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Abstract. Accurately segmenting abdominal organs and tumors within
computed tomography (CT) scans holds paramount significance for facil-
itating computer-aided diagnosis and devising treatment plans. However,
inherent challenges such as lesion heterogeneity and the scarcity of ad-
equately annotated data hamper model development. In this study, we
present a two-phase cascaded framework to address the complexities of
multi-organ and pan-cancer segmentation. A lightweight CNN first gen-
erates candidate regions of interest (ROIs) followed by a hybrid CNN-
Transformer model culminating in refined segmentation by synergizing
scale-aware modulation for local features and self-attention for global
context. Our proposed method secured the 5th position in the MICCAI
FLARE23 final test set, showcasing its competitive edge in achieving pre-
cise target segmentation with mean Dice Similarity Coefficients of 90.51%
for multi-organ and 53.04% for pan-cancer respectively. Additionally, effi-
cient inference is exhibited with an average runtime of 18 seconds per 512
× 512 × 215 3D volume with less than 2G GPU memory consumption.
Our code is available at: https://github.com/lyupengju/Flare23.

Keywords: Multi-organ and pan-cancer segmentation · Hybrid CNN-
Transformer model · Scale-aware and self-attention modulation.

1 Introduction

Medical image segmentation plays a crucial role in clinical diagnosis. Accurate
organ and cancer segmentation in abdomen computed tomography (CT) as one
of the most commonly used modalities for the abdominal diagnosis can assist
clinicians in identifying distinct anatomical regions as well as assessing the struc-
ture of lesions which assumes critical significance in computer-aided diagnosis,
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treatment planning, and image-guided interventions. For instance, the efficacy
of radiotherapy treatment planning (RTP), to a great extent, hinges upon the
precise demarcation of both the organ at risk (OAR) and the target tumor [45].
Moreover, segmentation on pan-cancer enables the identification of common fea-
tures and patterns across different cancer types, facilitating the development of
targeted therapies and personalized medicine approaches, e.g., identification of
unique gene expression signatures associated with different cancers are valuable
as diagnostic biomarkers and therapeutic targets [18].

In the deep learning era, the application of convolutional neural network
(CNN) or Transformer-based U-Net represents a seminal milestone in the field
of medical image segmentation. By virtue of its expansive encoder-decoder struc-
ture, U-Net [30] effectively captures both local and global contextual informa-
tion, enabling the precise delineation of anatomical structures. Its hierarchical
approach, coupled with skip connections, facilitates the fusion of multi-scale
features, empowering U-Net to discern fine-grained details and accurately seg-
ment complex structures in medical images. CNN-based U-Net variants [26] [11]
leverage the power of convolutional layers to extract spatial features, enabling
the network to discern intricate patterns and variations in tumor morphology,
with remarkable precision. On the other hand, Transformer-based U-Net mod-
els [7] [32] [44] exploit self-attention mechanisms to capture long-range dependen-
cies and contextual relationships, facilitating a comprehensive understanding of
anatomical structures. The hybridization of CNN and Transformer [4][39]stands
to the pursuit of synthesizing the best of both paradigms, aiming to forge a
sophisticated framework that pushes the boundaries of segmentation accuracy
and efficiency.

Abdominal multi-organ and pan-cancer segmentation, however, continues to
pose several challenges due to the inherent complexity and variability of can-
cer lesions, e.g., inter- and intra-tumor heterogeneity coupled with the pres-
ence of surrounding anatomical structures that can confound accurate segmen-
tation [25]. On top of that, the scarcity of cancer annotated datasets, especially
for rare cancer types, poses a significant hurdle in training accurate and gener-
alizable models. MICCAI FLARE23§ (Fast, Low-resource, and Accurate oRgan
and Pan-cancer sEgmentation in Abdomen CT) makes a significant contribution
with the availability of an extensive partial labeled dataset, enabling compre-
hensive research and analysis in the field. To mitigate the requirement for fully
labeled data, which aligns with FLARE23 challenge’s objectives, self-training
with pseudo labeling and semi-supervised learning emerge as a valuable strat-
egy [21]. Self-training entails the generation of surrogate labels through mod-
els trained on partially labelled datasets, thereby offering a bridge towards the
realm of fully supervised methodologies. Lian et al. [19] introduces a novel ap-
proach that employs partially labelled single-organ datasets to generate pseudo
labels for multi-organ segmentation, utilizing partial and mutual priors to en-
hance organ segmentation performance. Though iterative pseudo labeling with
one resource-intensive nnU-Net and selecting reliable ones, Huang et al. [12], un-

§ https://codalab.lisn.upsaclay.fr/competitions/12239
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der this knowledge distillation framework, ultimately attain a lightweight model
achieving accuracy and efficiency tradeoff in FLARE22 [24]. Semi-supervised
learning leverages unlabeled samples to improve generalization [17] where consis-
tency regularization is a popular approach enforcing invariant predictions under
input perturbations [33] [15]. Other than that, Pan et al. [27] adopt adversarial
training [43] that focuses on training a generator against a discriminator that
tries to differentiate segmented outputs derived from labeled versus unlabeled
data to promote outputs distribution convergence. On the other hand, the major-
ity of extant deep learning architectures for medical image segmentation, such as
APAU-Net [36], TransBTS [16], albeit achieving impressive precision optimized
on high-compute laboratory settings with GPUs, typically manifest immense
computational demands and parametric complexity. While in bed-side setting
with on-device processing of limited computational resources and memory ca-
pacities., e.g., point-of-care imaging [34] or interventional surgeries demanding
immediate decision-making [45], developing light-weighted, yet competent and
scalable models for robust and reliable segmentation becomes paramount.

In this work, we aim to develop a fast, low-resource, and accurate organ and
pan-cancer segmentation framework. Our approach is based on the classic two-
phase (location-segmentation) cascaded processing stream wherein a lightweight
CNN in phase one employing partial convolution and a novel hybrid CNN-
Transformer model with synergistic amalgamation of scale-aware modulator and
self-attention in phase two are proposed. We trained both models with foremen-
tioned simple self-training with pseudo labeling technique. The obtained results
on validation set not only demonstrate superior performance on Dice Similarity
Coefficient (DSC) and Normalized Surface Dice (NSD) but also showcase favor-
able inference speeds, underscoring the efficacy and practicality of our proposed
method.

Fig. 1. An overview of the two-phase cascade network.
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2 Method

We adopted localization and segmentation strategy to instantiate multi-phase
cascade methodologies which has been proven useful in the past FLARE chal-
lenges [36] [35], the overall framework is as shown in the Figure 1. The first phase
of the network bestows invaluable location information, furnishing a candidate
frame that subsequently facilitates the precise cropping of the image’s region
of interest (ROI). This localized region (i.e., hard attention [14] [42]), thus ex-
tracted, serves as the input for the second-stage network, wherein the process of
fine segmentation ensues. This sequential strategy imparts the profound advan-
tage of confining the segmentation focus solely to the target organ, effectively
excluding any perturbations arising from unrelated organs or background noise.

2.1 Preprocessing

This preprocessing workflow commences with a percentile-based rescaling (per-
centile values: 5th and 95th) constraining intensity range to crop region con-
taining salient features while suppressing outliers. It is followed by respacing to
(1.5mm, 1.5mm, 2mm) rectifies inter-slice spacing disparities, imparting unifor-
mity to the image domain. Image intensities are further Z-normalized to amelio-
rate convergence dynamics and numerical stability during model training. For
phase one, we resize the image dimension to the (128, 128, 128), while patch-wise
training method are found to be optimal in identifying tumor, thus four cubes
of size (96, 96, 96) are randomly cropped with the ratio between foreground and
background equals to 3 : 1. This process culminates in data augmentation where
each patch is subjected to random operations, including flipping, rotation, affine,
intensity shifting (offset: 0.1), and scaling (scaling factor: 0.1).

2.2 Proposed Method

The selection of a lightweight and computationally efficient model is of paramount
importance in this framework. The careful choice of the model strikes a delicate
balance between computational resource utilization and precision.

Hierarchical Encoder We choose to build our model for each phase upon the
macro design of U-Net [30] architecture that incorporates multiple levels of hi-
erarchy to capture and process features at different scales as shown in Figure 2.
The encoder structure shares across phases with minor variance that stem (patch
embedding) block in phase one contains a convolution of kernel size and stride of
4, the number of which halves in phase two. With input size H×W×D represent-
ing height, width, depth, stem module down scales feature size to corresponding
h× w × d. Base channel number is set as 32 / 60 for each phase respectively at
initial stage, which progressive doubles and feature map size h

2i−1 × w
2i−1 × d

2i−1 ,
i ∈ {1, 2, 3, 4} reduces itself down the four encoder stages. Between two consec-
utive stages, down sampling operations is carried out for resolution reduction
and channel expansion by a 2× 2× 2 convolution with stride 2 followed by layer
normalization.
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Fig. 2. The schematic illustration of proposed models. (a) The shared two-phase
backbone structure with Phase_1 model residual inverted bottleneck block where
partial convolution (PConv) efficiently conduct spatial token mixing while Phase_2
model utilizing scale-aware modulator (SAM) or Multi-head Self-Attention (MSA) in
Metaformer structure; (b) Phase_1 decoder adapted from [38]; (c) Phase_2 decoder
adapted from [7].
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Phase_1 Model Components The localization network is represented by
a binary segmentation U-Net, which is designed to treat all labeled organs as
the foreground label. To obtain a coarse ROI, we resort to partial convolution
(PConv) [2] as choice of spatial token mixing. PConv improves the efficiency
by applying filters on only a subset of input channels (first quarter in our case)
while preserving the remaining ones. This reduces computational redundancy
and the number of memory accesses, resulting in lower FLOPs than regular
convolution and higher FLOPS than depthwise convolution. With the completion
of shortcut connection and two successive pointwise convolutions, the Phase_1
encoder presents itself as a stacking of residual inverted bottleneck blocks in
which channel expansion ratio is 2 and the number of such block is set 2 per
stage.

For the decoding of this phase_1, we employ the streamlined MLP decoder
from Segformer [38] for efficient information aggregation. Specifically, the multi-
level features derived from encoder blocks undergo channel wise compression
to base channel number via MLP layers before being upsampled to the size of
h×w×d and a second MLP layer condenses the concatenated features channels
to the number equivalent to that of output classes, trilinear interpolation is
ultimately applied to recover to full image size.

Fig. 3. (a) Spatial modulation comparison between self-attentive and scale-aware op-
erator. self-attention first generates the key K, query Q, and value V using MLP layers
and the weights to modulate the V representations are determined by attention weights
computed by measuring the similarity between Q and K. SAM instead directly obtain
the weights with Multi-Head Mixed Convolution (MHMC) and a Scale-Aware Aggrega-
tion (SAA) blocks. (b) Evolving from [20], the schematic illustration of SAM integrating
multi-scale contexts via a MHMC and adapts token representations through a SAA.

Phase_2 Model Components For fine segmentation, by taking advantage of
the strengths of both CNNs and Transformers in Meta-former style [40], which
contains a spatial token mixing layer and a feed-forward layer (FFN) [29]. We
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adopt Scale-Aware Modulator (SAM) [20] to reweight the value representations
for lower-level local feature extraction in early stages while Multi-head Self-
Attention (MSA) [7] dedicated to global information in later stages, see Figure 3
for details. SAM consists of a Multi-Head Mixed Convolution (MHMC) and
a Scale-Aware Aggregation (SAA) module to enable the integration of multi-
scale contexts and adaptive modulation of tokens. Together, SAM and MSA
provide complementary modeling of multi-scale local features and long-range
global contexts. Their combination enables extracting both localized fine details
and overall spatial relationships.

The MHMC introduces multiple depth-wise convolutions with different ker-
nel sizes, enabling it to capture various spatial features across multiple scales.
Figure 3 illustrates the structure of MHMC, wherein the input channels are
divided into multiple groups (heads), each subjected to depth-wise separable
convolutions with diverse kernel sizes respectively, which are able to discern a
diverse spectrum of granularity features in an adaptive fashion.

The SAA module engages in a practice of cross-group information aggre-
gation across all features to harmonize diverse insights from distinct groups.
Specifically, three mixed groups are curated with each selecting one channel
from previously partitioned group, and the inverse bottleneck structure (expan-
sion ratio = 2) with point-wise convolutions are subsequently leveraged fostering
a holistic synergy of knowledge propagation and enriched representation, which,
by means of the Hadamard product operation, eventually serves as weight mod-
ulator of the value V in contrast to yielding attention matrices via a matrix
multiplication between the query and key in self-attention. The whole process
of SAM can be summarized in the following steps:

Input : z ∈ R
C×H′×W ′×D′

MHMC : H
i
j = DWConvkj×kj×kj

(
z
i
j

)
, j ∈ {1, 2, · · · ,M} , i ∈ {1, 2, · · · , C/M}

SAA : Gi = Relu
(
IN

(
Conv1×1×1

([
H

i
1, H

i
2, · · · , H

i
M

])))
W = Conv1×1×1

([
G1, G2, · · · , GC/M

])
Output : ẑ = W ⊙ (Conv1×1×1 (z))

(1)

Let z ∈ RC×H′×W ′×D′
denote the input tensor to the SAM module with

C channels and spatial dimensions H ′ × W ′ × D′ for the current layer. We
divide the channels into M = 3 heads, indexed by j ∈ {1, 2, 3}, with C/M
channels in each head. The output is denoted as ẑ with the same dimensions as
z. Within each head j, we have single-channel feature maps zi

j ∈ R1×H′×W ′×D′

for i ∈ {1, 2, · · · , C/M}. These are convolved with learned depth-wise kernels
DWConv of size kj , where we set kj ∈ {3, 5, 7} for the 3 heads respectively. ⊙
denotes dot product operation.

SAM blocks reside only in the initial two stages. During the penultimate
stage, triple of SAM blocks and Multi-Head Self-Attention (MSA) blocks are
alternatively stacked, effectively capturing the transition from local to global de-
pendencies. In the ultimate stage, exclusively MSA blocks are employed, thereby
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ensuring proficient capture of long-range dependencies. The number of such
blocks in each stage amounts to 2, 4, 6, 2 correspondingly.

We adopted phase_2 decoder similar to that from UNETR [7]. A resid-
ual block, composed of two consecutive sequences of Conv + InstanceNorm +
LeakyRelu, is applied to skip connections as well as subsequent concatenated
features. Upsampling is realized with transpose convolution.

2.3 Post-processing

After phase one, we remove objects of size smaller than (20 × 20 × 20), which
might be outliers affecting a precise ROI cropping for phase two whose result
are refined by preserving solely the largest components of organs. Based on the
observation that predicted tumor mask could appear separate with abdominal
organs though within the ROI defined by bounding box. This contradicts a well-
established fact that tumors originate on organs. We have tumor mask through
basic morphological operations of dilation and subtraction to identify any or-
gans in proximity, thereby filtering out those isolated components as shown in
Figure 4. The resultant mask are finally mapped back to the same size of input
image.

Fig. 4. Feasibility analysis of post-processing operations. It is evident that the proposed
post-processing applied to the predictive mask effectively eliminates isolated tumors.

3 Experiments

3.1 Dataset

The FLARE23 challenge constitutes an extension of its precursor, the FLARE
2021-2022 initiative [23] [24]. Its primary objective is to foster the advancement of
foundational models in the realm of abdominal disease analysis. The delineation
objectives encompass a spectrum of 13 distinct organs including liver, spleen,
pancreas, right kidney, left kidney, stomach, gallbladder, esophagus, aorta, infe-
rior vena cava, right adrenal gland, left adrenal gland, and duodenum in addition
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to diverse abdominal lesions, namely pan-cancer. The training dataset is cu-
rated from more than 30 medical centers under the license permission, including
TCIA [3], LiTS [1], MSD [31], KiTS [8,9], autoPET [6,5], TotalSegmentator [37],
and AbdomenCT-1K [25]. The training dataset consists of a total of 4000 ab-
dominal CT scans in which 2200 scans with partial annotations and 1800 scans
devoid of annotations. Two sets of 4000 pseudo labels of multi organs, gener-
ated by two top-performance teams during FLARE22 [12] [35], were appended
afterwards. The validation and testing sets include 100 and 400 CT scans, re-
spectively, which cover various abdominal cancer types, such as liver cancer,
kidney cancer, pancreas cancer, colon cancer, gastric cancer, and so on. The or-
gan annotation process used ITK-SNAP [41], nnU-Net [13], and MedSAM [22].

3.2 Implementation details

Table 1. Development environments and requirements.

System Ubuntu 20.04.5 LTS
CPU Intel(R) Xeon(R) Platinum 8358 CPU @ 2.60GHz
RAM 1.0 Ti; 3200 MT/S

GPU (number and type) Two NVIDIA A800 80G
CUDA version 11.8

Programming language Python 3.8.16
Deep learning framework torch 2.0.1, torchvision 0.15.2

Specific dependencies monai 1.2.0
Code https://github.com/lyupengju/Flare23

Throughout the entire experimental process, we implemented our code based
on PyTorch library¶ and MONAI framework‖. All models were trained on two
Nvidia A800 GPUs. To accelerate model training, the CacheDataset method in
the MONAI was utilized for data pre-loading. During the training phase, the
Adam optimizer was adopted with weight decay of1e−5 to minimize the most
widely used joint loss function, i.e., dice and cross entropy [7]. Initial learning
rate was set as 3e−4 scheduled by cosine annealing strategy. The number of
training epochs was up to 300 with batch size of 4. See Table 1, 2 for more
training and environment settings.

3.3 Training protocols

Leveraging the entire dataset comprising 4000 cases and one set of their cor-
responding organ pseudo labels from FLARE22 winning algorithm [12], we are
able to obtain our Phase_1 model by means of a label filtering technique, along

¶ http://pytorch.org/
‖ https://monai.io/
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Table 2. Training protocols.

Network initialization Random
Batch size 4

Patch size (Phase_2 model) 96× 96× 96

Resized size (Phase_1 model) 128× 128× 128

Total epochs 300
Optimizer AdamW

Initial learning(lr) 3e−4

Lr decay schedule Cosine annealing
Training time for each model 36 hours

Loss function Dice loss and Cross entropy loss
Number of model parameters (Phase_1 / Phase_2) 1.38 M / 35.84 M

Number of flops (Phase_1 / Phase_2) 1.56 G / 374.77 G

with a pre-trained Phase_2 model, the specific process is as depicted in Figure 5.
Similar to [12], we adopted self-training with pseudo labeling strategy to obtain
final Phase_2 model. Specially, we reassigned pseudo annotations in conjunction
with 2200 partial ground truth for the whole dataset to update the segmentation
model. This process facilitated the creation of a comprehensive dataset, complete
with fully annotated organs and tumors. The process of pseudo labeling was ex-
ecuted iteratively 3 times, thereby enabling the iterative enhancement of the
quality of pseudo annotations, which is pivotal in advancing the model’s perfor-
mance. In practice, we first split the renewed dateset into two folds, the updating
pseudo labels was then formed by ensembling two branch networks through soft
voting, which are later utilized to train our final Phase_2 model. We empirically
selected the model that tend to produce oversegmented results on pan-cancer,
which generally yield better Dice score on online validation leaderboard.

Fig. 5. Training pipeline.
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4 Results and discussion

We conducted comprehensive quantitative evaluation of our proposed model us-
ing standard segmentation and efficiency metrics. Regarding accuracy, we report
the Dice similarity coefficient (DSC) and normalized surface Dice (NSD) between
predicted and ground truth organ and lesion masks with DSC elucidating overall
overlap and NSD focusing on boundary alignment precision [32]. Efficiency-wise,
running time and the GPU memory consumption, are integral for assessing the
algorithm’s practicality and real-world applicability. The running time and GPU
memory consumption are considered within tolerances of 15 seconds and 4 GB,
respectively.

Table 3. Quantitative evaluation results in terms of DSC and NSD for organs and
tumor respectively.

Target Public Validation Online Validation Testing
DSC (%) NSD (%) DSC (%) NSD (%) DSC (%) NSD (%)

Liver 97.68 ± 0.54 99.28 ± 0.77 97.64 99.24 97.04 97.92
Right Kidney 95.90 ± 2.94 96.95 ± 4.27 94.86 95.95 95.54 95.42
Spleen 96.89 ± 1.57 98.46 ± 4.13 96.19 98.06 96.54 98.47
Pancreas 85.96 ± 7.20 96.67 ± 6.09 84.63 95.79 89.14 97.32
Aorta 94.17 ± 4.39 97.34 ± 5.82 94.72 98.08 95.35 99.31
Inferior vena cava 90.16 ± 5.63 92.93 ± 5.77 89.46 91.88 90.76 93.76
Right adrenal gland 83.66 ± 1.25 95.93 ± 1.39 83.97 96.58 83.67 96.24
Left adrenal gland 84.67 ± 5.47 96.73 ± 4.13 83.98 95.90 84.50 96.16
Gallbladder 88.28 ± 19.06 90.81 ± 20.10 88.92 91.09 84.84 88.15
Esophagus 80.78 ± 17.86 91.23 ± 17.34 82.04 92.84 87.86 97.25
Stomach 94.46 ± 3.09 97.75 ± 3.42 94.50 97.70 94.71 97.48
Duodenum 83.07 ± 8.72 94.74 ± 6.59 83.41 94.70 86.48 95.51
Left kidney 93.06 ± 14.38 94.05 ± 15.32 93.60 94.80 93.41 94.40
Organ Average 89.90 95.61 89.84 95.56 90.51 95.88
Tumor 54.25 ± 36.10 49.65 ± 33.51 50.26 45.31 53.04 44.47

4.1 Quantitative results

To validate the efficacy of the model, we present in Table 3 the details of 50
cases from the validation dataset, the online validation and the final testing
outcomes. Our model demonstrates strong performance on both organ and pan-
cancer segmentation from abdominal CTs. For the 13 organs on online validation,
we achieve competitive accuracy score with DSC ranging from 82.04% (Esoph-
agus) to 97.64% (liver), and NSD all over 90%, which highlight our model’s
ability to capture fine anatomical details. Specifically, our model in Phase_2
with only 35.84M parameters achieves considerable gains on average Dice over
prior arts spanning CNN-based V-Net (67.70M) [26], nnUNet (30.74M) [13], and
Transformer-based Swin UNETR (69.94M) [32], nnFormer (158.9M) [44] as well
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as their hybrid CoTr (41.93M) [39], as presented in Figure 6. This again validates
the benefits of synergistically combining SAM and MSA from both paradigms.

With regards to pan-cancer segmentation, although our approach attains a
relatively high average DSC of 50.26% across all lesion types, since the fact that
best model was selected based on its performance on the public 50 cases, the
divergence on tumor metrics between it and full validation set coupling with a
high standard variance (36.10%) indicates that model’s weak capacity of learn-
ing generalizable representations of pan-cancer. Our methodology distinguished
itself by securing a commendable 5th position in the final test set, quantified by
elevated mean Dice on both multi-organ (90.51%) and tumor (53.04%).

Fig. 6. Phase_2 models comparison with prior arts on online validation. The diameter
of the circular data points is proportional to the total number of parameters in each
respective model.

To analyze the impact of training set size, an ablation study was conducted
comparing validation performance between models trained on the full 4000 case
dataset versus the 2200 partially labeled cases alone. Despite nearly doubling
the training data through pseudo-labeling, the models seem not to learn novel
anatomical representations but rather fine-tuning of existing feature spaces, ex-
emplified by both DSC and NSD metrics on either scenario revealing negligible
differences regarding organs (0.1%) and tumor (0.5%), as shown in Figure 7,
which indicates that model’s learned features might not be universally applica-
ble, resulting in limited generalization to different cases, which in turn impacts
the overall effectiveness of pseudo labeling.
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Fig. 7. Performance comparison on online validation using 2200 partially labeled ex-
amples and 4000 fully labeled examples for training.

4.2 Qualitative results on validation set

We supplement our quantitative results with qualitative analysis to gain further
insights, as shown in Figure 8. Notably, the segmentation performance exhibits
variability across organs. In contrast to near perfect demonstration (Case #27),
our model generates fragmentary or inaccurate contours with smaller structures
like esophagus and duodenum (Case #69), echoed by their relatively lower Dice
scores on validation set. For pan-cancer, while some tumor instances (Case #35)
are effectively segmented, showcasing a robust alignment with ground truth an-
notations, others exhibit violent segmentation inconsistencies (Case #99). This
variance in tumor segmentation proficiency is indicative of the complexity in-
herent in cancer lesions, often characterized by diverse morphological traits and
inter-tumor heterogeneity. Column (c) represents the segmentation result by
model trained only with partial-label 2200 cases demonstrating similar perfor-
mance with that of column (d) using all 4000 cases.

4.3 Segmentation efficiency results on online validation

Our two-phase cascaded network provides major speed and memory benefits.
Table 4 provides the efficiency for certain examples from the validation dataset.
For the majority of test cases, our proposed method can complete the inference
process requiring extra seconds (8 in average) than the prescribed time budget of
15 seconds, while maintaining GPU memory consumption well under the allotted
4GB limit. Moreover, running time appears to exhibit a positive correlation
with input image size owing to the serial scanning nature of the sliding window,
traversing spatially across the input, consequently inflicting a computational
burden that scales directly with image area, as evidenced by the near 31 second
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Fig. 8. Qualitative evaluation on four cases from validation set.

run time for the largest case 0029 scan, resulting in greater cumulative GPU
utilization.

4.4 Limitation and future work

While our method shows promise for multi-organ and tumor segmentation,
enabling clinical utilization through efficient computation and memory usage.
These validation results highlight areas for continued future refinement, espe-
cially enhancing delineation of tiny organs and handling greater tumor hetero-
geneity. For that, tumor synthesis technique [10] could be employed to artificially
generate additional lesion examples. This data augmentation approach may fa-
cilitate greater robustness in the segmentation model, allowing it to generalize
more effectively to the heterogeneity inherent in pathological anatomy. Since our
pseudo labeling approach is mostly off-line making impossible real time updating,
we should further explore online semi-supervised method as well as mechanisms
to enhance the fidelity and reliability of generated pseudo labels such as applying
confidence thresholding, and detecting out-of-distribution pseudo labels [21].

5 Conclusion

In the pursuit of advancing the state of the art in multi-organ and pan-cancer
image segmentation, we have made significant strides in this realm by our par-
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Table 4. Quantitative evaluation of segmentation efficiency in terms of the run- ning
time and GPU memory consumption. Total GPU denotes the area under GPU Memory-
Time curve. Evaluation GPU platform: NVIDIA QUADRO RTX5000 (16GB).

Case ID Image Size Running Time (s) Max GPU (MB) Total GPU (MB)
0001 (512, 512, 55) 15.17 2020 17200
0051 (512, 512, 100) 16.73 2020 22141
0017 (512, 512, 150) 17.84 2020 23832
0019 (512, 512, 215) 18.01 2020 23875
0099 (512, 512, 334) 20.61 2020 27427
0063 (512, 512, 448) 24.40 2020 32647
0048 (512, 512, 499) 25.36 2020 33937
0029 (512, 512, 554) 30.87 2020 43991

ticipation in the MICCAI FLARE23 challenge through the development and ap-
plication of a two-phase cascade framework. Phase_1 model built upon partial
convolution enjoys computational efficiency while yielding credible segmented
ROI. The harmonious fusion of scale-aware and self-attentive modulation forms
the foundation of our Phase_2 model backbone, enabling enhanced segmenta-
tion accuracy. Through meticulous model selection, tuning, and optimization,
our algorithm has shown promising overall results with reference to precision
and efficiency metrics on the online validation and test datasets, substantiating
its efficacy in target segmentation. We believe our approach holds the promise
of enhancing clinical practices and contributing to the broader scientific under-
standing of complex medical image analysis in abdominal oncology.
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