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Synopsis
Limited prior work has explored longitudinal modeling of human brain stroke using advanced diffusion techniques. We aim to address this gap by

analyzing longitudinal stroke data from diffusion spectrum imaging for modeling and predicting clinical markers of stroke recovery. Our proposed data

analysis method uses a mixed-effect model which exploits stochastic distances from these images for improved regression model statistics and handling

of imbalanced, inconsistent longitudinal data. We also demonstrate that this aids in differentiating between population-level and patient-level effects and

the corresponding key contributing predictors at each of these levels.

Introduction
Diffusion MRI has been a widely used to study brain stroke. While most studies use DTI , recent studies have focused on advanced diffusion techniques

(e.g. DKI , NODDI  which incorporate sophisticated biophysical modeling and have shown improvements over DTI in post-stroke analysis and recovery

predictions . However, most of these use a single timepoint in the acute phase (< 1 month of stroke) . Very few studies analyze both acute and chronic

stages  and use a group-wise comparison strategy which doesn’t fully exploit the repeated-measure design. In contrast, we present our analysis on

Diffusion Spectrum Imaging (DSI) data acquired longitudinally for each stroke subject to model clinical markers of stroke recovery. We hope to

characterize immediate as well as long-term post-stroke biophysical changes leading to an improved understanding of stroke recovery and subsequent

therapy choices. 

Our planned timings for MRI acquisitions are ~2 weeks, 1 month and 3 months. However, despite an initially well-thought study design, often practical

limitations arise due to patient unavailability. For example, Fig. 1 (left) shows that longitudinal MRI scans for most patients do not align with these

planned timings, including several missing scans. This makes a group-wise analysis inaccurate due to large intra-group variability. We propose using a

mixed-effect model which can successfully handle imbalanced and missing timepoints and benefits from a joint estimation of the overall population

trend as well as patient-specific trends. However, instead of conventional mixed-effect modeling, we show that whenever possible, using stochastic

‘distances’ inside these models leads to improved model statistics (Fig.1 (right)). Prior work has shown that stochastic ‘distance’ measures can be used to

quantify the dissimilarity between two image regions-of-interest (ROI). They are more powerful in their ability to capture ROI differences than the

traditional approach of using the ‘mean diffusion value’ as the ROI summary

Method
Longitudinal DSI data is acquired from 12 stroke subjects: 5 with 3 timepoints, 7 with 2 timepoints (Fig.1, 3T scanner, NODDI model based on DSI, 203

directions, max b=4000). Corresponding clinical scores (Fugl-Meyer) indicating recovery are also acquired. We use the ODI diffusion values (Orientation

dispersion index from the NODDI model ) from the motor tract as they are an important biomarker of post-stroke recovery . The mixed-effect

regression model uses the following: longitudinal clinical scores (response variable), subject ID (grouping variable), number of ‘days’ since stroke to

capture the DSI scan timings (predictor variable 1), inter-hemispheric difference in the ODI values from the motor ROI (predictor variable 2). 

The inter-hemispheric ODI differences are captured in one of two ways. 1) ‘ODI-Mean-Diff: ROI represented via mean ODI value, with difference as {Mean

ODI (Ipsilateral) - Mean ODI (Contralateral)}. 2) ODI-Distribution-Diff (ROI represented using the entire histogram of ODI values, with difference as the

Earth Mover Distance between Ipsilateral and Contralateral ODI histograms . After systematically exploring various model choices and variable

combinations using likelihood-ratio tests, we summarize the findings from the top three models in Fig. 2 (based on statistical significance of fixed and

random regression coefficients and model comparison tests, low standard errors, tight lower-upper bounds). For each model choice, the fixed effect is

the overall population-level trend and the random effect is the patient-level deviation from the fixed effect. Both fixed and random effects may include

intercept, any of the predictor variables and their combinations.

Results
Longitudinal ODI values are an important predictor at the population-level (along with the intercept) (Models 1,2,3 in Fig. 2, Fig. 3). This matches prior

work where diffusion imaging can help with clinical recovery prediction . Individual variability in ODI values is also important to subject-specific trends

(Models 1,3). Additionally, due to subject-specific scan timing inconsistencies, ‘days’ is also a critical predictor for the random-effects (Models 2,3). 

Results also demonstrate that any model using ‘ODI-Mean-Diff' distances, fails to find a statistically significant, population-level ODI trend. Even though

the intercept is significant, it does not inform about the value of any of the predictor variables. In contrast, when we use ‘ODI-Distribution-Diff' distances,

all models find statistically significant, population ODI trend. Note that a lower-upper bound for the random effect which doesn’t include zero, indicates a

significant subject-specific deviation from the population’s fixed effect. Since all models have these bounds outside zero, this points to the importance of

mixed-effects modeling which can differentiate the underlying subject-specific effects from the overarching fixed-effects while also identifying the

corresponding key contributing predictors for each of these effects.

A likelihood ratio test to compare the ‘ODI-Mean-Diff' models with ‘ODI-Distribution-Diff' (last column, Fig. 2) further highlights that stochastic-distances

provide better model fits than mean-distances. Overall, Model 3 using ‘ODI-Distribution-Diff', gives the best results, with Model 2 with ‘ODI-Distribution-

Diff', being a close second.

Conclusion
We demonstrate the value of longitudinal modeling for stroke using advanced diffusion techniques. The results are promising and must be validated

further on larger datasets. By using data efficiently and jointly across subjects (versus individual patient modeling or dummy variables per subject), a

mixed-effect longitudinal model scales better to larger datasets and naturally accounts for correlation in repeated scans. Stochastic ‘distance’ measures

when plugged into classic mixed-effect settings, create an easy but powerful method to exploit subtle, nuanced differences hidden within image ROIs.
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Figures

Fig. 1: Left: Longitudinal DSI (Diffusion spectrum imaging) scans acquired for 12 stroke subjects (each subject with different color). The plot shows the

scan timings (and highlights missing scans and timing inconsistencies). First scan per subject (circles), second scan (triangle), third scan (square). Right:

ODI probability distributions (motor region) for one subject. Red: Ipsilateral, Blue: Contralateral. Dark to lighter colors indicate first to third timepoint.

‘Plus’ markers show the corresponding mean ODI values for each distribution.
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Fig. 2: Table summarizing the top three longitudinal mixed-effect models among all explored variable combination choices.

Fig 3: Left: Observed clinical scores versus fitted clinical scores (mixed-effect fit: Fig. 2, Model 3 using ODI-Distribution-Diff distances). Colors indicate

grouping by Subject ID. Right: The corresponding residuals plotted against a normal-distribution probability plot showing that residuals mostly follow a 0-

mean gaussian, as expected from a well-fitted linear model.
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