills and knowledge from relevant context and a
few demonstrative examples in plain text, without
additional training. Additionally, to enhance over-
all performance in various tasks that require reason-
ing and interaction, Chain of Thoughts (CoT) (Wei
et al., 2022) is generally employed to elicit an inter-
connected flow of reasoning and decision-making
from LLMs.

2.2 Self-Improving LLMs

As supervised fine-tuning and RLHF are both
data-hungry, self-improving LLMs has recently



gained attention as it is less reliant on human an-
notations. SPIN (Chen et al., 2024) iteratively
boosts a weak model by reshaping the training
process as a two-play game: the main player (the
LLM after fine-tuning) seeks to differentiate the
responses of the old LLM from human responses,
while the opponent (the old LLM) generates re-
sponses as similar as possible to human ones. This
method outperforms models trained with extra hu-
man data or Al feedback. Self-Rewarding (Yuan
et al., 2024) shares a similar idea: LLMs act as
instruction-following models generating responses
and also evaluate their responses via LL.M-as-a-
Judge prompting, obtaining preference data used
for fine-tuning. Instruction Backtranslation (Li
et al., 2023b) similarly augments training data
by generating and selecting synthetic instruction-
output pairs using the target LLM. Different from
these works, our method explores self-improving
LLMs in interactive scenarios where an LLM is
prompted as an agent that uses external tools to
solve compositional tasks, such as manipulating
computer software.

3 Bootstrapping via Verification

To bootstrap agent performance for LLMs, we as-
sume access to a base chat or code language model,
a set of seed task descriptions, and a symbolic en-
gine for verifying the correctness of solutions.

As shown in Figure 2, we want the base model
to both propose new tasks from seed tasks as well
as generate a large number of verification solutions.
We then use symbolic and model-based verifiers for
grading all the solutions and find the most plausible
ones for training the next iteration of agent models.

One full bootstrapping cycle includes a self-
instructed task generation step, a solution gener-
ation step, a verification step, and a self-training
step. We will elaborate each step in the following
sections.

3.1 Self-Instructed Task Generation

To generate a large number of tasks and to avoid
making design choices towards the test task set, we
leverage the base model for proposing new task
descriptions via Self-Instruct (Wang et al., 2022).
As shown in Figure 2 (a), we randomly sample an
environment setup from the task pool and prompt
the base model to come up with new tasks that
can be done in this environment according to few-
shot seed task examples. To minimize potential
data contamination, we use a distinct set of task
environments(e.g., unseen websites for browsing)
and perform task-level deduplication to remove

tasks similar to existing ones. Other more advanced
instruction generation approaches like Phi-1 (Gu-
nasekar et al., 2023) and Magicoder (Wei et al.,
2023) may also be applied but this is slightly out
of the scope of this work.

3.2 Massive Agent Trajectory Sampling

To address the challenge of obtaining high-quality
supervision signals without distilling proprietary
models, we conduct massive solution sampling for
our base models at a high temperature to sample
high-quality solutions for task descriptions.

We argue that language models possess the abil-
ity to complete tasks while they probably underper-
form due to the lack of proper alignment. Although
the potential performance gain underscored by best-
of-n solution sampling for coding LLMs has been
widely reported (Chen et al., 2021), how to mate-
rialize this potential without access to the oracle
remains an open problem. Moreover, different from
outputting a whole piece of code, agent models gen-
erally output a mix of chain-of-thought thinking
steps and the actual action trajectories represented
in function calls, how to effectively sampling di-
verse action trajectories remains an open problem.

We propose a path eliminating rejection sam-
pling approach for leveraging the more structured
action output for LLM-based agents compared with
code generation. For a sampled trajectory with N
actions Ty = {41, Ao, - -+, Ay}, we reject it if all
prefix of it overlaps with existing solution beyond
a certain threshold miny—o 7 7; N Texist > 7.

Besides sampling based proposal generation, we
also leverage trajectory mutation for increasing
the solution diversity. For a random trajectory
Tn = {A1,As,--- , Ay} in the solution pool, we
randomly replace one of its action A,, with an ac-
tion A’ uniformly sampled from the whole solution
pool of the same task. We then use the prefix for
LLM agents to continue sampling the remaining
actions.

In Figure 4, we show that as the number of sam-
pled solutions increases, the best-of-k success rate
for agents completing tasks also improves steadily.
Moreover, the potential of massive sampling holds
for both a wide range of language models as well
as heterogeneous agent tasks from different fields.

3.3 Neural-Symbolic Verifier for LLM Agents

After we validate the potential of our agents in
terms of their ability to generate high-quality best-
of-n samples, the next challenge is how to unleash
their capability by converting the best-of-n perfor-
mance into the best-of-1 performance, without dis-
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Figure 2: Overall framework of our proposed bootstrapping pipeline. The pipeline starts with an open-source
LLM M, and a small number of seed tasks 7. (a) Initially, M; is prompted to generate more tasks using Self-
Instruct (Wang et al., 2022), and then (b) M; generates a number of candidate solutions to each task by interacting
with the task-specific tools multiple times. (c) Subsequently, the candidate solutions undergo the symbolic verifier
that employs verification functions to recognize potential errors in each step, which eliminates the solutions with
easy-to-find errors. (d) Afterward, an LLM is prompted to verify the remaining solutions step-by-step to recognize
hard-to-find errors probably related to the task semantics (Verification examples are shown at the bottom). (e) The
task-solution pairs that pass the two verifiers are collected as the fine-tuning data D, which is eventually used to (f)
fine-tune M; to obtain a more capable model M. (g) This whole procedure will then be iterated resulting in a

significantly improved LLM agent.

tillation or large-scale human labeling.

A neural-symbolic verifier is used for evaluating
the correctness of model-generated solutions. In
addition to utilize language models for verification
like existing generate & rank works for math word
problems (Shen et al., 2021; Cobbe et al., 2021), we
further harness the power of symbolic verification
in this work.

We combine the rigor of a symbolic system and
the real-world understanding of language models
for verification. As shown in Figure 7, agents make
different types of errors. Errors like calling wrong
APIs or referencing null objects are easily verifiable
by the symbolic engine while errors like choos-
ing unrelated APIs or hallucinating meaningless
actions are more suitable for language model veri-
fiers.

Symbolic Verification We borrow the idea of
symbolic verification from traditional software
analysis and formal verification systems (King,
1976; Clarke et al., 1986). Instead of building
a full-fledged symbolic execution engine that
could validate preconditions, post conditions, and
invariants for a piece of code, our symbolic verifier
simply consists an action parser and a set of

argument verification functions. The action parser
breaks up action function calls into arguments
and a set of verification functions validates each
argument both syntactically and semantically. Each
symbolic verification function is tailored based on
explicit logic for a specific task (e.g. spreadsheet
and browser) and the syntax of the corresponding
output APIs. For instance, in the context of the
spreadsheet task, a verification function is designed
to check the data integrity for a source range (the
cells start from row 2 in column H in Sheetl) of an
<Filter(source='Sheet1!H2:H', fieldindex=1
,criteria="'>250"')> action.  Similarly, for
the browsing task, a verification function
is tasked with checking whether the tar-
get element [static text] RT News of a
<CLICK on [static text] RT News> action
clickable. The bottom left corner of Figure 2
visually depicts these two functions.

The development of these verification functions
begins with running the agent on the validation
dataset, where we then analyze and catalog errors
from the agent’s running log. This hands-on analy-
sis allows us to discern patterns and commonalities
of errors, informing the creation of a symbolic en-



gine.

Symbolic-aided Neural Verification Different
from existing works that solely rely on language
models for verification via prompting (Yuan et al.,
2024) and fine-tuning (Cobbe et al., 2021), we pro-
pose a symbolic-aided neural verification approach.
Specifically, we first check the initial solution via
the verification functions. We then incorporate
into prompt the symbolic checking results to con-
duct further checking by language verifier for solu-
tions passed by symbolic checking. By hinting lan-
guage models with symbolic checking results, we
can avoid the language model hallucinating wrong
replies about facts already been verified. Besides,
the language models can now focus on generat-
ing verification that has not been verified symboli-
cally, effectively reducing the solution space. Our
language model verifier only checks the complete-
ness of solutions and whether the action choice is
aligned with the task instruction. By delegating
only high tasks with requirements of real-world
understanding to the LLM verifier, we can greatly
simplify the task requirement and reduce the risk
of hallucination.

3.4 Verification-based Self-Training

The final step in our bootstrapping cycle is to uti-
lize verified solutions to further fine-tune the base
model. This verification-based self-training learns
from past successful cases, benefiting from the self-
capabilities unleashed by a symbolic-aided neural
verifier on massive solution sampling. We initiate
the process by conducting massive sampling on the
base model, collecting solutions that have passed
through the Neural-Symbolic Verifier to constitute
our training set. We then fine-tune the base model
on this dataset. In the experiment, we prove that
these verified solution play a key role in bootstrap-
ping base model.

4 Experiments

4.1 Experimental Settings

Base Model. We adopt two open-source models,
CodeLlama-34B-SFT (Roziere et al., 2023)? and
Magicoder-S-DS-6.7B (Wei et al., 2023)3.

Task Dataset We use two challenging public
benchmarks, SheetCopilot (Li et al., 2023a) and
Mind2Web (Deng et al., 2023): 1) The SheetCopi-
lot dataset contains 28 evaluation workbooks and
989 spreadsheet manipulation tasks, categorized
into 768 training samples and 221 test samples,

Zhttps://huggingface.co/Phind/Phind-CodeLlama-34B-v2
3https://huggingface.cofise-uiuc/Magicoder-S-DS-6.7B

that are applied to these workbooks. Each task
specifies a high-level request, involving standard
spreadsheet operations.

2) The Mind2Web dataset consists of web-
browsing tasks derived from 137 websites across
various domains. It assesses the ability of agents to
follow human instructions for completing complex
tasks in web environments. Each step of a task
is evaluated independently with the ground truth
action history provided, prompting an agent to pre-
dict either Click [Id], Type [Id] [Value], or Select
[Option]. The cross-website split of this dataset
is used in our experiments. Examples of the two
benchmarks are shown in Figure 3.

Evaluation Metrics SheetCopilot benchmark uses
Exec@1 to measure the percentage of solutions
executed without throwing exceptions and Pass@1
to evaluate functional correctness (Chen et al.,
2021). To fully evaluate the potentials of the LLM
agents, we extend these two metrics to Exec@Fk and
Pass@k. The former is defined as the probability
that at least one of the top k-generated solutions
for a single task can be executed without excep-
tions. The latter is similarly defined. As each step
is evaluated independently, we use Element Accu-
racy (Elem. Acc.) and Step Success Rate (Step
SR) in the Mind2Web benchmark. The former cal-
culates the proportion of the predicted elements
that match ground truths and the latter calculates
the proportion of predicted steps whose predicted
element and operation are both correct. Likewise,
we also extend these metrics to Elem. Acc.@QFk and
Step SRQF by generating multiple predictions for
each test sample. All Pass@1 values are calculated
at temperature=0.0 while all Pass@Qk at tempera-
ture=1.0.

Compared Methods On the SheetCopilot bench-
mark, we compare the performances of the Sheet-
Copilot agent with CodelLlama-34B-SFT boot-
strapped with our method and GPT-3.5-Turbo
which is originally used. On the Mind2Web bench-
mark, we compare the performances of the agent
provided in this benchmark with verifier-equipped
CodeLlama-34B-SFT and GPT-3.5-Turbo/GPT-
4 as its backend. @ We also compare with
Synapse (Zheng et al., 2023) which uses few-shot
in-context exemplars semantically similar to the
task at hand to prompt GPT-3.5-Turbo to generate
the next action.

Self-Training Details We test the proposed boot-
strapping via verification on the SheetCopilot
dataset. At each iteration, a target LLM is run
on the training split of the SheetCopilot benchmark
6 times, generating 4608 task-solution pairs, each
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Figure 3: Examples of the used benchmarks. Left: a SheetCopilot task that requires calculating product sales and
highlighting key data using conditional formatting. Right: a Mind2Web task that requires finding news on Rotten
Tomatoes, a review-aggregation website for movies and television.

of which is a dialog between the user/software and
the agent (An example is shown in the Appendix).
Filtered by the two proposed verifiers, each of the
passed pairs is decomposed into multiple training
samples. Specifically, a training sample is a dis-
crete step in the solution process (i.e., a turn in
the dialog), inclusive of its history. We fine-tune
the full parameters of the target LLM through su-
pervised fine-tuning, using the collected training
samples. An iteration of bootstrapping is run for
three epochs. The loss is only computed on target
tokens instead of complete sequences. The learning
rate is 1e — 5 and the batch size is 1. More details
are included in the appendix.

4.2 Comparing with Existing Works

Spreadsheet Manipulation We test our method
using Codellama-34B-SFT as the target model
to be bootstrapped and compare it with the raw
model as well as a baseline (Li et al., 2023a) using
GPT-3.5-Turbo. Note that these compared mod-
els are used as the SheetCopilot agent backend to
run evaluation. The results in Table 1 show that
the Pass@50 of Codel.lama-34B-SFT is notably
higher than the Pass@1 of GPT-3.5-Turbo, indicat-
ing that this open-source model is capable of sam-
pling functionally correct solutions. After undergo-
ing 1 iteration of bootstrapping, CodeLlama-34B-
SFT-Iter] achieves significant performance gains,
outperforming its raw model by 15.3 Pass@1. Us-
ing the proposed verifiers to aid the bootstrapped
model, the pass@1 of this model is even close to
that of GPT-3.5-Turbo. These results suggest that
the target model is progressively aligned with the
desirable behavior required by spreadsheet manip-
ulation tasks through fine-tuning with the training
samples filtered by the proposed verifiers.

Web Browsing For the Mind2Web benchmark,
we compare the performances of the target model,
CodeLlama-34B-SFT, and GPT-3.5-Turbo/GPT-4

by using these models as the backend of MindAct,
the agent provided in this benchmark. We report the
performances of the target model that utilizes the
proposed verifiers to find the functionally correct
solution out of 20 sampled predictions. We also
compare with Synapse (Zheng et al., 2023) which
uses few-shot in-context exemplars semantically
similar to the task at hand to prompt GPT-3.5-Turbo
to generate the next action. The results in Table 2
illustrate that the target model, CodeLlama-34B-
SFT, enjoys clear improvement when generating
20 predictions (best of 20) for each test sample
although it shows weak web-browsing capability
when generating only one prediction. This best-of-
20 model also outperforms MindAct with GPT-3.5-
Turbo and GPT-4. After being equipped with the
proposed verifiers, the target model (CL + Verif.)
achieves performance higher than that of the tar-
get model, outperforming MindAct (GPT-3.5) and
close to Synapse (GPT-3.5). In summary, the re-
sults on the two benchmarks indicate that open-
source LLLMs possess the potential of being lifted
to the level of proprietary LLLMs on specific do-
mains and that the proposed bootstrapping with
verification is capable of unleashing this potential.

4.3 Evaluating Best-of-K Sampling

LLMs To assess the generalizability of our method,
we test diverse open-source LLLMs by plotting
curves that illustrate the metrics calculated by sam-
pling multiple predictions at different k. Apart
from CodeLlama-34B-SFT, we test a smaller cod-
ing model, Magicoder-6.7B, and a small chatting
model, Llama2-7B-chat, to observe the potential
of various target models. Figure 4(a) demon-
strates that CodeLlama-34B-SFT significantly out-
performs GPT-3.5-Turbo when £ > 6. Addition-
ally, despite an extremely low Pass@1, the smaller
Magicoder-6.7B demonstrates Pass@50 compara-
ble to Pass@1 of GPT-3.5-Turbo, which indicates



Table 1: Overall performance on the SheetCopilot benchmark. This table compares the target model bootstrapped
with our proposed method and three proprietary LLMs. When using the verifiers, we keep sampling predicted
solutions until one solution passes verificaiton or we exceed the sampling limit (50 solutions), and then consider
the tasks with solutions found within the limit as successful. The target model, CodeLLlama-34B-SFT, achieves
impressive Exec@50 and Pass@50 which substantially surpass Exec@1 and Pass@1 of the three proprietary LLMs.
When aided by the verifiers, the target model obtains higher Pass@1. Additionally, our bootstrapping method
unleashes the model’s potential using verification-aided self-training, lifting this target model to a higher level.
Using the verifiers to augment the bootstrapped model introduces further improvement in Pass@ 1. 10% means that
the experiments are conducted with 10% of the test samples due to the formidable cost of the LLM APISs.

Model Exec@1 Pass@l Exec@50 Pass@50
CodeLlama-34B-SFT 94.1 22.7 100.0 60.6
CodeLlama-34B-SFT w/ verifiers 94.1 34.5 - -
CodeLlama-34B-SFT-iterl 96.4 38.0 100.0 64.3
CodeLlama-34B-SFT-iterl w/ verifiers 85.1 41.6 - -
GPT-3.5-Turbo (Li et al., 2023a) 87.3 443 - -
GPT-4 (10%) (Li et al., 2023a) 65.0 55.0 - -
Claude (10%) (Li et al., 2023a) 80.0 40.0 - -

Table 2: Overall performance on the cross-website
split of the Mind2web benchmark. The target model,
CodeLlama-34B-SFT (CL), is weaker than all of the
three compared methods. However, this model obtains
notably high metrics when sampling 20 predictions (best
of 20). Using the verifiers (Verif.), the target model
also achieves performance gain, outperforming Min-
dAct (GPT-3.5).

Model Elem. Acc.  Step SR
MindAct (CL) 14.7 12.1
MindAct (CL + Best of 20) 54.4 34.8
MindAct (CL + Verif.) 22.6 19.0
MindAct (GPT-3.5) 19.3 16.2
MindAct (GPT-4) 35.8 30.1
Synapse (GPT-3.5) 28.8 23.4

that this smaller model is also likely to be lifted
to a GPT-3.5-Turbo level by leveraging our boot-
strapping method. This trend also appears on the
Mind2Web benchmark. CodeLlama-34B-SFT out-
performs GPT-4 when £ > 5 while the other two
smaller models achieve performances comparable
to, or even higher than the level of GPT-3.5-Turbo.
Overall, the above results on diverse metrics and
benchmarks suggest that it is possible to leverage
our bootstrapping method to elevate open-source
LLMs to a similar level of proprietary LLMs.

4.4 Ablation Studies

4.4.1 Evaluating Verifiers

We justify the efficacy of the proposed verification
process by 1) inspecting its precision and recall,
and 2) equipping open-source LLMs with the veri-
fiers when tested on the two benchmarks.

Firstly, we apply the proposed verifiers to the
results of CodeLlama-34B-SFT in 4.2, and calcu-

late the precision and recall using the verification
results. The precisions for the functionally correct
samples and the failed ones are 0.40 and 0.86, re-
spectively. The recalls for the functionally correct
samples and the failed ones are 0.53 and 0.79, re-
spectively. We can see that the verifiers achieve
higher precision and recall of recognizing failed
solutions despite the lower values for the success-
ful ones. As the verifiers are designed to recognize
potential errors in generated solutions and to reject
as many potentially failed solutions as possible,
instead of picking correct ones, this imbalance phe-
nomenon can be expected. We notice that the preci-
sion is higher than the recall for recognizing failed
solutions, which is because our verifiers are de-
signed to be general enough to recognize common
errors. As error types are difficult to enumerate, it is
almost impossible to invent all possible rules used
to recognize all error types. Therefore, the verifiers
can find erroneous solutions precisely while likely
to miss the ones with elusive errors. Symmetrically,
the recall is higher than the precision for finding
successful solutions since another goal of our ver-
ifiers is to recognize as many errors as possible
without missing successful solutions. Therefore,
our verifiers may mistakenly judge failed solutions
as correct so as to not miss potentially successful
ones.

To assess the efficacy of the verifiers, we evalu-
ate the target model with and without the proposed
verifiers. For the model without verification, the
temperature is 0.0; for the model with verification,
the temperature is 1.0 and we sample predictions
until one prediction passes the verification. Table 3
shows that the target model, CodelLlama-34B-SFT,
obtains higher Pass@1 when equipped with the



Table 3: Ablation studies on the proposed verifiers. CodeLlama-34B-SFT, Magicoder-6.7B, and Llama2-7B-chat
are used as the target LLMs. When evaluated without the proposed verifiers, the inference temperature is set to 0.0.

When verifiers are used, the temperature is set to 1.0.

Symbolic LM SheetCopilot Mind2Web
Verifier ~ Verifier Exec@1 Pass@1 Elem. Acc.@1 Step SR@1
94.1 22.7 14.8 12.1
v 97.3 33.1 19.2 16.3
v v 914 34.5 22.6 19.0
Exec@k Pass@k Table 4: The impact of solution SNR on self-training
190 77— 7 performance.
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(a) Evaluation on the SheetCopilot benchmark.
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(b) Evaluation on the Mind2Web benchmark.
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Figure 4: Experiments of Best-of-K sampling. We
test different open-source LLMs on the two bench-
marks by calculating the metrics via best-of-k sam-
pling. On the SheetCopilot benchmark, the largest
model, CodeLlama-34B-SFT surpasses GPT-3.5-Turbo
when £ > 6 while the smaller Magicoder-6.7B be-
comes comparable to GPT-3.5-Turbo when £ = 50.
The Mind2Web benchmark also exhibits similar trends:
the three open-source LLMs obtain consistent improve-
ments when k increases, with CodeLLlama-34B-SFT out-
performing GPT-4 and the other obtaining performances
comparable to, and even surpassing, that of GPT-3.5-
Turbo.

symbolic verifier. Using both verifiers leads to a
slightly higher Pass@1. Adding the LM verifier
reduces Exec@1, possibly because this verifier is
strict, rejecting several potentially correct predic-
tions. On the Mind2Web benchmark, the proposed
verifiers also bring consistent improvements. These
results show that the proposed verifiers are benefi-
cial for improving open-source LLMs prompted as
autonomous agents.

4.4.2 Evaluating Self-Training

To see to what extent we can enhance the ability of
open-source LLMs in specific domains, we boot-
strap the target model, CodeLLlama-34B-SFT, and

observe the variation in its performance. The re-
sult in Figure 5 demonstrates that the target model
obtains a substantial performance gain with one
iteration of self-training, achieving a Pass@1 near
the level of GPT-3.5-Turbo. This result validates
that our bootstrapping method can effectively gen-
erate high SNR solutions to improve the model.

Exec@1 Pass@1

100 50 443
96.4 380
9% 94.1 40 -

92
88.7 % 22.7

88 20

84 10

80

CL-34B-SFT  CL-34B-SFT GPT-3.5-Turbo
bootstrapped

CL-34B-SFT CL-34B-SFT  GPT-3.5-Turbo

bootstrapped

Figure 5: The performance of CodeLlama-34B-SFT on
the SheetCopilot benchmark after bootstrapping. With
one iteration of bootstrapping, the target model (CL-
34B-SFT) witnesses significant improvement in both
metrics, increasing Pass@1 by 15.3, near the level of
GPT-3.5-Turbo.

5 Conclusion

We present bootstrapping by verification learn-
ing for LLM-based agents in this work. Our ap-
proach combine a new massive agent trajectory
sampling method and a neural-symbolic verifica-
tion approach for generating high signal-to-noise
solutions for self-training our base model. Experi-
ments on multi-steps spreadsheet manipulation and
web surfing tasks demonstrate the effectiveness of
the proposed methods. We hope this work could
bring more research interests into studying how
to align agent behavior without large-scale human
annotation.



6 Limitations

Our method is evaluated on only multi-step bench-
marks of agent tasks. The importance and signifi-
cance for automatic alignment for those one-step
benchmarks like ToolLLlama (Qin et al., 2023) is
not studied in this work.
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A Appendix

Al

Flash-attention (Dao et al., 2022) and bfloat16* are
also utilized to accelerate training.

More Training details

A.2 Task Solution Example

We show a example of the SheetCopilot bench-
mark used in our experiments in Figure 6. The left
column of the figure shows that the agent gener-
ates a step-by-step solution according to the sheet
state feedback and correctly revises its mistakes
using the external atomic action document as well
as the error feedback. The incorrect arguments
are marked with red rectangles. The right column
shows that the sheet state changes corresponding
to each step on the left.

A.3 Error Types Recognized in Verification

To fully assess the effect of the proposed verifiers,
we display the proportions of the error types recog-
nized in the verification in a Sankey diagram (Fig-
ure 7). A large percentage of the errors are found
by the symbolic verifier, which include Referring
invalid objects, Incomplete Data, Meaningless Ac-
tions, Argument errors, and Other common-sense
errors. A small number of errors are recognized by
the LLM verifier since these errors related to the
task semantics occur less frequently.

“Bfloat16 is a floating-point number format with 16 bits,
striking a balance between the range of traditional 32-bit
floating-point numbers and the memory efficiency of 16-bit
floating-point numbers.
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Figure 6: A task solution example of the SheetCopilot benchmark.
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Figure 7: Error breakdown for the codellama-34b-sft model on SheetCopilot tasks.
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