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Abstract
We introduce a Riemannian optimistic online
learning algorithm for Hadamard manifolds based
on inexact implicit updates. Unlike prior work,
our method can handle in-manifold constraints,
and matches the best known regret bounds in the
Euclidean setting, removing the dependence on
geometric constants, like the minimum curvature.
Building on this method, we develop multiple
algorithms for g-convex, g-concave smooth min-
max problems on Hadamard manifolds. Notably,
one method nearly matches the gradient oracle
complexity of the lower bound for Euclidean prob-
lems, for the first time.

1. Introduction
Riemannian optimization refers to the optimization func-
tions defined over Riemannian manifolds. Such problems
arise when the constraints of Euclidean optimization prob-
lems can be viewed as Riemannian manifolds, such as the
symmetric positive-definite cone, the sphere, or the set of
orthogonal linear layers for a neural network. This Rieman-
nian formulation enables us to leverage the geometric struc-
ture of such problems by viewing them as unconstrained
problems on a manifold.

Further, some non-convex Euclidean problems, such as op-
erator scaling or optimistic likelihood estimation become
geodesically convex, i.e., convex along all geodesics, when
viewed as Riemannian optimization problems under the
right metric (Allen-Zhu et al., 2018; Nguyen et al., 2019).
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Most of the non-local notations in this work have a link to
their definitions, using this code, such as Expx, which links to
where this notation is defined as the exponential map of a manifold
from a point x.

Riemannian optimization methods have many application
in machine learning such as hyperbolic embeddings (Sala
et al., 2018), hyperbolic neural networks (Ganea et al., 2018;
Chami et al., 2019), Gaussian mixture models (Hosseini &
Sra, 2015), the Karcher mean (Karcher, 1977), dictionary
learning (Cherian & Sra, 2017; Sun et al., 2017), low-rank
matrix completion (Vandereycken, 2013; Mishra & Sepul-
chre, 2014; Tan et al., 2014; Cambier & Absil, 2016; Heidel
& Schulz, 2018), and optimization under orthogonality con-
straints (Edelman et al., 1998; Lezcano-Casado & Martı́nez-
Rubio, 2019).

In this work, we analyze Riemannian optimization in the
online setting where an agent receives an arbitrary, possibly
adversarial, sequence of Riemannian loss functions and
selects actions before knowing the loss functions. Its goal is
to minimize the cumulative values of the losses associated
to the actions it chooses, i.e., its regret. In particular, we
are interested in optimistic methods, which allow the agent
to improve its regret whenever the environment is not fully
adversarial by predicting the next loss based on a hint.

Online optimistic Riemannian algorithms were analyzed by
Hu et al. (2023a); Wang et al. (2023b). Both works face
issues with circular arguments related to the geometry of the
manifold. Hu et al. (2023a) consider the constrained setting
but can only guarantee the actions to lie in a neighborhood
of the constraint set. The size of this neighborhood depends
on the step size, which in turn depends on a geometric
factor dependent on the neighborhood’s size. Wang et al.
(2023b) consider the unconstrained setting but their step
sizes depend on the diameter of the set in which the iterates
stay set via geometric constants, which again influence the
size of this set. They address this issue by assuming that the
method’s iterates stay in a compact set whose diameter is
known a-priori.

Such circular relationships between step sizes and other
problem parameters, which depend on the size of the set
in which the iterates lie via geometric terms occur in many
Riemannian optimization settings and lead to unfinished
analyses, cf. Martı́nez-Rubio et al. (2024).

Chen & Orabona (2023); Choi et al. (2023); Ajalloeian et al.
(2020); Dixit et al. (2019) study implicit online algorithms
in the Euclidean setting. However, implicit optimistic algo-
rithms have not been developed, even in the Euclidean case.
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Our optimistic algorithm RIOD is based on a two-step im-
plicit update rule, i.e., on minimizing a regularized version
of the full loss or hint function, instead of a linearized ver-
sion thereof. This is important since the linear approxima-
tions of geodesically convex (g-convex) are neither g-convex
nor g-concave. Further, we chose a two-step variant even
though there are optimistic methods requiring just one step
in the Euclidean setting, since subtracting a full g-convex
hint function loss would yield a potentially hard non g-
convex subproblem.

In contrast to previous works, RIOD can enforce in-manifold
constraints without relying on strong assumptions and has
regret guarantees independent of geometric terms, matching
the regret guarantees of Euclidean algorithms. Further, the
regret guarantees allow for inexact updates under a certain
precision criterion, which can be implemented cheaply for
smooth losses. Given that our assumption covers the Eu-
clidean space as a special case, this algorithm might be of
independent interest for the online optimization community.

Application for online Riemannian optimization include
online formulations of the Karcher mean, covariance estima-
tion and robust subspace recovery (Karcher, 1977; Wiesel,
2012; Zhang, 2015). Another notable application of online
optimistic methods is to solve L-smooth and g-convex, g-
concave min-max problems. To that end, the problem is
interpreted as a two-player, zero-sum game and the strate-
gies of both variables are updated based on online optimistic
algorithms. This means that both players use gradient based
methods and hence adapt their strategy in an incremental
fashion. This knowledge can be leveraged using optimism,
which leads to faster rates, see Orabona (2019, Chapter 11.5)
for an introduction to this approach in the Euclidean setting.

Applications of g-convex, g-concave and L-smooth min-
max problems in machine learning include the robust
Karcher mean, distributionally robust linear quadratic con-
trol and more generally the distributionally robust version of
any finite-sum, g-convex optimization problem (Zhang et al.,
2023; Jordan et al., 2022; Taskesen et al., 2023). Further,
we believe that Riemannian min-max algorithms represent
a promising method to solve distributionally robust opti-
mization problems with ambiguity sets based on parametric
probability distributions as their parameter space can often
be seen as a Riemannian manifold, see (Brigant et al., 2023).
Other Riemannian min-max problems, which do not satisfy
the g-convex, g-concave and L-smooth conditions include
geometry-aware robust PCA and projection-robust optimal
transport (Horev et al., 2017; Jiang & Liu, 2023).

Building on our online algorithm RIOD, we introduce RI-
ODA, an inexact and implicit min-max algorithm for pos-
sibly constrained problems based on updating both vari-
ables based on the RIOD update rule. Implementing the
update rules using Composite Riemannian Gradient De-

scent (CRGD) introduced in Martı́nez-Rubio et al. (2024),
we achieve near-optimal gradient oracle complexity of
O
(
LR2/ε

)
and Õ(L/µ) for µ = 0 and µ > 0, respec-

tively, for an ε duality gap, matching Euclidean algorithms
up to logarithmic factors. In particular, the complexity only
has a logarithmic dependence on ζ , a geometric term arising
from the curvature of the manifold, defined in the next sec-
tion, for the first time. Note that implementing the CRGD
update steps might be a hard computational problem. Never-
theless, this is a surprising result given that in the g-convex
and L-smooth minimization setting the best known rates of

Õ(ζ +
√

ζLR2

ε ) proven in Martı́nez-Rubio et al. (2023) do

not match the Euclidean rates of O(
√
LR2/ε) (Nesterov,

2005), where R is the initial distance to a minimizer.

Implementing RIODA using Riemannian Gradient Descent
(RGD) in the unconstrained setting, we improve the com-
plexity from Õ(ζ4LR2/ε) (Martı́nez-Rubio et al., 2024) to
Õ(ζ2LR2/ε), among the algorithms that do not require the
knowledge of the initial distance to the solution.

In the constrained setting implementing RIODA using Pro-
jected RGD (PRGD), we improve the gradient oracle com-
plexity by a factor of Õ(ζ3.5) compared to the prior best rate
(Martı́nez-Rubio et al., 2023). Furthermore, the algorithm
does not require the knowledge of the Lipschitz constant of
f in the constraint set. We validate our theoretical results by
running experiments on the robust Karcher mean problem in
the symmetric positive definite manifold and the hyperbolic
space, see Appendix E.

Contributions.

• RIOD An inexact Riemannian implicit online op-
timistic algorithm for the constrained setting on
Hadamard manifolds matching the best known Eu-
clidean regret bounds, while not relying on strong as-
sumptions present in prior works. The regret bound
does not depend on ζ , a term arising from the geometry
of the manifold.

• RIODA An inexact Riemannian implicit algorithm for
min-max optimization on Hadamard manifolds with
and without in-manifold constraints.

• Different implementations of the update rules of RI-
ODA using first-order methods, which improve on prior
works by either reducing the complexity or not requir-
ing the knowledge of certain parameters. Notably, one
variant nearly achieves the optimal Euclidean gradient
oracle complexity, by removing the dependence on ζ
up to log factors. This result is in contrast to smooth g-
convex minimization, where we know that at least there
is an extra curvature-dependent additive penalty, linear
on ζ , over the rate of the Euclidean-optimal accelerated
solutions, cf. (Criscitiello & Boumal, 2023).
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1.1. Preliminaries

A Riemannian manifold (M, g) is a real C∞ manifoldM
equipped with a Riemannian metric g, which assigns a
smoothly varying and positive definite inner product to each
x ∈ M. For x ∈ M, denote by TxM the tangent space
ofM at x. For vectors v, w ∈ TxM, we use ⟨v, w⟩x and
∥v∥x def

=
√
⟨v, v⟩x for the metric’s inner product and norm,

and omit x when it is clear from context. A geodesic of
length ℓ is a curve γ : [0, ℓ] → M of unit speed that is
locally distance minimizing.

The exponential map Expx : TxM → M takes a point
x ∈M, and a vector v ∈ TxM and returns the point y we
obtain from following the geodesic from x in the direction
v for length ∥v∥, if this is possible. We denote its inverse
by Logx(·). It is well defined for uniquely geodesic mani-
folds, i.e., manifolds where every two points in that space
are connected by one and only one geodesic, so we have
Expx(v) = y and Logx(y) = v. We denote the distance
between two points by d(x, y) = ∥Logx(y)∥. The manifold
M comes with a natural parallel transport of vectors be-
tween tangent spaces, that formally is defined from the Levi-
Civita connection∇. In that case, we use Γy

x(v) ∈ TyM to
denote the parallel transport of a vector v in TxM to TyM
along the unique geodesic that connects x to y.

The sectional curvature of a manifold M at a point x ∈
M for a 2-dimensional space V ⊂ TxM is the Gauss
curvature of Expx(V ) at x. A Hadamard manifolds is a
complete simply-connected Riemannian manifold of non-
positive sectional curvature, which is in particular uniquely
geodesic.

A set X is said to be g-convex if every two points are
connected by a geodesic that remains in X . For two
points x, y ∈ X , let γ : [0, 1] → M be a constant
speed geodesic joining x and y such that γ(0) = x and
γ(1) = y, then we call a function f g-convex in X if
f(γ(t)) ≤ tf(x) + (1− t)f(y) for all x, y ∈ X . A differ-
entiable function is µ-strongly g-convex (resp., L-smooth)
in X , if we have 1 (resp. 2 ) for any two points x, y ∈ X :

µd(x, y)2

2

1
≤ f(y)−f(x)−⟨∇f(x),Logx(y)⟩

2
≤ Ld(x, y)2

2
.

The function g-convex if µ = 0. Note the dependence
on X is important, since for µ-strongly g-convex and L-
smooth function, the condition L/µ depends on the size
of X (Criscitiello & Boumal, 2023, Proposition 53). A
function f is G-Lipschitz in X if |f(x)−f(y)| ≤ Gd(x, y)
for all x, y ∈ X .

Given r > 0, and a uniquely geodesic Rieman-
nian manifold M with sectional curvature bounded in
[κmin, κmax]. Then, we define the geometric constants ζr

def
=

r
√
|κmin| coth(r

√
|κmin|) = Θ(1 + r

√
|κmin|) if κmin <

0 and ζr
def
= 1 otherwise, and δr

def
= r
√
κmax cot(r

√
κmax)

if κmax > 0 and δr
def
= 1 otherwise. It is δr ≤ 1 ≤ ζr.

We denote the closed Riemannian ball of center x and radius
r by B̄(x, r). PX (x)

def
= argminy∈X d(y, x) denotes the

metric projection onto a set X . Note that for some sets,
such as the Riemannian ball, PX can solved in closed form
(Martı́nez-Rubio & Pokutta, 2023). The big-O notation Õ(·)
omits log factors. We refer to Petersen (2006); Bacák (2014)
for an overview of the Riemannian geometry used in this
work.

1.2. Related Work

Online Convex Optimization (OCO). Online optimiza-
tion is modeled as a sequential game between an agent and
its environment, where in each round t the agent chooses an
action xt from some convex set X . Then, the environment
reveals a convex loss function ℓt and the agent pays the
loss ℓt(xt). Note that no assumptions are made about the
environment, it could also act adversarially. The goal of
the agent is to choose the sequences of action xt such that
they minimize the difference between the cumulative losses
paid by the agent and the losses associated to a fixed ac-
tion u ∈ X , i.e., its regret, RT (u)

def
=
∑T

t=1 ℓt(xt)− ℓt(u).
While the OCO setting covers a wide range of settings, it
can be overly pessimistic as real-world settings are rarely
fully adversarial. The goal of optimistic methods is to im-
prove the regret in settings that are not fully adversarial
by predicting the next loss based on additional information
about the environment, encoded by a hint. The regret of
these methods depends on how well the hint approximates
the real loss.

Another development in online optimization is the use of
implicit updates. Typically, online optimization algorithms
compute their next action minimizing the loss linearized at
xt plus a regularizer. Implicit algorithm instead minimize
the full loss function plus a regularizer, which is typically
not solvable in closed form, hence the name. Recent works
show improved regret guarantees for implicit versions of on-
line mirror descent and follow the regularized leader (Cam-
polongo & Orabona, 2020; Chen & Orabona, 2023). Some
works also provide regret guarantees that allow for inexact
solutions of the implicit updates (Chen & Orabona, 2023;
Choi et al., 2023; Ajalloeian et al., 2020; Dixit et al., 2019).

Online Riemannian Optimization. The OCO framework
has been extended to the Riemannian setting for g-convex
loss functions. Bécigneul & Ganea (2019) provide O(

√
T )

regret guarantees for adaptive online algorithms on Carte-
sian products of Riemannian manifolds. Wang et al. (2021)
provide regret bounds for Lipschitz and g-convex Rieman-
nian online optimization in the full information as well as
the bandit and two-point feedback setting. Hu et al. (2023b)
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analyze projection-free Riemannian methods in Hadamard
manifolds using a linear minimization or a separation oracle
in both the full-information as well as the bandit setting.
Maass et al. (2022) provide regret guarantees for zeroth-
order methods in Hadamard manifolds.

Hu et al. (2023a) introduce an optimistic algorithm for
Hadamard manifolds with in-manifold constraints where
the hint is an arbitrary vector in the tangent space of a
secondary iterate sequence Mt ∈ Tyt

M. This method
achieves improper regret bounds of O(ηζVT + D2

η ), where

VT
def
=
∑T

t=2 ∥∇ℓt(yt)−Mt∥2 measures how well the hint
predicts the loss functions. Improper regret is a relaxed
notion where the agent’s actions may lie outside the con-
straint set while the comparator must remain inside. Since
the algorithm cannot guarantee that actions stay within the
constraint set, a circular dependency arises: the size of the
neighborhood around the constraint set depends on the step
size, which in turn depends on function properties and ge-
ometric factors within this neighborhood. Consequently,
it is unclear whether improper regret bounds translates to
classical regret bounds.

Wang et al. (2023b) prove regret optimistic regret bounds for
general Riemannian manifolds without in-manifolds con-
straints. They consider the specific case where the hint
function is Mt = ∇ℓt−1(xt−1) is fixed to the loss gradient
from the last iteration. Therefore, their regret guarantee
O(D

2

η + η
ζ2
D(V̄T+G2)

δD
) scales with the gradient variation

V̄T
def
=
∑T

t=2 maxx∈X ∥∇ℓt(x) − ∇ℓt−1(x)∥2. Further,
the step size of the algorithm depends on the size of the
optimization domain via geometric terms, which again in-
fluences the size of the optimization domain, leading to a
circular relationship. They rely on the assumption that the
iterates stay in a pre-defined domain without a mechanism
of enforcing it. Since the loss functions change in every
round, this assumption does not need to hold in practice.

Riemannian Min-Max Algorithms We limit our discus-
sion to the smooth and g-convex, g-concave setting. Zhang
et al. (2023) introduced Riemannian Corrected Extra Gra-
dient (RCEG), a variation of the Euclidean Extra Gradient
(EG) algorithm and showed convergence rates, that are op-
timal up to geometric factors, for unconstrained g-convex,
g-concave min-max problems on general Riemannian man-
ifolds. Jordan et al. (2022) extended the analysis to the
µ-strongly g-convex, g-concave setting. Both works rely
on the assumption that iterates of RCEG stay in a bounded
domain without a mechanism to enforce it. Martı́nez-Rubio
et al. (2023) remove this assumption by showing that the
iterates of RCEG naturally stay in a compact set around
a solution without impacting the rates by modifying the
step size. Further, they introduce their algorithm RAMMA
for Hadamard manifolds, which achieves faster rates with

Table 1: Comparison of Riemannian online algorithms. Our
contribution is in bold. The entries in column RT denote the
regret, where η > 0 is a parameter chosen by the algorithm.
In column X , ✓ indicates that the algorithm can enforce
constraints. M denotes the manifolds, where H denotes
Hadamard manifolds, E denotes the Euclidean space and
M denotes general Riemannian manifolds. 1Guarantees in
terms of improper regret. 2The geometric term ζ , δ are with
respect to a domain which is not guaranteed to be bounded.

RT X M

RIOD O(D
2

η + ηVT ) ✓ H
O-RCEG [HGA23]1,2 O(D

2

η + ηζVT ) ✗ H
ROOGD [WYH+23]2 O(D

2

η + ηζ2(V̄T+G2)
δ ) ✗ M

OOMD [RS13] O(D
2

η + ηVT ) ✓ E

Table 2: Comparison of Riemannian min-max algorithms
for µ-strongly g-convex, strongly g-concave and L-smooth
problems. The entries of µ = 0 and µ > 0 contain the
convergence rates for the two settings. The entries in col-
umn M denote the manifolds, whereH denotes Hadamard
manifolds andM denotes general Riemannian manifolds.
In column X , ✓ indicates that the algorithm can enforce
constraints. In column R? and G?, ✓ means that the algo-
rithm can be run without knowledge of the initial distance
R

def
= d(x1, x

∗) + d(y1, y
∗) to a solution and Lipschitz con-

stant G of the function in the optimization domain, respec-
tively. Note that D refers to the diameter of the constraint
set and R̃

def
= G/L +D. 1The iterates are not guaranteed

to stay in a bounded domain. 2In addition, they achieve a
last-iterate rate of O( ζR

δ
3/2
R

LR2

ε2 ) for µ = 0. 3The algorithm

has faster rates in the fine-grained setting where the strong
g-convexity and smoothness constants can vary between the
variables. 4Martı́nez-Rubio et al. (2023) showed that the
iterates stay in a bounded set.

Algorithm µ = 0 µ > 0 M X R? G?

RIODACRGD Õ(LR2

ε ) Õ(Lµ ) H ✓ ✓ ✓

RIODAPRGD Õ(
ζDζR̃LR2

ε ) Õ(
ζDζR̃L

µ ) H ✓ ✓ ✓

RIODARGD Õ(ζ2R
LR2

ε ) Õ(ζ2R
L
µ ) H ✗ ✓ ✓

[MRP24] Õ(ζ4R
LR2

ε ) Õ(ζ4R
L
µ ) H ✗ ✓ ✓

[CJL+23]1 - Õ(L
2

µ2 ) M ✗ ✗ ✓

[WYH+23] O
(

ζR
δR

LR2

ε

)
- M ✗ ✗ ✗

[HWW+23]2 O
(

ζR
δR

LR2

ε

)
Õ(

L(ζ2
R+R2κmax)

µδR
) M ✗ ✗ ✗

[MRC+23]3 Õ(ζR̃ζ
4.5
D

LR2

ε ) Õ(ζR̃ζ
4.5
D

L
µ ) H ✓ ✗ ✗

[MLV22]4 - Õ(

√
ζRL

√
δRµ

) M ✗ ✗ ✓

[ZZS23]4 O(

√
ζRLR2

√
δRε

) - M ✗ ✗ ✓
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respect to function parameters in the fine-grained settings,
where the smoothness and strong g-convexity parameters
can vary between variables at the cost of worse dependence
on ζ. They achieve, among others, the optimal O (1/

√
ε)

rates with respect to ε for the strongly g-convex, g-concave
setting. While RAMMA can handle in-manifold constraints,
the algorithm has five loops, making it complex to imple-
ment. Further, it requires the knowledge of the Lipschitz
constant G in the constrained setting and the initial distance
to a solution R in the unconstrained setting.

The following works consider the more general case of vari-
ational inequalities with monotone and Lipschitz operators,
which encompass smooth and g-convex, g-concave min-
max problems as special cases. Hu et al. (2023c) introduce
two variants of the EG algorithm in general Riemannian
manifolds, focusing on last-iterate convergence in the g-
convex, g-concave setting. Cai et al. (2023) show linear
convergence rates independent of geometric terms such as ζ
in terms of the gradient norm in general Riemannian mani-
folds. However, they rely on the assumption that the iterates
stay in a bounded domain without a mechanism to enforce it.
Martı́nez-Rubio et al. (2024) introduce an inexact proximal
point algorithm achieving accelerated rates. Implementing
their update rule using the algorithm by Cai et al. (2023),
they show that the iterates naturally stay in a bounded do-
main and achieve accelerated rates without requiring prior
knowledge of the initial distance to a solution, for the first
time.

Lastly, lower bounds specific to Riemannian optimization
where established in (Hamilton & Moitra, 2021; Criscitiello
& Boumal, 2021; 2023). These bounds hold for the L-
smooth and g-convex minimization problem, which is a
special case of g-convex, g-concave and L-smooth min-max
optimization, and thus they apply to our min-max setting.

2. Riemannian Implicit Optimistic Online
Gradient Descent

Before discussing the technical details of RIOD, we present
the motivations underlying its design. There are two fam-
ilies of online optimistic algorithms, namely optimistic
follow-the-regularized-leader (OFTRL) (Rakhlin & Sridha-
ran, 2013a) and optimistic online mirror descent (OOMD)
(Chiang et al., 2012; Rakhlin & Sridharan, 2013b).

In the Riemannian setting, a function linearized at a point
x̄ ∈ M is defined with respect to the tangent space Tx̄M
and is not g-convex. However, it is star g-convex (and
star g-concave) at x̄, that is, convex (concave) along the
geodesic going through x̄. Thus, the OFTRL update rule for
the action in round t+ 1 in the Riemannian setting would

consist of minimizing

t∑
i=1

⟨∇ℓi(xi),Logxi
(x)⟩xi+⟨Mt,Logxt

(x)⟩xt+
d(xt, x)

2

2η
,

where ℓt, xt and Mt refers to the loss, the action and the
hint in round t. This function is neither g-convex nor star
g-convex in general as each linearized function is only star g-
convex with respect to one point. On the other hand, it is pos-
sible to implement OFTRL without linearizing the loss func-
tions, i.e., minimizing

∑t
i=1 ℓi(x) + ℓ̃t(x) +

1
2ηd(x, xt)

2.

If the loss functions ℓt and the hint function ℓ̃t are g-convex,
the update rule is also g-convex. Further, the analysis of
OFTRL can be extended to the full-loss setting, both in the
Euclidean and Riemannian setting. However, this approach
is computationally impractical as it would require minimiz-
ing the sum of an increasing number of functions, making
each iteration progressively more expensive to implement.

The original OOMD algorithm, due to Chiang et al. (2012)
and further generalized by Rakhlin & Sridharan (2013b), is
based on updating two iterate sequences, referred to as the
primary and secondary iterates x̃t and xt, where the agent
chooses the primary iterates x̃t as actions. After the loss is
observed in round t, the secondary iterate is updated based
on the classical online mirror descent rule, i.e., xt+1 ←
argminx⟨∇ℓt(xt), x⟩ + 1

2η∥x − xt∥2. Then, the primary
iterate is updated by x̃t+1 ← argminx⟨Mt, x⟩ + 1

2η∥x −
xt+1∥2 ensuring that the results stays close to the secondary
iterate. Note that the secondary iterate is independent of the
primary iterate, meaning that the agent always maintains
a more conservative action from which it can compute an
improved action based on the hint. This way the agent can
benefit from the hint without accumulating errors arising
when the hint does not perfectly predict the next loss. The
method in Hu et al. (2023a) is based on this approach.

Joulani et al. (2017) introduced a single-iterate OOMD
variant that corrects prediction errors by subtracting the
previous round’s hint at each iteration, i.e., xt+1 ←
argminx⟨∇ℓt(xt) + Mt − Mt−1, x⟩ + 1

2η∥x − xt+1∥2,
thereby removing the need for a secondary iterate. Wang
et al. (2023b) adapted this approach to the Riemannian set-
ting for the special case where Mt = ∇ℓt(xt) by parallel-
transporting the correction term to the tangent space of
the current iterate, i.e. xt+1 ← argminx⟨2∇ℓt(xt) −
Γxt
xt−1
∇ℓt−1(xt−1),Logxt

(x)⟩+ 1
2ηd(x, xt+1)

2.

Neither method can easily be extended to enforce in-
manifold constraints. Recall that enforcing constraints is
imperative for us since we aim to design an algorithm that
does not suffer from a recurrent relationship between the
size of the optimization domain and the step size. In general,
the analysis of algorithms enforcing in-manifold constraints
can be challenging in Riemannian manifolds. For manifolds
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with positive curvature, the metric projection is not a non-
expansive operator (Wang et al., 2023a, Section 6.1). Even
in Hadamard manifolds, where the metric projection is non-
expansive, the analysis remains challenging. Indeed, the
first proof of linear convergence of PRGD for constrained
strongly g-convex and smooth minimization problems in
Hadamard manifolds without any non-standard assumptions
was only recently established (Martı́nez-Rubio et al., 2023).

To address the challenges arising from the constraints, we
propose an implicit algorithm based on the two-step OOMD,
where the loss functions are not linearized. We do use a
two-step approach in order to obtain a hint-correction term
which makes the subproblems g-convex.

In our algorithm RIOD, x̃t and xt serve as primary and sec-
ondary iterates respectively. After playing x̃t, the algorithm
computes the secondary iterate xt+1 via an implicit gradient
step on the loss function ℓt received that round. Rather than
playing xt+1 in the next round, the agent selects a hint func-
tion ℓ̃t+1 to predict ℓt+1 and takes an implicit step on that
function to determine the next action x̃t+1. As in OOMD,
the secondary iterates xt are independent of the primary iter-
ates x̃t, thus preventing error accumulation from imperfect
hint predictions.

Algorithm 1 Riemannian Implicit Optimistic Online Gradi-
ent Descent (RIOD)
Input: Compact constraint set X ⊂ M with diameter D,

sectional curvature lower bound κmin, initial point x1 ∈
X , smoothness constant L of loss and hint function ℓt
and ℓ̃t, and proximal parameter η > 0.

Definitions: ⋄ The alg. does not compute these quantities.
• Exact solutions:
x̃∗
t

def
= argmin

x∈X
{L̃t(x)

def
= ℓ̃t(x) +

1
2ηd(x, xt)

2}

x∗
t+1

def
= argmin

x∈X
{Lt(x)

def
= ℓt(x) +

1
2ηd(x, xt)

2}

• Precision parameter:

εt
def
=

max{4,(t+1)2(15+8η2L2+2η2G2(D−2+48|κmin|))}
−1

8η

1: ℓ̃1 ← 0
2: for t = 1 to T do
3: Choose ℓ̃t
4: Play x̃t ← (εtd(xt, x̃

∗
t )

2)-minimizer of L̃t(x) in X
5: Receive ℓt
6: xt+1 ← (εtd(xt, x

∗
t+1)

2)-minimizer of Lt(x) in X
7: end for

The following result shows an optimistic regret guarantee
for Hadamard manifolds with in-manifold constraints, im-
proving on Hu et al. (2023a), as it can enforce the iterates to
stay in X and therefore achieves classical regret bound in-
stead of an improper one. Further, the regret is improved by

removing the dependence on ζD, matching the best known
Euclidean rates.

We also establish a dynamic regret bound for RIOD in The-
orem 7, which compares the agent’s actions against a se-
quence of comparators rather than a single fixed comparator.

Theorem 1 (RIOD). [↓] LetM be a Hadamard manifold
with sectional curvature in [κmin, 0]. Further, for t ∈ [T ],
let the loss and hint functions ℓt, ℓ̃t :M→ R be g-convex,
and L-smooth in a compact and g-convex set X ⊆M with
D

def
= diam(X ). For η > 0 we have for any u ∈ X that

RT (u) ≤
3D2

2η
+ η

T∑
t=1

∥∇ℓt(x̃t)−∇ℓ̃t(x̃t)∥2x̃t
.

This result assumes that the hint function ℓ̃t also satisfies
smoothness and g-convexity, as ℓt. In the linearized setting,
the hint function is typically derived from the gradient of a
function, such as the loss from the last round, as we do in
our minmax application, making this a reasonable assump-
tion. Further, the smoothness assumption can be removed
when exact minimizers of the subproblems are found, as
smoothness is only required to control the error induced in
the inexact case.

We now discuss how the update rules in Lines 4 and 6 can
be implemented up to the required precision. Importantly,
in the online setting, the regret depends only on the cumu-
lative cost

∑T
t=1 ℓt(xt) paid for the agent’s actions, and is

independent of the gradient oracle complexity. Note that ℓt
and ℓ̃t are L-smooth and g-convex in X by assumption. The
regularizer 1

2d(·, xt)
2 is (ζD/η)-smooth and (1/η)-strongly

g-convex, cf. Corollary 16, and hence Lt and L̃t are both
(1/η)-strongly g-convex and (L+ ζD/η)-smooth functions.
Therefore, we can efficiently implement the update rule us-
ing PRGD or CRGD, two minimization methods with linear
convergence rates in this setting, defined by the following
update rules. For a L̄-smooth function F :M→ R,

xt+1 ← PX
(
Expxt

(
−L̄−1∇F (xt)

))
, (PRGD)

and for a composite function F
def
= f + g

xt+1← argmin
y∈X

{⟨∇f(xt),Logxt
(y)⟩+ L̄f

2
d(xt, y)

2+g(y)},
(CRGD)

where f is L̄f -smooth, see Appendix D.2 for more details.
Note that Lt and L̃t have condition number Lη + ζD. In
comparison, the regularizer is (1/η)-strongly convex and
smooth and the condition number becomes Lη in Euclidean
space. This means that the curvature of the manifolds in-
troduce an extra dependence on ζD, since the convergence
rate of PRGD depends on the condition number. We can
circumvent this issue by leveraging the composite structure
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of Lt and L̃t using CRGD, as its convergence rate depends
on a composite condition number, in this case the smooth-
ness constant of ℓt and ℓ̃t divided by the strong g-convexity
constant of the regularizer, i.e., Lη. Implementing each
step of CRGD requires solving a potentially more expensive
subproblem than PRGD. The subproblem in PRGD can be
implemented easily at the cost of introducing a dependence
on ζ on the computational time of the algorithm. In the fol-
lowing statement, we specify the gradient oracle complexity
of implementing the implicit update steps using PRGD and
CRGD.

Corollary 2 (Implementing RIOD). [↓] For the implemen-
tation of the update rules in Lines 4 and 6 of Algorithm 1,
we require Õ((Lη+ ζD)ζR̃) gradient oracle calls to ℓt and
ℓ̃t at iteration t using PRGD or Õ(1 + Lη) using CRGD
(this includes a logarithmic dependence on |κmin|). Here
R̃

def
= G/L + D, where G is the Lipschitz constants of ℓt

and ℓ̃t in X . Note that these implementations do not require
the knowledge of G.

Since ℓt and ℓ̃t are differentiable in the compact set X , they
are automatically Lipschitz continuous, so this does not
need to be assumed separately.

3. Min-Max Optimization
Consider the following possibly constrained min-max opti-
mization problem

min
x∈X

max
y∈Y

f(x, y) (P)

where f is g-convex, g-concave and L-smooth and X ⊆M
and Y ⊆ N . We call a function f g-convex, g-concave
in X × Y if f(·, y) and −f(x, ·) are g-convex for all
x ∈ X and y ∈ Y , and L-smooth in X × Y if ∇xf(·, y),
∇yf(x, ·), ∇xf(x, ·), ∇yf(·, y) are L-Lipschitz for all
x ∈ X and y ∈ Y . We write (x∗, y∗) for solutions of
(P), R def

= d(x1, x
∗) + d(y1, y

∗) for the initial distance and,
if finite, D def

= diam(X ) + diam(Y).
We introduce a new method to solve (P) based on updating
x and y in parallel using RIOD. We make the following vari-
able choices for x: x̃t ← x̃t, xt ← xt, ℓt(x) ← f(x, ỹt),
ℓ̃t(x) ← f(x, yt) and u ← x∗. For y, we set xt ← yt,
x̃t ← ỹt, ℓt(x)← −f(x̃t, y), ℓ̃t(x)← −f(xt, y), u← y∗.
We refer to the resulting algorithm as Riemannian Implicit
Optimistic Gradient Descent-Ascent (RIODA),

x̃t←approx. argminx{f(x, yt)+ 1
2ηd(x, xt)

2}
ỹt←approx. argmaxy{f(xt, y)− 1

2ηd(y, yt)
2}

xt+1←approx. argminx{f(x, ỹt)+ 1
2ηd(x, xt)

2}
yt+1←approx. argmaxy{f(x̃t, y)− 1

2ηd(y, yt)
2}.

See Algorithm 2 for a detailed description of the algorithm.

A common method to solve min-max problems is to use
proximal algorithms (Tseng, 1995), which requires solving
a regularized min-max problem at every iteration. However,
for constrained min-max problems, we are not aware of any
explicit method providing convergence rates. In contrast,
RIODA only requires access to a g-convex minimization
method, making it possible to implement the update rule
using existing methods. The only other Riemannian min-
max method that can handle constraints RAMMA (Martı́nez-
Rubio et al., 2023) is also based on reducing the min-max
problem to a series of minimization problems.

Theorem 3 (RIODA). [↓] LetM, N be Hadamard man-
ifolds with sectional curvature in [κmin, 0] and X ⊂ M,
Y ⊂ N be compact and g-convex sets. Consider the
f : M × N → R, which is g-convex, g-concave and
L-smooth in X × Y . Further, let (x∗, y∗) be a saddle point
of (P) and (x̃T , ỹT ) be the output of Algorithm 2 after T
iterations. Then we have f(x̃T , y

∗)− f(x∗, ỹT ) ≤ ε after

T = ⌈ 8LR2

ε ⌉ iterations, and T = ⌈ 17Lµ log
(

4LR2

ε

)
⌉, if f

is also µ-strongly g-convex, strongly g-concave in X × Y .

In order to obtain the full gradient oracle complexity of
RIODA, we need to take into account the number of gradient
evaluations required to compute the update rule at every
iterations. This is different from the online setting where
we mainly care about regret which does not necessarily
coincide with the gradient oracle complexity.

In the following, we show that similarly to RIOD, the update
rule can be implemented efficiently. In particular, by our
choice of η = 1/(4L), the condition number of the sub-
problems becomes 1/4 + ζD, and the composite condition
number becomes 1/4.

Corollary 4 (Implementing RIODA). [↓] We use the nota-
tion from Algorithm 2. For the implementation of the update
rules in Lines 2 and 3 of Algorithm 2, we require Õ(ζDζR̃)

gradient oracle calls per iteration using PRGD or Õ(1)
using CRGD (this includes a logarithmic dependence on
|κmin|). Here R̃

def
= G/L + D, where G is the Lipschitz

constant of f in X × Y . We refer to these algorithms as
RIODAPRGD and RIODACRGD, respectively. Note that these
implementations do not require the knowledge of G.

Since the update rule of x̃t is independent of ỹt, both steps
can be implemented in parallel. The same holds for xt+1

and yt+1.

The rates of RIODAPRGD improve over RAMMA (Martı́nez-
Rubio et al., 2023), the only other method for constrained,
smooth and g-convex, g-concave min-max problems, by a
factor of Õ(ζ3.5R ) and also do not require the knowledge of
the initial distance R and the Lipschitz constant G.

We can also use RIODA to solve (P) without in-manifold
constraints as a reduction from RIOD. While RIOD requires
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a compact constraint, the reduction works because we can
show that the iterates of RIODA naturally stay in a ball
around a solution (x∗, y∗). Hence, one can add any hypo-
thetical constraints which contain this ball without modify-
ing the algorithm as they are guaranteed to never be active.

Theorem 5 (RIODA – unconstrained). [↓] LetM, N be
Hadamard manifolds with sectional curvature in [κmin, 0].
Consider the bi-function f : M× N → R, which is g-
convex, g-concave and L-smooth in Z = B̄(x∗, 8R) ×
B̄(y∗, 8R), where (x∗, y∗) is a saddle point of f . Then
the iterates of Algorithm 2 stay in Z . Let (xT , yT ) be the
output of Algorithm 2 after T iterations. Then we have
f(xT , y

∗) − f(x∗, yT ) ≤ ε after T = ⌈ 6LR2

ε ⌉ iterations

and T = ⌈ 17Lµ log
(

2LR2

ε

)
⌉ if f is in addition µ-strongly

g-convex, strongly g-concave in Z .

In the following, we quantify the complexity of implement-
ing the update rules using the minimization algorithms RGD,
defined by the update rule for a L̄-smooth function

xt+1 ← Expxt

(
−L̄−1∇f(xt)

)
, (1)

and CRGD, see Appendix D.2. We can use CRGD for un-
constrained problems even though the analysis only covers
the compact case, since the composite condition number of
L̃t, i.e., Lη = 1/4, is smaller than one and we show that
in this case, the distance of the iterates of CRGD to the
optimizer is non-increasing Corollary 24. Hence we can add
a hypothetical constraint which contains a ball around the
optimizer with radius slightly larger than the initial distance
to the optimizer, as this is guaranteed to never be inactive.

Corollary 6 (Implementing RIODA – unconstrained). [↓]
Consider the setting of Theorem 5. Assume in addition that
f is g-convex, g-concave and L-smooth in B̄(x∗, 8R) ×
B̄(y∗, 8R). Then we require Õ(1) gradient oracle calls for
implementing the update rules in Lines 2 and 3 of Algo-
rithm 2 using CRGD (this includes a logarithmic depen-
dence on |κmin|) and the iterates stay in that set. If f is
g-convex, g-concave and L-smooth in B̄(x∗, D̄)×B̄(y∗, D̄)

with D̄
def
= R(13ζ8R + 9), then we require Õ(ζ2R) gradient

oracle calls using RGD and the iterates stay in that set.
We refer to these algorithms as RIODACRGD and RIODARGD,
respectively. Neither method requires prior knowledge of
the initial distance to the saddle point R.

Compared to RIPPA (Martı́nez-Rubio et al., 2023), the only
other min-max algorithm which does not require knowl-
edge of R, the complexity of RIODARGD is reduced by a
factor of Õ(ζ2R). The rates of RIODACRGD recover the op-
timal Euclidean rates and are independent ζ, up to log fac-
tors. Further, note that implementing the subroutines of
RAMMA with CRGD leads to total oracle complexities of
Õ(ζ2.5R

LR2

ε ) and Õ(ζ2.5R
L
µ ) for µ=0 and µ>0, respectively.

This means that the rates of RIODACRGD improve over the
prior state of the art in the constrained setting by O(ζ2.5R ).

We empirically validate our theoretical results in Ap-
pendix E on a constrained formulation of the robust Karcher
mean problem, testing RIODAPRGD on both the symmetric
positive definite manifold and the hyperbolic space.

It might seem that the nearly curvature-independent rates
of T = Õ(LR2/ε) and T = Õ(L/µ) for µ = 0 and µ >
0, respectively, achieved by RIODACRGD, are incompatible
with existing lower bounds. Indeed, Criscitiello & Boumal
(2023) established a lower bound of T = Ω̃(ζR) gradient
oracle queries for L-smooth and g-convex minimization
problems in the hyperbolic space, which is a special case of
our g-convex, g-concave and L-smooth min-max setting.

For µ = 0, the lower bound assumes that ε = O(LR2/ζR),
which implies that our upper bound of T = Õ(LR2/ε) is
larger than Ω̃(ζR), showing that the lower and upper bounds
are consistent. Note that the lower bound is based on a func-
tion defined in the hyperbolic space, where the initial gap is
Õ(LR2/ζR) (Criscitiello & Boumal, 2023, Proposition 13),
meaning that their assumption on ε is justified.

For µ > 0, we note that the condition number of func-
tions in the hyperbolic space in a ball of radius R is lower
bounded by L/µ ≥ ζR (Martı́nez-Rubio, 2020, Proposi-
tion 29). Hence our upper bound does not contradict the
lower bound. Criscitiello & Boumal (2021) also develop
similar lower bounds for the case µ > 0 in a broader class
of Hadamard manifolds. A similar argument via (Crisci-
tiello & Boumal, 2023, Proposition 53) shows there is no
contradiction with our bounds either.

This shows that while the rates of RIODACRGD do not ex-
plicitly depend on ζR (up to a log factor), they inevitably
have an implicit dependence on the geometry, which is due
to the fact above regarding the minimum condition number
for this class of problems depending on the geometry. For
well-conditioned functions or if the required precision is not
too high, the hardness arising from the geometry dominates
whereas whenever L/µ≫ ζR or LR2/ε≫ ζR the hardness
arising from the function dominates.

4. Conclusion
We presented RIOD, a new optimistic online learning al-
gorithm for Riemannian manifolds which can handle in-
manifold constraints and achieves regret bounds that match
the best known Euclidean rates. Based on RIOD, we devel-
oped RIODA, a novel algorithm for min-max optimization
on Riemannian manifolds. We proposed multiple implemen-
tations of RIODA, with one variant achieving convergence
rates that match the Euclidean rates up to logarithmic factors,
for the first time.

8



Implicit Riemannian Optimism with Applications to Min-Max Problems

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

Acknowledgements
This research was partially funded by the Research Campus
Modal funded by the German Federal Ministry of Educa-
tion and Research (fund numbers 05M14ZAM,05M20ZBM)
as well as the Deutsche Forschungsgemeinschaft (DFG)
through the DFG Cluster of Excellence MATH+ (EXC-
2046/1, project ID 390685689). David Martı́nez-Rubio was
partially funded by the project IDEA-CM (TEC-2024/COM-
89).

References
Ajalloeian, A., Simonetto, A., and Dall’Anese, E. Inex-

act online proximal-gradient method for time-varying
convex optimization. In 2020 American Control Con-
ference (ACC), pp. 2850–2857, 2020. doi: 10.23919/
ACC45564.2020.9147467.

Alimisis, F., Orvieto, A., Bécigneul, G., and Luc-
chi, A. A continuous-time perspective for mod-
eling acceleration in riemannian optimization. In
The 23rd International Conference on Artificial Intel-
ligence and Statistics, AISTATS 2020, 26-28 August
2020, Online [Palermo, Sicily, Italy], pp. 1297–1307,
2020. URL http://proceedings.mlr.press/
v108/alimisis20a.html.

Allen-Zhu, Z., Garg, A., Li, Y., de Oliveira, R. M., and
Wigderson, A. Operator scaling via geodesically convex
optimization, invariant theory and polynomial identity
testing. In Diakonikolas, I., Kempe, D., and Henzinger,
M. (eds.), Proceedings of the 50th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2018, Los
Angeles, CA, USA, June 25-29, 2018, pp. 172–181. ACM,
2018. doi: 10.1145/3188745.3188942. URL https:
//doi.org/10.1145/3188745.3188942.

Bacák, M. Convex analysis and optimization in Hadamard
spaces, volume 22. Walter de Gruyter GmbH & Co KG,
2014.

Bécigneul, G. and Ganea, O. Riemannian adaptive optimiza-
tion methods. In 7th International Conference on Learn-
ing Representations, ICLR 2019, New Orleans, LA, USA,
May 6-9, 2019. OpenReview.net, 2019. URL https:
//openreview.net/forum?id=r1eiqi09K7.

Brigant, A. L., Deschamps, J., Collas, A., and Miolane,
N. Parametric information geometry with the pack-

age geomstats. ACM Trans. Math. Softw., 49(4):34:1–
34:26, 2023. doi: 10.1145/3627538. URL https:
//doi.org/10.1145/3627538.

Cai, Y., Jordan, M. I., Lin, T., Oikonomou, A., and Vlatakis-
Gkaragkounis, E.-V. Curvature-independent last-iterate
convergence for games on riemannian manifolds. arXiv
preprint arXiv:2306.16617, 2023.

Cambier, L. and Absil, P. Robust low-rank matrix com-
pletion by Riemannian optimization. SIAM J. Scientific
Computing, 38(5), 2016. doi: 10.1137/15M1025153.
URL https://doi.org/10.1137/15M1025153.

Campolongo, N. and Orabona, F. Temporal variability
in implicit online learning. In Advances in Neural
Information Processing Systems 33: Annual Conference
on Neural Information Processing Systems 2020,
NeurIPS 2020, December 6-12, 2020, virtual, 2020.
URL https://proceedings.neurips.cc/
paper/2020/hash/
9239be5f9dc4058ec647f14fd04b1290-
Abstract.html.
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A. RIOD proof
Theorem 1 (RIOD). [↓] LetM be a Hadamard manifold with sectional curvature in [κmin, 0]. Further, for t ∈ [T ], let
the loss and hint functions ℓt, ℓ̃t : M → R be g-convex, and L-smooth in a compact and g-convex set X ⊆ M with
D

def
= diam(X ). For η > 0 we have for any u ∈ X that

RT (u) ≤
3D2

2η
+ η

T∑
t=1

∥∇ℓt(x̃t)−∇ℓ̃t(x̃t)∥2x̃t
.

Proof. (Theorem 1) The proof follows directly from Theorem 7 by setting ut = u for all t ∈ [T ] and µ = 0.

Theorem 7 (RIOD). LetM be a Hadamard manifold with sectional curvature in [κmin, 0]. Further, let ℓt, ℓ̃t :M→ R be
µ-strongly g-convex, and L-smooth in a compact and g-convex set X ⊆M with diam(X ) = D and µ ≥ 0. Then for η > 0
we have for any (ut)t∈[T ] ∈ X that

T∑
t=1

ℓt(x̃t)− ℓt(ut) ≤
2PTD + 3D2

2η

+
T∑

t=1

(
η∥∇ℓt(x̃t)−∇ℓ̃t(x̃t)∥2 −

µ

4
d(xt+1, ut)

2
)
,

where PT
def
=
∑T

t=1 d(ut, ut+1).

Proof of Theorem 7. Using the notation of Algorithm 1, we define ε̄t
def
= 2ηεt and recall that Lt(x) = ℓt(x) +

1
2ηd(x, xt)

2

and L̃t(x) = ℓ̃t(x)+
1
2ηd(x, xt)

2. Note that Lt and L̃t are (1/η)-strongly g-convex inX , because the regularizer 1
2ηd(x, xt)

2

is (1/η)-strongly g-convex in X by the first part of Fact 15 since ∇x(
1
2d(x, y)

2) = −Logx(y) and M is a Hadamard
manifold and so δD = 1. By the (1/η)-strong g-convexity of Lt and L̃t in X ,the error criteria of xt+1 and x̃t in Algorithm 1
and the optimality of x∗

t+1 and x̃∗
t , we have that

d(xt+1, x
∗
t+1)

2 ≤ 2η(Ft(xt+1)− Ft(x
∗
t+1)) ≤ ε̄td(xt, x

∗
t+1)

2 (2)

and
d(x̃t, x̃

∗
t )

2 ≤ 2η(L̃t(x̃t)− L̃t(x̃
∗
t )) ≤ ε̄td(xt, x̃

∗
t )

2. (3)

We also have

ℓt(xt+1)− ℓt(ut) = ℓt(xt+1)− ℓt(x
∗
t+1) + ℓt(x

∗
t+1)− ℓt(ut)

1
≤ 1

2η
((1 + ε̄t)d(x

∗
t+1, xt)

2 − d(xt+1, xt)
2) + ⟨∇ℓt(x∗

t+1),−Logx∗
t+1

(ut)⟩ −
µ

2
d(x∗

t+1, ut)
2

2
≤ 1

2η
((1 + ε̄t)d(x

∗
t+1, xt)

2 − d(xt+1, xt)
2)− 1

η
⟨Logx∗

t+1
(xt),Logx∗

t+1
(ut)⟩ −

µ

2
d(x∗

t+1, ut)
2

3
≤ 1

2η

(
d(xt, ut)

2 − (1 + µη)d(x∗
t+1, ut)

2 − d(xt, xt+1)
2 + ε̄td(xt, x

∗
t+1)

2
)

(4)

where 1 holds by the error criterion of xt+1 defined in Line 6, i.e., Lt(xt+1) − Lt(x
∗
t+1) ≤ ε̄t

2ηd(xt, x
∗
t+1)

2, and the
µ-strong g-convexity of ℓt between x̃∗

t+1 and ut. Further, 2 holds since x∗
t+1 is the optimizer of Lt and the first-order

optimality condition, i.e., ⟨∇ℓt(x∗
t+1) − 1

ηLogx∗
t+1

(xt),−Logx∗
t+1

(ut)⟩ ≤ 0 and 3 holds by Fact 15 noting that δD = 1

sinceM is a Hadamard manifold. Further, we have

⟨∇ℓ̃t(x̃∗
t ),−Logx̃∗

t
(xt+1)⟩

1
≤ −1

η
⟨Logx̃∗

t
(xt),Logx̃∗

t
(xt+1)⟩

2
≤ 1

2η

(
d(xt, xt+1)

2 − d(x̃∗
t , xt+1)

2 − d(x̃∗
t , xt)

2
)
,

(5)
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where 1 holds first-order optimality condition of L̃t with minimizer x̃∗
t , and 2 holds by Fact 15 noting that δD = 1 asM

is a Hadamard manifold. Using the previous inequalities, we obtain

ℓt(x̃t)− ℓt(ut) = ℓt(x̃t)− ℓt(xt+1) + ℓt(xt+1)− ℓt(ut)

1
≤ ⟨∇ℓt(x̃t),−Logx̃t

(xt+1)⟩+ ℓt(xt+1)− ℓt(ut) + ⟨∇ℓ̃t(x̃∗
t ),Logx̃∗

t
(xt+1)⟩

+
1

2η

(
d(xt, xt+1)

2 − d(x̃∗
t , xt+1)

2 − d(x̃∗
t , xt)

2
)

2
≤ ⟨∇ℓt(x̃t),−Logx̃t

(xt+1)⟩+ ⟨∇ℓ̃t(x̃∗
t ),Logx̃∗

t
(xt+1)⟩+

1

2η

(
d(xt, ut)

2 − (1 + µη)d(x∗
t+1, ut)

2
)

+
1

2η

(
−d(x̃∗

t , xt+1)
2 − d(x̃∗

t , xt)
2 + ε̄td(xt, x

∗
t+1)

2
)

(6)

where 1 holds by (5) and the g-convexity of ℓt between x̃t and xt+1and 2 holds by (4). We want to obtain a computable
optimism term, i.e, a term that depends on the difference between the gradients of the loss function ℓt and the hint function
ℓ̃t evaluated at a point we know or can compute. Since computing the exact optimizer x̃∗

t of L̃t is in general not possible, we
bound ⟨∇ℓ̃t(x̃∗

t ),Logx̃∗
t
(xt+1)⟩ by a term dependent on the gradient evaluated at the inexact point x̃t, i.e.,∇ℓ̃t(x̃t). Adding

and subtracting terms, we get

⟨∇ℓ̃t(x̃∗
t ),Logx̃∗

t
(xt+1)⟩ = ⟨∇ℓ̃t(x̃∗

t )− Γ
x̃∗
t

x̃t
∇ℓ̃t(x̃t),Logx̃∗

t
(xt+1)⟩+ ⟨Γx̃∗

t

x̃t
∇ℓ̃t(x̃t),Logx̃∗

t
(xt+1)⟩

1
= ⟨∇ℓ̃t(x̃∗

t )− Γ
x̃∗
t

x̃t
∇ℓ̃t(x̃t),Logx̃∗

t
(xt+1)⟩+ ⟨∇ℓ̃t(x̃t),Logx̃t

(xt+1)⟩+ ⟨Γx̃∗
t

x̃t
∇ℓ̃t(x̃t),Logx̃∗

t
(xt+1)− Γ

x̃∗
t

x̃t
Logx̃t

(xt+1)⟩,
(7)

where we used Gauß’s Lemma in 1 , i.e., ⟨Γx̃∗
t

x̃t
∇ℓ̃t(x̃t),Γ

x̃∗
t

x̃t
Logx̃t

(xt+1)⟩x̃∗
t
= ⟨∇ℓ̃t(x̃t),Logx̃t

(xt+1)⟩x̃t
, for the second

summand. Note that this is the term we wanted to obtain. We now go on to bound the other two terms. For the first of the
two error terms, we have,

⟨∇ℓ̃t(x̃∗
t )− Γ

x̃∗
t

x̃t
∇ℓ̃t(x̃t),Logx̃∗

t
(xt+1)⟩

1
≤ ∥∇ℓ̃t(x̃∗

t )− Γ
x̃∗
t

x̃t
∇ℓ̃t(x̃t)∥ · d(x̃∗

t , xt+1)
2
≤ Ld(x̃∗

t , x̃t)d(x̃
∗
t , xt+1)

3
≤ 1

2

(
8ηL2d(x̃∗

t , x̃t)
2 +

1

8η
d(x̃∗

t , xt+1)
2

) 4
≤ 1

2

(
8ηL2ε̄td(x̃

∗
t , xt)

2 +
1

8η
d(x̃∗

t , xt+1)
2

)
,

(8)

where 1 holds by the Cauchy-Schwarz inequality, 2 holds by the L-smoothness of ℓ̃t, 3 holds by Young’s inequality
and 4 by (3). Before we bound the second error term, consider

ζ2D̄

1
≤ (1 +

√
|κmin|(d(x̃t, xt+1) + d(x̃∗

t , xt+1)))
2

2
≤ 2(1 + 2|κmin|(d2(x̃t, xt+1) + d2(x̃∗

t , xt+1)))

3
≤ 2(1 + 2|κmin|(2d(x̃t, x̃

∗
t )

2 + 3d(x̃∗
t , xt+1)

2)),

(9)

where D̄
def
= max{d(x̃t, xt+1), d(x̃

∗
t , xt+1)}. Here, 1 holds by the definition of ζD̄, 2 holds by applying (a + b)2 ≤

2a2 + 2b2 for a, b ≥ 0 twice and 3 also uses the last inequality and the triangle inequality. We now bound the second error
term in (7) as follows,

⟨Γx̃∗
t

x̃t
∇ℓ̃t(x̃t),Logx̃∗

t
(xt+1)− Γ

x̃∗
t

x̃t
Logx̃t

(xt+1)⟩
1
≤ ∥∇ℓ̃t(x̃t)∥ · ∥Logx̃∗

t
(xt+1)− Γ

x̃∗
t

x̃t
Logx̃t

(xt+1)∥
2
≤ ζD̄∥∇ℓ̃t(x̃t)∥d(x̃t, x̃

∗
t )

3
≤ ζ2D̄E∆t

4(1 + 48|κmin|Eη)
+
∥∇ℓ̃t(x̃t)∥2d(x̃t, x̃

∗
t )

2(1 + 48|κmin|Eη)

E∆t

4
≤ E∆t

2
+

(
∥∇ℓ̃t(x̃t)∥2(1 + 48|κmin|Eη)

E∆t
+

∆t

24η

)
d(x̃t, x̃

∗
t )

2 +
∆t

16η
d(x̃∗

t , xt+1)
2

5
≤ E∆t

2
+

(
∥∇ℓ̃t(x̃t)∥2(E−1 + 48|κmin|η)

∆t
+

∆t

24η

)
ε̄td(xt, x̃

∗
t )

2 +
∆t

16η
d(x̃∗

t , xt+1)
2,

(10)

14
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where 1 holds by the Cauchy-Schwarz inequality, 2 holds by Proposition 18 with D̄ = max{d(x̃t, xt+1), d(x̃
∗
t , xt+1)},

3 holds by Young’s inequality for any E > 0 and ∆t ∈ (0, 1), 4 holds by (9), 5 holds by (3). Using (8) and (10) to
bound (6) yields,

ℓt(x̃t)− ℓt(ut) ≤ ⟨∇ℓt(x̃t)−∇ℓ̃t(x̃t),−Logx̃t
(xt+1)⟩+

1

2η

(
d(xt, ut)

2 − (1 + µη)d(x∗
t+1, ut)

2
)
+

E∆t

2

+
1

2η

(
∆t − 7

8
d(x̃∗

t , xt+1)
2 + ε̄td(xt, x

∗
t+1)

2

)
+

1

2η

((
ε̄t(2η∆

−1
t ∥∇ℓ̃t(x̃t)∥2(E−1 + 48|κmin|η) + 8η2L2 +∆t/12)− 1

)
d(x̃∗

t , xt)
2)
)

1
≤ ⟨∇ℓt(x̃t)−∇ℓ̃t(x̃t),−Logx̃t

(xt+1)⟩+
1

2η

(
d(xt, ut)

2 + (∆t − 1)d(xt+1, ut)
2
)
− µ

2
d(x∗

t+1, ut)
2 +

E∆t

2

+
1

2η

(
−3

4
d(x̃∗

t , xt+1)
2 + ε̄t(1 + ∆−1

t )d(xt, x
∗
t+1)

2

)
+

1

2η

((
ε̄t(2η∆

−1
t ∥∇ℓ̃t(x̃t)∥2(E−1 + 48|κmin|η) + 8η2L2 + 1)− 1

)
d(x̃∗

t , xt)
2)
)

(11)

where 1 holds by noting that ∆t ∈ (0, 1) and applying the following bound to − 1
2ηd(x

∗
t+1, ut)

2,

−d(x∗
t+1, ut)

2 = −d(xt+1, ut)
2 + d(xt+1, ut)

2 − d(x∗
t+1, ut)

2

2
≤ −d(xt+1, ut)

2 + 2⟨Logxt+1
(ut),Logxt+1

(x∗
t+1)⟩

3
≤ −d(xt+1, ut)

2 + 2d(xt+1, ut)d(xt+1, x
∗
t+1)

4
≤ −d(xt+1, ut)

2 +∆td(xt+1, ut)
2 +∆−1

t d(xt+1, x
∗
t+1)

2

5
≤ −d(xt+1, ut)

2 +∆td(xt+1, ut)
2 + ε̄t∆

−1
t d(xt, x

∗
t+1)

2.

(12)

Here 2 holds by applying Fact 15 and dropping the negative term −d(xt+1, x
∗
t+1)

2, 3 holds by the Cauchy-Schwarz
inequality, 4 holds by applying Young’s inequality and 5 holds by (2). We now use the following bound for the strong
g-convexity term −µ

2 d(x
∗
t+1, ut)

2 in (11),

−d(x∗
t+1, ut)

2
1
≤ −1

2
d(xt+1, ut)

2 + d(xt+1, x
∗
t+1)

2
2
≤ −1

2
d(xt+1, ut)

2 + ε̄td(xt, x
∗
t+1)

2, (13)

where 1 holds by the triangle inequality and 2 holds by (2). Using (13) to bound (11), we obtain

ℓt(x̃t)− ℓt(ut) ≤ ⟨∇ℓt(x̃t)−∇ℓ̃t(x̃t),−Logx̃t
(xt+1)⟩+

1

2η

(
d(xt, ut)

2 + (∆t − 1− µη

2
)d(xt+1, ut)

2
)
+

E∆t

2

+
1

2η

(
−3

4
d(x̃∗

t , xt+1)
2 + ε̄t(2 + ∆−1

t )d(xt, x
∗
t+1)

2

)
+

1

2η

(
ε̄t(2η∆

−1
t ∥∇ℓ̃t(x̃t)∥2(E−1 + 48|κmin|η) + 8η2L2 + 1)− 1

)
d(x̃∗

t , xt)
2.

(14)
Let us briefly comment on why we bounded the two terms depending on d(x∗

t+1, ut)
2 differently. If we had bounded them

both using (12), we would have obtained (∆t− 1)(1+µη)d(xt+1, ut)
2 and since ∆t > 0, this means that the update rule of

Algorithm 1 is not a contraction in the min-max setting where all ut correspond to the saddle point (x∗, y∗), see Theorem 3.
On the other hand, if we had bounded both terms using (13), we would have obtained −(1+µη)

4η d(xt+1, ut)
2, which would

have meant that this term does not telescope out with 1
2ηd(xt, ut)

2 later in the proof. We now bound our error dependent on

15
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d(xt, x
∗
t+1)

2 such that we can cancel it out with the negative terms which come up in the analysis. We bound,

d(xt, x
∗
t+1)

2
1
≤ 2d(xt, x̃

∗
t )

2 + 2d(x̃∗
t , x

∗
t+1)

2

2
≤ 2d(xt, x̃

∗
t )

2 + 4d(x̃∗
t , xt+1)

2 + 4d(xt+1, x
∗
t+1)

2

3
≤ 2d(xt, x̃

∗
t )

2 + 4d(x̃∗
t , xt+1)

2 + 4ε̄td(xt, x
∗
t+1)

2,

(15)

where 1 and 2 follow by the triangle inequality, 3 follows by (2). Hence, by rearranging and noting that ε̄t < 1/4 by
definition, we obtain

d(xt, x
∗
t+1)

2 ≤ 2

(1− 4ε̄t)
d(xt, x̃

∗
t )

2 +
4

1− 4ε̄t
d(x̃∗

t , xt+1)
2. (16)

Using this inequality, we get

ℓt(x̃t)− ℓt(ut) ≤ ⟨∇ℓt(x̃t)−∇ℓ̃t(x̃t),−Logx̃t
(xt+1)⟩+

1

2η

(
d(xt, ut)

2 + (∆−1
t − 1− µη/2)d(xt+1, ut)

2
)

+
1

2η

(
(Ct − 3/4)d(x̃∗

t , xt+1)
2 + (Ct − 1)d(x̃∗

t , xt)
2
)
+

E∆t

2
,

(17)

where

Ct
def
=

ε̄t
1− 4ε̄t

(
9 + 8η2L2 +∆−1

t

(
4 + 2η∥∇ℓ̃t(x̃t)∥2(E−1 + 48|κmin|η)

))
≥ max

{
4ε̄t(2 + ∆−1

t )

1− 4ε̄t
,
2ε̄t(2 + ∆−1

t )

1− 4ε̄t
+ ε̄t

(
2η∥∇ℓ̃t(x̃t)∥2(E−1 + 48|κmin|η)

∆t
+ 8L2η2 + 1

)}
.

We now address the mismatch between d(xt, ut)
2 and d(xt+1, ut)

2,

T∑
t=1

d(xt, ut)
2 − d(xt+1, ut)

2 =

T∑
t=1

d(xt, ut)
2 − d(xt+1, ut+1)

2 + d(xt+1, ut+1)
2 − d(xt+1, ut)

2

1
= d(x1, u1)

2 − d(xT+1, uT+1)
2 +

T∑
t=1

d(xt+1, ut+1)
2 − d(xt+1, ut)

2

2
≤ d(x1, u1)

2 − d(xT+1, uT+1)
2 + 2D

T∑
t=1

d(ut, ut+1)

=PT

,

(18)

where 1 holds by telescoping the first two summands and 2 holds by

d(xt+1, ut+1)
2 − d(xt+1, ut)

2
3
≤ d(ut, ut+1)(d(xt+1, ut+1) + d(xt+1, ut))

4
≤ 2d(ut, ut+1)D,

where we apply the triangle inequality d(xt+1, ut+1) ≤ d(xt+1, ut) + d(ut, ut+1) in 3 , and in 4 , we use that
d(xt+1, ut+1), d(xt+1, ut) ≤ D. Summing (17) from t = 1 to T and using (18), we get

T∑
t=1

ℓt(x̃t)− ℓt(ut) ≤
d(x1, u1)

2 − d(xT+1, uT+1)
2 + 2PTD

2η
+

T∑
t=1

⟨∇ℓt(x̃t)−∇ℓ̃t(x̃t),−Logx̃t
(xt+1)⟩

+
1

2η

T∑
t=1

[
(Ct − 3/4)d(x̃∗

t , xt+1)
2 + (Ct − 1)d(x̃∗

t , xt)
2 − µη

2
d(xt+1, ut)

2
]
+

T∑
t=1

∆t(Eη + d(xt+1, ut)
2)

2η
.

(19)

Further, choosing E ← D2/η and ∆t = (t+ 1)−2, we have that

1

2η

T∑
t=1

∆t(D
2 + d(xt+1, ut)

2)
1
≤ D2

η

T∑
t=1

∆t

2
≤ D2

η
, (20)
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where 1 holds since the xt+1 and ut lie in X and 2 holds by Proposition 14. We obtain

T∑
t=1

ℓt(x̃t)− ℓt(ut) ≤
d(x1, u1)

2 − d(xT+1, uT+1)
2 + 2PTD + 2D2

2η
+

T∑
t=1

⟨∇ℓt(x̃t)−∇ℓ̃t(x̃t),−Logx̃t
(xt+1)⟩

+
1

2η

T∑
t=1

[
(Ct − 3/4)d(x̃∗

t , xt+1)
2 + (Ct − 1)d(x̃∗

t , xt)
2 − µη

2
d(xt+1, ut)

2
]
.

(21)

Further, we bound

⟨∇ℓt(x̃t)−∇ℓ̃t(x̃t),−Logx̃t
(xt+1)⟩

1
≤ ∥∇ℓt(x̃t)−∇ℓ̃t(x̃t)∥ · d(x̃t, xt+1)

2
≤ η∥∇ℓt(x̃t)−∇ℓ̃t(x̃t)∥2 +

1

4η
d(x̃t, xt+1)

2

3
≤ η∥∇ℓt(x̃t)−∇ℓ̃t(x̃t)∥2 +

1

2η
(ε̄td(x̃t, x̃

∗
t )

2 + d(x̃∗
t , xt+1)

2),

where we use Cauchy-Schwarz in 1 , Young’s inequality in 2 and the triangle inequality and (3) in 3 . Bounding
d(x1, u1)

2 ≤ D2, we obtain

T∑
t=1

ℓt(x̃t)− ℓt(ut) ≤
2PTD + 3D2

2η
+

T∑
t=1

(
η∥∇ℓt(x̃t)−∇ℓ̃t(x̃t)∥2 −

µ

4
d(xt+1, ut)

2
)

+
1

2η

T∑
t=1

(
(Ct + ε̄t − 1)d(xt, x̃t)

2 + (Ct − 1/4)d(x̃∗
t , xt+1)

2
)

1
≤ 2PTD + 3D2

2η
+

T∑
t=1

(
η∥∇ℓt(x̃t)−∇ℓ̃t(x̃t)∥2 −

µ

4
d(xt+1, ut)

2
)
.

Here 1 holds because our choice of εt ensures that Ct + ε̄t ≤ 1
4 .

B. RIODA proof
Lemma 8 (Online-to-Minmax Reduction). LetM, N be Hadamard manifolds with sectional curvature in [κmin, 0] and
X ⊂M, Y ⊂ N be compact and g-convex sets. Consider the bi-function f :M×N → R, which is µ-SCSC and L-smooth
in X × Y . Further, let (x∗, y∗) be a saddle point of f . Consider two instantiations of Algorithm 1 running for the x and y
variables in parallel. In particular, for x, let x̃t ← x̃t, xt ← xt, ℓt(x)← f(x, ỹt), ℓ̃t(x)← f(x, yt), εt ← εxt , E ← Ey

and ut ← x∗. For y, let xt ← yt, x̃t ← ỹt, ℓt(x) ← −f(x̃t, y), ℓ̃t(x) ← −f(xt, y), εt ← εyt , E ← Ey and ut ← y∗.
Then we have that

f(x̃t, y
∗)− f(x∗, ỹt) ≤

1

2η

(
d(yt, y

∗)2 + d(xt, x
∗)2 + (∆t − 1− µη/2)(d(yt+1, y

∗)2 + d(xt+1, x
∗)2)

)
+

(
L+

(Cx
t − 3/4)

2η

)
d(x̃∗

t , xt+1)
2 +

(
L+

(Cy
t − 3/4)

2η

)
d(ỹ∗t , yt+1)

2 + (Ex + Ey)∆t/2

+

(
L(1 + 2ε̄t) +

(Cy
t + 4ε̄t − 1)

2η

)
d(ỹ∗t , yt)

2 +

(
L(1 + 2ε̄t) +

(Cx
t + 4ε̄t − 1)

2η

)
d(x̃∗

t , xt)
2,

where ε̄t
def
= 2ηmax{εxt , εyt } and

Cx
t

def
=

ε̄t
1− 4ε̄t

(
9 + 8η2L2 +∆−1

t

(
4 + 2η∥∇xf(x̃t, yt)∥2(E−1

x + 48|κmin|η)
))

Cy
t

def
=

ε̄t
1− 4ε̄t

(
9 + 8η2L2 +∆−1

t

(
4 + 2η∥∇yf(xt, ỹt)∥2(E−1

y + 48|κmin|η)
))

.
(22)

Proof. Following the proof of Theorem 7 until (17) for both the instantiations of Algorithm 1 updating x and y and summing
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Algorithm 2 Riemannian Implicit Optimistic Gradient Descent-Ascent (RIODA)

Input: Sets X ⊆M, Y ⊆ N , sectional curvature κmin, initial points (x1, y1) ∈ X ×Y , smoothness and strong g-convexity
constants L and µ of f and final precision ε or total number of iterations T .

Definitions: ⋄ The algorithm does not compute these quantities.
• Proximal parameter η ← 1

4L

• Ht(x, y)
def
= f(x, y) + 1

2ηd(x, xt)
2 − 1

2ηd(y, yt)
2

• Exact solutions:
x̃∗
t

def
= argmin

x∈X
Ht(x, yt) and x∗

t+1
def
= argmin

x∈X
Ht(x, ỹt)

ỹ∗t
def
= argmax

y∈Y
Ht(xt, y) and x∗

t+1
def
= argmin

x∈X
Ht(x̃t, y)

• Constrained case: ⋄ Knowledge of G is not required, see Corollary 4

µ = 0: εt = Lmin
{
1/8,

(
(t+ 1)2(40 +G2/L(ε/6 + 12|κmin|/L))

)−1
}

µ > 0: εt = Lmin
{
1/8,

(
max{(t+ 1)2, 16L/µ}(40 +G2/L(ε/4 + 12|κmin|/L))

)−1
}

• Unconstrained case: ⋄ Knowledge of R is not required, see Corollary 6

µ = 0: εt = L
8 min

{
1,
(
2(t+ 1)2(37 + 2385R2|κmin|)

)−1
}

µ > 0: εt = L
8 min

{
1, µ

(
8L(37 + 2385R2|κmin|)

)−1
}

1: for t = 1 to T do
2: x̃t ← (εtd(xt, x̃

∗
t )

2)-minimizer of Ht(x, yt), ỹt ← (εtd(yt, ỹ
∗
t )

2)-maximizer of Ht(xt, y)

3: xt+1←(εtd(xt, x
∗
t+1)

2)-minimizer of Ht(x, ỹt), yt+1←(εtd(yt, y
∗
t+1)

2)-maximizer of Ht(x̃t, y)
4: end for

Output: x̃T , ỹT if µ > 0, else uniform geodesic average of (x̃1, ỹ1), . . . , (x̃T , ỹT ) defined by (GEO-AVG).

the bounds, we obtain,

f(x̃t, y
∗)− f(x∗, y∗) + f(x∗, y∗)− f(x∗, ỹt)

≤ 1

2η

(
d(yt, y

∗)2 + d(xt, x
∗)2 + (∆t − 1− µη/2)(d(yt+1, y

∗)2 + d(xt+1, x
∗)2)

)
+ ⟨∇yf(xt, ỹt)−∇yf(x̃t, ỹt),−Logỹt

(yt+1)⟩+ ⟨∇xf(x̃t, ỹt)−∇xf(x̃t, yt),−Logx̃t
(xt+1)⟩

+
(Cx

t − 3/4)

2η
d(x̃∗

t , xt+1)
2 +

(Cy
t − 3/4)

2η
d(ỹ∗t , yt+1)

2 +
(Cx

t − 1)

2η
d(x̃∗

t , xt)
2 +

(Cy
t − 1)

2η
d(ỹ∗t , yt)

2 + (Ex + Ey)∆t/2.

(23)
We have that

⟨∇yf(xt, ỹt)−∇yf(x̃t, ỹt),−Logỹt
(yt+1)⟩+ ⟨∇xf(x̃t, ỹt)−∇xf(x̃t, yt),−Logx̃t

(xt+1)⟩
1
≤ ∥∇yf(xt, ỹt)−∇yf(x̃t, ỹt)∥ · d(ỹt, yt+1) + ∥∇xf(x̃t, ỹt)−∇xf(x̃t, yt)∥ · d(x̃t, xt+1)

2
≤ Ld(x̃t, xt)d(ỹt, yt+1) + Ld(ỹt, yt)d(x̃t, xt+1)

3
≤ L

2

(
d(x̃t, xt)

2 + d(ỹt, yt+1)
2 + d(ỹt, yt)

2 + d(x̃t, xt+1)
2
)

4
≤ L(1 + 2ε̄t)(d(xt, x̃

∗
t )

2 + d(yt, ỹ
∗
t )

2) + L(d(ỹ∗t , yt+1)
2 + d(x̃∗

t , xt+1)
2).

Here we use the Cauchy-Schwarz inequality in 1 , 2 follows by applying the L-smoothness of f , Young’s inequality in 3

18



Implicit Riemannian Optimism with Applications to Min-Max Problems

and 4 by the triangle inequality and the error criteria of x̃t and ỹt, i.e.,

d(x̃t, xt+1)
2+d(x̃t, xt)

2 ≤ 2d(x̃t, x̃
∗
t )+2d(x̃∗

t , xt)
2+2d(x̃t, x̃

∗
t )+2d(x̃∗

t , xt+1)
2 ≤ 4ε̄t(xt, x̃

∗
t )+2d(x̃∗

t , xt)
2+2d(x̃∗

t , xt+1)
2,

and analogously for y. It follows that

f(x̃t, y
∗)− f(x∗, ỹt) ≤

1

2η

(
d(yt, y

∗)2 + d(xt, x
∗)2 + (∆t − 1− µη/2)(d(yt+1, y

∗)2 + d(xt+1, x
∗)2)

)
+

(
L+

(Cx
t − 3/4)

2η

)
d(x̃∗

t , xt+1)
2 +

(
L+

(Cy
t − 3/4)

2η

)
d(ỹ∗t , yt+1)

2 + (Ex + Ey)∆t/2

+

(
L(1 + 2ε̄t) +

(Cy
t + 4ε̄t − 1)

2η

)
d(ỹ∗t , yt)

2 +

(
L(1 + 2ε̄t) +

(Cx
t + 4ε̄t − 1)

2η

)
d(x̃∗

t , xt)
2,

which concludes the proof.

Theorem 3 (RIODA). [↓] LetM, N be Hadamard manifolds with sectional curvature in [κmin, 0] and X ⊂M, Y ⊂ N
be compact and g-convex sets. Consider the f :M×N → R, which is g-convex, g-concave and L-smooth in X × Y .
Further, let (x∗, y∗) be a saddle point of (P) and (x̃T , ỹT ) be the output of Algorithm 2 after T iterations. Then we have

f(x̃T , y
∗) − f(x∗, ỹT ) ≤ ε after T = ⌈ 8LR2

ε ⌉ iterations, and T = ⌈ 17Lµ log
(

4LR2

ε

)
⌉, if f is also µ-strongly g-convex,

strongly g-concave in X × Y .

Proof. (Theorem 3) Let ε̄t
def
= 2ηmax{εxt , εyt }. Hence by (2) and (3), we have that

d(xt+1, x
∗
t+1)

2 ≤ ε̄td(xt, x
∗
t+1)

2, d(x̃t, x̃
∗
t )

2 ≤ ε̄td(xt, x̃
∗
t )

2, d(yt+1, y
∗
t+1)

2 ≤ ε̄td(yt, y
∗
t+1)

2, d(ỹt, ỹ
∗
t )

2 ≤ ε̄td(yt, ỹ
∗
t )

2.
(24)

By Lemma 8, we have that

f(x̃t, y
∗)− f(x∗, ỹt) ≤

1

2η

(
d(yt, y

∗)2 + d(xt, x
∗)2 + (∆t − 1− µη/2)(d(yt+1, y

∗)2 + d(xt+1, x
∗)2)

)
+

(
L+

(Cx
t − 3/4)

2η

)
d(x̃∗

t , xt+1)
2 +

(
L+

(Cy
t − 3/4)

2η

)
d(ỹ∗t , yt+1)

2 + (Ex + Ey)∆t/2

+

(
L(1 + 2ε̄t) +

(Cy
t + 4ε̄t − 1)

2η

)
d(ỹ∗t , yt)

2 +

(
L(1 + 2ε̄t) +

(Cx
t + 4ε̄t − 1)

2η

)
d(x̃∗

t , xt)
2,

(25)

with

Cx
t

def
=

ε̄t
1− 4ε̄t

(
9 + 8η2L2 +∆−1

t

(
4 +

2η∥∇xf(x̃t, yt)∥2(E−1
x + 48|κmin|η)

∆t

))
Cy

t
def
=

ε̄t
1− 4ε̄t

(
9 + 8η2L2 +∆−1

t

(
4 +

2η∥∇yf(xt, ỹt)∥2(E−1
y + 48|κmin|η)

∆t

))
.

By our choice of εt and η as well as Ex, Ey and ∆t, which we specify below for µ = 0 and µ > 0 separately, we have that
max{Cx

t , C
y
t }+ 5ε̄t ≤ 1/4 and hence (25) can be bounded by

f(x̃t, y
∗)−f(x∗, ỹt) ≤

1

2η

(
d(yt, y

∗)2 + d(xt, x
∗)2 + (∆t − 1− µη/2)(d(yt+1, y

∗)2 + d(xt+1, x
∗)2)

)
+(Ex+Ey)∆t/2.

(26)
We now analyze the g-convex and the strongly g-convex cases separately.

Case µ = 0. We set ∆t = (t + 1)−2 and Ex = Ey = ε/6. By definition, the LHS of (26) is non-negative, hence by
dropping it and rearranging we obtain

d(yt+1, y
∗)2 + d(xt+1, x

∗)2 ≤ (1−∆t)
−1(d(yt, y

∗)2 + d(xt, x
∗)2 + εη∆t/3)

1
≤ (d(y1, y

∗)2 + d(x1, x
∗)2)

t∏
i=1

1

1−∆i
+

εη

2

t∑
i=1

∆t

2
≤ 2(d(y1, y

∗)2 + d(x1, x
∗)2) + εη/2

(27)
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where 1 follows by repeatedly applying this inequality and since (1−∆t)
−1 ≤ 4/3 and 2 holds by definition of ∆t and

Proposition 10. Summing (26) from t = 1 to T , dividing by T and telescoping the sum, it follows that

1

T

T∑
t=1

(f(x̃t, y
∗)− f(x∗, ỹt)) ≤

1

2ηT
R2 +

T∑
t=1

[
∆t(d(yt+1, y

∗)2 + d(xt+1, x
∗)2)

2ηT
+

ε∆t

4T

]
1
≤ R2

ηT
+

ε

2T

2
≤ 4LR2

T
+

ε

2
,

where 1 holds by (27), Proposition 14 and dropping the negative terms and 2 by the definition of η = 1/(4L) and T ≥ 1.
By applying (GEO-AVG) to the sequence (x̃t, ỹt), we obtain

f(x̄T , y
∗)− f(x∗, ȳT ) ≤

1

T

T∑
t=1

(f(x̃t, y
∗)− f(x∗, ỹt)).

Hence after T = ⌈ 8LR2

ε ⌉ iterations of Algorithm 2, we have that f(x̄T , y
∗)− f(x∗, ȳT ) ≤ ε. This concludes the proof for

the g-convex case.

Case µ > 0. We set ∆t = min{(t+ 1)−2, µη
4 }, Ex = Ey = ε/4. By definition, the LHS of (26) is non-negative, hence

by rearranging we obtain

d(yt+1, y
∗)2 + d(xt+1, x

∗)2 ≤ (1 + µη/2−∆t)
−1(d(yt, y

∗)2 + d(xt, x
∗)2) +

εη

2(∆−1
t (1 + µη/2)− 1)

1
≤ (1 + µη/4)−1(d(yt, y

∗)2 + d(xt, x
∗)2) +

εη

2t2
,

where 1 holds by the definition of ∆t. Then by repeatedly applying the inequality, we have

d(yt+1, y
∗)2 + d(xt+1, x

∗)2 ≤ (1 + µη/4)−tR2 +
εη

2

t∑
k=1

k−2
1
≤ (1 +

µ

16L
)−tR2 +

ε

4L

2
≤ exp

(−tµ
17L

)
R2 +

ε

4L
,

where 1 holds since
∑t+1

t=1 t
−2 ≤ π2

6 ≤ 2 and by definition of η = 1/(4L) and 2 holds by the following inequality

1

1 + µ/(16L)
= 1− µ/(16L)

1 + µ/(16L)
≤ 1− µ

17L
≤ exp

( −µ
17L

)
, (28)

which holds as µ/L ≤ 1 and 1 + x ≤ exp(x). Hence, running Algorithm 2 for T = ⌈ 17Lµ log
(

4LR2

ε

)
⌉ iterations implies

that
d(yT , y

∗)2 + d(xT , x
∗)2 ≤ ε

2L
.

Dropping the non-positive distance from (26) for t← T and using the definition of η, we obtain

f(x̃T , y
∗)− f(x∗, ỹT ) ≤ 2L(d(yT , y

∗)2 + d(xT , x
∗)2) ≤ ε,

which concludes the proof.

Theorem 5 (RIODA – unconstrained). [↓] Let M, N be Hadamard manifolds with sectional curvature in [κmin, 0].
Consider the bi-function f :M×N → R, which is g-convex, g-concave and L-smooth in Z = B̄(x∗, 8R)× B̄(y∗, 8R),
where (x∗, y∗) is a saddle point of f . Then the iterates of Algorithm 2 stay in Z . Let (xT , yT ) be the output of Algorithm 2

after T iterations. Then we have f(xT , y
∗)− f(x∗, yT ) ≤ ε after T = ⌈ 6LR2

ε ⌉ iterations and T = ⌈ 17Lµ log
(

2LR2

ε

)
⌉ if f

is in addition µ-strongly g-convex, strongly g-concave in Z .
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Proof. (Theorem 5) Let ε̄t
def
= 2ηmax{εxt , εyt }. Hence by (2) and (3), we have that

d(xt+1, x
∗
t+1)

2 ≤ ε̄td(xt, x
∗
t+1)

2, d(x̃t, x̃
∗
t )

2 ≤ ε̄td(xt, x̃
∗
t )

2, d(yt+1, y
∗
t+1)

2 ≤ ε̄td(yt, y
∗
t+1)

2, d(ỹt, ỹ
∗
t )

2 ≤ ε̄td(yt, ỹ
∗
t )

2.
(29)

We show that the iterates stay in a bounded set B̄(x∗, 7R) × B̄(y∗, 7R). In particular, we show via induction that
d(xt, x

∗) + d(yt, y
∗) ≤ 2R and then show that d(x̃t, x

∗) + d(ỹt, y
∗) ≤ 7R and d(xt+1, x

∗) + d(yt+1, y
∗) ≤ 7R. For

t = 1, we have that d(x1, x
∗) + d(y1, y

∗) ≤ 2R by definition. Assume that d(xt, x
∗) + d(yt, y

∗) ≤ 2R holds, now we will
prove that it also holds for t+ 1. We have that

d(x̃t, x
∗) + d(ỹt, y

∗)
1
≤ d(x̃t, x̃

∗
t ) + d(ỹt, ỹ

∗
t ) + d(x̃∗

t , x
∗) + d(ỹ∗t , y

∗)
2
≤ d(xt, x̃

∗
t ) + d(yt, ỹ

∗
t )

4
+ d(x̃∗

t , x
∗) + d(ỹ∗t , y

∗)

3
≤ 1

4
(d(xt, x

∗) + d(yt, y
∗)) +

5

4
(d(x̃∗

t , x
∗) + d(ỹ∗t , y

∗))
4
≤ 7

2
(d(xt, x

∗) + d(yt, y
∗)),

(30)
where 1 holds by the triangle inequality, 2 holds by (29) and

√
ε̄t ≤ 1/4, 3 holds by the triangle inequality and 4 holds

since d(x̃∗
t , x

∗) + d(ỹ∗t , y
∗) ≤ (9/4)(d(xt, x

∗) + d(yt, y
∗)) by Proposition 9.

Further, we have that

d(xt+1, x
∗) + d(yt+1, y

∗)
1
≤ d(xt+1, x

∗
t+1) + d(yt+1, y

∗
t+1) + d(x∗

t+1, x
∗) + d(y∗t+1, y

∗)

2
≤ 1

4
(d(xt, x

∗
t+1) + d(yt, y

∗
t+1)) + d(x∗

t+1, x
∗) + d(y∗t+1, y

∗)

3
≤ 1

4
(d(xt, x

∗) + d(yt, y
∗))) +

5

4
(d(x∗

t+1, x
∗) + d(y∗t+1, y

∗))

4
≤ 7

2
(d(xt, x

∗) + d(yt, y
∗)),

(31)

where 1 holds by the triangle inequality, 2 holds by (29) and
√
ε̄t ≤ 1/4, 3 holds by the triangle inequality and 4

holds since d(x∗
t+1, x

∗) + d(y∗t+1, y
∗) ≤ 41

16 (d(xt, x
∗) + d(yt, y

∗)) by Proposition 9. We have thus established that x̃t,
xt+1 and ỹt, yt+1 lie in B̄(x∗, 7R) and B̄(y∗, 7R), respectively. Recall that by assumption, f is µ-SCSC and L-smooth
in B̄(x∗, 8R)× B̄(y∗, 8R). Therefore, we can apply Lemma 8 with X ← B̄(x∗, 8R) and Y ← B̄(y∗, 8R) as the iterates
are guaranteed to lie in the interior of the sets and hence the constraints are never active. Thus, applying Lemma 8 with
Ex =

d(xt,x̃
∗
t )

2

8η and Ey =
d(yt,ỹ

∗
t )

2

8η , we obtain

f(x̃t, y
∗)− f(x∗, ỹt) ≤

1

2η

(
d(yt, y

∗)2 + d(xt, x
∗)2 + (∆t − 1− µη/2)(d(yt+1, y

∗)2 + d(xt+1, x
∗)2)

)
+

(
L+

(Cx
t − 3/4)

2η

)
d(x̃∗

t , xt+1)
2 +

(
L+

(Cy
t − 3/4)

2η

)
d(ỹ∗t , yt+1)

2

+

(
L(1 + 2ε̄t) +

(Cy
t + 4ε̄t − 3/4)

2η

)
d(ỹ∗t , yt)

2 +

(
L(1 + 2ε̄t) +

(Cx
t + 4ε̄t − 3/4)

2η

)
d(x̃∗

t , xt)
2

(32)
where

Cx
t

def
=

ε̄t
1− 4ε̄t

(
9 + ∆−1

t

(
4 + 2η∥∇xf(x̃t, yt)∥2(E−1

x + 48|κmin|η)
)
+ 8η2L2

)
Cy

t
def
=

ε̄t
1− 4ε̄t

(
9 + ∆−1

t

(
4 + 2η∥∇yf(xt, ỹt)∥2(E−1

y + 48|κmin|η)
)
+ 8η2L2

)
.

We need to ensure that max{Cx
t , C

y
t }+ 5ε̄t ≤ 1/8 in order to cancel out the summands in the second and third line of (32).

Therefore, we show a bound for Cx
t and Cy

t in order to finish the induction argument. Note that

d(xt, x̃
∗
t ) + d(yt, ỹ

∗
t )

1
≤ d(xt, x

∗) + d(yt, y
∗) + d(x∗, x̃∗

t ) + d(y∗, ỹ∗t )
2
≤ 13

4
(d(xt, x

∗) + d(yt, y
∗)), (33)
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where 1 holds by the triangle inequality and 2 holds by Proposition 9. Squaring (33) and noting that a2+ b2 ≤ (a+ b)2 ≤
2(a2 + b2) for a, b > 0, we have

d(xt, x̃
∗
t )

2 + d(yt, ỹ
∗
t )

2 ≤ 22(d(xt, x
∗)2 + d(yt, y

∗)2). (34)

Further, we have

∥∇xf(x̃t, yt)∥
1
≤ ∥∇xf(x̃t, yt)− Γx̃t

x̃∗
t
∇xf(x̃

∗
t , yt)∥+ ∥∇xf(x̃

∗
t , yt)∥

2
≤ Ld(x̃t, x̃

∗
t ) + η−1d(xt, x̃

∗
t )

3
≤ 17L

4
d(xt, x̃

∗
t ).

(35)
Here 1 holds by the triangle inequality, 2 holds by smoothness of f between xt and x̃t, which both lie in B̄(x∗, 7R/

√
2)

by the induction assumption, and (30). The optimality condition of x̃∗
t , i.e., ∇xf(x̃

∗
t , yt) = 1

ηLogx̃∗
t
(xt) was also

used. Lastly, 3 follows by definition of η = 1/(4L) and by (29) and
√
ε̄t ≤ 1/4. Analogously one can show that

∥∇yf(yt, ỹt)∥ ≤ 17L
4 d(yt, ỹ

∗
t ). Using these bounds and the definition of η, we obtain

Cx
t

1
≤ ε̄t

1− 4ε̄t

(
10 + ∆−1

t

(
22 + 109d(xt, x̃

∗
t )

2|κmin|
)) 2
≤ ε̄t

1− 4ε̄t

(
10 + ∆−1

t

(
22 + 2385R2|κmin|

))
Cx

t

1
≤ ε̄t

1− 4ε̄t

(
10 + ∆−1

t

(
22 + 109d(yt, ỹ

∗
t )

2|κmin|
)) 2
≤ ε̄t

1− 4ε̄t

(
10 + ∆−1

t

(
22 + 2385R2|κmin|

)) (36)

where for both inequalities, 1 follows by (35) and 2 follows by (34) and the induction hypothesis. Our bounds on Cx
t and

Cy
t and our choice of εt, Ex, Ey and η as well as ∆t, which we specify below for µ = 0 and µ > 0 separately, ensure that

max{Cx
t , C

y
t }+ 5ε̄t ≤ 1/8 and the update rules in Lines 2 and 3 can be implemented efficiently. Hence we have,

f(x̃t, y
∗)− f(x∗, ỹt) ≤

1

2η

(
d(yt, y

∗)2 + d(xt, x
∗)2 + (∆t − 1− µη/2)(d(yt+1, y

∗)2 + d(xt+1, x
∗)2)

)
. (37)

We now analyze the g-convex and the strongly g-convex case separately.

Case µ = 0. We set ∆t = (t+ 1)−2. By definition, the LHS of (37) is non-negative, hence by rearranging we obtain

d(xt+1, x
∗)2 + d(yt+1, y

∗)2 ≤ d(xt, x
∗)2 + d(yt, y

∗)2

1−∆t

1
≤ (d(x1, x

∗)2 + d(y1, y
∗)2)

t∏
i=1

1

1−∆i

2
≤ 2(d(x1, x

∗)2 + d(y1, y
∗)2)

(38)

where 1 follows by repeatedly applying this inequality and 2 holds by Proposition 10. Noting that a2 + b2 ≤ (a+ b)2 ≤
2(a2 + b2) for a, b > 0, this proves the induction statement, as d(xt+1, x

∗) + d(yt+1, y
∗) ≤ 2R. Summing (37) from t = 1

to T , dividing by T and telescoping the sum, it follows that

1

T

T∑
t=1

(f(x̃t, y
∗)− f(x∗, ỹt)) ≤

1

2ηT
(d(x1, x

∗)2 + d(y1, y
∗)2) +

T∑
t=1

∆t(d(xt, x
∗)2 + d(yt, y

∗)2)

2ηT

1
≤ d(x1, x

∗)2 + d(y1, y
∗)2

2ηT

(
2 +

T∑
t=1

∆t

)
2
≤ d(x1, x

∗)2 + d(y1, y
∗)2

ηT

3
=

6LR2

T
,

where 1 holds by (38), 2 holds by Proposition 14 and 3 by definition of η and R. By applying (GEO-AVG) to the
sequence (x̃t, ỹt), we obtain

f(x̄T , y
∗)− f(x∗, ȳT ) ≤

1

T

T∑
t=1

(f(x̃t, y
∗)− f(x∗, ỹt)).

Hence after T = ⌈ 6LR2

ε ⌉ iterations of Algorithm 2, we have that f(x̄T , y
∗)− f(x∗, ȳT ) ≤ ε. This concludes the proof for

the g-convex case.
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Case µ > 0. We set ∆t = µη
4 . By definition, the LHS of (37) is non-negative, hence by rearranging and using the

definition of ∆t, we obtain

d(yt+1, y
∗)2 + d(xt+1, x

∗)2 ≤ 1

1 + µη/4
(d(yt, y

∗)2 + d(xt, x
∗)2)

1
≤ exp

(−tµ
17L

)
(d(yt, y

∗)2 + d(xt, x
∗)2),

where 1 holds by (28). Noting that a2 + b2 ≤ (a+ b)2 ≤ 2(a2 + b2) for a, b > 0. This proves the induction statement, as
d(xt+1, x

∗) + d(yt+1, y
∗) ≤ 2R. Then by repeatedly applying the inequality, we have

d(yt+1, y
∗)2 + d(xt+1, x

∗)2 ≤ exp

(−tµ
17L

)
R2.

Hence, running Algorithm 2 for T = 17L
µ log

(
2LR2

ε

)
iterations implies that

d(yT , y
∗)2 + d(xT , x

∗)2 ≤ ε

2L
.

Dropping negative terms from (37) for t← T and using the definition of η, we obtain

f(x̃T , y
∗)− f(x∗, ỹT ) ≤ 2L(d(yT , y

∗)2 + d(xT , x
∗)2) ≤ ε,

which concludes the proof.

C. Implementing RIOD and RIODA
In this section, we use xτ

t and x̃τ
t to refer to the τ -th iterates of subroutines minimizing Lt and L̃t starting from xt, i.e.,

xt = x0
t = x̃0

t . Further, if τ is the last iterate, we write x̃τ
t = x̃t and xτ

t = xt+1.

Corollary 2 (Implementing RIOD). [↓] For the implementation of the update rules in Lines 4 and 6 of Algorithm 1, we
require Õ((Lη + ζD)ζR̃) gradient oracle calls to ℓt and ℓ̃t at iteration t using PRGD or Õ(1 + Lη) using CRGD (this
includes a logarithmic dependence on |κmin|). Here R̃

def
= G/L+D, where G is the Lipschitz constants of ℓt and ℓ̃t in X .

Note that these implementations do not require the knowledge of G.

Proof. (Corollary 2) Note that we provide the analysis for the criterion of x̃t, but the analysis for xt+1 follows by the same
arguments. Since ℓ̃t is differentiable, there exists a constant G ≥ 0 such that ∥∇ℓ̃t(x)∥ ≤ G for all x in the compact set X ,
which implies G-Lipschitzness. Note that L̃t is (L+ ζD/η)-smooth and (1/η)-strongly g-convex in X , since the regularizer
1
2ηd(x, xt)

2 is (ζD/η)-smooth and 1/(η)-strongly g-convex in X by Fact 15. Further we have for x ∈ X that

∥∇L̃t(x)∥ = ∥∇ℓ̃t(x)− η−1Logx(xt)∥ ≤ ∥∇ℓ̃t(x)∥+ η−1d(x, xt)
1
≤ G +

D

η
,

where 1 follows since ℓ̃t is G-Lipschitz and x, xt ∈ X , which implies that L̃t is (G +D/η)-Lipschitz. Recall that we
require the following for the subproblem

L̃t(x̃t)− L̃t(x̃
∗
t ) ≤ εtd(xt, x̃

∗
t )

2. (39)

In the following, we compute the gradient oracle complexity of ensuring (39) using the upper bound G in order to show the
worst-case complexity. We then show that the criterion can also be implemented in a way that adapts to the local gradient
norm and does not require knowledge of G.

PRGD. By Fact 21, running τ iterations of PRGD on L̃t, starting at xt, we have that

L̃t(x̃t)− L̃t(x̃
∗
t ) ≤

(L+ ζD/η)ζR̃
2

exp

( −(τ − 1)

4(Lη + ζD)ζR̃

)
d(xt, x̃

∗
t )

2,
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where R̃ = G+D/η
L+ζD/η . Hence, it is sufficient to run PRGD for

τ = O

(
(Lη + ζD)ζR̃ log

(
(L+ ζD/η)ζR̃

εt

))
iterations in order to satisfy (39). We now show that this criterion can be implemented without knowledge of G. We have
that

L̃t(x̃
τ
t )− L̃t(x̃

∗
t )

1
≤ (L̃t(x̃

τ−1
t )− L̃t(x̃

∗
t ))

(
1− 1

4(Lη + ζD)ζR̃τ−1

)
2
≤ (L̃t(x̃

1
t )− L̃t(x̃

∗
t ))

τ−1∏
i=1

(
1− 1

4(Lη + ζD)ζR̃i

)
3
≤

(L+ ζD/η)ζR̃0

2
d(xt, x̃

∗
t )

2
τ−1∏
i=1

(
1− 1

4(Lη + ζD)ζR̃i

)
,

where R̃τ
def
= ∥∇L̃t(x̃

τ
t )∥/(L + ζD/η) = ∥∇ℓ̃t(x̃τ

t ) − η−1Logx̃τ
t
(xt)∥/(L + ζD/η). Here 1 holds by Fact 21, 2 by

repeatedly applying the prior inequality and 3 by (Martı́nez-Rubio & Pokutta, 2023, Lemma 18). It follows that we need to
run PRGD for τ ≥ 2 iterations until

(L+ ζD/η)ζR̃0

2

τ−1∏
i=1

(
1− 1

4(Lη + ζD)ζR̃i

)
≤ εt =

max{4, (t+ 1)2(15 + 8η2L2 + 2η2∥∇ℓ̃t(x̃τ
t )∥2(D−2 + 48|κmin|))}−1

8η
.

Note that ∇L̃t(x̃
τ
t ) = ∇ℓ̃t(x̃τ

t ) − η−1Logx̃τ
t
(xt) has to be computed anyways for each iterations of PRGD, hence this

criterion can be checked with little computational overhead.

CRGD. After τ iterations of CRGD on L̃t starting from xt, we have

L̃t(x̃
τ
t )− L̃t(x̃

∗
t ) ≤

L

2
exp

(
−(τ − 1)min

{
1

4Lη
,
1

2

})
d(xt, x̃

∗
t )

2. (40)

Here we used Proposition 22 and Corollary 23 with f ← ℓ̃t and g ← 1
2ηd(·, xt)

2, noting that L̃t is (1/η)-strongly g-convex

and ℓ̃t is L-smooth. Hence it is sufficient to run CRGD for τ = O
(
(1 + Lη) log

(
L
εt

))
iterations in order to satisfy (39).

We now show that this criterion can be implemented without knowledge of G. By (40), it follows that we need to run CRGD
for τ ≥ 1 iterations until

L

2
exp

(
−(τ − 1)min

{
1

4Lη
,
1

2

})
≤ εt =

max{4, (t+ 1)2(15 + 8η2L2 + 2η2∥∇ℓ̃t(x̃τ
t )∥2(D−2 + 48|κmin|))}−1

8η

Note that∇L̃t(x̃
τ
t ) = ∇ℓ̃t(x̃τ

t )− 1
ηLogx̃τ

t
(xt) has to be computed anyways for each iterations of CRGD, hence this criterion

can be checked with little computational overhead.

Corollary 4 (Implementing RIODA). [↓] We use the notation from Algorithm 2. For the implementation of the update rules
in Lines 2 and 3 of Algorithm 2, we require Õ(ζDζR̃) gradient oracle calls per iteration using PRGD or Õ(1) using CRGD
(this includes a logarithmic dependence on |κmin|). Here R̃

def
= G/L+D, where G is the Lipschitz constant of f in X × Y .

We refer to these algorithms as RIODAPRGD and RIODACRGD, respectively. Note that these implementations do not require
the knowledge of G.

Proof. (Corollary 4) We discuss the implementation of the criteria for x, but the proof for y follows analogously. The proof
follows by applying Corollary 2 to the update rules of x and y, taking into account the definitions of εt and η in Algorithm 2
and the following properties of f . We have that L̃t(x) = f(x, yt) +

1
2ηd(x, xt)

2 is (L+ ζD/η)-smooth and (1/η)-strongly
g-convex, because f(x, yt) is L-smooth and the regularizer 1

2ηd(x, xt)
2 is (ζD/η)-smooth and (1/η)-strongly g-convex in
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X by Fact 15. Further, since f(·, yt) is differentiable, there exists a constant G, such that ∥∇xf(x, yt)∥ ≤ G for all x ∈ X .
Since f(·, yt) is also g-convex, this implies G-Lipschitzness. It follows that

∥∇L̃t(x)∥ = ∥∇xf(x, yt)− η−1Logx(xt)∥
1
≤ ∥∇xf(x, yt)∥+ η−1d(x, xt) ≤ G + 4LD,

where 1 follows since f(·, xt) is G-Lipschitz and x, xt ∈ X . This implies that L̃t is (G + 4LD)-Lipschitz.

Corollary 6 (Implementing RIODA – unconstrained). [↓] Consider the setting of Theorem 5. Assume in addition that f is
g-convex, g-concave and L-smooth in B̄(x∗, 8R)×B̄(y∗, 8R). Then we require Õ(1) gradient oracle calls for implementing
the update rules in Lines 2 and 3 of Algorithm 2 using CRGD (this includes a logarithmic dependence on |κmin|) and the
iterates stay in that set. If f is g-convex, g-concave and L-smooth in B̄(x∗, D̄) × B̄(y∗, D̄) with D̄

def
= R(13ζ8R + 9),

then we require Õ(ζ2R) gradient oracle calls using RGD and the iterates stay in that set. We refer to these algorithms as
RIODACRGD and RIODARGD, respectively. Neither method requires prior knowledge of the initial distance to the saddle point
R.

Proof. (Corollary 6) We discuss the implementation of the criteria for x, but the proof for y follows analogously. Recall
that we have

Cx
t

1
≤ ε̄t

1− 4ε̄t

(
10 + ∆−1

t

(
22 + 109d(xt, x̃

∗
t )

2|κmin|
)) 2
≤ ε̄t

1− 4ε̄t

(
10 + ∆−1

t

(
22 + 2385R2|κmin|

))
Cx

t

1
≤ ε̄t

1− 4ε̄t

(
10 + ∆−1

t

(
22 + 109d(yt, ỹ

∗
t )

2|κmin|
)) 2
≤ ε̄t

1− 4ε̄t

(
10 + ∆−1

t

(
22 + 2385R2|κmin|

))
.

(41)

We will make use of 2 to compute the worst-case complexity of implementing the criterion using R and 1 to analyze the
implementation that adapts to the value of d(xt, x̃

∗
t )

2 or d(yt, ỹ∗t )
2.

CRGD. Recall that Lt(x) = f(x, yt) +
1
2ηd(x, xt)

2 and L̃t(x) = f(x, yt) +
1
2ηd(x, x̃t)

2 with η = 1/(4L). Note that Lt

and L̃t are (1/η)-strongly g-convex and f is L-smooth in x ∈ B̄(x∗, 8R). Then we have

d(x̃τ+1
t , x̃∗

t )
1
≤ 2−τd(xt, x̃

∗
t )

2
≤ 2−τ (d(xt, x

∗) + d(x̃∗
t , x

∗))
3
≤ 13

4
R, (42)

and

d(xτ+1
t , x∗

t+1)
1
≤ 2−τd(xt, x

∗
t+1)

2
≤ 2−τ (d(xt, x

∗) + d(x∗
t+1, x

∗))
3
≤ 57

16
R (43)

where for both inequalities, 1 holds by repeatedly applying Corollary 24, 2 holds by the triangle inequality and 3 holds
by Proposition 9, since d(xt, x

∗) + d(yt, y
∗) ≤ 2R and, τ ≥ 0. Hence we have for any τ ≥ 0

d(x̃τ
t , x

∗)
1
≤ d(x̃τ

t , x̃
∗
t ) + d(x̃∗

t , x
∗)

2
≤
(
13

4
+

9

2

)
R

and

d(xτ
t , x

∗)
1
≤ d(xτ

t , x
∗
t+1) + d(x∗

t+1, x
∗)

2
≤
(
57

16
+

41

8

)
R,

where for both inequalities, 1 holds by the triangle inequality and 2 holds by (42) and (43) and Proposition 9. As
described in Corollary 2, the complexity of implementing the criterion using CRGD is O (log(L/εt)).

We now show that this criterion can be implemented without knowledge of R. We have by (40) that

L̃t(x̃
τ
t )− L̃t(x̃

∗
t ) ≤ 2−τLd(xt, x̃

∗
t )

2.
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Note that

d(xt, x̃
∗
t )

2
1
≤ 2d(xt, x̃t)

2 + 2d(x̃t, x̃
∗
t )

2
2
≤ 2d(xt, x̃t)

2 +
1

8
d(xt, x̃

∗
t )

2

⇔ d(xt, x̃
∗
t )

2
3
≤ 3d(xt, x̃t)

2,

(44)

where 1 holds by the triangle inequality, 2 holds by (29) and ε̄t, and 3 by rearranging. Applying this bound to the
RHS of 1 in (41), it follows that choosing εt = Lmin

{
1/8,

(
∆−1

t (32 + 327d(xt, x̃
τ
t )

2|κmin|)
)−1
}

is sufficient to ensure
Cx

t + 5ε̄t ≤ 1/8. It follows that it is enough to run CRGD for τ ≥ 1 iterations until

2−τ ≤ εt = Lmin
{
1/8,

(
(t+ 1)2(32 + 327d(xt, x̃

τ
t )

2|κmin|)
)−1
}

for µ = 0 and
2−τ ≤ εt = Lmin

{
1/8, 4L

(
µ(25 + 220d(xt, x̃

τ
t )

2|κmin|)
)−1
}

for µ > 0. Note that ∇L̃t(x̃
τ
t ) = ∇ℓ̃t(x̃τ

t )− 1
ηLogx̃τ

t
(xt) has to be computed anyways for each iterations of CRGD and

d(xt, x̃
τ
t ) = ∥Logx̃τ

t
(xt)∥, hence this criterion can be checked with little computational overhead.

RGD. Applying Fact 20 to L̃t and Lt, we have for the iterates of RGD that

d(x̃τ
t , x̃

∗
t ) ≤

1 +
√
5

2
ζd(xt,x̃∗

t )
d(xt, x̃

∗
t ) and d(xτ

t , x
∗
t+1) ≤

1 +
√
5

2
ζd(xt,x∗

t+1)
d(xt, x

∗
t+1) (45)

for all τ ≥ 0. Further, we have after τ iterations that

L̃t(x̃t)− L̃t(x̃
∗
t ) ≤ exp

(−τ
ζD̄

)
(L+ ζD̄/η)d(xt, x̃

∗
t )

2

2

and

Lt(xt+1)− Lt(x̃
∗
t ) ≤ exp

(−τ
ζD̄

)
(L+ ζD̄/η)d(xt, x

∗
t+1)

2

2
.

where

D̄ =
1 +
√
5

2
max{ζd(xt,x̃∗

t )
d(xt, x̃

∗
t ), ζd(xt,x∗

t+1)
d(xt, x

∗
t+1)}.

We go on to bound D̄. Note that

d(xt, x̃
∗
t )

1
≤ d(xt, x

∗) + d(x∗, x̃∗
t )

2
≤ 13

2
R ≤ 8R, (46)

and

d(xt, x
∗
t+1)

1
≤ d(xt, x

∗) + d(x∗, x∗
t+1)

2
≤ 2

(
1 +

41

16

)
R ≤ 8R (47)

where for both inequalities, 1 holds by the triangle inequality and 2 holds by Proposition 9. Further,

d(x̃τ
t , x

∗)
1
≤ d(x̃τ

t , x̃
∗
t ) + d(x∗, x̃∗

t )
2
≤ R

1 +
√
5

2

(
8ζ8R +

9

2

)
,

and

d(xτ
t , x

∗)
1
≤ d(xτ

t , x
∗
t+1) + d(x∗, x∗

t+1)
2
≤ R

1 +
√
5

2

(
8ζ8R +

41

8

)
,

where for both inequalities, 1 holds by the triangle inequality and 2 holds by applying (46) to (45). It follows that
D̄ = R (13ζ8R + 9) and hence ζD̄ = O

(
ζ2R
)
. The complexity of implementing the criterion is τ = O

(
ζ2R log(Lζ2R/εt)

)
.
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We show that it is possible to implement without the knowledge of R. We can address the first obstacle as in the CRGD
implementation by noting that choosing εt = Lmin

{
1/8,

(
∆−1

t (32 + 327d(xt, x̃
τ
t )

2|κmin|)
)−1
}

is sufficient to ensure

Cx
t + 5ε̄t ≤ 1/8. But the number of iterations still depends on R via ζR. To circumvent this, assume ∥∇L̃t(x̃t)∥2 ≤ ε̃t

def
=

εtd(xt,x̃t)
2

η+2η2εt
. We show this suffices to satisfy the criterion. We have

L̃t (x̃
∗
t )

1
≥ L̃t(x̃t) + ⟨∇L̃t(x̃t),Logx̃t

(x̃∗
t )⟩+

1

2η
d(x̃t, x̃

∗
t )

2

≥ L̃t(x̃t) + min
z∈M

[
⟨∇L̃t(x̃t),Logx̃t

(z)⟩+ 1

2η
d(x̃t, z)

2

]
2
≥ L̃t(x̃t)−

η

2
∥∇L̃t(x̃t)∥2

(48)

where 1 holds by the (1/η)-strong g-convexity of L̃t, 2 by noting that

argmin
z∈M

{
⟨∇L̃t(x̃t),Logx̃t

(z)⟩+ 1

2η
d(x̃t, z)

2

}
= Expx̃t

(
argmin
v∈Tx̃tM

∥ − η∇L̃t(x̃t)− v∥2x̃t

)
= Expx̃t

(−η∇L̃t(x̃t)).

We have
1

2η
d(x̃t, x̃

∗
t )

2
1
≤ L̃t(x̃t)− L̃t(x̃

∗
t )

2
≤ η

2
∥∇L̃t(x̃t)∥2

3
≤ ηε̃t/2, (49)

where 1 holds by the (1/η)-strong g-convexity of L̃t, 2 holds by (48) and 3 holds by assumption. Hence, in order to
satisfy the criterion, i.e., L̃t(x̃t)− L̃t(x̃

∗
t ) ≤ εtd(xt, x̃

∗
t )

2, we require

ηε̃t/2 =
εtd(xt, x̃t)

2

2 + 4ηεt
≤ εtd(xt, x̃

∗
t )

2.

Note that

d(xt, x̃t)
2

1
≤ 2d(xt, x̃

∗
t )

2 + 2d(x̃t, x̃
∗
t )

2
2
≤ 2d(xt, x̃

∗
t )

2 +
2ηεtd(xt, x̃t)

2

1 + 2ηεt

⇔ d(xt, x̃t)
2

3
≤ 2(1 + ηεt)d(xt, x̃

∗
t )

2,

(50)

where 1 holds by the triangle inequality, 2 by (49) and by definition of ε̃t and 3 holds by rearranging. Hence we
conclude that

ηε̃t/2 =
εtd(xt, x̃t)

2

2 + 4ηεt

1
≤ 2(1 + ηεt)εtd(xt, x̃

∗
t )

2

2 + 4ηεt
≤ εtd(xt, x̃

∗
t )

2,

where 1 holds by (50).

D. Technical Results
Proposition 9. Let M, N be Hadamard manifolds with sectional curvature in [κmin, 0]. Consider the bi-function
f :M×N → R, which is CC and L-smooth in X ×Y , where X def

= B̄(x∗, D̄), Y def
= B̄(y∗, D̄) where (x∗, y∗) is a saddle

point of f and D̄
def
= 3(d(xt, x

∗) + d(yt, y
∗)). Further, let x̃∗

t , ỹ∗t , x∗
t+1 and y∗t+1 be defined as in Algorithm 2 for the

unconstrained case and η ≤ 1/4L. Then, we have that

d(x̃∗
t , x

∗) + d(ỹ∗t , y
∗) ≤ 9

4
(d(yt, y

∗) + d(xt, x
∗)).

and

d(x∗
t+1, x

∗) + d(y∗t+1, y
∗) ≤ 41

16
(d(yt, y

∗) + d(xt, x
∗)).
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Proof. Let Ht(x, y)
def
= f(x, y) + 1

2ηd(x, xt)
2 − 1

2ηd(y, yt)
2, y+(x)

def
= argminy∈Y Ht(x, y), x+(y)

def
=

argminx∈X Ht(x, y), x+(y∗) = minx∈X f(x, y∗)+ 1
2ηd(x, xt)

2 and y+(x∗) = maxy∈Y f(x∗, y)− 1
2ηd(y, yt)

2. Further,
we have x∗ = argminx∈X f(x, y∗) and y∗ = argmaxy∈Y f(x∗, y). Note that (x∗, y∗), (xt, yt), (x+(y∗), y+(x∗)) and
(x+(yt), y

+(xt)) lie in X × Y by definition. Using (Martı́nez-Rubio & Pokutta, 2023, Lemma 10), we obtain that

d(xt, x
+(y∗)) ≤ d(xt, x

∗), d(yt, y
+(x∗)) ≤ d(yt, y

∗). (51)

Note that Ht is (1/η)-SCSC inX×Y and∇xHt(x, ·) and∇yHt(·, y) are L-Lipschitz for all x ∈ X and y ∈ Y , respectively.
Hence, applying (Martı́nez-Rubio et al., 2023, Lemma 40) to Ht, we have that x+(y) and y+(x) are (Lη)-Lipschitz for all
x ∈ X and y ∈ Y , respectively and in particular, we have

d(x+(y∗), x+(yt)) ≤ Lηd(yt, y
∗), d(y+(x∗), y+(xt)) ≤ Lηd(xt, x

∗) (52)

d(x+(y∗), x+(ỹt)) ≤ Lηd(ỹt, y
∗), d(y+(x∗), y+(x̃t)) ≤ Lηd(x̃t, x

∗). (53)

It follows that,

d(x∗, x+(yt)) + d(y∗, y+(xt))
1
≤ d(x∗, x+(y∗)) + d(y∗, y+(x∗)) + d(x+(y∗), x+(yt)) + d(y+(x∗), y+(xt))

2
≤ d(xt, x

+(y∗)) + d(yt, y
+(x∗)) + (1 + Lη)(d(yt, y

∗) + d(xt, x
∗))

3
≤ (2 + Lη)(d(yt, y

∗) + d(xt, x
∗))

4
≤ 9

4
(d(yt, y

∗) + d(xt, x
∗))

(54)

where 1 follows by the triangle inequality, 2 follows by the triangle inequality and (52), 3 follows by (51) and 4
by definition of η. Note that by (54), we have that x+(yt) and y+(xt) lie in the interior of X and Y respectively and
hence the constraints B̄(x∗, D̄) and B̄(y∗, D̄) are inactive. Recall that x̃∗

t = argminx∈M f(x, yt) +
1
2ηd(x, xt)

2 and
ỹ∗t = argmaxy∈N f(xt, y)− 1

2ηd(y, yt)
2, hence we have that x̃∗

t = x+(yt), ỹ∗t = y+(xt). Further, we have that

d(x∗, x+(ỹt)) + d(y∗, y+(x̃t))
1
≤ d(x∗, x+(y∗)) + d(y∗, y+(x∗)) + d(x+(y∗), x+(ỹt)) + d(y+(x∗), y+(x̃t))

2
≤ d(xt, x

+(y∗)) + d(yt, y
+(x∗)) + d(yt, y

∗) + d(xt, x
∗) + Lη(d(ỹt, y

∗) + d(x̃t, x
∗))

3
≤ (2 +

9Lη

4
)(d(yt, y

∗) + d(xt, x
∗))

4
≤ 41

16
(d(yt, y

∗) + d(xt, x
∗))

(55)
where 1 follows by the triangle inequality, 2 follows by the triangle inequality and (53), 3 follows by (51) and (54)
with x̃∗

t = x+(yt), ỹ∗t = y+(xt) and 4 by definition of η. Note that by (55), we have that x+(ỹt) and y+(x̃t) lie in
the interior of X and Y respectively and hence the constraints B̄(x∗, D̄) and B̄(y∗, D̄) are inactive. Recall that x∗

t+1 =
argminx∈M f(x, ỹt) +

1
2ηd(x, xt)

2 and y∗t+1 = argmaxy∈N f(x̃t, y)− 1
2ηd(y, ỹt)

2, hence we have that x∗
t+1 = x+(ỹt),

y∗t+1 = y+(x̃t).

Proposition 10. For c > 1, and T ∈ N0 we have that

T∏
t=0

1

1− (t+ c)−2
=

c(c+ T )

(c− 1)(c+ T + 1)
≤ c

c− 1
.

Proof. We show
∏T

t=0
1

1−(t+c)−2 = c(c+T )
(c−1)(c+T+1) by induction. The statement holds for T = 0. Now assume that the

statement holds for T − 1. Then the statement also holds for T , which can be shown by noting that 1 below holds by the
induction hypothesis and rearranging

T∏
t=0

1

1− (t+ c)−2

1
=

c(c+ T − 1)

(c− 1)(c+ T )

1

1− (T + c)−2
=

c(c+ T )

(c− 1)(c+ T + 1)
≤ c

c− 1
.
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Note that in the two following proposition, we specify where we require the smoothness and g-convexity to hold, which is
important for the analysis in the paper.
Proposition 11. LetM be a Riemannian manifold and let f :M→ R be g-convex and L-smooth inX = B̄(x∗, 2d(x̄, x∗)),
where x∗ ∈ argminx∈M f(x) and x̄ ∈M. Further, let x+ def

= exp(− 1
L∇f(x̄)), then it is

1

2L
∥∇f(x̄)∥2 ≤ f(x̄)− f(x+) ≤ f(x̄)− f(x∗).

Proof. First, note that

d(x+, x∗)
1
≤ d(x+, x̄) + d(x̄, x∗)

2
≤ 1

L
∥∇f(x̄)−∇f(x∗)∥+ d(x̄, x∗)

3
≤ 2d(x̄, x∗) (56)

where 1 holds by the triangle inequality, 2 by the update rule of x+ and by ∇f(x∗) = 0, 3 holds by the L-smoothness
of f in X . This implies that x+ ∈ X . Then we have,

f(x+)− f(x̄)
1
≤ ⟨∇f(x̄),Logx̄(x+)⟩+ L

2
d(x̄, x+)2

2
≤ − 1

2L
∥∇f(x̄)∥2,

where 1 holds by L-smoothness of f in X and since x+ ∈ X by (56), 2 by the update rule of x+. Finally, by definition
of x∗, we have that f(x∗) ≤ f(x+) and it follows that f(x̄)− f(x+) ≤ f(x̄)− f(x∗).

Proposition 12. LetM be a Riemannian manifold and X ⊂ M be a closed and g-convex set and let f :M → R be
µ-strongly g-convex and differentiable in X . Then, it holds for all x, y ∈ X that

µd(x, y)2 ≤ ⟨∇f(x)− Γx
y∇f(y),−Logx(y)⟩.

In particular, it follows that
µd(x, y) ≤ ∥∇f(x)− Γx

yf(y)∥.

Proof. By µ-strong g-convexity of f , we have

f(x)− f(y) ≤ ⟨∇f(x),−Logx(y)⟩ −
µ

2
d(x, y)2

f(y)− f(x) ≤ ⟨∇f(y),−Logy(x)⟩ −
µ

2
d(x, y)2.

Adding both inequalities, we have

µd(x, y)2 ≤ ⟨∇f(x)− Γx
y∇f(y),−Logx(y)⟩.

Further bounding the right hand side using the Cauchy-Schwarz inequalities and dividing by d(x, y), we have

µd(x, y) ≤ ∥∇f(x)− Γx
y∇f(y)∥.

Proposition 13. LetM be a Riemannian manifold and X ⊂ M be a closed and g-convex set and let f :M → R be
g-convex, lower semicontinuous and proper in X . Then it holds that

0 ≤ ⟨g∗,Logx∗(x)⟩ ≤ ⟨g,−Logx(x∗)⟩, ∀x ∈ X ,
where g∗ ∈ ∂f(x∗) and g ∈ ∂f(x).

Proof. By g-convexity of f , we have ⟨g,Logx(x∗)⟩ ≤ f(x∗) − f(x) ≤ ⟨g∗,−Logx∗(x)⟩. By the first-order optimality
condition, for an optimizer x∗ of f , we have 0 ≤ ⟨g∗,Logx∗(x)⟩ for all x ∈ X , which concludes the proof.

Proposition 14. We have that
∑T

t=1
1

(t+1)2 ≤ 1.

Proof.
T∑

t=1

1

(t+ 1)2
=

T+1∑
t=1

1

t2
− 1 ≤

∞∑
t=1

1

t2
− 1 ≤ π2

6
− 1 ≤ 1.
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D.1. Geometric results

Fact 15 (Riemannian Cosine-Law Inequalities). For the vertices x, y, p ∈M of a uniquely geodesic triangle of diameter D,
we have

⟨Logx(y),Logx(p)⟩ ≥
δD
2
d(x, y)2 +

1

2
d(p, x)2 − 1

2
d(p, y)2.

and
⟨Logx(y),Logx(p)⟩ ≤

ζD
2
d(x, y)2 +

1

2
d(p, x)2 − 1

2
d(p, y)2.

See (Martı́nez-Rubio & Pokutta, 2023) for a proof.

Corollary 16. Under the assumptions of Fact 15, the squared distance function 1
2d(·, p)2 is ζD-smooth and δD-strongly

g-convex in the geodesic triangle defined by the vertices x, y, p ∈M.

Proof. The proof follows directly by noting that the first equation of Fact 15 implies δD-strong g-convexity and the second
equation implies ζD-smoothness.

Remark 17. In spaces with lower bounded sectional curvature, if we substitute the constants ζD in the previous Fact 15 by
the tighter constant and ζd(p,x), the result also holds. See (Zhang & Sra, 2016).

We note that if κmin < 0, it is ζD = Θ(1 +D
√
|κmin|) and therefore if c is a constant, we have ζcD = O(ζD). If κmin ≥ 0

it is ζr = 1, for all r ≥ 0, so it also holds ζcD = O(ζD).

Proposition 18. LetM be a Hadamard manifold with sectional curvature lower bounded by κmin , then for x, y, p ∈M it
holds,

∥Γx
yLogy(p)− Logx(p)∥ ≤ ζ(κmin, D̄)d(x, y), (57)

where D̄
def
= max{d(x, p), d(y, p)}.

Proof. Let Φp(x)
def
= 1

2d(x, y)
2. Then ∇xΦp(x) = −Logx(p) and Φp(x) is (ζd(x,p))-smooth between x and p as the

eigenvalues of the Hessian of Φp(x) are upper bounded by ζd(x,p) by Alimisis et al. (2020, Lemma 2). Note that the
smoothness constant increases with the distance to p. Since in Hadamard manifolds, the distance between p and other points
in the geodesic triangle defined by x, y, p is maximized at the vertices, then Φp is ζD̄ smooth in this geodesic triangle, and
thus we have that

∥∇Φp(x)− Γx
y∇Φp(y)∥ = ∥Γx

yLogy(p)− Logx(p)∥ ≤ ζD̄d(x, y).

Fact 19 ((Zhang et al., 2023), Lemma C.2). Suppose f is geodesically convex-concave. Then for any iteration (xt, yt), the
geodesic averages (x̄t, ȳt), i.e.,

(x̄1, ȳ1) = (x1, y1), t ∈ {1, . . . , T − 1} :
{
x̄t+1 = Expx̄t

( 1
t+1Logx̄t

(xt+1))

ȳt+1 = Expȳt
( 1
t+1Logȳt

(xt+1))
(GEO-AVG)

satisfy for any positive integer T ,

f(x̄T , y)− f(x, ȳT ) ≤
1

T

T∑
t=1

[f(xt, y)− f(x, yt)] .

D.2. G-convex minimization

Fact 20 (Riemannian Gradient Descent (RGD)). Consider a uniquely geodesic Riemannian manifoldM with sectional
curvature in [κmin, κmax] and a function f : M → R which is µ-strongly g-convex and L-smooth in X def

= B̄(x∗, (1 +√
5)d(x0, x

∗)ζR/2) ⊂M. Then the iterates of RGD, i.e., xt+1 ← Expxt
(− 1

L∇f(xt)), satisfy xt ∈ X and we obtain an

ε-minimizer in O(Lµ log(Ld(x0,x
∗)2

ε )) iterations.

See Martı́nez-Rubio et al. (2024, Proposition 2) for the proof.
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Fact 21 (Projected Riemannian Gradient Descent (PRGD)). Let f :M → R be a µ-strongly g-convex, L-smooth and
Lp-Lipschitz function in a g-convex compact subset X ⊂M of a Hadamard manifoldM. For an initial point x0 ∈ X and
R̃

def
= Lp/L, after

T ≥ min

{
2ζRL

µ
log

(
f(x0)− f(x∗)

ε

)
, 1 +

2ζR̃L

µ
log

(
LζR̃d

2(x0, x
∗)

2ε

)}
steps of PRGD with update rule xt+1 ← PX

(
Expxt

(
− 1

L∇f(xt)
))

, we have f(xT )− f(x∗) ≤ ε.

See Martı́nez-Rubio et al. (2023, Proposition 6) for the proof.
We note that the original convergence result of Composite Riemannian Gradient Descent (Martı́nez-Rubio et al., 2024,
Proposition 5) contains a minor error. The following proposition is a corrected version.
Proposition 22 (Composite Riemannian Gradient Descent (CRGD)). LetM be a uniquely geodesic Riemannian manifold
and let X ⊂M be compact and g-convex. Let f :M→ R be g-convex and L-smooth in X and g :M→ R be g-convex,
proper and lower semicontinuous in X such that F def

= f + g is µ-strongly g-convex in X , and x∗ def
= argminx∈X F (x).

Define the update rule of CRGD as follows

xt+1← argmin
y∈X

{
⟨∇f(xt),Logxt

(y)⟩+ L

2
d(xt, y)

2 + g(y)

}
.

Then

F (xt+1)− F (x∗) ≤ C(F (xt)− F (x∗)), where C
def
=

{
1− µ/(4L) if L/µ ≥ 1/2
L
µ if L/µ < 1/2

.

and in particular
F (xT )− F (x∗) ≤ CT (F (x0)− F (x∗)).

Proof. We first note that the argmin in the update rule exists. Since g is proper, lower semicontinuous and g-convex in
X , we have that Y def

= X ∩ dom(g) is non-empty, closed and if x ∈ Y and v ∈ ∂g(x), we have that {y ∈ Y | L4 d(xt, y)
2 +

⟨v,Logx(y)⟩ ≤ L
4 d(xt, x)

2} is compact by strong convexity of x 7→ d(xt, x)
2. We also have that {y ∈ Y | L4 d(xt, y)

2 +

⟨∇f(x),Logxt
(y)⟩ ≤ L

4 d(xt, x)
2 + ⟨∇f(x),Logxt

(x)⟩} is compact. The union of these two compact sets is compact and
if we consider z not in this union, we have 2 below

⟨∇f(xt),Logxt
(z)⟩+ L

2
d(xt, z)

2 + g(z)
1
≥ ⟨∇f(xt),Logxt

(z)⟩+ L

2
d(xt, z)

2 + g(x) + ⟨v,Logx(z)⟩

2
> ⟨∇f(xt),Logxt

(x)⟩+ L

2
d(xt, x)

2 + g(x),

where 1 uses v ∈ ∂g(x). This means that the minimization problem can be constrained to this union only and since it is
compact the argmin exists.

Now we prove the convergence result. We have

F (xt+1)
1
≤ min

x∈X

{
f(xt) + ⟨∇f(xt), x− xt⟩xt +

L

2
d(x, xt)

2 + g(x)

}
2
≤ min

x∈X

{
F (x) +

L

2
d(x, xt)

2

}
3
≤ min

α∈[0,1]

{
αF (x∗) + (1− α)F (xt) +

Lα2

2
d(x∗, xt)

2

}
4
≤ min

α∈[0,1]

{
F (xt)− α

(
1− α

L

µ

)
(F (xt)− F (x∗))

}
5
= F (xt)−min

{
µ

4L
,
1

2

}
(F (xt)− F (x∗)).

(58)
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Above, 1 holds by smoothness and the update rule of the composite Riemannian gradient descent algorithm. The g-
convexity of f implies 2 . Inequality 3 results from restricting the min to the geodesic segment between x∗ and xt so that
x = Expxt

(αLogxt
(x∗) + (1− α)Logxt

(xt)). We also use the g-convexity of F . In 4 , we used strong convexity of F to
bound µ

2 d(x
∗, xt)

2 ≤ F (xt)− F (x∗). Finally, in 5 we substituted α by the value that minimizes the expression, which is
max{1, µ/2L}. Subtracting F (x∗) to the inequality above yields

F (xt+1)− F (x∗) ≤
(
1−min

{
µ

4L
,
1

2

})
(F (xt)− F (x∗)).

This bound does not improve for L/µ ≤ 1/2. We can further improve the bound for L/µ ≤ 1/2. Indeed, we have

F (xt+1)− F (x∗)
1
≤ L

2
d(xt, x

∗)2
2
≤ L

µ
(F (xt)− F (x∗)),

where 1 holds by Corollary 23 and 2 holds by µ-strong g-convexity of F in X . Subtracting F (x∗) to the inequality above
yields

F (xt+1)− F (x∗) ≤ L

µ
(F (xt)− F (x∗)).

For L/µ ≤ 1/2, we have L/µ ≤
(
1−min

{
µ
4L ,

1
2

})
. Recursively applying the inequalities from t = 1 to T yields

F (xT )− F (x∗) ≤ CT (F (x0)− F (x∗)), where C
def
=

{
1− µ/(4L) if L/µ ≥ 1/2
L
µ if L/µ < 1/2

.

Corollary 23 (Composite warm start). Consider the setting of Proposition 22. Then, we have for all z ∈ X that
F (xt+1)− F (z) ≤ L

2 d(xt, z)
2.

Proof. The proof follows from 2 in (58) by noting that minx∈X F (x)+L
2 d(x, xt)

2 ≤ F (z)+L
2 d(z, xt)

2 for all z ∈ X .

Corollary 24. LetM be a finite-dimensional uniquely geodesic Riemannian manifold. Further let f be L-smooth and
g-convex in X and let g be g-convex, lower semicontinuous and proper in X such that F def

= f + g is µ-strongly g-convex in
X , where X def

= B̄(x∗, (1 + c)d(x, x∗)) for some c > 0 and x∗ def
= argminx∈M F (x). Let

x+ def
= argmin

y∈M

{
⟨∇f(x),Logx(y)⟩+

L

2
d(x, y)2 + g(y)

}
.

Then, if L/µ ≤ 1

d(x+, x∗)2 ≤ L

µ
d(x, x∗)2 ≤ d(x, x∗)2.

Proof. Let the following be the optimizer, constrained to X ,

x̄+ def
= argmin

y∈X

{
⟨∇f(x),Logx(y)⟩+

L

2
d(x, y)2 + g(y)

}
.

Then we have

d(x̄+, x∗)2
1
≤ 2

µ
(F (x̄+)− F (x∗))

2
≤ L

µ
d(x, x∗)2,

where 1 hold by µ-strong g-convexity of F in X and 2 follows by Corollary 23. Hence x̄+ lies in the interior of X , which
implies that the constraints are inactive and x+ = x̄+.
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E. Experiments
We consider a robust version of the Karcher mean (Karcher, 1977) for points y1, . . . , yn ∈M. Previous works controlled
the degree of robustness through regularization (Zhang et al., 2023; Jordan et al., 2022), i.e.,

min
x∈M

max
ỹi∈M

{
F (x, (y1, . . . , yn))

def
=

1

n

n∑
i=1

d(x, ỹi)
2 − γ

n

n∑
i=1

d(yi, ỹi)
2

}
, (59)

where γ controls the amount of robustness. We formulate a robust Karcher variant based on constraints, i.e.,

min
x∈M

max
ỹi∈Yi

F (x, (y1, . . . , yn)), (60)

where Yi def
= B̄(yi, R̄) for all i ∈ [n]. This formulation allows for a more fine-grained influence of the robustness via the

radius R̄ of the constraints balls.

We implement the experiments using the Pymanopt Library (Townsend et al., 2016) in the symmetric positive definite
(SPD) manifold Sd+

def
= {M ∈ Rd×d : M = MT ,M ≻ 0} equipped with the affine-invariant metric and the d-dimensional

hyperbolic space Hd. We measure the performance of point (x̂, (ŷ1, . . . , ŷn)) in terms of the duality gap

max
ỹi∈Yi

F (x̂, (y1, . . . , yn))− min
x∈M

F (x, (ŷ1, . . . , ŷn)).

Note that for both (59) and (60), we require γ > ζD̄, where D̄ is the diameter a the set containing x and ỹi, in order to ensure
that the problem is g-convex, g-concave. In the following, we show that it is sufficient to choose D̄ def

= 1+R̄ based on how we
generate instances of (60). First, we generate a random point ȳ on the manifold using the manifold.random_point()
function. Then, we generate the centers yi = Logȳ(vi/∥vi∥ȳ) based on sampling random tangent vectors vi ∈ TȳM using
the manifold.random_tangent_vector() function. That way, we know that all yi ∈ B̄(ȳ, 1). This ensures that
the Karcher mean of the points y1, . . . , yn, i.e., KM(y1, . . . , yn) = argminx∈M

1
2n

∑n
i=1 d(x, yi)

2 also lies in B̄(ȳ, 1)
by Martı́nez-Rubio et al. (2024, Proposition 30). Since we constrain the variables ỹi to lie in B̄(yi, R̄), we have that
ỹi ∈ B̄(ȳ, 1 + R̄) and it follows that KM(ỹ1, . . . , ỹn) also lies in B̄(ȳ, 1 + R̄) by Martı́nez-Rubio et al. (2024, Proposition
30).

We have that F (·, (y1, . . . , yn)) is 1-strongly g-convex and (γ − ζD̄)-strongly g-concave, for γ > ζD̄. That means that we
can ensure in particular that the problem is strongly g-convex and strongly g-concave.

We run RIODAPRGD on (60) with a fixed number of 3 PRGD steps per subroutine, which means that each iteration of
RIODAPRGD require 12 PRGD steps. Setting R̄ = 0.01 and γ = ζD̄ ensures that the problem is strongly g-concave in
(y1, . . . , yn) as our bound on D̄ is loose. For the experiments, RIODAPRGD is run for 1k iterations, corresponding to 12k
gradient oracle calls. The step size λ = {10−1, 10−2, 10−3} of PRGD and the proximal parameter η ∈ {10−1, 10−2} are
optimized to find the best hyperparameters via a grid search.

The following two figures show the convergence behavior of RIODAPRGD in terms of the duality gap for experiments run in
both the hyperbolic space H5000 and the SPD manifold S100+ , each with n = 50 points. We observe linear convergence in
both cases, which aligns with our theoretical analysis.
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Figure 1: Convergence of RIODAPRGD on the robust Karcher mean problem (60) in terms of the duality gap with λ = 0.01,
η = 0.01
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Figure 2: Convergence of RIODAPRGD on the robust Karcher mean problem (60) in terms of the duality gap with λ = 0.1,
η = 0.0001
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