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Abstract

Memorization is a fundamental ability of001
Transformer-based Large Language Models,002
achieved through learning. In this paper, we003
propose a paradigm shift by designing an ar-004
chitecture to memorize text directly, bearing005
in mind the principle that memorization pre-006
cedes learning. We introduce MeMo, a novel007
architecture for language modeling that explic-008
itly memorizes sequences of tokens in layered009
associative memories. By design, MeMo of-010
fers transparency and the possibility of model011
editing, including forgetting texts. We experi-012
mented with the MeMo architecture, showing013
the memorization power of the one-layer and014
the multi-layer configurations.015

1 Introduction016

Transformer-based Large Language Models017

achieve unrivaled performance in language model-018

ing by learning to capture and represent complex019

sequential dependencies from statistical patterns020

through extensive training phases that iteratively021

refine their weights to best approximate natural022

language. This has triggered significant interest023

in gaining a better understanding of the inner024

workings of these models, focusing on how these025

models generalise and capture structure between026

similar samples in terms of syntactic dependencies027

(Vig and Belinkov, 2019), compositional relations028

(Hupkes et al., 2020) concerning the quantity029

(Reizinger et al., 2024) and quality (Yang et al.,030

2024) of the pre-training data.031

Besides generalization, a key component of the032

success of transformers is the ability to memorize033

data while learning. Indeed, earlier work inves-034

tigated this other side of learning. While Carlini035

et al. (2023); Mahdavi et al. (2024) demonstrated036

evidence of memorization in transformers-based037

models, Kharitonov et al. (2021); Mahdavi et al.038

(2024) studied how the internal components lead039

to memorization, and Kim et al. (2023) estimated040

the boundary between generalization and memo- 041

rization, providing an estimation on their storage 042

capacity. Memorization is not inherently a draw- 043

back in language models because it plays a crucial 044

role in handling factual knowledge, which is im- 045

portant for question answering, summarization, or 046

information retrieval. This kind of factual recall 047

relies on a delicate balance. While generalization 048

helps capture patterns and unseen relationships in 049

data, memorization ensures that models retain criti- 050

cal and exact information when required. 051

Recent research has highlighted that memoriza- 052

tion capability can be effectively harnessed using 053

concepts rooted in associative memories (Kohonen, 054

1972; Anderson, 1972) - a system designed to link 055

inputs to specific outputs and offers a structured and 056

transparent way to store and retrieve information. 057

By leveraging associative memory mechanisms, 058

strategies to post-edit LLMs have been proposed 059

(Meng et al., 2022, 2023a). Indeed, it is possible 060

to check what is memorized, how it is stored, and 061

how it is accessed, delivering a powerful tool for 062

enhancing the utility of language models in tasks 063

that demand factual precision. 064

In this paper, we propose a paradigm shift by 065

designing Language Models based on a different 066

principle: memorization proceeds learning. By 067

using associative memories, we build MeMo, a 068

novel architecture for language modeling that ex- 069

plicitly memorizes sequences of tokens in lay- 070

ered associative memories. MeMo leverages cor- 071

relation matrix memories (Kohonen, 1972; Ander- 072

son, 1972), the concept that tokens and sequences 073

of tokens can be represented as random vectors 074

(Plate, 1995; Sahlgren, 2005), and the Johnson- 075

Lindestrauss Transform to embed larger vectors 076

in smaller spaces by preserving their distances 077

(Johnson and Lindenstrauss, 1984). By design, 078

MeMo offers transparency and the possibility of 079

model editing, including forgetting texts. We ex- 080

perimented with the MeMo architecture, showing 081
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the memorization power of one layer and the multi-082

layer architecture.083

2 Preliminaries and Background084

Representing words or tokens in small random085

vectors is the first important step in building lan-086

guage models with neural network architectures.087

Using random vectors is a standard technique. In-088

deed, random vectors are used in random indexing089

(Sahlgren, 2005) in information retrieval to reduce090

the document vector space and in distributed rep-091

resentations for neural networks as a convenient092

way to determine a set of vectors to represent sets093

of different tokens (Plate, 1995). Moreover, ran-094

dom vectors are used to initialize weight matrices095

in any language-oriented application in neural net-096

works, including the initialization of transformers097

(Vaswani et al., 2017) to build large language mod-098

els from scratch.099

Multivariate Gaussian random vectors have the
important property of being able to generate sets E
of nearly orthogonal unitary vectors that can form
an approximate base of the space Rn in a smaller
space Rd (Johnson and Lindenstrauss, 1984). Each
token t is then represented with a distinct vector in
t ∈ E, and the two following properties hold with
a probability larger than 1− δ:

∥aTb∥ < ϵ if a ̸= b
1− ϵ < aTb < 1 + ϵ if a = b

where a and b are tokens and a and b are vectors
representing those tokens in the reduced space Rd.
By using the Johnson-Lindestrauss Lemma (John-
son and Lindenstrauss, 1984), it is possible to find
a lower bound of how large d should be in order to
host n vectors given the approximation ϵ and the
probability factor δ (see Appendix A). In less pre-
cise equations, the two properties can be rewritten
as:

aTb ≈
{

0 if a ̸= b
1 if a = b

Using these vectors with their properties, it is
possible to represent a bag-of-tokens B in a sin-
gle vector tB offering the operation that approxi-
mately counts the number of times a token is in B.
The vector tB is obtained by summing up vectors
representing tokens in B and, then, the counting
operation is:

aT tB ≈ k

where k is the number of times a belongs to the100

bag B.101

Correlation matrix memories (CMMs) (Koho- 102

nen, 1972; Anderson, 1972) are a powerful tool to 103

store key-value (ki, vi) pairs in distributed mem- 104

ories as the sum of outer products of the vectors 105

representing the keys ki and vectors representing 106

the values vi: 107

C =

n∑
i=1

kiv
T
i (1) 108

These CMMs have been generally defined on one-
hot representations (Hobson, 2011) and, eventually,
reduced afterwords (Kohonen, 1972). Then, to
retrieve the value associated with a key, the matrix
C should be multiplied with kT

j . As vectors ki are
one-hot vectors, the following property holds:

kT
j C = vj

To optimize the construction of these CMM matri-
ces, we use the correlated form:

C = KV T =

 | | |
k1 k2 . . . kn

| | |




− vT
1 −

− vT
2 −
...

− vT
n −


To make CMMs practical, in MeMo, we use

these memories along with the multivariate Gaus-
sian vectors to represent keys and values. Hence,
the generic property of this associative matrices is

kT
j C ≈ eTj V = vj

where ej is the onehot vector of the position j 109

and kj and vj are multivariate Gaussian vectors to 110

represent the key kj and the value vj . 111

The idea behind correlation matrix memories 112

has often been used to explain that feed-forward 113

matrices are where transformer architectures store 114

most information (Meng et al., 2023b). In MeMo, 115

CMMs become the cornerstone for defining a novel 116

approach to building Language Models. 117

Johnson-Lindestrauss Transform (Dasgupta
and Gupta, 1999), derived by using the Johnson-
Lindestrauss Lemma (JLL) (Johnson and Linden-
strauss, 1984), guarantees that it exists a linear
transformation Td×n that transforms vectors in a
bigger space Rn in vectors in a smaller space Rd

by preserving their distance with an approximation
ϵ. Then, given two vectors a and b in Rn, the
following property is guaranteed:

∥a− b∥ − ϵ < ∥Ta− Tb∥ < ∥a− b∥+ ϵ
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The JLL with the demonstration in (Dasgupta and118

Gupta, 1999) shows that it is possible to build this119

matrix T by using multivariate Gaussian vectors as120

transformation rows.121

JLT matrices are the last ingredient of our new122

model, as we need to transpose sequences of tokens123

in their representations in the target Rd space.124

3 MeMo: Language Models with125

Multi-layer Correlation Matrix126

Memories127

Building on Correlation Matrix Memories, on128

multi-variate Gaussian vectors to represent tokens129

and token sequences, and on Johnson-Lindestrauss130

Transforms, we present here MeMo1 a way to build131

language models that memorize texts in a clear,132

transparent way. We first present how to build a lan-133

guage model with a single CMM (Sec. 3.1). This134

single layer CMM language model predicts next to-135

kens of sequences with a fixed length h. Then, we136

generalize MeMo to a multi-layer approach in or-137

der to increase the length of the sequences that can138

be memorized, retrieved, and forgotten (Sec. 3.2).139

3.1 Language Models with single Correlation140

Matrix Memories141

Correlation matrix memories (CMMs) and multi-142

variate Gaussian vectors with their properties offer143

an interesting opportunity to build simple language144

models.145

Language models can be seen as predictors of
the next tokens given input sequences. From a
symbolic perspective, a language model stores the
associations between sequences and the next to-
kens along with the observed frequency in order
to estimate the probability. Then, from a symbolic
perspective, the base for a language model is a
multi-set LM containing:

LM = {([x1, x2, ..., xh], y)} = {(s, y)}

where s = [x1, x2, ..., xh] are the fixed length se-146

quences of tokens and y are the next tokens implied147

by sequences s. Tokens are contained in a fixed148

vocabulary V of n tokens. These multisets are the149

sample sets where probabilities are estimated by150

counting.151

The translation of these multi-sets LM in a152

CMM is straightforward: input sequences s are153

1MeMo will be distributed on github and it is currently
included in this submission. MeMo is distributed under the
license CC BY-NC-SA 4.0
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Figure 1: A sample Language Model (LM) with a single
Correlation Matrix Memory (CMM) coding a single
sentence. a) Memorization phase: the CMM is a d ×
d matrix coding the pairs (sequence, next_token) for
a sentence; b) Retrieving phase: a sample use of the
CMM in (a) where the CMM emits the vector of the
word physics given the encoding of the sequence in the
mathematics and.

keys, and output next tokens y are values. We 154

then use multivariate Gaussian vectors stored in 155

the matrix En×d to encode the n tokens in V and 156

a Johnson-Lindestrauss Transform WV to ensure 157

that both input sequences and output vectors are in 158

the same space Rd. Then, the CMM encoding an 159

LM has the following equation: 160

C =
∑

(s,y)∈LM

syT =
∑

(s,y)∈LM


WV x1

WV x2
...

WV xh

yT

(2) 161

where s ∈ Rd is the vector representing the se-
quence s composed as described using vectors
xi ∈ Rd encoding tokens xi and the JLT matrix
WV of dimensions d/h×d. The vector y ∈ Rd rep-
resents the symbol y. Vectors xi and y are columns
of the embedding matrix E. The properties of the
embedding vectors and the JLT, along with how the
JLT is built, can guarantee that:

(WV xj)
TWV xi ≈

{
1/h if xi = xj
0 if xi ̸= xj

Once the LM is transferred to the CMM, the 162

matrix C can be used to predict the next token of 163

a given sequence ŝ = [x̂1, x̂2, ..., x̂h]. The next 164

token can be derived as follows. The first step is 165

the product: 166

ŷ = ŝTC =
∑

(sj ,yj)∈LM

(sT sj)yj (3) 167

where sT = [x̂T
1 W

T
V , x̂T

2 W
T
V , ..., x̂T

hW
T
V ] is the

representation in a space Rd of the sequence s.
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The above properties (see eq. 2) guarantee that:

ssTi ≈ k/h

where k is the number of common tokens between
the sequences s and sj . Indeed, the CMM transfor-
mation of the LM also offers an initial property of
generalization. The models can give an estimation
of the count also for sequences that are not stored
completely. Therefore, the following product es-
timates the counts of an output token ti given the
sequence ŝ:

t = Eŷ

Hence, focusing on the i-th component of the vec-
tor t, it will be the approximate count of full and
partial sequences generating the i-th token, that is:

(t)i ≈
∑

{(sj ,yj)∈LM |yj=ti}

sT sj

The token ti to emit for a sequence ŝ is then cho-168

sen by selecting the index i of the component of169

the vector EŝTC with the highest value as in this170

equation:171

i = argmaxi(EŝTC)i (4)172

To better describe how a simple correlation ma-173

trix memory (CMM) can be used as a language174

model (LM), we show how to build an LM with a175

window of 4 tokens using the following sentence176

as a running example:177

He enrolled in the mathematics and physics
teaching diploma program

178

Then, the CMM should contain the set LM of179

pairs:180

LM = {([He enrolled in the],mathematics),
([enrolled in the mathematics], and), ([in the
mathematics and], physics), ..., ([and physics
teaching diploma],program)}

181

Hence, given a d-dimensional word embedding182

space where vectors w for each word w are drawn183

from a Gaussian multinomial pseudo-random gen-184

erator and WV is a Johson-Lindestrauss Trans-185

form d× d/4 matrix embedding word vectors in186

a smaller space Rd/4, the CMM d× d matrix will187

contain the sum of the matrices representing the188

pairs in P (see Fig. 1.a) built as the sum of outer189

products of key columns representing sequences190

and row value vectors representing next tokens. For191

example, the first green column represents the se-192

quence He enrolled in the and it is linked with the193

first row representing mathematics (see Fig. 1.a).194

In the retrieving phase, to obtain the next token 195

given a sequence of 4 tokens, the transposed vec- 196

tor representing the sequence is multiplied to the 197

CMM. The result is the vector representing the 198

next token. For example, given the sequence in the 199

mathematics and, the green transposed vector rep- 200

resenting the sequence is multiplied to the CMM 201

representing encoded associations (see Fig. 1.b). 202

The multiplication of this vector with the first block 203

implied by the CMM produces a vector that approx- 204

imates [ 0 0 1.00 0 0 0 ]. This vector then 205

extracts the third vector of the second block, that 206

is, the one associated with physics. This model 207

can also be generalized in the sense that it may 208

take into consideration subsequences of a given 209

sequence. Indeed, the sequence in the mathematics 210

or will emit the vector for physics with a weight of 211

0.75 given the value of the dot product of its vector 212

with the vector of the sequence in the mathematics 213

and. This is the first possible generalization of the 214

one-layer language model built with a CMM. 215

Hence, a single CMM can build language models 216

able to generalize but these language models will 217

operate with fixed small windows depending on 218

the ratio d/h, dimension of the space with respect 219

to the number of heads or tokens in the window. 220

If d/h is small, vectors in this smaller space will 221

be not enough different to discriminate different 222

tokens. 223

3.2 Multi-layer Correlation Matrix Memories 224

To increase the maximum length of the input win- 225

dow of language models, in line with what is done 226

in transformers (Vaswani et al., 2017), we stack 227

layers containing correlation matrix memories (see 228

Fig. 2 for an example). 229

The driving idea is that CMMs of a generic 230

MeMo layer store the encoding of sequences whose 231

length is determined by the level of the layer. 232

Hence, the generic MeMo layer contains key-value 233

pairs where the key is the representation of the 234

sequence elements, and the value is a vector repre- 235

senting the sequence as a whole. The representa- 236

tion of the sequence elements is done similarly to 237

what is done for an LM based on a single CMM (as 238

in Sec. 3.1). The last MeMo layer instead stores 239

the relation between sequences of increasing length 240

and the next token, and, thus, it is the layer devoted 241

to the next token prediction. 242

To define MeMo, we need first to fix the notation: 243

h is the number of heads or, also, the maximum 244

number of input elements that are treated by the 245
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Figure 2: A sample Language Model (LM) with a Multi-layer Correlation Matrix Memory (CMM) coding a
sequence of numbers with number of heads h=2 and number of layers l=3.

MeMo layer, l is the number of layers, d is the246

dimension of the encoding vectors, and X(i) is the247

input for the i-th layer containing vectors represent-248

ing sequences in row vectors x
(i)T
j . Given these249

parameters, MeMo can encode sequences of a max-250

imum length of m = hl.251

Memorization Each MeMo layer MM (i) mem-
orizes sequences up to the length hi and produces
the next token emission matrices for sequences up
to hi length to be stored in the last layer. The equa-
tions for the memorization phase are the following:

MM (i)
m


X(i+1) = Flath(X

(i))Prj(i)

I(i) = Flath(X
(i)W

(i)T
V )

C ′(i) = C(i) + I(i)TΦ(i)X(i+1)

C ′(last) = C(last) + I(i)TSelh(X
(1))

where Flath(X
(i)) is a function that takes a k × d252

matrix and reshapes it in a k/h × d · h matrix,253

Selh(X
(0)) is a function that selects every h vector254

from the input matrix X(0), Prj(i) is a h · d ×255

d projection matrix that encodes sequences of h256

vectors in the internal d dimensional space, and257

W
(i)
h is an embedding matrix reducing vectors in258

Rd to vectors in Rd/h.259

We proceed by reading the equations from the 260

top to the bottom. 261

Each h vectors in the input X(i) are juxtaposed 262

to create sequences of input that are treated by each 263

block of the i-th layer and, thus, these sequences of 264

inputs are encoded as in vectors X(i+1) of dimen- 265

sion d that are unique for each encoded sequence. 266

Sequences are also represented by vectors I(i) 267

by first embedding vectors X(i) in sequences 268

X(i)W
(i)T
V of row vectors in d/h and, then, 269

packing these vectors in single row vectors 270

Flath(X
(i)W

(i)T
V ) representing sequences. These 271

I(i) are the keys of sequences, and X(i+1) are the 272

values in which these keys are translated in the 273

retrieving phase. 274

Then, I(i) are intended to represent sequences 275

as sequences of elements x
(i)T
j W

(i)T
V . Instead, 276

X(i+1) represents the same sequences as a whole. 277

This difference is small but important as I(i) are 278

intended to be also partially matched. 279

The pairs (sequences of elements, coding of se-
quence), respectively in I(i) and X(i+1), are then
stored in the CMM C(i) of the current level i
adding I(i)TΦ(i)X(i+1) to the current matrix. The
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diagonal matrix Φ(i) contains penalizing factors to
force only one memorization of the pair (sequences
of elements, coding of sequence) in the correspond-
ing matrix C(i). The pair (sequences of elements,
coding of sequence) should be stored if it is not
stored in the current matrix C(i), and if it appears
f times in the current updated, it should be stored
only once. Therefore, the penalizing matrix Φ(i) is
the product of two diagonal matrices:

Φ(i) = D(i)F (i)

where: (1) the distiller D(i) is a filter of patterns
and has 0 in the diagonal if the corresponding pat-
tern is already stored in C(i) and 1 if it is not stored
in C(i); (2) the inverse frequency matrix F (i) is the
diagonal of F (i) where elements in the diagonal
contains the inverse frequency of the correspond-
ing pattern in the current update X(i+1). The two
matrices D(i) and F (i) are obtained with linear and
nonlinear operations over the current matrices of
the current layer. Given x(i+1) as the sum of all
the row vectors in X(i+1), the distill matrix is com-
puted as follows:

D(i) = diag(1− round(I(i)C(i)x(i+1)))

where I(i)C(i) produces all sequence vectors al-
ready stored in C(i) and, then, the multiplication
with the vector x(i+1)) detects which of these vec-
tors is in the new vectors to store. The frequency
matrix is computed simlarly:

F (i) = diag(1/round(X(i+1)x(i+1)))

by multiplying the same vector x(i+1) with all the280

vectors to be stored.281

Finally, in each layer i, the CMM C ′(last) of the282

last layer is updated with the pairs connecting the283

sequences of elements I(i)T with the correlated284

next tokens SelhX
(1). The last layer is the real285

layer that emits the next token of a given sequence.286

We show how the memorization of the simple287

sequence 1 2 3 4 5 6 7 8 9 representing the sentence288

of the running example is done in a MeMo with289

h = 2 and l = 3 (see Fig. 2.a). This configuration290

of MeMo allows the storage sequences of up to 8291

tokens, emitting the ninth token. In this example,292

the CMM C(1) of layer 1 is storing the coding of se-293

quences of two input elements. Embedding vectors294

of dimension d are represented in orange and em-295

bedding vectors of dimension d/2 are represented296

in light blue. Sequences I(i) of elements are the297

light blue vector pairs 1 2, 3 4, 5 6, and 7 8. These 298

are multiplied with the coding of the sequences 299

represented by the orange vectors 12, 34, 56, and 300

78. These outer products are stored in CMM C(1). 301

Instead, the outer product of vectors 1 2, 3 4, 5 6, 302

and 7 8 with the vectors 3, 5, 7, and 9 is stored in 303

the matrix CMM C(3). By using embeddings X(2) 304

of layer 1, layer 2 emits the embeddings of length 305

four and stores them in the matrix C(3). Then it 306

store the pairs ([1 2, 3 4], 5) and ([5 6, 7 8], 9) ih 307

C(3). Layer 3 stores the pair ([1 2 3 4, 5 6 7 8], 308

9) in C(3) that represents the longest sequence that 309

can be stored given h and l. 310

Retrieving In this phase, MeMo is used to re-
trieve what has been stored by giving as input a
sequence and expecting the next token as output.
All intermediate layers are used to retrieve the en-
coding of sequences with growing length. These
are used on the final layer to retrieve the next token
to emit. The retrieving equations for each layer of
MeMo are the following:

MM (i)
r


I(i) = Flath(X̂

(i)W
(i)T
V )

X̂(i+1) = I(i)TC(i)

O′(last) = O(last) + I(i)TC(last)

where X̂(i+1) are the retrieved encoding of the se- 311

quences extracted from the CMM C(i) of the cur- 312

rent layer by using the encoding of the sequences 313

of elements I(i). Clearly, X̂(1) = X(1), that is, the 314

first layer encodes the sequence as it is, and it is not 315

retrieved from a CMM. Finally, O(last) is storing 316

the output vectors for the next token given the input 317

sequence. 318

In the running example, the retrieving is done as 319

follows (see Fig. 2.b). The sequence 1 2 3 4 5 6 7 320

8 is used to generate the first sequence of vectors 321

X(1). Each pair is used to generate the encoding of 322

sequences of elements (light blue boxes) by using 323

the matrix W
(1)
v . Then, these are used to retrieve 324

the encoding of sequences from C(1); the encoding 325

is the light orange boxes. The encoding E1 of 326

the sequence of elements of the last part of the 327

sequence 7 8 is summed up to then retrieve the 328

next token from C(3). The following level works 329

in the same way, emitting the encodings E2 and 330

E3 of the sequences of elements 56 78 for layer 2 331

and 1234 5678 for layer 3, respectively. The sum 332

E1 + E2 + E3 of three emitted encodings is then 333

used to retrieve the next token by multiplying the 334

resultant vector with the matrix C(3). Then, the 335
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result will be the embedding vector of 9 with a336

weight of 3 since it is encoded three times in the337

matrix with three different sequences of elements.338

Forgetting MeMo, as it is, offers then the impor-
tant capability of forgetting, that is, erasing stored
sequences. The operation is straightforward: sub-
tracting the sequence from the last layer instead of
summing. The equation follows:

MM
(i)
f


X(i+1) = Flath(X

(i))Prj(i)

I(i) = Flath(X
(i)W

(i)T
V )

C ′(last) = C(last) − I(i)TSelh(X
(1))

4 Experimental Investigation339

In this section, we experiment the memorization340

capacity of MeMo with a single layer and with341

multiple layers.342

4.1 Exploring Memorization Capabilities of343

Single-layer MeMo344

Experimental set-up In the first experiment, we345

investigate the capacity of a single-layer MeMo346

to memorize the association between sequences of347

symbols and one output symbol. Hence, we cre-348

ated a generator of random sequences of h symbols349

[x1, x2, ..., xh] that are mapped to a random sym-350

bol y. To maximize the diversity, symbols are taken351

with a uniform random distribution from a vocabu-352

lary of 100,000 symbols. This guarantees that the353

mapping between sequences and symbols is unique.354

Therefore, we are testing the real capacity of mem-355

orization of the CMM. In the experiments, we used356

random vectors xi representing symbols xi with357

d dimensions with dh ∈ {16, 32, 64, 128, 256}358

and we experimented with sequences of increasing359

length with h ∈ {2, 4, 8, 16, 32}. The output vec-360

tors y representing symbols y are instead random361

vectors with d in {512, 1024, 2048, 4096, 8192}.362

Therefore, experimental CMMs are matrices with363

(h × dh, d) dimensions. Thus, the number of pa-364

rameters of each CMM is NoP = h · dh · d.365

In this experiment, batches Bi of 1,000 pairs366

{([x1, x2, ..., xh], y)} are stored into the CMM ma-367

trix C for each step i and, then, the storing ca-368

pacity is evaluated by computing the accuracy of369

reproducing the tokens of the batch Bi and the370

first batch B0. The accuracy Acc(Bi, C) of the371

CMM C on the batch Bi is computed as the per-372

centage of correct emitted tokens y given sequences373

[x1, x2, ..., xh] with equation 4. The storing capac-374

ity of a CMM matrix C is computed as the num-375

ber of pairs that can be stored that guarantee an376

Figure 3: Memorization capacity of a single CMM:
parameters NoP = h ·dh ·d with respect to the number
of sequences that can be stored. Points in the plot are
CMMs with different configurations of h, dh, and d.

(Acc(B0, C) +Acc(Bi, C))/2 > 0.9 where B0 is 377

the first batch and Bi is the current batch. 378

Results MeMo based on a single correlation ma- 379

trix memory has the capacity to store sequences 380

according to the total number of parameters of the 381

CMM. Indeed, the memorization capacity of a sin- 382

gle CMM does not depend on the number of heads 383

of the input sequence but only on the total number 384

of parameters of the CMM. The plot in Figure 3 385

reports the results of the first set of experiments 386

and shows that there is a linear relation between 387

the number of parameters and the number of stored 388

sequences. This is in line with the empirical find- 389

ings on LLMs that originated the linear scaling law 390

linking the number of tokens of the training corpus 391

with respect to the total number of parameters of 392

the transformer (Kaplan et al., 2020). 393

4.2 Exploring Memorization Capabilities of 394

Multi-layer MeMo 395

Experimental set-up In the second experiment, 396

we investigate the capacity of MeMo to memorize 397

complete texts. As we aim to investigate only the 398

memorization capacity, we used randomly gener- 399

ated texts of a given chunk length. To really test 400

the capacity of splitting the ability to store long se- 401

quences with a layered model, we produced a text 402

generator that simulates the existence of repeated 403

words long h tokens in the text. These repeated 404

words decoy a memorizer with only h heads be- 405

cause the same decoy of h tokens should produce 406

different next tokens according to the tokens pre- 407

ceding the decoy, which may be captured only if 408

MeMo with more layers is memorizing sequences 409
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Figure 4: Memorization capacity of MeMo: storing ability with respect to number of stored sequences. Experiments
with increasing complexity of the datasets (increasing number of decoys) and increasing number of layers

longer than h. We experimented with h = 4, with410

up to 3 layers, with d ∈ {1024, 2048, 4096, 8192},411

and with three setting of decoys: 0, 20, and 40.412

Results The memorization capability of MeMo413

increases with the inner dimension d that is corre-414

lated with the total number of parameters. In the415

three cases with the three different levels of decoys,416

the memorization capability of texts increases with417

the inner dimension for MeMo with 3 layers (top418

line of plots in Fig. 4). As the dimension of the rep-419

resentation of elements of the sequence of tokens420

is d/4, the capability of storing sequences strongly421

depends on d. Hence, to obtain a reasonable de-422

gree of memorization, an internal representation423

of at least d = 4096 is needed. Indeed, only with424

d = 4096, the performance of the MeMo with425

three layers on the memorization of completely dif-426

ferent sequences (decoys=0) stays constantly over427

0.97. When the complexity of sentences increases,428

a larger d is needed. A sufficient level of memo-429

rization is guaranteed with d = 8192 when decoys430

are 40. Overall, increasing the inner dimension d431

enables better memorization.432

As expected, augmenting the number of layers433

increases the ability to memorize. For the three lev-434

els of decoys, increasing the number of layers has435

a positive effect on the memorization performance436

(see bottom of Fig. 3). Indeed, as the complex-437

ity of increases, that is, as the number of decoys438

increases, the importance of having more layers439

become clearer. With 20 decoys, at least two layers440

are needed. With two or three layers, the storing ca-441

pacity is above 0.96 for at least 250,000 sequences.442

Whereas, with 40 decoys, at least three layers are 443

required to have a storing capacity of more that 444

0.88 for 250,000 sequences. 445

Results show that MeMo with multiple layers 446

can expand the memorization capacity of MeMo 447

with single layer and, thus, open the possibility to 448

create transparent language models. 449

5 Conclusion and Future Work 450

Memorization is a key component of transformer- 451

based Large Language Models. Hence, in this pa- 452

per, we proposed to shift the paradigm by designing 453

language models based on memorization. We then 454

presented MeMo as a novel way to build language 455

models using correlation matrix memories stacked 456

in layers. Experimental evaluation has shown that 457

MeMo-like architecture can memorize sequences 458

of tokens. 459

By using memorization, MeMo-like architec- 460

tures are transparent and editable by design and 461

opens back the possibility to include explicit knowl- 462

edge modeling in neural network language models. 463

Indeed, MeMo can help leverage traditional lin- 464

guistic studies in this era, where transformer-based 465

large language models are obtaining unprecedented 466

performance. With MeMo, we could control how 467

linguistic knowledge is used to generalize exam- 468

ples, we could embed transformation rules, and 469

we could represent knowledge graphs and linguis- 470

tic ontologies. In other words, MeMo gives back 471

control to knowledge experts, linguists, and NLP 472

practitioners with the aim of reducing data hungri- 473

ness of Large Language Models. 474
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Limitations475

The approach proposed in this paper is a paradigm476

shift, and then, the software implementing the477

model has some compatibility issues with the exist-478

ing software ecosystem of transformers in Hugging479

Face. Hence, it has not been possible to experi-480

ment with the model using the current evaluation481

suites. Although this is a limit with respect to the482

comparability of MeMo with current Transformer-483

based LLMs, it does not represent a major limit484

concerning the memorization capability of MeMo.485

Ethical Statement486

Making memorization more evident and being ed-487

itable by design, MeMo may allow an easier control488

of the stored texts by mitigating leaks of sensible489

data and social biases.490
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Appendix A: Analyzing Storing Capacity of Random Vectors 585

This section explore theoretically how many nearly orthogonal unit vectors can be stored in a set 586

NOV (ε, θ) in the space Rd, where ε is the approximation required and 1− θ is the probability that this 587

approximation is guaranteed. For two vectors a and b in NOV (ε, θ), the following should hold: 588

P (eaeb
⊤ − ε ≤ ab⊤ ≤ eaeb

⊤ + ε) ≥ 1− θ (5) 589

In other terms, if a and b are the same generalized sequence, ab⊤ ≈ 1, whereas, if if a and b are two
different generalized sequences, ab⊤ ≈ 0. There is a long-lasting conjecture that postulates a relation
between d and m for any given θ and ε (Hecht-Nielsen, 1994) but, to the best of our knowledge, a
definitive demonstration does not still exist. By using the Johnson&Lindestrauss Lemma (Johnson and
Lindenstrauss, 1984), we derived an upper-bound for d. Sets NOV (ε, θ) can potentially host2 m vectors
with θ = 2/m2 − 1/m4 according to this relation:

m ≤ e8(ε
2−4/3ε3)d

Thus, there is an exponential relation between d and m. This is a positive result as spaces d can host large 590

sets of NOV (ε, θ). Thus, definitely many substructures in S in real datasets can be represented with 591

vectors in NOV (ε, θ). 592

Existing results Our corollary stems from two results (Johnson and Lindenstrauss, 1984; Dasgupta and 593

Gupta, 1999): 594

Theorem .1 (Johnson-Lindenstrauss Lemma). For any 0 < ϵ < 1 and any integer m. Let d be a positive
integer such that

d ≥ 4(ϵ2/2− ϵ3/3)−1 lnm

Then for any set V of m points in Rk, there is a map f : Rk → Rd such that for all u,v ∈ V , 595

(1− ϵ)∥u− v∥22 ≤ ∥f(u)− f(v)∥22 ≤ (1 + ϵ)∥u− v∥22. 596

m ≤ e
(ϵ2/2−ϵ3/3)d

4

The theorem can be derived using the following lemma: 597

Lemma .2. For any ϵ > 0, τ < 1/2 and positive integer d, there exists a distribution D over d×k for
d = O(ϵ−2 log 1/τ) such that, for any x ∈k with ||x||2 = 1,

P (|∥Ax∥22 − 1| > ϵ) < τ

by choosing τ = 1/m2 and by applying the union bound on the vectors (u − v)/∥u − v∥2 for all 598

vectors u and v in V . It is possible to demonstrate that there is a probability strictly greater than 0 that a 599

function f exists. 600

Our Corollary Now we can demonstrate that the following lemma holds: 601

Corollary .3. For any 0 < ϵ < 1 and any integer m. Let d be a positive integer such that

d ≥ 4(ϵ2/2− ϵ3/3)−1 lnm

Then given the standard basis E of Rm, there is a map f : Rm → Rd such that for all ei, ej ∈ E, 602

P (1− ϵ < ∥f(ei)∥22 < 1 + ϵ) > 1− τ = 1− 1/m2 (6) 603

and 604

P (|f(ei)f(ej)| < 2ϵ) > (1− τ)2 = (1− 1/m2)2 (7) 605

2The expression The set NOV (ε, θ) can potentially host ... stands for the more formal There is a probability strictly greater
than 0 that NOV (ε, θ) contains ...
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Proof. Equation (6) derives from lemma .2 as ei ∈ E are unitary, that is, ∥ei∥2 = 1 as τ = 1/m2.606

To prove Equation (7), first, we can observe that ||ei−ej ||2 = ||ei||2+||ej ||2−2eiej = 2 as ei and ej are
unitary and orthogonal. Then, we can see that ||f(ei)− f(ej)||2 = ||f(ei)||2 + ||f(ej)||2 − 2f(ei)f(ej).
With Theorem .1, the following holds:

2(1− ϵ) ≤ ||f(ei)||2 + ||f(ej)||2 − 2f(ei)f(ej) ≤ 2(1 + ϵ)

Hence:

||f(ei)||2 + ||f(ej)||2 − 2− 2ϵ ≤ 2f(ei)f(ej) ≤ ||f(ei)||2 + ||f(ej)||2 − 2 + 2ϵ

Thus, using Equation (6) on the two independent events f(ei) and f(ej):

P (2− 2ϵ− 2− 2ϵ ≤ 2f(ei)f(ej) ≤ 2 + 2ϵ− 2 + 2ϵ) = P (|f(ei)f(ej | < 2ϵ) > (1− τ)2

Putting together Equation (6) and Equation (7), it is possible to derive a set NOV (ε, θ) of m nearly-
orthogonal unit vectors such that for each a,b ∈ NOV (ε, θ):

P (δ(a,b)− ε ≤ ab ≤ δ(a,b) + ε) > 1− θ

by choosing ε = 2ϵ, a space d with d = O(ε−2 logm) and θ = 2/m2 − 1/m4.607

608

12


	Introduction
	Preliminaries and Background
	MeMo: Language Models with Multi-layer Correlation Matrix Memories
	Language Models with single Correlation Matrix Memories
	Multi-layer Correlation Matrix Memories

	Experimental Investigation
	Exploring Memorization Capabilities of Single-layer MeMo
	Exploring Memorization Capabilities of Multi-layer MeMo

	Conclusion and Future Work

