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Abstract

This paper presents an evaluation framework for assessing Large Language Models’1

(LLMs) capabilities in combinatorial optimization, specifically addressing the 2D2

bin-packing problem. We introduce a systematic methodology that combines LLMs3

with evolutionary algorithms to generate and refine heuristic solutions iteratively.4

Through comprehensive experiments comparing LLM generated heuristics against5

traditional approaches (Finite First-Fit and Hybrid First-Fit), we demonstrate that6

LLMs can produce more efficient solutions while requiring fewer computational7

resources. Our evaluation reveals that GPT-4o achieves optimal solutions within8

two iterations, reducing average bin usage from 16 to 15 bins while improving9

space utilization from 0.76-0.78 to 0.83. This work contributes to understanding10

LLM evaluation in specialized domains and establishes benchmarks for assessing11

LLM performance in combinatorial optimization tasks.12

1 Introduction13

The evaluation of Large Language Models (LLMs) extends beyond traditional natural language14

processing tasks to specialized domains like combinatorial optimization. The 2D bin-packing problem15

that is placing rectangles into the minimum number of fixed-size bins represents a challenging NP-16

hard optimization task that serves as an ideal testbed for evaluating LLM capabilities in mathematical17

reasoning and algorithmic design.18

Traditional heuristic approaches like Finite First-Fit (FFF) and Hybrid First-Fit (HFF) provide19

established baselines, but their performance limitations in scalability and solution quality create20

opportunities for LLM enhanced approaches. This paper evaluates how effectively LLMs can21

generate, refine, and optimize heuristic algorithms through an iterative evolutionary framework.22

Our evaluation framework addresses key questions: Can LLMs understand complex algorithmic23

constraints? How do LLM generated solutions compare to established heuristics? What evaluation24

metrics best capture LLM performance in optimization contexts?25

2 Mathematical Formulation26

The two-dimensional bin packing problem (2D-BPP), an NP-hard problem, seeks to pack n items27

of size (wi, hi) into the minimum number of bins of size (W,H), where W > wi and H > hi for28

all i ∈ {1, ..., n} [15, 8, 4]. Let the indicator variable zij = 1 when item i is placed in bin j and29

0 otherwise; similarly, uj = 1 when bin j is used and 0 otherwise. By the pigeonhole principle, a30

maximum of n bins is needed [6]. The optimization problem is formulated as follows:31

min

n∑
j=1

uj
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Subject to the following constraints for all i, j ∈ {1, ..., n}:
∑n

j=1 zij = 1; 0 ≤ xij ≤ (W −wi)zij ;32

0 ≤ yij ≤ (H − hi)zij ; uj ≥ zij ; together with standard non-overlap constraints, ensuring that no33

two items in the same bin overlap [11, 13]. Finally, the total utilization, a common metric to evaluate34

performance for a given solution is measured as ρtotal =
∑

i∈I wihi(∑n
j=1 uj

)
WH

[5, 9].35

3 Evaluation Framework36

Problem Formulation and Constraints: We evaluate LLMs on the 2D bin-packing problem with37

strict constraints: bin dimensions of 200×100 units, item constraints requiring no overlap and38

complete containment within bins, the objective to minimize number of bins used, and an evaluation39

dataset of 50 randomly generated squares (10-50 units) across 20 iterations.40

LLM Based Evolutionary Process:

Figure 1: Iterative Evolutionary Framework for Heuristic Generation

41

Our evaluation methodology employs a six-step iterative process. First, structured prompting designs42

prompts that clearly specify problem constraints, input/output formats, and success criteria. Second,43

code generation and correctness validation systematically validates LLM generated candidate solu-44

tions against constraint satisfaction. Third, performance scoring evaluates solutions using multiple45

metrics: number of bins used (primary), space utilization efficiency (secondary), and execution time46

(tertiary). Fourth, island-based selection clusters high-performing solutions into "islands" to promote47

diversity. Fifth, iterative refinement uses the top performing solutions to inform subsequent prompts,48

creating an evolutionary feedback loop.49

To implement this framework, each generated script is rigorously validated for syntactic and logical50

correctness; only solutions that successfully pack all items according to the rules are advanced to the51

performance evaluation stage. The high performing solutions are clustered into distinct "islands" to52

preserve strategic diversity and prevent premature convergence on a single type of solution. In the53

refinement stage, the top three performing solutions one from each of the top three islands are used54

as "best-shot" examples in the prompt for the next generation cycle. This evolutionary feedback loop55

instructs the LLM to learn from the most successful strategies, progressively enhancing the quality of56

the generated heuristics over six full iterations. A detailed breakdown of each component, including57

full prompt design and baseline implementations, is available in Appendix B.58

Baseline Comparisons: We establish baselines using two established heuristics. Finite First-Fit59

(FFF) places items in the first available position using First-Fit Decreasing Height (FFDH) with time60

complexity O(n2). Hybrid First-Fit (HFF) employs a two-phase approach combining strip packing61

(FFDH) with bin packing (FFD) with time complexity O(n log n).62

4 Experimental Setup:63

We conducted experiments using GPT-4o with BPE tokenization on an Intel Core i5-8250U processor64

with 8GB RAM. The dataset consisted of 20 iterations with 50 randomly generated squares per65

iteration, and the evaluation protocol used the same dataset for all methods to ensure fair comparison.66

The LLM evaluation process terminated after demonstrating convergence within 2-6 iterations,67

indicating rapid solution optimization capability.68
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5 Results and Discussion69

Comparative Performance

Method Avg Bins Execution Time (s) Space Utilization
FFF 16.05 0.002446 0.76
HFF 16.00 0.024438 0.78
LLM 15.00 0.0103 0.83
Table 1: Comparative performance across evaluation metrics

70

The LLM-generated heuristic demonstrates superior performance across all evaluation metrics,71

achieving a 6.25% reduction in bin usage compared to baselines, a 6.4% improvement in space72

utilization over HFF, and competitive execution time despite code generation overhead.73

Convergence Analysis The LLM achieved optimal solutions within two iterations, suggesting effi-74

cient learning from constraint feedback. This rapid convergence indicates strong pattern recognition75

capabilities and effective constraint satisfaction learning.76

Space Utilization Patterns LLM generated solutions show more consistent space utilization across77

bins (83% average) compared to traditional heuristics, which exhibit declining utilization in later bins78

(HFF: 86.83% → 63.54%, FFF: 87.50% → 68.00%).79

LLM Capabilities Assessment Our evaluation reveals several key capabilities. LLMs successfully80

internalize complex geometric and logical constraints, demonstrating sophisticated constraint under-81

standing. Generated solutions exhibit optimization intuition through sophisticated packing strategies82

not explicitly programmed. The results show consistent iterative improvement across evolutionary83

cycles, indicating effective learning mechanisms.84

Limitations and Evaluation Challenges Computational constraints limit iteration cycles due to API85

costs, constraining comprehensive evaluation. LLM non-determinism complicates reproducibility,86

requiring multiple evaluation runs for statistical validity. The evaluation was limited to moderate87

problem sizes, and larger instances may reveal different performance characteristics that could affect88

generalization.89

Evaluation Metric Considerations Traditional optimization metrics (bin count, space utilization)90

prove effective for LLM evaluation, but additional metrics considering code quality, algorithmic91

sophistication, and constraint satisfaction robustness could provide deeper insights into LLM problem-92

solving capabilities.93

Implications for LLM Evaluation This work contributes to LLM evaluation methodology through94

domain-specific benchmarking that demonstrates the value of specialized evaluation frameworks95

for assessing LLM capabilities beyond language tasks. The iterative evaluation protocols show how96

evolutionary feedback can systematically evaluate LLM learning and adaptation capabilities. Multi-97

metric assessment establishes that comprehensive LLM evaluation requires performance, efficiency,98

and solution quality metrics. Finally, baseline establishment provides benchmarks for future LLM99

evaluation in combinatorial optimization contexts.100

6 Related Work101

The 2D bin packing problem is a fundamental NP-hard combinatorial optimization challenge where102

rectangular items must be packed into the minimum number of identical bins without overlapping103

while respecting bin boundaries [14]. Traditional approaches are broadly categorized into one-phase104

and two-phase algorithms, each offering distinct advantages for different problem scenarios.105

One-phase algorithms pack items directly into bins using strategies such as next-fit, first-fit, and best-106

fit methods combined with placement heuristics like bottom-left (BL) and bottom-left-fill (BLF) to107

determine specific item positions within selected bins [14]. These approaches prioritize computational108

efficiency but may sacrifice solution quality due to their greedy nature.109

Two-phase algorithms decompose the packing process into sequential stages, with the most established110

approach using level-based packing where items are first organized into levels of infinite-height111
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strips, then stacked into finite bins [1]. Classic implementations include Hybrid First-Fit (HFF)112

and Finite Best-Strip (FBS), which build upon foundational algorithms like First-Fit Decreasing113

Height (FFDH) and Best-Fit Decreasing Height (BFDH) [1]. Modern two-phase approaches have114

evolved to include sophisticated decomposition strategies such as the Positions and Covering (P&C)115

methodology, which generates valid item positions before using set-covering formulations for optimal116

configuration selection [2].117

Performance analysis reveals significant trade-offs between solution quality and computational ef-118

ficiency. Ferreira’s comparative study of constructive First-Fit Decreasing strategies, local search,119

simulated annealing, and genetic algorithms demonstrated that while constructive heuristics provide120

rapid solutions, improvement-based methods offer superior solution quality at increased computa-121

tional cost [3]. Specific placement strategies like BLF position items iteratively from the lower-left122

corner, while FFD and BFD algorithms employ different bin selection criteria based on item ordering123

and space utilization [10].124

Recent developments have integrated machine learning techniques with traditional heuristics, in-125

cluding deep reinforcement learning approaches for dynamic scenarios and hierarchical frameworks126

combining heuristic search with learning-based optimization [7]. However, these approaches remain127

largely problem specific and have not established systematic evaluation frameworks for assessing al-128

gorithmic performance across diverse problem instances. Though the use of LLMs in an evolutionary129

loop has shown significant promise, for instance, Romera-Paredes et al. [12] introduced FunSearch,130

a method that pairs an LLM with an evaluator to discover novel, high-performing heuristics for131

problems such as online bin packing.132

Inspired from the work of FunSearch, we contribute to this landscape by introducing a structured133

evaluation methodology specifically designed for assessing Large Language Model capabilities in134

generating and optimizing heuristic algorithms for the 2D bin packing problem, addressing the gap in135

systematic evaluation approaches for AI enhanced combinatorial optimization.136

7 Conclusion137

This paper presents a systematic framework for evaluating LLMs in combinatorial optimization138

contexts. Through comprehensive experiments on the 2D bin-packing problem, we demonstrate that139

LLMs can generate superior heuristic solutions compared to established algorithms while providing140

efficient performance. The evaluation framework contributes to understanding LLM capabilities in141

specialized domains and establishes methodological approaches for assessing LLM performance in142

optimization tasks.143

Our results indicate that LLMs possess significant potential for enhancing combinatorial optimization144

approaches, achieving measurable improvements in solution quality and computational efficiency.145

These findings support continued research into LLM applications in mathematical and algorithmic146

domains while highlighting the importance of rigorous evaluation frameworks for assessing such147

capabilities.148

8 Future Work149

Several key research directions emerge from this evaluation framework. First, scalability assessment150

should investigate how these results scale to larger bin-packing instances or different constraint151

ratios, as the current 200x100 bins with 10-50 unit squares represents a specific problem space152

that may not generalize to industrial-scale applications. Second, solution interpretability analysis153

should characterize the specific strategies the LLM discovered that led to improved performance,154

as understanding the algorithmic innovations behind the 6.25% improvement would inform future155

heuristic design and provide insights into LLM reasoning capabilities. Third, reproducibility analysis156

must address how evaluation frameworks should handle LLM non-determinism through protocols for157

multiple trial runs, confidence interval reporting, and statistical significance testing to ensure robust158

evaluation methodologies. Finally, prompt engineering sensitivity requires systematic investigation159

of how results vary with prompt modifications, as the evaluation framework’s dependence on prompt160

design necessitates establishing reproducibility guidelines and optimal prompting strategies for161

optimization contexts.162
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B Appendix - Methodology201

B.1 Goal202

The goal of this study is to explore how a Large Language Model (LLM) can autonomously generate,203

evaluate, and refine heuristics for solving the 2D Bin Packing Problem (2D-BPP). This is accom-204

plished through an iterative loop in which the LLM, specifically GPT-4o, writes Python functions205

based on a well-defined prompt, evaluates their ability to pack items efficiently, and leverages the206

best-performing scripts to guide the next round of generation.207

Through this multi-round learning framework, we aim to determine whether an LLM can discover a208

packing strategy that rivals or surpasses classical heuristics like Finite First-Fit (FFF) and Hybrid209

First-Fit (HFF). This methodology not only examines the end results but also provides insight into210

how the heuristics evolve through contextual learning and prompt refinement.211

B.2 Dataset212

Each iteration employs a dataset containing 50 randomly generated square items. Each item has213

a side length randomly chosen between 10 and 50 units. All bins are of fixed dimensions—200214

units in width and 100 units in height—and every square must be placed without overlapping and215

within the confines of the bin. Twenty different datasets were created, each representing a unique and216

random configuration to simulate varied real-world packing scenarios. By ensuring that each dataset217

is distinct, the evaluation of heuristic performance remains unbiased and avoids overfitting to any218

specific pattern of item sizes or arrangements.219

B.3 FFF and HFF Scripts220

To provide a baseline for performance comparison, two traditional heuristics were implemented:221

Finite First-Fit (FFF) and Hybrid First-Fit (HFF). In the FFF method, items are sorted by height and222

packed into the first available bin from bottom to top. If no available position is found within existing223

bins, a new bin is opened. This greedy strategy is computationally efficient but often results in poor224

space utilization.225

In contrast, the HFF approach operates in two phases. First, it applies the First-Fit Decreasing Height226

(FFDH) method to create horizontal strip packings by sorting items based on height. Second, these227

strips are packed into bins using the First-Fit Decreasing (FFD) approach. The combination of228

strip-level optimization and bin-first fit allocation allows HFF to improve upon the naive nature of229

FFF, particularly in scenarios involving large numbers of irregular-sized items. Both heuristics were230

implemented in Python and tested across the same datasets as the LLM-generated heuristics to ensure231

fair comparison.232

B.3.1 Finite First-Fit (FFF) Flow233

1. Start234

2. Initialize empty bins235

3. For each item:236

(a) Check bins one by one237

(b) If fits → Place item → Next item238

(c) If no bin fits → Open new bin → Place item239

4. All items placed? If Yes → End240

5. If No → Repeat for next item241

B.3.2 Hybrid First-Fit (HFF) Flow242

1. Start243

2. Initialize empty bins244

3. For each item:245

(a) Apply heuristic to select bin (First-Fit or alternative)246
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(b) If bin fits → Place item → Next item247

(c) If no bin fits → Open new bin → Place item248

4. All items placed? If Yes → End249

5. If No → Repeat for next item250

Figure 2: Flowchart of FFF and HFF process steps

B.4 Large Language Model251

We utilized the GPT-4o model from OpenAI for the heuristic script generation. The model was pro-252

vided with a comprehensive prompt, which included a function prototype, input/output specifications,253

and strict constraints. The function was expected to accept a NumPy array of item dimensions and254

a tuple representing bin capacities, and return a list of bins with items mapped to specific coordi-255

nates. The prompt explicitly instructed the model to ensure non-overlapping placements, respect bin256

boundaries, and avoid duplication of items across bins. A template function was included to enforce257

syntactic consistency, making it easier to validate, test, and compare the generated scripts.258

Figure 3: Template used in the LLM prompt

B.5 Prompt Design259

The prompt is the primary interface used to communicate the 2D Bin Packing Problem to the LLM.260

It was carefully crafted to ensure the model understood the objective and constraints of the task.261

The function needed to handle an array of items and place them into bins in such a way that the262

constraints were strictly satisfied. To guide the LLM effectively, we included a complete Python263
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function signature, detailed descriptions of the expected inputs and outputs, and the rules of the264

problem. We also clarified the goals, such as minimizing the number of bins and ensuring items265

did not overlap or exceed bin boundaries. The template helped enforce a consistent structure for all266

generated heuristics.267

The prompt is the main interface between the user and the LLM. We designed a clear and structured268

prompt to instruct the model to write a heuristic function for solving the 2D Bin Packing Problem269

(2D-BPP). The prompt defined the packing goals and strictly enforced input-output formats. Each270

function had to pack a list of rectangular items into bins of fixed size while following strict rules: no271

item could appear in more than one bin, no items could overlap, and all items had to be packed within272

the bin boundaries. A template format for the Python function was provided to ensure uniformity273

across all generated scripts.274

B.6 Script Generation275

The LLM generated multiple scripts based on the initial prompt. Each script was designed to solve276

the same problem using different logic. A total of 20 scripts were produced during the first round.277

The variety in the scripts helped cover a wide range of heuristic strategies. These scripts showed278

significant differences in terms of logic structure, item placement order, and how space within the279

bins was utilized. Each script was saved for correctness checking and performance scoring.280

B.7 Correctness Verification281

Once the scripts were generated, they were tested for correctness. Each script had to meet all the282

packing constraints. The scripts were run on a fixed set of test cases. Outputs were checked to ensure283

that no item overlapped, every item was placed within bin boundaries, and no item appeared more284

than once. Incorrect scripts were discarded. Only those that passed all correctness tests were selected285

for further evaluation.286

B.8 Scoring and Evaluation287

Scripts that passed the correctness tests were scored using the same metrics applied to traditional288

heuristics. These included the number of bins used, the total packing density, and the script’s runtime.289

Scripts that used fewer bins and maintained higher densities received higher scores. Execution time290

was also recorded, though it had a lower weight in score calculation. This method ensured that only291

efficient and practical scripts moved forward.292

B.9 Island Formation293

After scoring, high-performing scripts were grouped into islands. Each island contained scripts with294

similar logic and performance. The term “island” refers to a group of solutions that evolved in parallel295

but independently. These islands allowed us to preserve diversity among strategies and prevented296

convergence to a single logic too early in the process.297

Figure 4: Island distribution after the first iteration, sorted by bin usage
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B.10 Iterative Prompt Refinement298

The top three performing islands were selected to refine the next round of prompts. One script was299

randomly chosen from each of these top islands. These scripts were embedded into a new prompt as300

examples. The prompt instructed the LLM to learn from these three solutions and generate a new301

heuristic function. This process guided the LLM to focus on effective strategies while still producing302

novel variations. This approach is known as best-shot learning. It helps the LLM improve script303

quality without losing diversity.304

Figure 5: Refined prompt that includes best code samples from top islands

B.11 Iteration and Justification305

The process described above was repeated for six iterations. In each round, the best scripts were306

selected and used to guide the next generation. The goal was to steadily improve solution quality307

with each iteration. Six rounds were chosen based on resource availability and diminishing returns.308

Beyond six rounds, improvements were small compared to the extra cost in time and computation.309

This number of iterations proved effective in reaching high-performing solutions without excessive310

overhead. The final scripts from the sixth iteration were used in the evaluation and comparison stages.311

Figure 6: Improvement trend in bin usage over six iterations
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