
IEEE SENSORS JOURNAL 1

Soft Biomimetic Optical Tactile Sensing
with the TacTip: A Review

Nathan F. Lepora

TacTip

Soft Biomimetic

Optical

BioTac [18]

GelSight [4]

Gelforce
[23]

flexible printed 
e-skins [11]

biomimetic     
e-skin 

[19]
soft 

e-skins
[12]

iCub fingertips
& skin [13]

Abstract— Reproducing the capabilities of the human sense of
touch in machines is an important step in enabling robot manipula-
tion to have the ease of human dexterity. A combination of robotic
technologies will be needed, including soft robotics, biomimetics
and the high-resolution sensing offered by optical tactile sensors.
This combination is considered here as a SoftBOT (Soft Biomimetic
Optical Tactile) sensor. This article reviews the BRL TacTip as a
prototypical example of such a sensor. Topics include the relation
between artificial skin morphology and the transduction principles
of human touch, the nature and benefits of tactile shear sensing,
3D printing for fabrication and integration into robot hands, the
application of AI to tactile perception and control, and the recent
step-change in capabilities due to deep learning. This review con-
solidates those advances from the past decade to indicate a path
for robots to reach human-like dexterity.

Index Terms— Force and tactile sensing, haptics, manipulation, robot dexterity, TacTip sensor

I. INTRODUCTION

As humans, we take our sense of touch for granted as
we mostly use it in a subconscious way. Visual and auditory
events grab our attention [1] while our tactile sense continues
unabated during everyday manual tasks and chores. However,
touch is arguably the sense that most differentiates humans
from other animals because the dexterous use of our hands re-
lies on the intelligent use of tactile perception. With our hands
we have invented technology, the hallmark of our species,
spanning from the archaeological record of archaic hominids
to the modern era of advanced devices such as robots.

Reproducing the capabilities of the human tactile sense in
machines is an important step in enabling robotic hands to
reach the dexterity of the human hand. As argued compellingly
by historian Yuval Noah Harrari in his book “Home Deus:
A Brief History of Tomorrow”, robot dexterity will have
a profound impact on human society as machines become
commonplace for physical labour [2]. This revolution in robot
dexterity is beginning in the logistics industry, but promises
broader impacts in manufacturing, health, construction, food
production, recycling, conservation and renewable energy.

A range of robotic technologies will be needed to reach
human-like dexterity in machines. Soft robotics is needed for
safe devices that adapt according to the intelligence embodied
in their materials and design. Biomimetics provides the only
known example of a general-purpose manipulation device: the
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human hand and our manual intelligence to use it effectively.
Intelligent interaction requires a rich source of contact infor-
mation, as offered by high-resolution optical tactile sensors
such as the MIT GelSight [3], [4] and BRL TacTip [5], [6] with
deep learning methods such as convolutional neural networks.

Here, this combination of technologies is termed Soft-
BOT sensing, for Soft Biomimetic Optical Tactile Sensing,
encompassing SoftBOT sensors, hands and robotic systems.
The BRL TacTip uniquely combines all of these features as
a prototypical example of a SoftBOT sensor, and for this
reason has led to a large body of research on robot dexterity.
Therefore, this article reviews tactile sensing with the TacTip
to consolidate the advances with this technology over the past
decade and so indicate a path to human-like robot dexterity.

II. SOFT, BIOMIMETIC AND OPTICAL TACTILE SENSING

To motivate this article, we define the terms ‘soft’,
‘biomimetic’ and ‘optical’ in the context of tactile sensing,
bearing in mind that a tactile sensor is a device that transduces
deformation of a sensing surface into a signal containing
information about the physical contact. As emphasised in
past surveys [7]–[10], this information can be used to infer
properties of the contacting object and its interaction with the
tactile sensor.

Soft tactile sensors rely on soft materials to elicit infor-
mation from physical contact. While all tactile sensors use a
deformable surface to sense, they range in material construc-
tion from flexible printed e-skins [11] to sensitive materials
embedded within elastomeric substrates [12] to compliant
layers over electronic circuits that measure compression [13].
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Softness can have many benefits in the design and function
of tactile sensors. For example, it is important that e-skins are
flexible so they can conform their sensing surface to 3D objects
and cover large areas of hard or soft actuated robots [14].

Soft biomimetic tactile sensors are soft tactile sensors based
on principles distilled from the study of biological sys-
tems [15], [16]. There is a distinction between ‘blind copying’,
such as merely shaping a tactile sensor like a human fingertip,
and true biomimicry, such as transferring the transduction
principles of human skin into the design of an artificial sensor.
Soft robots are often inspired by soft-bodied animals [17], so
it is expected that biomimetic tactile sensors are usually soft.
There are, however, many ways in which biological principles
can motivate soft designs. One example is the inspiration for
the Syntouch BioTac [18] from the multi-modality of human
touch to pressure, vibration and temperature. Another example
is a biomimetic e-skin that measures local shear and normal
forces by reproducing the hill-like structure of the dermal-
epidermal boundary in human skin [19].

Soft optical tactile sensors are soft tactile sensors that use
light to view the deformation. Optical tactile sensors are often
soft because they rely on viewing physical changes to the
sensing surface, usually from inside the sensor with an internal
light source. Optical touch sensing dates back to the mid-
1960s [20], with the earliest example relaying the view of a
photoelastic skin via optic fibres to a TV camera whose signal
was viewed remotely to teleoperate a robotic gripper [21].

For soft camera-based tactile sensors, there are many pro-
posals for imaging surface deformation, with categories in-
cluding [20], [22]: (i) soft marker-based optical tactile sensors
that typically measure the (lateral) shear deformation of the
sensing surface, such as the GelForce (2004) with its markers
embedded in a supporting gel [23], [24]; and (ii) soft reflection-
based optical tactile sensors that typically measure the (nor-
mal) indentation of the sensing surface, such as the GelSight
(2009) which uses the surface shading from multiple internal
light sources to infer a depth map via photometric stereo [3].
Combinations are also considered, such as by printing markers
on the GelSight skin [25] and by mixing coloured markers to
indicate depth [26]. Recently, this area of research has been
boosted by the remarkable advances in image processing using
convolutional neural networks [27], which has led to many
refinements of these designs [28]–[32].

Soft biomimetic optical tactile sensors combine optical
imaging with biological principles underlying the sense of
touch in animals. A technology that offers both optical and
biomimetic tactile sensing is the BRL TacTip (centre of figure
in graphical abstract), proposed in 2009 as ‘a tactile sensor
based on biologically-inspired edge encoding’ [5]. This article
will review the biomimetic and optical principles of the TacTip
as a prototypical example of a SoftBOT sensor.

III. SOFT BIOMIMETIC OPTICAL TACTILE SENSING:
THE TACTIP

The TacTip is a soft biomimetic optical tactile sensor that
mimics the structure and function of the human fingertip
(Figure 1). Human skin has an intricate morphology of layers,

microstructures and sensory receptors that underlie its many
functions, from protecting the body to sensing surface contact,
temperature and injury [33]–[35]. Like most other mammals,
our skin is of two general types: hairy over much of our
body and glabrous (hairless) on the sensitive underside of our
fingers and toes, palms, soles of our feet, external genitalia,
areolae, tongue, inner cheeks and lips.

The shallow layers of glabrous skin are structured to sense
touch via the deformation of its surface. These upper layers
comprise an outer epidermis over an inner papillar dermis,
which interdigitate in a mesh of dermal papillae and epidermal
intermediate ridges (Figures 1a,c). This 3D structure transmits
shear and normal deformation of the skin surface into the
displacement of sensory mechanoreceptors within the dermal-
epidermal interface. Thus, the dermal papillae and intermedi-
ate ridges are considered to act as a mechanical amplifier of
skin deformation into mechanoreceptor activity [46].

The TacTip design is based on the shallow layers of glabrous
skin [5], [6]. It has an outer biomimetic epidermis made from a
rubber-like material over a soft inner biomimetic dermis made
from an elastomer gel (Figures 1b,d). These two materials
interdigitate in a mesh of biomimetic intermediate ridges
and dermal papillae, comprising stiff inner nodular pins that
extend under the biomimetic epidermis into the soft gel. This
structure amplifies surface deformation of the skin into lateral
movement of visible markers on the pin tips.

In human skin, two types of sensory mechanoreceptor are
embedded within the dermal-epidermal interface: Merkel cells
on the intermediate ridges and Meissner corpuscles within
the dermal papillae (Figure 1c). Merkel cells respond to skin
deformation, activating slowly-adapting (SA) neurons that fire
during sustained contact, such as when perceiving shapes or
edges. Meissner corpuscles respond to skin movement, acti-
vating rapidly-adapting (RA) neurons that fire during changes
of contact, such as when perceiving surface slip and flutter.
These sensory receptors work together to convey information
about the tangible aspects of touch [47].

The biomimetic counterparts to these sensory mechanore-
ceptors are the markers on the pin tips, which can be imaged
through a transparent gel forming the dermis (Table I). The
marker displacements from rest are analogous to the SA
activity from the Merkel cells because they indicate sustained
deformation of the sensing surface [42] to enable accurate
shape and edge recognition [36], [48]. Likewise, the coun-
terpart of RA mechanoreceptor activity from the Meissner
corpuscles are the marker velocities, because these comprise
a transient signal that indicates skin motion. Accordingly, the
marker velocities enable accurate slip detection [37], [38].
Together, these two signals – the marker displacements and
velocities – give information about the sustained deformation
and transient motion of the sensing surface.

The deeper layers of glabrous skin also have biomimetic
counterparts in the TacTip design (Table I). Skin maintains its
compliance from the deep reticular dermis and subcutaneous
fat (Figure 1a), whose biomimetic counterpart is the deeper
elastomer gel held in place by a transparent acrylic cap. Within
the deep skin layers, a population of RA mechanoreceptors
called Pacinian corpuscles responds to high-frequency vibra-
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(a) Skin physiology (b) Biomimetic tactile sensor

(c) Skin transduction (d) Biomimetic transduction

Fig. 1. Biomimetics of the TacTip. (a) Diagram of the layered morphology of hairless skin; (b) Cut-through of the 3D-printed BRL TacTip (2018);
(c) Close-up of the interdigitation of dermis and epidermis, with sites of mechanoreceptors; (d) Close-up of a cut-through of the TacTip skin. The
morphology of the artifical skin is based on natural skin. (Credits: Wikipedia, ‘Skin Layers’, ‘Hegasy skin layers Receptors’, CC By-SA License.)

Neurophysiology Function Biomimetic counterpart
epidermal ridges & dermal papillae transmits & amplifies deformation of surface to mechanoreceptors pins & markers [5], [6]
reticular dermis & subcutaneous fat soft structure & compliance elastomer gel [5], [6]

SA-I mechanoreceptors (Merkel cells) sense sustained skin deformation; perception of shape & edges pin displacements [6], [36]
RA-I mechanoreceptors (Meissner corpuscles) sense transient skin movement; perception of flutter & surface slip pin velocities [37], [38]
RA-II mechanoreceptors (Pacinian corpuscles) vibration sensing; perception of surface texture under investigation [39], [40]

nociceptors (free nerve endings) noxious touch under investigation [40]
thermoceptors (free nerve endings) temperature difference sensing thermoactive skin [41]

overlapping sensitive receptive fields hyperacuity super-resolution [42]
epidermal ridges (fingerprint) friction & improved transduction; induces incipient slip 3D-printed fingerprint [38], [39], [43]

neural spiking efficient signal encoding event-based imaging [44], [45]

TABLE I
BIOMIMETICS OF THE TACTIP, MATCHING THE NEUROPHYSIOLOGY AND FUNCTION.

tion (peak sensitivity ∼250 Hz). A partial mimicry of their
function can be attained by using the TacTip with a high
frame-rate (kHz) camera [39], [40]; however, questions remain
about whether this approach to vibration sensing is effective
or even biomimetic, since it images fast pin movement rather
than vibration in the deeper gel. In our view, a biomimetic
counterpart of the vibration sense would be to embed a
pressure sensor in the gel of the TacTip, like the vibration
modality of the BioTac [18]. Other tactile sensing modalities
can also be included, such as temperature sensing by using a
thermoactive smart material for the outer TacTip skin, which
is imaged as a background to the markers [41].

A consequence of the biomimetic design of the TacTip
is that other properties of human perception emerge. An
important aspect of human tactile perception is hyperacuity:
a capacity to discriminate extended spatial features to a sub-
millimetre acuity that is finer than the millimetre-scale spacing

between mechanoreceptors [49]. The TacTip also exhibits
tactile hyperacuity, with a sub-millimetre capacity for spa-
tial discrimination that is finer than its millimetre-scale pin
spacing [42]. Fundamentally, the hyperacuity arises because
both the biological and artificial tactile senses are comprised
of arrays of overlapping, broad but sensitive receptive fields.
This structure enables spatial interpolation over neighbouring
receptors, which is analogous to a well-known technique in
optical imaging known as super-resolution [50].

Perhaps surprisingly, the role of the human fingerprint in
the sense of touch is still being investigated [51] after two
centuries of study. A 3D-printed fingerprint can be reproduced
in the TacTip as raised bumps [39], [43] or concentric raised
rings over the papillae [52]. Benefits of a biomimetic finger-
print include increased sensitivity to texture [39] and spatial
localisation [43]. A ringed biomimetic fingerprint can also
induce incipient slip [52], where a local region of skin slips
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in detectable way before the grip slips [37], [38].
Finally, another direction to take biomimetic optical tactile

sensing is to adopt neuromorphic transduction using trains
of ‘spike’ events [53], [54]. Biological nervous systems use
event-based signalling to represent sensory information in
an efficient and temporally-precise way, which neuromorphic
engineering aims to reproduce artificially [55]. A benefit of
optical tactile sensing with the TacTip is that an event-based
camera can be used to implement a transduction mechanism
that has both a biomimetic skin design and is neuromorphic
from the camera [44], [45]. Overall, neuromorphic computa-
tion offers a new paradigm for robot touch that complements
the capabilities of soft biomimetic optical tactile sensors.

IV. TACTILE SHEAR SENSING

A. Tactile sensing of normal strain and shear strain
A central aspect of tactile sensing with the TacTip is that it

measures contact via shear. Skin indentation tilts and moves
the nodular pins, causing lateral displacements of markers on
the pin tips (Figure 2b, right). The biomimetic structure of stiff
nodular pins interdigitating with a soft elastomeric gel causes
mechanical transduction of normal-strain on the skin surface
into a measurable shear-strain underneath the skin.

This design also makes the TacTip highly sensitive to shear-
strain of the skin surface. The two sources of skin movement,
normal and shear strain, produce distinct patterns of marker
displacement. Sliding or slip gives a more uniform shear-
strain field, whereas normal indentation can produce charac-
teristic dipole or multipole patterns (Figure 2a). In practise,
both normal- and shear-strain are usually present, which can
introduce subtleties when inferring contact shape information
from the TacTip, as discussed later.

Therefore, the TacTip operates in a distinct manner from
the common types of taxel-based artificial tactile sensors that
measure normal strain, such as the BioTac [18] and the iCub
fingertip [13]. The TacTip is also distinct from other designs of
optical tactile sensor. Reflection-based optical tactile sensors
such as the GelSight [3] reconstruct normal strain directly from
light shading. Some optical tactile sensors also use markers
coated underneath the skin [56] (including recent GelSight
versions [25]), but those measure just the shear strain of the
skin conforming to a surface. In contrast, the TacTip markers
inform about both the normal and shear strain due to contact.

Several optical tactile sensors use markers floating in the
elastomer underneath the outer skin, such as the GelForce [23],
[24] and ChromaTouch [26]. These tactile sensors differ from
the TacTip by not having stiff nodular pins connecting the
deformation of the skin surface to the markers, but instead
rely on the forces transmitted through the soft elastomer. The
GelForce uses two layers of coloured spherical markers in a
transparent elastomer to infer force vectors within the gel [23],
[24], and the ChromaTouch uses two layers of partially-
transparent coloured markers whose movement and colour-
matching inform about the sensor deformation [26].

All these designs have their pros and cons as artificial tactile
sensors. The overall point to emphasise is that the TacTip
senses contact differently from other tactile sensors and uses
a biomimetic mechanism for this transduction.

B. The shear-sensing hypothesis
Platkiewicz, Lipson and Hayward have emphasised the

importance of internal shear strain for sensing external con-
tact [57] with their shear-sensing hypothesis: ‘we propose that
shape-related tactile information is more suitably recovered
from shear strain than normal strain’.

Their reasoning is based on the contact mechanics of touch:
‘the pressure distribution at the surface of a tactile sensor
cannot be acquired directly and must be inferred from the
[strain] field induced by the touched object in the sensor
medium.’ In vision, it is well known that edge detection is
fundamental to processing shape, with the convolutions of
deep neural networks analogous to edge-detecting neurons in
visual cortex. For touch, there are two ways to detect edges:
indirectly from gradients of the normal-strain field or directly
from zero crossings (sign changes) of the internal shear-strain
field (Figure 2b). Zero crossings are a more robust measure of
shape from touch, because they are affected less by distortion
from the mechanics of skin and require no computation of
signal gradients [57], motivating the use of shear strain.

This reasoning can be grounded in a biomechanical model
of skin [57] that approximates the shear-strain field γ at depth
z and horizontal position x in a uniform elastomer (Young’s
modulus E) due to a pressure field p(x) at the surface:

γ(x, z) ≈ z

E/3

d

dx
pε(x, z), pε(x, z) = p(x) ∗φε(x, z), (1)

where pε(x, z) represents that the pressure field is mechani-
cally blurred by depth (modelled by convolving a Gaussian
φε(x) of width ε(z) that increases with depth). Overall, the
shear-strain field follows the gradient of the (blurred) pressure
profile and increases linearly with depth from zero at the
surface – i.e. it has mechanically calculated the signal gradient.

However, the skin of the TacTip is not a uniform elastic
material, but has an inner structure of stiff nodular pins
interdigitating with soft elastomeric gel. Hence, this model (1)
is more suited to optical tactile sensors with floating markers
such as the GelForce and ChromaTouch [23], [24]

A biomechanical model of the TacTip and the dermal
papillae should be based instead on the levering of the nodular
pins caused by the normal skin indentation δ(x) due to surface
pressure. For a pin along the normal to the skin surface
(Figure 2b), its tip moves horizontally with shear strain:

γ(x, z) = z sin arctan

(
d

dx
δ(x)

)
≈ z

d

dx
δ(x), (2)

for pins of length z forming the hypotenuse of a right-angled
triangle with shear strain γ along the (horizontal) adjacent side.
The gradient d

dxδ(x) is tangential to the skin surface and
normal to the pins. The shear-strain field is linear in the surface
gradient when the small angle approximation d

dxδ(x) � 1
holds; i.e. it also mechanically calculates the signal gradient.

It is interesting that these two biomechanical models lead to
very similar equations: in both, the shear-strain field γ(x, z)
is proportional to depth z and the gradient of a quantity
(pressure or indentation) at the skin surface. Both models
amplify the transduction with depth z, but the pin structure is
beneficial in not being mechanically blurred ε(z) compared to
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(a) Single tactile image processed into shear-strain field (coloured by strain)
Tactile image & setup x-shears y-shears Shear magnitude Voronoi areas

(b) Biomimetic signal transduction
Skin indentation Levering of pins Indentation and shear strain

pin length,

shear-strain,

skin gradient 

(c) Time series of tactile images processed into shear strains (coloured by marker)
Sensor position x-shear strains y-shear strains Shear-strains Voronoi areas

Sensor velocity x-shear-velocities y-shear-velocities Shear-velocities Voronoi area changes

Fig. 2. Shape sensing with the BRL TacTip. (a) Processing of a tactile image of an edge contact (left) into 2D (x, y)-shear strains, from which shear
magnitude and Voronoi area change are extracted (red/blue shows positive/negative change; scale in panel b). (b) Biomimetic signal transduction
of skin indentation into marker displacement as a shear-strain field. (c) Time series of quantities in panel a and their derivatives for a contact onto
then off an edged stimulus (colour labels marker). This biomimetic representation using shear-strain is highly informative about the contact.
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the elastomer. Also, the shear strain from the stiff pins should
be larger than that of an elastic medium.

Overall, the reasoning behind the shear-sensing hypoth-
esis appears consistent with both the uniform elastomeric
model considered originally (Equation 1) and the pin model
introduced here for the TacTip (Equation 2). The TacTip
is unique amongst related tactile sensors by sensing touch
purely from shear via a mechanism of stiff pins to transduce
skin indentation into shear strain. Therefore, the shear-sensing
hypothesis appears to encapsulate the operation of the TacTip
as an embodiment of the theory.

V. PERIOD I (2009-2014): INITIAL DEVELOPMENT OF
THE TACTIP

Most of the research and development into soft biomimetic
optical tactile sensing has been within the Bristol Robotics
Laboratory (BRL) in the U.K. However, the focus has moved
from soft to medical to tactile robotics, leading to renewal of
the underlying technology and research direction. Meanwhile,
the field of tactile robotics has risen in prominence since the
TacTip was introduced in 2009 as the aim of the field to enable
artificial manipulation has become closer to reality. Recently,
the revolution in deep learning [27] has raised the prominence
of optical tactile sensors because of their compatibility with
convolutional neural networks, promising an entirely new level
of robot performance approaching human dexterity.

The first period of development (2009-2014) encompassed
the original design for an optical tactile sensor based on
biologically-inspired encoding [5], [58]. The name TACTIP
was coined [39], [59] as a contraction of ‘tactile fingertip’ after
an EU-funded project that supported some of the research. The
name has stuck but is now written TacTip similarly to other
well-known tactile sensors (e.g. BioTac or GelSight).

The inspiration for the TacTip was the tactile contact
lens [60], [61] that was developed in a Toyota-funded research
laboratory to help humans feel manufacturing defects in au-
tomobile production. The tactile contact lens magnifies the
feeling of surface deformation via a slippery flexible base-
plate attached to an array of rigid pins held against a human
fingertip (Figure 3). As the base slides over a small bump or
crack, the pins act as levers to amplify the normal indentation
in the base into a shear strain that a human can feel [62].
Overall, the tactile contact lens magnifies imperceptible sur-
face features into larger shear displacements by about a factor
of four, so the contact feature can be discriminated more easily.

The TacTip uses this same mechanical principle to magnify
indentations on a flexible outer skin into lateral movement of
markers on the pin tips [5]. Both the TacTip and tactile contact
lens are biomimetic, because this mechanism for magnifying
surface contact into shear strain seems to have evolved in
human tactile skin [46]: the human sense of touch relies on
the mechanical structure of dermal papillae and epidermal
intermediate ridges, as explained in Section III.

A central question when using any soft optical tactile
sensor is how to interpret the tactile image from the camera
to infer aspects of the skin deformation (Figure 2). Initial
studies with the TacTip processed the images into velocity

(a) Mechanics of the Tactile Contact Lens

(b) Mechanics of the Human Fingertip and TacTip

Fig. 3. Analogous operation of the Tactile Contact Lens and TacTip.
Both devices magnify and transduce surface indentation into shear
strain, using the levering of an array of pins.

vector fields of marker motion, taking inspiration from the
Meissner corpuscles embedded in the dermal papillae which
are motion sensitive [5], [58]. Surface edge features such as
the contours of a coin were clearly visible in the marker
velocity field, motivating the initial research on biologically-
inspired edge encoding. Other early work used image filtering
(dilation/erosion) to transform a tactile image into a visualisa-
tion of marker density showing the orientation of a contacted
edge [63], [64]. Other simple methods to infer contact features
were also explored, such as binning the tactile image into
a discrete array, which was applied to lump detection and
localization in medical haptics [65]–[67].

Refinements of the original TacTip design were considered
for an EU-funded project that sought to address the need for
tactile robot manipulators and probes for industrial and health-
care applications. The tactile tip was miniaturized to a 20 mm-
diameter dome (from 40 mm) for integration as a fingertip of
an anthropomorphic robot hand [59] and a high frame rate
camera used to investigate texture perception [39]; however,
in both cases the camera was separate rather than integrated
into the design. These early studies laid the foundation for
later advances that used 3D printing to improve the TacTip.

VI. PERIOD II (2015-): THE TACTIP FAMILY

The second period of the TacTip development (2015-
present) introduced some common approaches that allowed
research on soft biomimetic optical tactile sensing at BRL
to build into a coherent body of work. Multi-material 3D
printing was adopted for fabrication alongside modular design
principles [6], which encouraged diversification into a family
of tactile sensors, hands and robotic systems (Figure 4). A
common method based on tracking the markers was used for
tactile image processing [36], [42], so the data could be treated
as multi-dimensional time series for application of standard
machine learning methods. These developments enabled the
TacTip to be integrated into complete robotic systems that
perceive, explore and manipulate their environments.

A. 3D-printed TacTip and integration into robot hands
The adoption of multi-material 3D printing for TacTip

manufacture [6] was key to developing a family of rapidly-
prototyped tactile probes, grippers and manipulators (Fig-
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Sensor Year Design Camera

TACTIP [5] 2009 cylindrical body (40 mm-dia. spacer)
molded hemispherical soft tip (40 mm dia., 532 pins) LifeCam VX webcam, 480p 30fps, f≈50 mm

Mini TACTIP [59] 2012 rigid 3DP mount on digit of Elumotion robotic hand
molded hemispherical soft tip (20 mm dia., 276 pins) Not integrated

Open TacTip [68] 2016 rigid 3DP body (161 mm) modified for modular tip
molded hemispherical soft tip (40 mm dia., 532 pins) LifeCam Cinema webcam, 720p 30fps, f≈50 mm

TacTip [6] 2016 rigid 3DP body (85 mm) and modular tip
hemispherical 3DP soft tip (40 mm dia., 127 pins) LifeCam Cinema board (disassembled camera)

TacTip-M2 [69] 2016 integrated as digit of 3DP M2 gripper
rectangular 3DP soft finger (32×102×44 mm; 80 pins) LifeCam Cinema board

TacCylinder [70] 2017 3DP body and soft skin
cylinder (63 mm dia., 82 mm length, 180 pins) Catadioptric 360◦ lens; LifeCam Cinema HD

TacTip-GR2 [71] 2017 integrated as 2 fingertips of 3DP GR2 gripper
3DP fingertip (40 mm dia.× 44 mm depth, 127 pins) Raspberry Pi Spycam, Fisheye lens, f≈20 mm

TacTip-FP1 [43] 2017 modified tip with ‘fingerprint’ (raised bumps)
hemispherical 3DP soft tip (40 mm dia., 127 pins) LifeCam Cinema board

TacTip-SYM [72] 2017 modified tip with 12-fold rotational symmetry
hemispherical 3DP soft tip (40 mm dia., 49 pins) LifeCam Cinema board

TacTip-DM [40] 2018 customized TacTip for optical flow sensor
small hemispherical 3DP soft tip (28 mm; 19-61 pins) ADNS-3080 dual mode, 30×30 pix 3fps / 6.4 kHz

MultiTip [41] 2018 modified tip moulded from thermoactive material
body similar to 2009 TACTIP (40 mm dia., 127 pins) LifeCam VX webcam, 480p 30fps, f≈50 mm

TacWhisker [73] 2018 modified tip with 19 3DP whiskers fitting into pins
also a tendon-actuated version with 2×5 whiskers LifeCam Cinema board

TacTip [37] 2018 same as 2016 version ELP camera module, 1080p 30fps - 360p 120fps

TacTip-SMG [74] 2019 integrated as 3 fingertips of Shadow Modular Grasper
custom 3DP soft fingertips (∼40×40×44 mm, 100 pins) ELP camera module; wide angle lens f≈20 mm

TacTip-Mini [75] 2020 modified tip with small area and high pin density
small domed 3DP soft tip (25 mm dia., 331 pins) ELP camera module

TacTip-FP2 [38] 2020 modified tip with fingerprint to induce incipient slip
ridged 3DP soft tip (40 mm dia., 44 pins) ELP camera module

TacFoot [76] 2020 integrated as foot of Lynxmotion SQ3U quadruped
small hemispherical 3DP soft tip (28 mm; 37 pins) Hydream USB endoscope, 480p 30fps f≈40 mm

NeuroTac [44] 2020 neuromorphic TacTip with event-based output
hemispherical 3DP soft tip (40 mm dia, 61 pins) Inivation DVS240, 240×120pix 12Mevents/s

NeuroTac-SoftH [45]2020 integrated as fingertip of Pisa/IIT SoftHand
small 3DP soft fingertip (20×25×30 mm; 38 pins) Inivation mini-eDVS, 128×128pix 0.6Mevents/s

TacTip-O [52] 2020 integrated as 3 fingertips of 3DP Model-O hand
small 3DP soft fingertips (20×40×35 mm, 30 pins)

JeVois Vision module
1280×1024pix 15fps to 276×144pix 120fps

TacTip-SoftH [32] 2021 integrated as fingertip of Pisa/IIT SoftHand
small 3DP soft fingertip (12×19×17 mm; 35 pins) Misumi Model SYD, 1080p 60fps f≈10 mm

TacTip 2021 rigid 3DP body (45 mm) and modular tip
hemispherical 3DP soft tip (40 mm dia., 330 pins) ELP camera module; wide angle lens f≈10 mm

TABLE II
TACTIP FAMILY OF SOFT BIOMIMETIC OPTICAL TACTILE SENSORS. KEY: 3D-PRINTED (3DP), 640×480 PIX (480P), 1280×720 PIX (720P),

1920×1080 PIX (1080P), FRAMES PER SECOND (FPS), FOCAL LENGTH (f ). LIFECAM CCD WEBCAMS BY MICROSOFT, ELP (AILIPU

TECHNOLOGY) USB CMOS CAMERA MODULES, DYNAMIC VISION SENSORS (DVS) ARE EVENT-BASED CAMERAS.

Hand DoA Fingers Examined capabilities
Tactile Model M2 (T-M2) 1 2 (1 tactile) precise rolling manipulation [6], [69]

Tactile Model GR2 (T-GR2) 2 2 tactile precise rolling manipulation [6], [71]

Tactile Model O (T-MO) 4 3 tactile retains grasping capabilities; tactile object recognition; grasp success prediction [52]
slip detection & correction; light grasping on first attempt [38]

Tactile Modular Grasper (T-MG) 9 3 tactile manipulation to desired grasp [74]

Tactile SoftHand (T-SoftH) 1 5 (1 tactile) sensorimotor control of touch [32]
tactile object recognition; grasp perturbation recognition [45]

TABLE III
INTEGRATION OF THE TACTIP INTO ROBOT HANDS VARYING IN DEGREES OF ACTUATION (DOA) AND NUMBERS OF FINGERTIPS.

ure 4). The soft biomimetic optical tactile sensor was re-
designed (2016/2018 TacTip; Table II) to have a compact
modular base housing the circuit board from a web-camera;
likewise, the tip was 3D-printed in one piece combining
a flexible skin joined to papillae tipped with rigid white
markers [6]. This redesigned TacTip became the standard
device used in BRL for tactile sensing research. The 3D-
printed skin is robust to laboratory testing, with the tip only
needing replacing after human error in operating industrial
robot arms (even then, small tears have been repaired).

3D-printing also enabled the sensor to be customised for
diverse applications, from creating a tactile sensing foot for
walking robots [76] to mimicking rodent tactile whiskers [73]

(Figure 4, bottom row). A more biomimetic version of the
TacTip skin with raised bumps over the pins (like a fingerprint)
and increased dermal-epidermal stiffness contrast (rigid cores
to the pins) improved the spatial acuity of the tactile sen-
sor [43]. Further progression to a ringed biomimetic fingerprint
helped induce and detect incipient slip, by encouraging the
outer contact region to move before global slip occurs, giving
sufficient time to react before losing the grasp [78].

These advances in soft tactile sensors complement the
rapid progress in 3D-printed robot hands, examplified by
the Yale OpenHand Project: a library of low-cost 3D-printed
underactuated hand designs [79]. These tendon-driven, 2-4
fingered compliant hands have an underactuated adaptability
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SoftBOT Sensors: Soft Biomimetic Optical Tactile Sensors

SoftBOT Hands: Soft Biomimetic Optical Tactile Hands

SoftBOT Systems: Soft Biomimetic Optical Tactile Systems

Fig. 4. SoftBOTS from the TacTip family. SoftBOT sensors (top row): original 2009 TACTIP [5], 3D-printed TacTip [6], TacTip-GR2 [71], TacTip-
M2 [69], TacCylinder [70], TacTip-O [52], TacTip-SoftHand [32], TacFoot [76] and TacWhisker [73]. SoftBOT hands (middle row): tactile Model-
M2 [69], tactile Model-GR2 [71], tactile Model-O [52], tactile Shadow Modular Grasper [74] and tactile SoftHand [32]. SoftBOT systems (bottom
row): 3D-printed TacTip on ABB robot arm for tactile servo control [48], [77], TacTip on UR5 arm for reinforcement learning [75], TacFoot on walking
robot [76], tactile Model-O on UR5 robot arm for grasping and slip detection [38], [52] and tacWhisker mounted on ABB robot arm [73].

that passively conforms their grasping to a wide range of
object geometries using only open-loop control. The most
well-known is the 3-fingered Model O, based on the iHY
(iRobot-Harvard-Yale) Hand [80] from the DARPA Robotic
Manipulation-Hardware (ARM-H) program, which has been
commercialised as the Reflex Hand (RightHand robotics). The
hand combines an underlying capability for underactuated
grasping [81] with sufficient degrees-of-actuation for the ma-
nipulation tasks set by the ARM-H program [80] (5 for the
iHY Hand, reduced to 4 for the Model O).

Integration of the TacTip with the OpenHands (Table III)
began with the Model M2 [82], a relatively simple gripper
with just one movable finger and a large immobile thumb that
was replaced with the TacTip-M2 [69]: an elongated tactile

sensor with a rectangular sensing surface (Figure 4; middle
row). Next, the two-fingered GR2 gripper [83] was integrated
[71], replacing each fingertip with the TacTip-GR2: a compact
version of the TacTip body using a fisheye lens and small
camera with a standard-sized tip. Recently, the OpenHand
tactile integration has culminated with the Tactile Model O
(T-MO) [52]: the three fingertips were each replaced with a
miniaturized TacTip, offering a low-cost 3D-printed dexterous
robot hand with multipurpose soft optical tactile sensing.

A key question when considering the integration of tactile
sensing into robotic systems is: what new capabilities are given
by the sense of touch? For the 2-fingered tactile OpenHands
(T-M2 and T-GR2), the integrated tactile sense enabled precise
in-hand manipulation for unknown held objects [69], [71]. The
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fingers could roll an object to a desired location or along a
trajectory over the tactile fingertip to millimetre accuracy [6].
The 3-fingered T-MO’s capabilities are based around the
hand’s high capability at grasping. Applying supervised deep
learning to the tactile images of grasped objects gave accurate
object classification (93%, 26 objects) and grasp success
prediction for lifting (95%, same objects) [52]. Furthermore,
the application of slip-detection methods enabled the hand
to quickly re-grasp slipping objects (11 objects; 6 novel, 1
compliant) before being dropped [38] (see Section VI-B). The
tactile hand could also prevent an object being dropped when
weight was added, e.g. rice poured into a held tube, and lift
an object on the first attempt with minimal grasp force [38].

Two other state-of-the-art hands have also been integrated
with TacTips (Table III): the Shadow Smart Modular Grasper
and the Pisa/IIT SoftHand. The Smart Modular Grasper is a
fully-actuated dexterous 3-fingered hand that was combined
with a compact TacTip using a wide-angle camera lens and
customized body and tip from the 2018 TacTip, which has
been applied to stabilizing grasps by controlling the fingertip
contacts [74], [84]. The SoftHand is an underactuated an-
thropomorphic robot hand designed around the principle of
adaptive synergies from human hand movements [85]. This 5-
fingered hand has been integrated with a miniaturized TacTip-
SoftH of similar size to a human fingertip [32], a key milestone
in this family of tactile hands (Figure 4; middle-row). A
slightly-larger TacTip with an event-based camera (NeuroTac)
has also been integrated [44]. Both versions of the tactile
SoftHand open new possibilities for the sensorimotor control
of anthropomorphic robot hands with biomimetic touch.

B. Progress in tactile capabilities
The purpose of an artificial sense of touch is to impart

new dexterous capabilities to robotic systems that physically
interact with their surroundings. These capabilities are built
on sensorimotor perception and control: perception to process
the tactile sensations for inferring states of the environment
relative to the sensor, such as the location or shape of an
object feature; and control to change that state, such as to
slide a fingertip delicately over a feature or manipulate an
object in a desired manner. A range of tactile perception and
control methods have been developed for the TacTip family of
soft biomimetic optical tactile sensors and hands (Table IV).

Over the period 2015-19, most of the methods used time
series of marker deflections from rest, as they gave an efficient
representation of the tactile image that has a biomimetic ana-
logue with mechanoreceptor activity [6], [36], [42], [43] (see
Section III). The pin displacements are also easily visualised
to help interpret the tactile sensing (Figure 2).

Over the same period, a perception method based on a
histogram likelihood model over the marker displacements
was used [42]. For control, the position of an object feature
was predicted, such as a cylinder position or edge orienta-
tion [36], then applied to rolling manipulation [69], [71], [89]
or tapping around 2D contours [40], [48], [72]. However, those
methods did not extend well from discrete to continuous and
dynamic environments. Consequently, techniques interpolating
over continuously-labelled data were tried, such as Gaussian

process regression to control sliding motion around 2D con-
tours [91], [92] and polynomial regression to smoothly control
a multi-fingered grasp [74]. The large amount of training data
can be an issue in some circumstances, and so online learning
using Gaussian Process latent variable models has also been
explored [76], [95]. Methods for dynamic environments were
also developed, such as accurately detecting and correcting for
object slippage [37], [38], [78] using a support-vector machine.

The progress in machine learning methods has steadily im-
proved the TacTip accuracy. Initial performance of ∼1 mm for
1D localization [36], [42], [48] or rolling manipulation [69],
[71], [89] has improved by an order-of-magnitude to 0.1-
0.5 mm [86]. Therefore, while the first results demonstrated
hyperacuity finer than the pin spacing [42], [50], the latest
results demonstrate sensitivity at the level of pixels on the
tactile image. Thus far, the best sensitivity with a TacTip has
been to detect .10 microns indentation from an ultrasound
haptic display, using signal averaging over the pin deflections
from multiple tactile measurements to reduce noise [94].

VII. PERIOD III (2019-): DEEP LEARNING WITH THE
TACTIP

Recently, the capabilities of the TacTip have undergone a
step-change with the adoption of deep learning over tactile im-
ages. This has enabled, for the first time, tactile interaction in
real time with complex objects in 3D (Figure 5). Prior to deep
learning, the capabilities were limited to basic demonstrations
such as rolling objects in 1D or exploring around flat shapes
in 2D (Table IV). The new dexterous capabilities are a step
closer to those we possess as humans.

The main benefit of deep learning is to predict quantities of
interest directly from the tactile images while being insensitive
to unknown variations that might otherwise interfere with the
predictions. Consequently, the most advanced robot dexterity
with the TacTip (Table IV) has mainly used convolutional
neural networks (ConvNets), following their earlier success
with optical tactile sensors based on the GelSight [96], [97]. In
principle, the marker deflections (Section VI-B) could be used
as a lower-dimensional input to a neural network, although
in practise it has been simpler to avoid the additional image
processing step by using the entire tactile image as input.

New tactile capabilities developed with the TacTip include:
(a) pose-based servo control, where a tactile fingertip mounted
on a robot arm slides delicately over unknown complex 3D
objects (Figure 5a; [77], [86], [87]); (b) pushing manipulation
of unknown objects using only tactile sensing and proprio-
ceptive knowledge of where the sensor is positioned relative
to a goal location (Figure 5b; [88]); (c) acquiring the novel
skill of single-fingered typing on a braille keyboard, learning
the identity of keys and how to navigate the keyboard from
touch (Figure 5c; [75]); (d) item recognition and grasp-success
prediction upon using the tactile sense of the three fingertips
of the Tactile Model-O (T-MO) hand (Figure 5d; [52]); (e) in-
hand manipulation of unknown objects to a stable grasp
configuration with a fully-actuated tactile Shadow Modular
Grasper (Figure 5e; [84]); (f) fine control of contact onto
unknown objects placed in-hand using an anthropomorphic
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(a) Pose-based Servo Control via (b) Goal-based pushing via (c) Tactile Deep RL:
Tactile Deep Learning [86], [87] tactile & proprioceptive feedback [88] Learning to type Braille [75]

(d) Object & grasp-success prediction (e) In-hand tactile manipulation for (f) Fine control of contact with
with an underactuated tactile hand [52] fully-actuated stable grasping [84] an anthropomorphic tactile hand [32]

Fig. 5. Capabilities of deep learning with the BRL TacTip. The top row (a-c) shows examples of using a single tactile sensor mounted on a robot
arm. The bottom row shows examples with tactile robot hands: (d) the Tactile Model O, (e) Tactile Modular Grasper and (f) the Pisa/IIT SoftHand.
For the diverse examples shown in this figure, the use of convolutional neural networks was critical for the tactile capability to be reached.

Capability Year Accuracy Robot Method
1D localization 2015 0.7 mm TacTip on ABB arm probabilistic classifier on pin displacements [36], [42]

Rolling manipulation 2016 ∼1 mm TacTip on ABB arm probabilistic classifier on pin displacements [89]
Gap measurement 2016 0.5 mm TacTip on ABB arm probabilistic classifier on pin displacements [90]

Rolling manipulation 2016 ∼1 mm Tactile Model M2 hand probabilistic classifier on pin displacements [69]
2D contour following (tapping) 2017 ∼1 mm, ∼10 deg TacTip on ABB arm probabilistic classifier on pin displacements [48]

Rolling manipulation 2017 ∼1 mm Tactile Model GR2 hand probabilistic classifier on pin displacements [71]
1D localization; curvature estimation 2017 0.1 mm; ∼1 mm TacTip-FP1 on ABB arm probabilistic classifier on pin displacements [43]

Slip detection 2018 >95% TacTip on UR5 arm SVM classifier on pin velocities [37]
2D contour following (sliding) 2019 ∼1 mm, ∼10 deg TacTip on ABB arm PCA & GP regressor on pin displacements [91], [92]
2D contour following (sliding) 2019 ∼1 mm, ∼10 deg TacTip on ABB arm ConvNet regressor on 128×128 tactile image [77]

Grasp control (centre of contact) 2019 ∼1 deg Tactile Modular Grasper polynomial regressor on pin displacements [74]
1D localization; Normal force 2019 ∼0.5 mm, ∼0.2 N TacTip on ABB arm ConvNet autoencoder on ]32×32 tactile image [93]

Object recognition
Grasp success prediction 2020 >95%

>90% Tactile Model O hand ConvNet classifier on 60×120 tactile image [52]

Slip detection 2020 >90% Tactile Model O hand SVM or logReg classifier on pin velocities [37]
Ultrasound detection 2020 .10 micron TacTip on ABB arm GP regressor on pin displacements [94]

3D surface localization
(depth, roll/pitch) 2020 0.1 mm

0.3 deg TacTip on ABB arm ConvNet regressor on 128×128 tactile image [86], [87]

3D edge localization
(horizontal, depth, roll/pitch, yaw) 2020 0.3 mm, 0.2 mm

1-2 deg, 4 deg TacTip on ABB arm ConvNet regressor on 128×128 tactile image [86], [87]

Grasp control (stable pinch) 2021 0.1 mm, 0.4 deg Tactile Modular Grasper servo control & ConvNet on 128×128 tactile image [84]
3D surface following (sliding)
3D contour following (sliding) 2021 0.1-0.5 mm

1-5 deg TacTip on ABB arm pose-based tactile servo control &
ConvNet on 128×128 tactile image [86], [87]

2D pushing (tapping motion) 2021 ∼1 mm TacTip on UR5 arm servo control & ConvNet on 128×128 tactile image [88]

TABLE IV
TACTIP CAPABILITIES IN ORDER OF DEVELOPMENT. KEY: SUPPORT VECTOR MACHINE (SVM), PRINCIPAL COMPONENT ANALYSIS (PCA),

GAUSSIAN PROCESS (GP), CONVOLUTIONAL NEURAL NETWORK (CONVNET), LOGISTIC REGRESSION (LOGREG). THE ABB ARM IS AN IRB120
6-DOF INDUSTRIAL ROBOT; THE UR5 ARM IS A UNIVERSAL ROBOTICS 6-DOF ARM. TACTILE HANDS ARE DESCRIBED IN TABLE III.
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tactile hand based on the Pisa/IIT SoftHand (Figure 5f; [32]).
Humans can do all these tasks with our sense of touch, which
deep learning has enabled tactile robots to likewise perform.

Why are ConvNets so useful when applied to tactile images
from a soft biomimetic optical tactile sensor? Considering all
the tasks in Figure 5, several reasons emerge:
(i) Ease of deployment – in all tasks, the trained neural network
was applied directly with only basic pre-processing steps such
as cropping, thresholding or concatenating tactile images. This
simplifies the algorithmic pipeline and leaves less room for
software or other issues to emerge.
(ii) Robustness – once trained, the predictions were relatively
unaffected by uncontrolled variations that could cause issues,
such as changes in ambient and internal lighting, wear of the
skin, visible dust inside the sensor, and even after damage such
as a (glued) tear in the TacTip skin after accidental crushing.
(iii) Ease of scalability – the methods seem to extend straight-
forwardly from simple test scenarios to more complex realistic
situations; for example, 2D servo control using a ConvNet with
two pose variables extended relatively easily to 3D control
with more pose variables [77], [86].
(iv) Generalization – the predictions seemed to be accurate
even after large variations in the stimulus or task conditions;
for example, ConvNets trained on simple stimuli, such as
the pose of a planar surface or straight edge, maintained
predictive performance on curved complex stimuli, enabling
novel objects to be explored or manipulated [87], [88].

Going forward, a key question for deep learning with optical
tactile sensing will be on the appropriate learning algorithm
to acquire tactile skills. All but one of the tasks in Figure 5
trained the neural network model with supervised learning.
However, a complementary approach is to use tactile deep
reinforcement learning (RL) with a reward signal that indicates
the desired interactions with a physical environment. The third
task (Figure 5d) successfully applied this approach to learning
to type with a braille keyboard [75], leading after many hours
of training to a policy network that could efficiently navigate
the keyboard to press a desired key. In principle, all other
tasks could also be learnt using deep RL, but the long training
times are impractical on physical robots. Thus, our expectation
is that most of the learning should be within a simulated tactile
environment [98]. This expectation has just been confirmed on
several of these tasks using the BRL TacTip [99].

VIII. CONCLUSION

There are fundamental problems to be addressed in intelli-
gent robotic interaction with complex environments that once
solved will open up many application areas across engineering
and robotics. One key problem is that there is a huge gap be-
tween what is achievable in research laboratories investigating
robot manipulation and what is known about human dexterity
and our sense of touch. Research on the TacTip aims to bridge
that gap as an example of a SoftBOT sensor, combining Soft,
Biomimetic, Optical and Tactile sensing.

SoftBOT sensors offer the opportunity to artificially recreate
key aspects of the human sense of touch and our manual
intelligence. This aim has two interconnected goals: (1) to

advance knowledge of how our sense of touch leads to haptic
intelligence from embodying those capabilities in robots; and
(2) to improve the intelligent dexterity of robots with accessi-
ble robot hardware and software. Reaching human-like levels
of dexterity has been the vision for industrial robotics since
its roots in the 1950s, and is captured in the earlier origins
of ‘robot’ from the Czech word robota for forced labour.
Likewise, using biomimetic touch to achieve that goal has
driven developments in robotic tactile sensing since the 1970s.
A combination of advances in soft robotics, biomimetic tactile
sensing and AI could enable that vision to become reality.
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