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Evaluating LLMs for Combinatorial Optimization:
One-Phase and Two-Phase Heuristics for 2D
Bin-Packing

Anonymous Authors

Abstract

This paper presents an evaluation framework for assessing Large Language Models’
(LLMs) capabilities in combinatorial optimization, specifically addressing the 2D
bin-packing problem. We introduce a systematic methodology that combines LLMs
with evolutionary algorithms to generate and refine heuristic solutions iteratively.
Through comprehensive experiments comparing LLM generated heuristics against
traditional approaches (Finite First-Fit and Hybrid First-Fit), we demonstrate that
LLMs can produce more efficient solutions while requiring fewer computational
resources. Our evaluation reveals that GPT-40 achieves optimal solutions within
two iterations, reducing average bin usage from 16 to 15 bins while improving
space utilization from 0.76-0.78 to 0.83. This work contributes to understanding
LLM evaluation in specialized domains and establishes benchmarks for assessing
LLM performance in combinatorial optimization tasks.

1 Introduction

The evaluation of Large Language Models (LLMs) extends beyond traditional natural language
processing tasks to specialized domains like combinatorial optimization. The 2D bin-packing problem
that is placing rectangles into the minimum number of fixed-size bins represents a challenging NP-
hard optimization task that serves as an ideal testbed for evaluating LLM capabilities in mathematical
reasoning and algorithmic design.

Traditional heuristic approaches like Finite First-Fit (FFF) and Hybrid First-Fit (HFF) provide
established baselines, but their performance limitations in scalability and solution quality create
opportunities for LLM enhanced approaches. This paper evaluates how effectively LLMs can
generate, refine, and optimize heuristic algorithms through an iterative evolutionary framework.

Our evaluation framework addresses key questions: Can LLMs understand complex algorithmic
constraints? How do LLM generated solutions compare to established heuristics? What evaluation
metrics best capture LLM performance in optimization contexts?

2 Mathematical Formulation

The two-dimensional bin packing problem (2D-BPP), an NP-hard problem, seeks to pack n items
of size (w;, h;) into the minimum number of bins of size (W, H), where W > w; and H > h; for
all s € {1,...,n} [15,[8 4]. Let the indicator variable z;; = 1 when item 7 is placed in bin j and
0 otherwise; similarly, u; = 1 when bin j is used and 0 otherwise. By the pigeonhole principle, a
maximum of n bins is needed [[6]. The optimization problem is formulated as follows:

n
min E uj
j=1
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Subject to the following constraints for all i, j € {1,...,n}: 330 2ij = 130 < @y < (W —w;) 23
0<y; < (H - hi)zij; u; > z;;; together with standard non-overlap constraints, ensuring that no
two items in the same bin overlap [11} [13]]. Finally, the total utilization, a common metric to evaluate

. . . orwih;
performance for a given solution is measured as pyo = e Wihi [5.19].
(g w)wa

3 Evaluation Framework

Problem Formulation and Constraints: We evaluate LLMs on the 2D bin-packing problem with
strict constraints: bin dimensions of 200x100 units, item constraints requiring no overlap and
complete containment within bins, the objective to minimize number of bins used, and an evaluation
dataset of 50 randomly generated squares (10-50 units) across 20 iterations.

LLM Based Evolutionary Process:

1
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Figure 1: Iterative Evolutionary Framework for Heuristic Generation

Codebase

Our evaluation methodology employs a six-step iterative process. First, structured prompting designs
prompts that clearly specify problem constraints, input/output formats, and success criteria. Second,
code generation and correctness validation systematically validates LLM generated candidate solu-
tions against constraint satisfaction. Third, performance scoring evaluates solutions using multiple
metrics: number of bins used (primary), space utilization efficiency (secondary), and execution time
(tertiary). Fourth, island-based selection clusters high-performing solutions into "islands" to promote
diversity. Fifth, iterative refinement uses the top performing solutions to inform subsequent prompts,
creating an evolutionary feedback loop.

To implement this framework, each generated script is rigorously validated for syntactic and logical
correctness; only solutions that successfully pack all items according to the rules are advanced to the
performance evaluation stage. The high performing solutions are clustered into distinct "islands" to
preserve strategic diversity and prevent premature convergence on a single type of solution. In the
refinement stage, the top three performing solutions one from each of the top three islands are used
as "best-shot" examples in the prompt for the next generation cycle. This evolutionary feedback loop
instructs the LLM to learn from the most successful strategies, progressively enhancing the quality of
the generated heuristics over six full iterations. A detailed breakdown of each component, including
full prompt design and baseline implementations, is available in Appendix B.

Baseline Comparisons: We establish baselines using two established heuristics. Finite First-Fit
(FFF) places items in the first available position using First-Fit Decreasing Height (FFDH) with time
complexity O(n?). Hybrid First-Fit (HFF) employs a two-phase approach combining strip packing
(FFDH) with bin packing (FFD) with time complexity O(n logn).

4 Experimental Setup:

We conducted experiments using GPT-40 with BPE tokenization on an Intel Core i5-8250U processor
with 8GB RAM. The dataset consisted of 20 iterations with 50 randomly generated squares per
iteration, and the evaluation protocol used the same dataset for all methods to ensure fair comparison.
The LLM evaluation process terminated after demonstrating convergence within 2-6 iterations,
indicating rapid solution optimization capability.
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5 Results and Discussion

Comparative Performance

Method | Avg Bins | Execution Time (s) | Space Utilization
FFF 16.05 0.002446 0.76
HFF 16.00 0.024438 0.78
LLM 15.00 0.0103 0.83

Table 1: Comparative performance across evaluation metrics

The LLM-generated heuristic demonstrates superior performance across all evaluation metrics,
achieving a 6.25% reduction in bin usage compared to baselines, a 6.4% improvement in space
utilization over HFF, and competitive execution time despite code generation overhead.

Convergence Analysis The LLM achieved optimal solutions within two iterations, suggesting effi-
cient learning from constraint feedback. This rapid convergence indicates strong pattern recognition
capabilities and effective constraint satisfaction learning.

Space Utilization Patterns LLM generated solutions show more consistent space utilization across
bins (83% average) compared to traditional heuristics, which exhibit declining utilization in later bins
(HFF: 86.83% — 63.54%, FFF: 87.50% — 68.00%).

LLM Capabilities Assessment Our evaluation reveals several key capabilities. LLMs successfully
internalize complex geometric and logical constraints, demonstrating sophisticated constraint under-
standing. Generated solutions exhibit optimization intuition through sophisticated packing strategies
not explicitly programmed. The results show consistent iterative improvement across evolutionary
cycles, indicating effective learning mechanisms.

Limitations and Evaluation Challenges Computational constraints limit iteration cycles due to API
costs, constraining comprehensive evaluation. LLM non-determinism complicates reproducibility,
requiring multiple evaluation runs for statistical validity. The evaluation was limited to moderate
problem sizes, and larger instances may reveal different performance characteristics that could affect
generalization.

Evaluation Metric Considerations Traditional optimization metrics (bin count, space utilization)
prove effective for LLM evaluation, but additional metrics considering code quality, algorithmic
sophistication, and constraint satisfaction robustness could provide deeper insights into LLM problem-
solving capabilities.

Implications for LLM Evaluation This work contributes to LLM evaluation methodology through
domain-specific benchmarking that demonstrates the value of specialized evaluation frameworks
for assessing LLM capabilities beyond language tasks. The iterative evaluation protocols show how
evolutionary feedback can systematically evaluate LLM learning and adaptation capabilities. Multi-
metric assessment establishes that comprehensive LLM evaluation requires performance, efficiency,
and solution quality metrics. Finally, baseline establishment provides benchmarks for future LLM
evaluation in combinatorial optimization contexts.

6 Related Work

The 2D bin packing problem is a fundamental NP-hard combinatorial optimization challenge where
rectangular items must be packed into the minimum number of identical bins without overlapping
while respecting bin boundaries [14]]. Traditional approaches are broadly categorized into one-phase
and two-phase algorithms, each offering distinct advantages for different problem scenarios.

One-phase algorithms pack items directly into bins using strategies such as next-fit, first-fit, and best-
fit methods combined with placement heuristics like bottom-left (BL) and bottom-left-fill (BLF) to
determine specific item positions within selected bins [[14]. These approaches prioritize computational
efficiency but may sacrifice solution quality due to their greedy nature.

Two-phase algorithms decompose the packing process into sequential stages, with the most established
approach using level-based packing where items are first organized into levels of infinite-height
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strips, then stacked into finite bins [[1]. Classic implementations include Hybrid First-Fit (HFF)
and Finite Best-Strip (FBS), which build upon foundational algorithms like First-Fit Decreasing
Height (FFDH) and Best-Fit Decreasing Height (BFDH) [[1]. Modern two-phase approaches have
evolved to include sophisticated decomposition strategies such as the Positions and Covering (P&C)
methodology, which generates valid item positions before using set-covering formulations for optimal
configuration selection [2].

Performance analysis reveals significant trade-offs between solution quality and computational ef-
ficiency. Ferreira’s comparative study of constructive First-Fit Decreasing strategies, local search,
simulated annealing, and genetic algorithms demonstrated that while constructive heuristics provide
rapid solutions, improvement-based methods offer superior solution quality at increased computa-
tional cost [3]. Specific placement strategies like BLF position items iteratively from the lower-left
corner, while FFD and BFD algorithms employ different bin selection criteria based on item ordering
and space utilization [10].

Recent developments have integrated machine learning techniques with traditional heuristics, in-
cluding deep reinforcement learning approaches for dynamic scenarios and hierarchical frameworks
combining heuristic search with learning-based optimization [7]]. However, these approaches remain
largely problem specific and have not established systematic evaluation frameworks for assessing al-
gorithmic performance across diverse problem instances. Though the use of LLMs in an evolutionary
loop has shown significant promise, for instance, Romera-Paredes et al. [12] introduced FunSearch,
a method that pairs an LLM with an evaluator to discover novel, high-performing heuristics for
problems such as online bin packing.

Inspired from the work of FunSearch, we contribute to this landscape by introducing a structured
evaluation methodology specifically designed for assessing Large Language Model capabilities in
generating and optimizing heuristic algorithms for the 2D bin packing problem, addressing the gap in
systematic evaluation approaches for Al enhanced combinatorial optimization.

7 Conclusion

This paper presents a systematic framework for evaluating LLMs in combinatorial optimization
contexts. Through comprehensive experiments on the 2D bin-packing problem, we demonstrate that
LLMs can generate superior heuristic solutions compared to established algorithms while providing
efficient performance. The evaluation framework contributes to understanding LLM capabilities in
specialized domains and establishes methodological approaches for assessing LLM performance in
optimization tasks.

Our results indicate that LLMs possess significant potential for enhancing combinatorial optimization
approaches, achieving measurable improvements in solution quality and computational efficiency.
These findings support continued research into LLM applications in mathematical and algorithmic
domains while highlighting the importance of rigorous evaluation frameworks for assessing such
capabilities.

8 Future Work

Several key research directions emerge from this evaluation framework. First, scalability assessment
should investigate how these results scale to larger bin-packing instances or different constraint
ratios, as the current 200x100 bins with 10-50 unit squares represents a specific problem space
that may not generalize to industrial-scale applications. Second, solution interpretability analysis
should characterize the specific strategies the LLLM discovered that led to improved performance,
as understanding the algorithmic innovations behind the 6.25% improvement would inform future
heuristic design and provide insights into LLM reasoning capabilities. Third, reproducibility analysis
must address how evaluation frameworks should handle LLM non-determinism through protocols for
multiple trial runs, confidence interval reporting, and statistical significance testing to ensure robust
evaluation methodologies. Finally, prompt engineering sensitivity requires systematic investigation
of how results vary with prompt modifications, as the evaluation framework’s dependence on prompt
design necessitates establishing reproducibility guidelines and optimal prompting strategies for
optimization contexts.
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A Appendix - Source Code

The code is open source and kept anonymous due to submission policy.
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B Appendix - Methodology

B.1 Goal

The goal of this study is to explore how a Large Language Model (LLM) can autonomously generate,
evaluate, and refine heuristics for solving the 2D Bin Packing Problem (2D-BPP). This is accom-
plished through an iterative loop in which the LLM, specifically GPT-40, writes Python functions
based on a well-defined prompt, evaluates their ability to pack items efficiently, and leverages the
best-performing scripts to guide the next round of generation.

Through this multi-round learning framework, we aim to determine whether an LLM can discover a
packing strategy that rivals or surpasses classical heuristics like Finite First-Fit (FFF) and Hybrid
First-Fit (HFF). This methodology not only examines the end results but also provides insight into
how the heuristics evolve through contextual learning and prompt refinement.

B.2 Dataset

Each iteration employs a dataset containing 50 randomly generated square items. Each item has
a side length randomly chosen between 10 and 50 units. All bins are of fixed dimensions—200
units in width and 100 units in height—and every square must be placed without overlapping and
within the confines of the bin. Twenty different datasets were created, each representing a unique and
random configuration to simulate varied real-world packing scenarios. By ensuring that each dataset
is distinct, the evaluation of heuristic performance remains unbiased and avoids overfitting to any
specific pattern of item sizes or arrangements.

B.3 FFF and HFF Scripts

To provide a baseline for performance comparison, two traditional heuristics were implemented:
Finite First-Fit (FFF) and Hybrid First-Fit (HFF). In the FFF method, items are sorted by height and
packed into the first available bin from bottom to top. If no available position is found within existing
bins, a new bin is opened. This greedy strategy is computationally efficient but often results in poor
space utilization.

In contrast, the HFF approach operates in two phases. First, it applies the First-Fit Decreasing Height
(FFDH) method to create horizontal strip packings by sorting items based on height. Second, these
strips are packed into bins using the First-Fit Decreasing (FFD) approach. The combination of
strip-level optimization and bin-first fit allocation allows HFF to improve upon the naive nature of
FFF, particularly in scenarios involving large numbers of irregular-sized items. Both heuristics were
implemented in Python and tested across the same datasets as the LLM-generated heuristics to ensure
fair comparison.

B.3.1 Finite First-Fit (FFF) Flow
1. Start
2. Initialize empty bins
3. For each item:

(a) Check bins one by one
(b) If fits — Place item — Next item
(c) If no bin fits — Open new bin — Place item

4. All items placed? If Yes — End
5. If No — Repeat for next item

B.3.2 Hybrid First-Fit (HFF) Flow
1. Start
2. Initialize empty bins
3. For each item:
(a) Apply heuristic to select bin (First-Fit or alternative)
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(b) If bin fits — Place item — Next item
(c) If no bin fits — Open new bin — Place item

4. All items placed? If Yes — End
5. If No — Repeat for next item

Generate 50 Random
Items (0<w<200 | 0<h<100 )
20 Instances

“-
rpr

Il
|

Execute ==

Figure 2: Flowchart of FFF and HFF process steps

B.4 Large Language Model

We utilized the GPT-40 model from OpenAl for the heuristic script generation. The model was pro-
vided with a comprehensive prompt, which included a function prototype, input/output specifications,
and strict constraints. The function was expected to accept a NumPy array of item dimensions and
a tuple representing bin capacities, and return a list of bins with items mapped to specific coordi-
nates. The prompt explicitly instructed the model to ensure non-overlapping placements, respect bin
boundaries, and avoid duplication of items across bins. A template function was included to enforce
syntactic consistency, making it easier to validate, test, and compare the generated scripts.

Instrucrinns[

Goals

Code
Skeleton

Code O

Specification

Figure 3: Template used in the LLM prompt

B.S Prompt Design

The prompt is the primary interface used to communicate the 2D Bin Packing Problem to the LLM.
It was carefully crafted to ensure the model understood the objective and constraints of the task.
The function needed to handle an array of items and place them into bins in such a way that the
constraints were strictly satisfied. To guide the LLM effectively, we included a complete Python
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function signature, detailed descriptions of the expected inputs and outputs, and the rules of the
problem. We also clarified the goals, such as minimizing the number of bins and ensuring items
did not overlap or exceed bin boundaries. The template helped enforce a consistent structure for all
generated heuristics.

The prompt is the main interface between the user and the LLM. We designed a clear and structured
prompt to instruct the model to write a heuristic function for solving the 2D Bin Packing Problem
(2D-BPP). The prompt defined the packing goals and strictly enforced input-output formats. Each
function had to pack a list of rectangular items into bins of fixed size while following strict rules: no
item could appear in more than one bin, no items could overlap, and all items had to be packed within
the bin boundaries. A template format for the Python function was provided to ensure uniformity
across all generated scripts.

B.6 Script Generation

The LLM generated multiple scripts based on the initial prompt. Each script was designed to solve
the same problem using different logic. A total of 20 scripts were produced during the first round.
The variety in the scripts helped cover a wide range of heuristic strategies. These scripts showed
significant differences in terms of logic structure, item placement order, and how space within the
bins was utilized. Each script was saved for correctness checking and performance scoring.

B.7 Correctness Verification

Once the scripts were generated, they were tested for correctness. Each script had to meet all the
packing constraints. The scripts were run on a fixed set of test cases. Outputs were checked to ensure
that no item overlapped, every item was placed within bin boundaries, and no item appeared more
than once. Incorrect scripts were discarded. Only those that passed all correctness tests were selected
for further evaluation.

B.8 Scoring and Evaluation

Scripts that passed the correctness tests were scored using the same metrics applied to traditional
heuristics. These included the number of bins used, the total packing density, and the script’s runtime.
Scripts that used fewer bins and maintained higher densities received higher scores. Execution time
was also recorded, though it had a lower weight in score calculation. This method ensured that only
efficient and practical scripts moved forward.

B.9 Island Formation

After scoring, high-performing scripts were grouped into islands. Each island contained scripts with
similar logic and performance. The term “island” refers to a group of solutions that evolved in parallel
but independently. These islands allowed us to preserve diversity among strategies and prevented
convergence to a single logic too early in the process.

in 1 Conterts in 2 Conbarts 8in 3 Contents

Figure 4: Island distribution after the first iteration, sorted by bin usage
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B.10 Iterative Prompt Refinement

The top three performing islands were selected to refine the next round of prompts. One script was
randomly chosen from each of these top islands. These scripts were embedded into a new prompt as
examples. The prompt instructed the LLM to learn from these three solutions and generate a new
heuristic function. This process guided the LLM to focus on effective strategies while still producing
novel variations. This approach is known as best-shot learning. It helps the LLM improve script
quality without losing diversity.

- _

Goals + Code Skeleton + Code I/O Specification

Code from Island 1 Code from Island N

Figure 5: Refined prompt that includes best code samples from top islands

B.11 Iteration and Justification

The process described above was repeated for six iterations. In each round, the best scripts were
selected and used to guide the next generation. The goal was to steadily improve solution quality
with each iteration. Six rounds were chosen based on resource availability and diminishing returns.
Beyond six rounds, improvements were small compared to the extra cost in time and computation.
This number of iterations proved effective in reaching high-performing solutions without excessive
overhead. The final scripts from the sixth iteration were used in the evaluation and comparison stages.

filename iteration total_bins tal area_le time
10_2_generated_code.py 0 16 61781 10.05221415
15 67672 12.90952539
16 64725 10.39025068
10_2_generated_code.py 15 46447 13.77762437
10_2_generated_code.py 14 65474 8.791361332

10.2 generated_code.py 1
2
3
4

10_2_generated_code.py 5 13 45930  14.12328315
6
7
8

10_2_generated_code.py

19 89100 21.4082129
15 68457 8.164412975
16 74585 9.941418171

10_2_generated_code.py
—> 10.2 generated_code.py
10_2_generated_code.py

10_2_generated_code.py 9 16 82946 9.881717682
10_2_generated_code.py 10 12 37590 11.21900916
10_2_generated_code.py 1 14 35427 9.482660294
10_2 _generated_code.py 12 17 71446 14.06797814
10_2_generated_code.py 13 17 76079 12.00151372
10_2_generated_code.py 14 14 51363 12.3829267
10_2_generated_code.py 15 12 58295 9.240324259
10_2_generated_code.py 16 16 72219 12.02184606
10_2_generated_code.py 17 16 67927 13.08872342
10_2_generated_code.py 18 11 36646 10.89735484
10_2_generated_code.py 19 15 63898 13.82973814

AVG 14.95 11.88360478

I v

Average Number of Bins ~16 ~16

Average Execution Time 0.024 sec 0.002 sec

Figure 6: Improvement trend in bin usage over six iterations
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