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Abstract
We study matrix completion via deep matrix factorization (a.k.a. deep linear neural networks) as
a simplified testbed to examine how network depth influences training dynamics. Despite the
simplicity and importance of the problem, prior theory largely focuses on shallow (depth-2) models
and does not fully explain the implicit low-rank bias observed in deeper networks. We identify
coupled dynamics as a key mechanism behind this bias and show that it intensifies with increasing
depth. Focusing on gradient flow under diagonal observations, we prove: (a) networks of depth ≥ 3
exhibit coupling unless initialized diagonally, and (b) convergence to rank-1 occurs if and only if
the dynamics is coupled—resolving an open question by Menon [24] for a family of initializations.
We also revisit the loss of plasticity phenomenon in matrix completion [18], where pre-training on
few observations and resuming with more degrades performance. We show that deep models avoid
plasticity loss due to their low-rank bias, whereas depth-2 networks pre-trained under decoupled
dynamics fail to converge to low-rank, even when resumed training (with additional data) satisfies
the coupling condition—shedding light on the mechanism behind this phenomenon.

1. Introduction

Matrix completion, a task with practical applications in areas like recommender systems and image
restoration, provides a key framework for investigating implicit biases, particularly the tendency
towards low-rank solutions. The goal of the matrix completion task is to recover a low-rank ground
truth matrix W ∗ using only a subset of its entries. A common strategy for matrix completion
involves matrix factorization, which can also be viewed as linear neural networks. These networks
reparameterize the target matrix X as a product of factors, X = WLWL−1 · · ·W1, and train these
factors Wi by minimizing the mean squared error on the observed entries via gradient descent. The
observed entries constitute the training set, while the unobserved entries act as the test set.

The problem of predicting W ∗ is underdetermined, as infinitely many completions are possible.
Nevertheless, both theory and experiments indicate that training even a simple two-layer factorization
(L = 2) with gradient descent, without explicit rank constraints, typically yields a low-rank solution
under reasonable assumptions [5, 23, 27]. Bai et al. [5] recently formalize this phenomenon using the
concept of data connectivity. They demonstrate that if the observed entries form a connected bipartite
graph (meaning any observed entry can be reached from any other via shared rows or columns), a
depth-2 factorization initialized at an infinitesimally small scale converges to a low-rank solution.
Conversely, the network may converge to a higher-rank matrix if the observations are disconnected
(see Definition 8 and Figure 1(a)).
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(a) Bipartite graph of MD & MC
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(b) Effective rank trained w/ MD
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(c) Effective rank trained w/ MC

Figure 1: (a) Examples of bipartite graphs corresponding to observation patterns of MD (discon-
nected) and MC (connected). (b-c) Training results showing effective rank (cf. [28]) for completing
rank-1 matrices MD and MC, respectively. The rank-1 ground truth matrices were generated via
uv⊤, where u,v ∈ R2 with entries sampled i.i.d. from a standard normal distribution. We initialized
each layer’s entries by sampling from a Gaussian distribution with mean zero and std α.

However, the situation changes significantly for deeper (L ≥ 3) networks, as empirically
demonstrated in Figure 1. Consider the task of completing the 2× 2 matrix

MD =

(
w∗
11 ?
? w∗

22

)
(1)

where only the diagonal entries are observed. This observation pattern forms a disconnected graph
as illustrated in Figure 1(a). Consistent with the theory for disconnected graphs, L = 2 models fail
to find a low-rank solution, empirically converging to rank-2 regardless of initialization scale. In
contrast, deeper models (L ≥ 3) with small initialization tend to converge to a rank-1 solution, as
shown in Figure 1(b). This specific example highlights that the implicit low-rank bias appears to be
strengthened by depth, in a way that cannot be explained solely by the data connectivity developed
for L = 2 models. Furthermore, considering connected cases as well, Figure 1(c) demonstrates that
this strong low-rank bias is generally robust, tending to strengthen further as depth increases.

However, a theoretical understanding of this depth-induced bias remains elusive, largely due to
the complex, coupled dynamics during training. Indeed, Menon [24] notes that even for a simple case
like (1) with w∗

11 = w∗
22 = 1, proving that gradient descent with a deep factorization converges to a

low-rank solution is still an open problem. Motivated by this gap in understanding, we theoretically
analyze such settings, including the example (1).

Investigating the implicit low-rank bias in matrix completion can also shed light on the phe-
nomenon of “loss of plasticity”, a challenge widely observed in general neural network train-
ing [1, 4, 6, 29]. Discussions on the loss of plasticity phenomenon are provided in Appendix A. To
summarize, here are the main research questions that we address throughout the paper:

• What is the fundamental difference between deep (L ≥ 3) and shallow (L = 2) factorizations
regarding their implicit low-rank bias, particularly for disconnected observations?

• Can we theoretically establish that deeper models (i.e., with larger L ≥ 3) exhibit a stronger
implicit bias toward low-rank solutions?

• What is the underlying cause of the loss of plasticity and how does depth interplay with it?
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2. Problem Setting
We consider the problem of estimating a ground truth matrix W ∗ ∈ Rd×d based on observations of
its entries {w∗

ij}(i,j)∈Ω, where Ω ⊆ [d]× [d] is the set of observed indices. We model the estimate as
a linear network WL:1 ≜ WLWL−1 · · ·W1, where Wl ∈ Rdl×dl−1 with d0 = dL = d. We denote
the (i, j)-th entry of the matrix WL:1 as wij . The factor matrices {Wl}Ll=1 are trained by minimizing
an objective function ϕ, defined as the squared loss ℓ over the observed entries in Ω:

ϕ(W1, . . . ,WL; Ω) ≜ ℓ(WL:1; Ω) =
1

2

∑
(i,j)∈Ω

(
wij − w∗

ij

)2
. (2)

We study the overparameterized regime where the intermediate dimensions satisfy dl ≥ d for all
l ∈ [L− 1], imposing no explicit rank constraints on the product model WL:1. Consistent with prior
works, our analysis focuses on gradient flow dynamics (gradient descent with an infinitesimal step
size) for a given objective function ϕ. The dynamics for each layer Wl(t) evolve according to:

Ẇl(t) ≜
d

dt
Wl(t) = − ∂

∂Wl(t)
ϕ(W1(t),W2(t), . . . ,WL(t); Ω), l ∈ [L], t ≥ 0. (3)

For depth-2 networks (L = 2), the product of factor matrices A ∈ Rd×d1 (representing W2) and
B ∈ Rd1×d (representing W1), we denote WA,B ≜ AB.

3. Implicit Bias of Depth via Coupled Training Dynamics
This section extends Bai et al. [5]’s connectivity argument to general depth factorizations. First, using
2×2 matrix examples, we demonstrate how coupled training dynamics explain the role of observation
connectivity in depth-2 models. Based on these insights, we hypothesize that deep networks exhibit
an intrinsic low-rank bias by maintaining highly coupled training dynamics, regardless of observation
patterns. This hypothesis is corroborated by the diagonal observation results.

3.1. Warm-up: Coupled Dynamics vs. Decoupled Dynamics in Depth-2 Networks
We focus on the simple 2× 2 matrix completion of MD and MC, using depth-2 models WA,B(t) =
A(t)B(t). For brevity, let ai(t) ∈ Rd1 be the transpose of the i-th row of A(t), and let bj(t) ∈ Rd1

be the j-th column of B(t). Our aim is to see how training dynamics affect the alignment of the
rows of A(t) or the columns of B(t), as such alignment leads to a rank-1 product matrix WA,B(t).

Decoupled Dynamics. In the MD case (disconnected observations w∗
11, w

∗
22), the gradient flow

using the objective defined in (2), results in independent dynamics for the pairs (a1, b1) and (a2, b2):

ȧi(t) =
(
w∗
ii − ai(t)

⊤bi(t)
)
bi(t), ḃi(t) =

(
w∗
ii − ai(t)

⊤bi(t)
)
ai(t) for i = 1, 2.

Note that while the dynamics couple a1(t) with b1(t) and a2(t) with b2(t) within each pair, the two
pairs (a1, b1) and (a2, b2) are decoupled. This decoupling means the overall system’s dynamics
separate into two independent systems. Consequently, there is no good reason to align vectors from
different pairs, typically leading to high-rank solutions with generic initializations (Figure 1(b)).
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Coupled Dynamics. In contrast, for the MC case (connected observations w∗
11, w

∗
21), the gradient

flow on the objective (2) yields coupled dynamics that do not decompose into independent pairs:

ȧ1(t) =
(
w∗
11 − a1(t)

⊤b1(t)
)
b1(t), ȧ2(t) =

(
w∗
21 − a2(t)

⊤b1(t)
)
b1(t),

ḃ1(t) =
(
w∗
11 − a1(t)

⊤b1(t)
)
a1(t) +

(
w∗
21 − a2(t)

⊤b1(t)
)
a2(t).

(4)

The following theorem demonstrates that sufficiently small initial norms in A(0) also result in the
alignment of a1(t) and a2(t) with b1(t).

Theorem 1 For the product model WA,B(t) = A(t)B(t) ∈ R2×2, we consider the gradient flow
dynamics (4), where the observations are w∗

11(̸= 0) and w∗
21(̸= 0). We assume convergence to

the zero-loss solution (i.e., w11(∞) = w∗
11, w21(∞) = w∗

21). Defining u∗ = b1(∞)
∥b1(∞)∥2 and the

orthogonal component ai⊥(∞) = ai(∞)− (ai(∞)⊤u∗)u∗, we have:

∥ai⊥(∞)∥22
∥ai(∞)∥22

≤
∥A(0)∥2F

(√
∥b1(0)∥42 + 4w∗

11
2 + 4w∗

21
2 + ∥b1(0)∥22

)

2w∗
i1
2 , for i = 1, 2.

The preceding theorem shows that small initial norms for A(0) lead to the alignment of a1(∞)
and a2(∞) with b1(∞), implying a near rank-1 product matrix WA,B(∞). This suggests that
for depth-2 networks, coupled training dynamics (resulting from connected observations) facilitate
the emergence of low-rank solutions under such small initialization, in contrast to the decoupled
dynamics of disconnected observations, where no such bias exists, regardless of initialization scale.

3.2. Coupled Dynamics in Deep Networks Induce Implicit Bias Towards Low-rank
Section 3.1 illustrated the importance of coupled training dynamics, driven by data connectivity,
for achieving low-rank solutions in simple two-layer factorizations (L = 2). Building on this
understanding, we now extend our analysis to deep networks (L ≥ 3). For illustrative purposes,
consider a depth-3 network W3:1. An arbitrary observed entry wij from this matrix is given by:

wij =
∑d2

k=1

∑d1

l=1
(W3)ik(W2)kl(W1)lj . (5)

Crucially, because all elements of the intermediate matrix W2 contribute to the computation of wij ,
independent of (i, j), gradients of different observed entries will propagate through and update these
shared elements in W2. This inherently couples their training dynamics, a structural feature distinct
from the depth-2 case, where coupling is primarily determined by the observation pattern. Such
inherent coupling, in turn, implies a potential intrinsic bias towards low-rank solutions for deep
models. To formalize this notion, we introduce the following definition of coupled dynamics.

Definition 2 (Coupled/Decoupled Dynamics) Consider the matrix completion setup with the model
WL:1(t) = WL(t) · · ·W1(t) ∈ Rd×d. Let θ(t) be the vector of all trainable parameters evolving
according to the gradient flow dynamics (defined in (3)). Let wij(t) ≜ (WL:1(t))ij be the model
prediction for an observed index pair (i, j) ∈ Ω ⊆ [d] × [d]. The gradient flow dynamics are
decoupled if there exists a partition of Ω into non-empty, disjoint subsets Ω1, . . . ,ΩK (K ≥ 2) such
that

⋃K
k=1Ωk = Ω and the following condition holds for any (i, j) ∈ Ωk and (x, y) ∈ Ωl with k ̸= l:

⟨∇θ(t)wij(t),∇θ(t)wxy(t)⟩ = 0, ∀t ≥ 0. (6)

The gradient flow dynamics are coupled if they are not decoupled.
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For depth-2 matrices, it is straightforward to verify (based on Definition 8 and 2) that the training
dynamics are coupled if and only if the observation graph is connected. Furthermore, Definition 2
indicates that for deep networks (L ≥ 3), under random Gaussian initialization, the training dynamics
are coupled with probability 1, irrespective of the observation pattern.

To gain insight into how coupled dynamics induce low-rank bias as depth increases, we further
investigate the diagonal observation setting. As highlighted in the 2×2 example (cf. Figure 1(b)), this
setting reveals a stark difference between shallow and deep networks despite being a disconnected
observation pattern. To investigate this further, we now turn to the general d× d case.

Specifically, we consider a d× d ground truth matrix W ∗ with positive and identical diagonal
observations w∗

ii = w∗ > 0 for Ω(d)
diag ≜ {(i, i) | i ∈ [d]}. We factorize the model with depth-L:

WL:1(t) = WL(t)WL−1(t) · · ·W1(t) where Wl ∈ Rd×d for all l ∈ [L].
To study how dynamic coupling affects the low-rank bias, we consider a family of initializations

where, for parameters α > 0 and m > 1, each factor matrix Wl(0) is initialized as follows:

Wl(0) =




α α/m · · · α/m
α/m α · · · α/m

...
...

. . .
...

α/m α/m · · · α


 ∈ Rd×d, ∀l ∈ [L]. (7)

Using this initialization scheme with diagonal observations, the following proposition specifies
how parameters m and network depth L determine if training dynamics are coupled or decoupled:

Proposition 3 Consider a depth-L model, where each factor Wl(0) ∈ Rd×d is initialized with (7)
trained with diagonal observations, Ω(d)

diag. Then, according to Definition 2, the following hold:

• For depth L = 2, the training dynamics are decoupled for all m > 1.

• For depth L ≥ 3:

– The training dynamics are coupled if 1 < m < ∞.

– The training dynamics are decoupled if m = ∞ (i.e., initialization with αId).

Assuming convergence to a zero-loss solution, our objective is to determine the rank of solutions
found by gradient flow depending on the coupling of dynamics. The theorem below presents an
equation of each singular value of the converged matrix WL:1(∞), for all L ≥ 2.

Theorem 4 Consider the product matrix WL:1, whose factor matrices Wl ∈ Rd×d are initialized
according to (7). Assuming convergence to a zero-loss solution under the diagonal observation Ω

(d)
diag,

let (σ1)L ≥ · · · ≥ (σd)
L ≥ 0 denote the singular values of the converged matrix WL:1(∞). Then,

for all parameter values α > 0, m > 1, d ≥ 2, and L ≥ 2, the following holds:

• If L = 2 (decoupled dynamics): The singular values are explicitly given by

σ1 = (m+ d− 1)

√
w∗

m2 + d− 1
, σr = (m− 1)

√
w∗

m2 + d− 1
for r = 2, . . . , d.
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Figure 2: Singular values (σi)L (numerically obtained from Theorem 4) against initialization scale
αL, for the diagonal observation task. Solid lines represent the largest singular value (σ1)

L; dashed
lines denote the other (identical) singular values (σr)L for r ≥ 2. For finite m, these results illustrate
that both greater depth L and a smaller initial scale α enhance the low-rank bias, in contrast to
the L = 2 case. Conversely, a very large m (e.g., m = 1010), approximating an αId (rank-d)
initialization, leads to decoupled dynamics and a full-rank solution, independent of both L and α.

• If L ≥ 3 and 1 < m < ∞ (coupled dynamics): The singular values satisfy the implicit equations:

(σ1)
2−L −

(
w∗d−(σ1)L

d−1

) 2−L
L

= Cα,m,L,d, (8)

(
w∗d− (d− 1)(σr)

L
) 2−L

L − (σr)
2−L = Cα,m,L,d, for r = 2, . . . , d, (9)

where Cα,m,L,d ≜
(
α
m

)2−L (
(m+ d− 1)2−L − (m− 1)2−L

)
.

• If L ≥ 3 and m = ∞ (decoupled dynamics): The singular values converge to:

(σi)
L = w∗, for i = 1, 2, . . . d.

The preceding theorem details converged singular values of WL:1(∞) for our initialization
scheme (7), with outcomes dependent on the nature of the training dynamics. For decoupled
dynamics—specifically, when L = 2 (for sufficiently large m > 1), or when L ≥ 3 and m = ∞—all
singular values approach w∗ independently of the scale α, implying convergence to a full-rank
solution. In contrast, for coupled dynamics (L ≥ 3 with finite m), the outcome is α-dependent. The
analytical intractability of this coupled regime motivates a numerical study.

To numerically investigate this, we solve the implicit equations (8) and (9) that determine singular
values (σi)L for the coupled L ≥ 3, finite m case. Setting w∗ = 1 and d = 10, we examine how
network depth (L) and initialization parameters (α,m) influence the singular value distribution. The
results (Figure 2) confirm that these coupled dynamics in models with L ≥ 3 and finite m indeed
induce a low-rank bias, contrasting with the full-rank outcomes of the L = 2 (decoupled) case.
Moreover, this bias becomes more pronounced as network depth increases, evidenced by a wider gap
between (σ1)

L and (σr)
L for r ≥ 2.

Remark. Our analysis of low-rank bias for a specific family of deterministic initializations resolves
the challenging open problem (1) highlighted by Menon [24]. Experiments in Appendix E further
demonstrate that our proposed deterministic initialization exhibits qualitative trends similar to
Gaussian initialization. We therefore argue that our results provide foundational insights into low-
rank bias applicable to more general random initializations.
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Appendix A. Understanding The Loss of Plasticity via Depth-2 Matrix Completion

Investigating the implicit low-rank bias in matrix completion can also shed light on the phenomenon
of “loss of plasticity”, a challenge widely observed in general neural network training [1, 4, 6, 29].
The term loss of plasticity describes the tendency of neural networks, particularly after initial
training, to lose their adaptability to new information, hindering their generalization capabilities. A
recent work by Kleinman et al. [18] empirically report the emergence of this phenomenon in matrix
completion: models pre-trained on limited observations struggle to adapt when training continues
on augmented observations. Notably, they observe that loss of plasticity is further intensified with
increasing network depth, a conclusion they reached by measuring a “relative reconstruction loss”
when compared to models trained from scratch on the augmented dataset.

However, our findings (Figure 3) offer a more nuanced perspective. We observed that even when
pre-trained with a sparser set of observations, deeper models increasingly favor low-rank solutions
as their depth increases. This aligns with our argument (Section 3.2) that they inherently achieve
low-rank solutions even from limited, disconnected initial data. Consequently, for these deeper
models, further training on augmented data (the post-training stage) does not lead to noticeably
higher rank compared to training equivalent models from scratch on the augmented observations.
Therefore, while their performance might exhibit a relative degradation compared to models trained
from scratch, their absolute solution quality can still surpass that of shallower models. Based on
our observations, we conclude that the low-rank bias of deep models helps them avoid the loss of
plasticity, while the loss is more pronounced in depth-2 models. To theoretically understand the
underlying cause of this phenomenon itself, we henceforth focus our analysis on depth-2 models.
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Figure 3: Experiments use a 100 × 100 rank-5 ground-truth matrix. pre-training utilizes 2000
randomly sampled entries (Ωpre; |Ωpre| = 2000), while post-training adds 1000 more, forming Ωpost

(Ωpre ⊂ Ωpost; |Ωpost| = 3000). The top row of panels displays effective rank, and the bottom row
shows reconstruction error, both measured at convergence. The leftmost panels depict training on
Ωpre, and the rightmost on Ωpost, both starting from random Gaussian initialization. The middle
panels show warm-start training on Ωpost, initialized from converged pre-trained models with Ωpre.

In Section A.1, models are pre-trained using only diagonal observations, with the set of diagonal
indices Ω(d)

diag. We then examine 2× 2 (Section A.2) and d× d (Section A.3) cases. For the 2× 2
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case, the pre-train observation set is Ω(2)
pre ≜ Ω

(2)
diag. The post-train set, Ω(2)

post, then incorporates an
additional off-diagonal observation to ensure connectivity. Similarly, for the d× d case, the pre-train
set is Ω(d)

pre ≜ Ω
(d)
diag. Its post-train set, Ω(d)

post, includes additional observations (see Section A.3).

A.1. Pre-training with Diagonal Observations
To clearly observe loss of plasticity in a setting consistent with Section 3.2, we pre-train using only
diagonal entries, yielding a disconnected pattern. We consider decoupled-to-coupled scenarios,
where additional data is introduced to induce coupled training dynamics. For depth-2 models, they
correspond to a disconnected-to-connected observation pattern. For the pre-training, closed-form
solutions that depend solely on the network’s initialization can be found in the following proposition:

Proposition 5 Consider a ground truth matrix W ∗ ∈ Rd×d with diagonal observations Ω(d)
diag. The

model is factorized as WA,B(t) = A(t)B(t), where A(t),B(t) ∈ Rd×d. For each observation
(i, i) ∈ Ω

(d)
diag, define the constants Pi and Qi based on the initial values:

Pi ≜
d∑

k=1

ai,k(0)bk,i(0) and Qi ≜
d∑

k=1

(
ai,k(0)

2 + bk,i(0)
2
)
.

Furthermore, for each diagonal observation, let the parameter r̄i be determined from the ground truth

entry w∗
i,i and the constants defined above, r̄i ≜ 1

2 log


 Pi+

Qi
2

w∗
i,i+

√
w∗

i,i
2−P 2

i +
(

Qi
2

)2


. Then, assuming

convergence to a zero-loss solution of the loss ℓ(WA,B; Ω
(d)
diag), any entry ap,q(∞) of the converged

matrix A(∞) and any entry bp,q(∞) of the converged matrix B(∞) (for any p, q ∈ [d]) are given
by:

ap,q(∞) = ap,q(0) cosh (r̄p)− bq,p(0) sinh (r̄p) ,

bp,q(∞) = bp,q(0) cosh (r̄q)− aq,p(0) sinh (r̄q) .

Remark. The above proposition applies to arbitrary initializations with distinct w∗
ii values, which

is goes beyond Theorem 4. While the above analysis focuses on diagonal observation cases, it can
be generalized to any fully disconnected case (i.e., a single observation per row and column). This
yields distinct solutions for various types of observation sets, as detailed in Appendix G.1. We
analyze the scenario where training resumes from a state obtained through pre-training. Let the
pre-training phase conclude at a sufficiently large timestep T1. For simplicity, we assume that the
solution WA,B(T1) has perfectly converged with respect to the pre-training objective, neglecting
any residual error due to the finite duration of this phase. Our subsequent analysis demonstrates that,
starting from WA,B(T1), the model WA,B(t) cannot converge to a low-rank solution.

A.2. Post-training: 2 by 2 Matrix Example

We aim to analyze scenarios where training is resumed under coupled dynamics, building upon
solutions obtained from an initial decoupled pre-training phase (Proposition 5). To this end, we
first define the specific pre-training setup for an illustrative 2× 2 case: We observe diagonal entries
(Ω(2)

pre), which are identical and positive, i.e., w∗ ≜ w∗
11 = w∗

22 > 0. To make loss of plasticity
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particularly pronounced during the pre-training, we initialize the model with αI2 (for α > 0), which
is the m → ∞ limit of our initialization scheme in (7). Then, from Proposition 5, it follows that:

A(T1) = B(T1) =

(√
w∗ 0

0
√
w∗

)
. (10)

For the subsequent post-training phase, an additional off-diagonal observation is introduced to
establish connectivity. Without loss of generality, we assume w∗

12 > 0 is revealed, while the
diagonal entries w∗

11 and w∗
22 from the pre-training phase remain observed. Thus, the updated set

of observed entries becomes Ω(2)
post = {(1, 1), (1, 2), (2, 2)}. The ground-truth matrix is assumed

to be rank-1, ensuring the setting is non-trivial, and the task is thus to predict the remaining entry
w∗
21 = w∗2/w∗

12 > 0. The following theorem, however, reveals a contrasting outcome for this entry.

Theorem 6 Let A(T1),B(T1) be the factor matrices obtained from the pre-training phase, as
specified by (10). Then, running gradient flow during the subsequent post-training phase (for t ≥ T1),
starting from A(T1) and B(T1), results in exponential decay of the loss:

ℓ(WA,B(t); Ω
(2)
post) ≤

1

2
w∗
12

2e−2w∗(t−T1).

Consequently, a lower bound for the stable rank of the converged matrix WA,B(∞) is given by:

∥WA,B(∞)∥2F
∥WA,B(∞)∥22

≥ 1 + exp

(
−8

w∗
12

w∗

)
.

Furthermore, for all t > T1, w21(t) of the evolving matrix WA,B(t) satisfies w21(t) < 0.

The theorem indicates that the loss decreases exponentially fast, particularly when starting from
high-norm solutions (at a rate governed by w∗). Therefore, since the model converged to high-rank
solutions during pre-training, its singular values remain largely unchanged from this initial state,
as long as w∗

12 has a small magnitude compared to w∗. Furthermore, the unobserved entry w21(t)
converges to a negative value, which contradicts the positive w∗

21 expected for the true rank-1 solution.

A.3. Post-training: d by d Matrix under Lazy Training Regime
We attribute Theorem 6 primarily to the model’s “lazy training” [8] as high-norm initializations lead
to faster loss decay, causing the model to converge to a nearby global minimum that may not be a
low-rank solution. Drawing on this concept, we extend the preceding analysis of loss of plasticity to
the more general case of d× d ground-truth matrices. The following theorem states that when the
model is initialized with a sufficiently small loss, resulting from warm-starting that perfectly fits all
previously observed data, the model exhibits lazy training. This, in turn, prevents further learning
that would reduce the rank and instead steers the model towards a nearby minimum.

Theorem 7 (informal) For factor matrices A,B ∈ Rd×d, suppose A and B are balanced at t = 0,
i.e., A(0)⊤A(0) = B(0)B(0)⊤. Let f(A,B) be the function that maps (A,B) to the vector of
model predictions for a given set of observed entries Ω(d)

post. We then define σmax and σmin as the

13
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maximum and minimum singular values, respectively, of the Jacobian of the function f evaluated at
the pre-trained state. If the loss at time T1 satisfies:

ℓ
(
WA,B(T1); Ω

(d)
post

)
≤ σ6

min

1152dσ2
max

,

this results in exponential decay of the loss:

ℓ
(
WA,B(t); Ω

(d)
post

)
≤ ℓ

(
WA,B(T1); Ω

(d)
post

)
exp

(
−1

2
σ2
mint

)
.

Consequently, the stable rank of A(t) (which is equal to that of B(t)) remains bounded below by

∥A(t)∥2F
∥A(t)∥22

≥
(√

2∥A(T1)∥F − σmin

4
√
2d√

2∥A(T1)∥2 + σmin

4
√
2d

)2

.

The above theorem states that if a model has little remaining to learn (achieved via warm-starting),
it undergoes lazy training, leading to rapid loss convergence while its stable rank remains largely
unchanged from the initial state. Thus, once a model has converged to a high-rank state, it struggles
to recover a low-rank structure even when new observations are introduced to form connectivity.
Formal statement of Theorem 7 is provided in Appendix G.

As an illustrative example, consider the simple warm-starting scenario from Section A.2: the
model is first pre-trained using only diagonal observations of ground truth matrix W ∗, w∗ = w∗

11 =
w∗
22, after which off-diagonal entry w∗

12 is introduced for subsequent training.

Example. Consider a warm-starting scenario where A and B are initialized as (10). When
observing Ω

(2)
post = {(1, 1), (1, 2), (2, 2)}, the loss at time T1 is ℓ(WA,B(T1); Ω

(2)
post) =

1
2w

∗
12

2. The
two singular values of the Jacobian matrix are both

√
2w∗. If we choose w∗

12 ≤ w∗

12
√
2
, Theorem 7

ensures that at every time t ≥ T1, the stable rank of A(t) stays uniformly bounded below:

∥A(t)∥2F /∥A(t)∥22 > 1.31.

Appendix B. Conclusion

We demonstrate that in matrix completion, deeper networks (L ≥ 3) inherently exhibit a stronger
low-rank bias than shallow networks. This tendency is primarily attributed to their coupled training
dynamics, which operate irrespective of observation patterns. To enable a tractable theoretical analysis
of this phenomenon, we consider gradient flow starting at a family of deterministic initializations.
We show in the diagonal observation setting that coupled training dynamics lead to a low-rank bias,
and this bias is further intensified as network depth increases. Furthermore, our theoretical analysis
of warm-starting scenarios details the loss of plasticity phenomenon, revealing how suboptimal initial
states can hinder convergence to low-rank solutions. These findings contribute to a more precise
understanding of the implicit bias of depth and loss of plasticity in matrix completion.
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Appendix C. Further Related Works

C.1. Implicit Regularization in Neural Networks

Recent studies have shown that deep neural networks have implicit bias or regularization towards
certain solutions among the many global minima [2, 3, 5, 10–13, 15–17, 19, 21, 30, 31, 33–36].

Among these, Arora et al. [3], Gissin et al. [11], Li et al. [21] study the implicit bias of depth
towards low-rank solutions. Specifically, Gissin et al. [11] and Li et al. [21] examine this bias in
deep linear models in relation to the initialization scale. They report that as model depth increases,
the dependence on initialization can become weaker, and incremental learning can emerge. However,
their analyses consider a matrix factorization task, which they frame as matrix completion with full
observations. Therefore, in their setting, convergence to a low-rank solution is guaranteed if the
model converges to zero-loss, which does not hold in our matrix completion task settings.

While Arora et al. [3] investigate matrix completion in deep linear networks, offering insights
from derived singular value dynamics, they cannot fully track these dynamics to prove low-rank
convergence as network depth increases. Their analysis is primarily restricted to the regime where
t ≥ t0, after which singular vectors are assumed to have stabilized. For t ≥ t0, they find that one
singular value can be expressed as a function of another, involving a constant term that emerges from
the state at t0 (which can be the dominant component). Based on this, they demonstrate that the gap
between these singular values widens with increasing depth. In contrast, our Theorem 4, by precisely
tracking the converged values of singular values, rigorously establishes their ultimate behavior and
the resulting low-rank bias.

Bai et al. [5] introduce the connectivity argument in matrix completion tasks for depth-2 matrices.
For an incomplete matrix M , connectivity is characterized by its set of observed indices Ω ⊆ [d]×[d]
and the corresponding observation matrix P (where Pij = 1 if (i, j) ∈ Ω, and 0 otherwise). The
formal definition is as follows:

Definition 8 (Connectivity from Bai et al. [5]) An incomplete matrix M is connected if the bipar-

tite graph GM , constructed from its observation matrix P using the adjacency matrix
[
0 P⊤

P 0

]
, is

connected after removing isolated vertices. Otherwise, M is disconnected.

They prove that if the observations construct a connected bipartite graph, the model can converge
to a low-rank solution when the initialization scale is infinitesimally small, subject to certain technical
assumptions. Conversely, if the observations form a disconnected graph, the model generally cannot
converge to a low-rank solution. However, a special case occurs if this disconnected graph is
composed of complete bipartite components: here, the model converges to the minimum nuclear
norm solution, again under specific technical assumptions. This characterization of implicit bias does
not readily generalize to matrices with deeper matrices, as depicted in Figure 1.

C.2. Loss of Plasticity

Loss of plasticity describes a widely observed phenomenon where a model’s ability to adapt to new
information diminishes over time [1, 4, 9, 25, 29]. This is frequently observed in scenarios with
gradually changing datasets, such as those encountered in reinforcement learning [14, 22, 25] or
continual learning [7, 9, 20, 26], where the model may struggle to adapt to new environments.
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Although loss of plasticity is more extensively studied in non-stationary environments, a similar
phenomenon can be observed in stationary settings where a model processes a dataset that grows
incrementally from a fixed data distribution [4, 6, 29]. In such stationary scenarios, a model is
typically first trained to convergence on an initial, independently and identically distributed (i.i.d.)
subset of data (e.g., from CIFAR-10 or CIFAR-100). Subsequently, this converged model serves as a
initialization for continued training on an expanded dataset, which incorporates additional samples
from the original distribution. Perhaps surprisingly, these warm-started models struggle to generalize
to the newly introduced samples, often exhibiting lower test accuracy compared to models trained
from scratch on the combined dataset.

While this phenomenon is problematic in many real-world applications where new data is
continuously added, theoretical studies on it remain scarce. Shin et al. [29], for instance, offer a
theoretical explanation using an artificial framework. Within this framework, they demonstrate
that such behavior occurs because warm-started models often complete training by memorizing
data-dependent noise, which is not useful for generalization. However, the analytical framework they
employ is considered artificial and limited in its ability to accurately characterize the optimization
processes of typical deep learning models.

Recently, Kleinman et al. [18] observed loss of plasticity in deep linear networks, identifying
“critical learning periods”: an initial phase of effective learning followed by a significantly reduced
capacity to learn later. They employ a matrix completion framework to further observe this behavior.
When observations from matrix completion tasks are treated as training samples in neural network
training, they observed that a model initially trained on a sparse set of observations and subsequently
retrained (i.e., warm-started) on an expanded dataset typically exhibits a larger performance gap
(in terms of reconstruction error) compared to a model trained from scratch on the entire expanded
dataset. However, their work does not offer theoretical guarantees to account for these observations.
Motivated by this, in Section A, we attempt to explain this behavior within the specific context of
depth-2 matrix completion settings.
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Appendix D. Coupled and Decoupled Training Dynamics

This section discusses coupled/decoupled training dynamics defined in Definition 2, illustrated with
specific examples.

D.1. Coupled Dynamics

For shallow (L = 2) matrices, coupled dynamics typically correspond to connected observations
under generic initialization, in accordance with Definitions 8 and 2 (the specific case of initialization
such as zero matrices, which leads to decoupled dynamics, will be further detailed in a later
subsection). We illustrate this principle with an example where the observed entries form the
first column of a 2× 2 matrix.

Consider a 2 × 2 matrix, denoted MC, which is to be completed using its first column as
observations:

MC ≜

[
w∗
11 ?

w∗
21 ?

]
.

The corresponding observation pattern matrix PC is:

PC =

[
1 0
1 0

]
.

The associated adjacency matrix AC for the bipartite graph is constructed as:

AC =

[
02,2 P⊤

C

PC 02,2

]
=




0 0 1 1
0 0 0 0
1 0 0 0
1 0 0 0


 ,

which forms a connected graph as illustrated in Figure 1(a). This setup leads to coupled training
dynamics under non-zero initialization. The coupling arises because parameters used to construct
w11 and w21 overlap. Specifically, elements from the first column of matrix B (i.e., b11, b21) are
common to the computation of both w11 and w21. This shared dependency links the dynamics. The
below illustration highlights these shared (teal) and distinct (red/blue) parameters involved in forming
the observed entries w11 and w21:

[
w11 w12

w21 w22

]
=

[
a11 a12
a21 a22

] [
b11 b12
b21 b22

]

w11 = a11b11 + a12b21

w21 = a21b11 + a22b21

The shared use of b11 and b21 in reconstructing both observed entries is what couples their learning
dynamics.

For deeper matrices (L ≥ 3), training dynamics are typically coupled, irrespective of the
observation pattern. Consider, for instance, predicting entries from the disconnected matrix MD

where only diagonal elements are observed:

MD ≜

[
w∗
11 ?
? w∗

22

]
.
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Even with such observations, for L ≥ 3, coupling arises because parameters in intermediate layers
are involved in computing multiple observed entries. This is illustrated in the following depth-3
example (W = W1W2W3). Elements of the intermediate matrix W2 (colored teal) contribute to
both the computation of w11 and w22:

[
w11 w12

w21 w22

]
=

[
(w1)11 (w1)12
(w1)21 (w1)22

] [
(w2)11 (w2)12
(w2)21 (w2)22

] [
(w3)11 (w3)12
(w3)21 (w3)22

]
.

Specifically, the observed entries are formed as:

w11 =
(
(w1)11(w2)11 + (w1)12(w2)21

)
(w3)11

+
(
(w1)11(w2)12 + (w1)12(w2)22

)
(w3)21,

w22 =
(
(w1)21(w2)11 + (w1)22(w2)21

)
(w3)12

+
(
(w1)21(w2)12 + (w1)22(w2)22

)
(w3)22.

The shared involvement of all elements from W2 (the teal matrix) in forming both w11 and w22

leads to coupled dynamics, provided these elements are non-zero. (Conversely, if some elements
were to become zero, this could potentially lead to decoupled dynamics, as illustrated in subsequent
subsection.)

D.2. Decoupled Dynamics

For shallow (L = 2) matrices, decoupled dynamics correspond to disconnected observations.
Therefore, to examine this disconnected case, we consider a 2 × 2 incomplete matrix example,
denoted MD, which is to be completed using only its diagonal entries as observations:

MD ≜

[
w∗
11 ?
? w∗

22

]
.

Then the observation matrix PD can be constructed as:

PD =

[
1 0
0 1

]
,

and the adjacency matrix AD can be constructed as:

AD =

[
02,2 P⊤

D

PD 02,2

]
=




0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0


 ,

which forms the disconnected graph as illustrated in Figure 1(a). This setup inherently leads to
decoupled training dynamics. The decoupling can be visually understood by examining how distinct
sets of elements in the factor matrices A and B contribute to the observed entries w11 and w22.
Specifically, as illustrated below, red-colored entries are exclusively involved in predicting w11, while
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blue-colored entries are exclusively involved in predicting w22. These two sets of entries are disjoint,
confirming the decoupled nature of the dynamics:

[
w11 w12

w21 w22

]
=

[
a11 a12
a21 a22

] [
b11 b12
b21 b22

]
,

w11 = a11b11 + a12b21,

w22 = a21b12 + a22b22.

For deep matrices, decoupled training dynamics are observed in at least two key scenarios. First,
as detailed in Appendix F.2.3, an αId initialization combined with diagonal-only observations leads
to decoupled dynamics for any depth-factorized matrix.

To illustrate this for a deeper case, we revisit the MD observation pattern in a depth-3 context.
Lemma 9 in Appendix F.2.3 states that with such an initialization and observing only diagonal entries,
all off-diagonal elements of the factor matrices Wl(t) remain zero throughout training. Consequently,
the factor matrices W1,W2,W3 are diagonal. The product matrix WL:1(t) is thus formed as:

[
w11 w12

w21 w22

]
=

[
(w1)11 0

0 (w1)22

] [
(w2)11 0

0 (w2)22

] [
(w3)11 0

0 (w3)22

]
.

The observed entries are therefore computed as products of the respective diagonal elements:

w11 = (w1)11(w2)11(w3)11,

w22 = (w1)22(w2)22(w3)22.

Since w11 depends only on the set of parameters {(Wk)11}3k=1 and w22 depends only on the entirely
disjoint set of parameters {(Wk)22}3k=1, their training dynamics are decoupled.

Second, the training dynamics are also decoupled when the factor matrices are initialized as
d × d zero matrices (0d). The reasoning is as follows: For any given set of observation indices
Ω ⊂ [d]× [d], the gradient flow dynamics for an (i, j)-th entry of a factor matrix Wl(t) (denoted
(wl(t))ij) are given by:

d(wl(t))ij
dt

= − ∂ϕ

∂(wl(t))ij

= −
∑

(p,q)∈Ω

(wpq(t)− w∗
pq)

∂wpq(t)

∂(wl(t))ij
.

Here, the derivative of an element wpq(t) of the full product matrix WL:1(t) with respect to (wl(t))ij
is:

∂wpq(t)

∂(wl(t))ij
= (WL(t)WL−1(t) · · ·Wl+1(t))pi (Wl−1(t)Wl−2(t) · · ·W1(t))jq ,

where the first term is the (p, i)-th element of the product WL(t) · · ·Wl+1(t), and the second term is
the (j, q)-th element of the product Wl−1(t) · · ·W1(t). If all factor matrices Wk(0) are initialized
as zero matrices, then wpq(0) = 0. Furthermore, the matrix products forming ∂wpq(0)

∂(wl(0))ij
are also

zero. Consequently, d(wl(t))ij
dt |t=0 = 0. Since all entries (wl(0))ij start at zero and their initial time

derivatives are zero, they remain zero throughout training. Thus, all Wl(t) = 0d for t ≥ 0, leading
to trivially decoupled dynamics.
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Appendix E. Additional Experiments

This section provides additional experiments omitted from the main text.

E.1. Implicit Bias Experiments

In Figure 1, we conducted experiments with a 2× 2 rank-1 ground truth matrix featuring specific
connected/disconnected examples. To generalize these observations, we extended our experiments
to a 3× 3 rank-1 ground truth matrix, considering all possible connected/disconnected observation
patterns. After accounting for symmetries to eliminate duplicates, this results in a total of 23 unique
observation patterns, which are categorized into 17 connected and 6 disconnected cases.

For each of these 23 observation patterns, the 3× 3 rank-1 ground truth matrix was generated
using constituent vectors whose entries were sampled from a standard normal distribution. Each
factor matrix was then initialized by sampling its entries from a Gaussian distribution with a mean of
zero and a standard deviation of α. We performed 10 independent trials for each pattern.

Figure 4 illustrates that, consistent with the findings in Figure 1, a significant discrepancy exists
between the behavior of depth-2 matrices and that of deeper matrices. This discrepancy becomes
notably more pronounced for the disconnected observation patterns.
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Figure 4: The left panel shows the averaged effective rank of all possible connected patterns as a
function of the initial scale αL. The right panel displays the corresponding data for all possible
disconnected patterns.

In the context of Theorem 4, we further test our hypothesis: coupled dynamics can induce
a low-rank bias, while decoupled dynamics cannot. We examine this hypothesis under various
conditions by varying the ground truth value w∗ and the dimension d. The results presented in
Figure 5 (for w∗ = 1, d = 3), Figure 6 (for w∗ = 10, d = 10), and Figure 7 (for w∗ = 0.1, d = 10)
support this hypothesis.

Furthermore, we conducted experiments using gradient descent with a learning rate chosen to
be sufficiently small, to validate our derived equations. For the results presented in Figure 8, we
replicated the experimental setup of Figure 5 (however, the α = 10−10 case was excluded due to
prohibitive computation time). The observed trends align well with those shown in Figure 5.

To validate that our initialization scheme (7) can achieve comparable outcomes to Gaussian
initialization while offering more control, we conducted experiments on a 3× 3 matrix completion
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Figure 5: Numerical conditions identical to those in Figure 2, except with ground truth value w∗ = 1
and dimension d = 3.
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Figure 6: Numerical conditions identical to those in Figure 2, except with ground truth value w∗ = 10
and dimension d = 10.

task with diagonal observations (i.e., w∗
11 = w∗

22 = w∗
33 = 1). While our scheme allows initial

rank properties to be adjusted via the parameter m, Gaussian initialization’s inherent randomness
precludes such direct control. Therefore, for comparison with Gaussian initialization, we ran one
thousand trials (seeds) and sorted the converged solutions by their rank.

A comparison of the results presented in Figure 9 indicates that the behavioral trends can appear
similar, particularly because distinct low-rank inducing effects are often subtle and difficult to capture
definitively in the depth-2 case. For deeper networks (L ≥ 3), however, a clearer tendency to
converge towards lower-rank solutions is typically observed as depth increases.

E.2. Loss of Plasticity Experiments

Section A.2 discussed a scenario where pre-training employs diagonal entries, after which an off-
diagonal term (specifically, w∗

12) is introduced to restore connectivity, leading to coupled dynamics.
Theorem 6 establishes that, in this situation, the model indeed does not converge to a low-rank
solution. To empirically validate this theoretical finding, we conducted experiments using the family
of initializations (7) tailored to this specific scenario, with results detailed in Figures 10 and 11. These
experiments utilized a depth-2 model to reconstruct the ground-truth matrix, with an initialization
scale set to α = 10−35. Notably, if the initialization scale α is set significantly lower, as the dynamics
are coupled, a cold-started model can converge to solutions exhibiting a more pronounced low-rank
structure.
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Figure 7: Numerical conditions identical to those in Figure 2, except with ground truth value
w∗ = 0.1 and dimension d = 10.
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Figure 8: Gradient descent experiments conducted under conditions identical to those in Figure 5.

For the case presented in Figure 10, where w∗ = 1, w∗
12 = 0.1, following Theorem 6, the

theoretical lower bound on the stable rank for a warm-started model initialized diagonally (m = ∞)
is approximately 1.45, while the empirically observed stable rank is approximately 1.8. Even in
scenarios where substantial new information must be learned (e.g., by setting w∗

12 to a large value),
loss of plasticity is empirically observed, primarily manifesting as high test error (i.e., a significant
gap between the target w∗

21 and the converged w21). While Theorem 6’s analysis via stable rank does
not fully explain an accompanying low-rank bias (a point consistent with Figure 11), the theorem
does predict that w21 converges to a negative value, which implies a large test loss.

Furthermore, we performed additional experiments with different diagonal entry values to
investigate whether this argument extends to other scenarios (results shown in Figure 12), although
specific theoretical guarantees have not been established for these broader cases. We observe that
even in these varied settings, both the effective rank and the stable rank of a warm-started model
substantially exceed one, whereas cold-started models can converge to lower-rank solutions.
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(a) Results from Initialization using (7).
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(b) Results from Gaussian initialization.

Figure 9: (a) Effective rank for the initialization scheme in (7). The x-axis denotes the parameter
m, which controls the initial rank characteristics of the model, while the y-axis represents the corre-
sponding effective rank after convergence. (b) Effective rank distributions for Gaussian initialization.
The results are from 1000 independent trials, sorted by their converged effective rank. The x-axis
denotes the sorted trial index (from lowest to highest converged rank), and the y-axis represents the
corresponding effective rank after convergence.
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Figure 10: Experimental results for a 2 × 2 rank-1 ground-truth matrix W ∗ with w∗
11 = w∗

22 = 1
and w∗

12 = 0.5 (implying w∗
21 = 2 for rank-1 structure). Models, initialized according to (7), are

first pre-trained on diagonal entries. After achieving zero-loss convergence in pre-training, the
off-diagonal element w∗

12 is introduced, and models are subsequently trained on combined diagonal
and off-diagonal observations. The plots display: (Left and Middle) effective rank under different
settings; (Right) converged value of w21(∞). Key observations: (1) Warm-starting with a model that
converged to a high-rank solution during pre-training tends to maintain this high rank, even when
presented with the same subsequent observations as a cold-started model. (2) In the theoretically
analyzed m = ∞ case, w21(∞) < 0 is observed, which correlates with the highest effective rank.
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Figure 11: Experimental conditions identical to those in Figure 10, except with ground truth value
w∗
12 = 10. The model have to predict w∗

21 as 0.1
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Figure 12: Experimental conditions identical to those in Figure 10, except with ground truth value
w∗
11 = 1, w∗

22 = 2, and w∗
12 = 0.5. The model have to predict w∗

21 as 4.
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Appendix F. Proof for Section 3

In this and the following section, we prove the Propositions and Theorems presented in the main text.
We begin with the proof of Theorem 1.

F.1. Proof for Theorem 1

When convergence is guaranteed, we can define reference vector u∗ ≜ b1(∞)
∥b1(∞)∥ ∈ Rd, which

is entirely determined by their initial values. We decompose a1(t), a2(t), and b1(t) into two
components: one parallel to u∗ and one perpendicular to u∗:

a1(t) = a1∥(t) + a1⊥(t), a2(t) = a2∥(t) + a2⊥(t), b1(t) = b1∥(t) + b1⊥(t).

For any vector u ∈ Rd, the parallel component is defined as u∥ = (u∗⊤u)u∗, and the perpendicular
component as u⊥ = u− u∥.

We introduce notation to quantify the alignment of each vector with u∗:

αa1(t) = u∗⊤a1(t), αa2(t) = u∗⊤a2(t), αb1(t) = u∗⊤b1(t). (11)

Additionally, we define notation to measure the magnitude of the perpendicular components:

βa1(t) = ∥a1⊥(t)∥22, βa2(t) = ∥a2⊥(t)∥22, βb1(t) = ∥b1⊥(t)∥22. (12)

Then, using equation (4), time evolution of each component in equation (11) can be written as:

˙αa1(t) = u∗⊤ȧ1(t)

= (w∗
11 − a1

⊤(t)b1(t))︸ ︷︷ ︸
≜r1(t)

u∗⊤b1(t)

= r1(t)αb1(t). (13)

Likewise, for αa2(t), we derive:

˙αa2(t) = u∗⊤ȧ2(t)

= (w∗
21 − a⊤

2 (t)b1(t))︸ ︷︷ ︸
≜r2(t)

u∗⊤b1(t)

= r2(t)αb1(t). (14)

Finally, for αb1(t), we have:

˙αb1(t) = u∗⊤ḃ1(t)

= (w∗
11 − a⊤

1 (t)b1(t))u
∗⊤a1(t) + (w∗

21 − a⊤
2 (t)b1(t))u

∗⊤a2(t)

= r1(t)αa1(t) + r2(t)αa2(t). (15)

Also, for the perpendicular components, their time evolution can be derived as:

β̇a1(t) = 2a1⊥(t) · ȧ1⊥(t)

= 2a1⊥(t) ·
d

dt

(
a1(t)−

(
u∗⊤a1(t)

)
u∗
)

= 2a1⊥(t) ·
(
r1(t)b1(t)− r1(t)

(
u∗⊤b1(t)

)
u∗
)
.
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Noting that a1⊥(t) is perpendicular to u∗, the second term in the parenthesis can be considered zero.
Thus, we have

β̇a1(t) = 2r1(t)a1⊥(t)
⊤b1⊥(t).

Likewise, for βa2(t) and βb1(t), we can derive their time derivative as:

β̇a2(t) = 2r2(t)a2⊥(t)
⊤b1⊥(t), β̇b1(t) = β̇a1(t) + β̇a2(t).

Note that by the definition of u∗, we have βb1(∞) = 0. Integrating the identity β̇b1(t) =
β̇a1(t) + β̇a2(t) from t = 0 to ∞ gives:

βa1(∞) + βa2(∞) = βa1(0) + βa2(0)− βb1(0)︸ ︷︷ ︸
≜β0≥0

,

which depends solely on the initial values a1(0), a2(0), and b1(0). This equation shows that if the
initial value β0 is small, the solution will eventually align with u∗. However, since we do not know
u∗ in advance, one natural way to ensure small perpendicular components is to initialize the entire
norms of a1(0), a2(0) to be sufficiently small.

To develop a more rigorous understanding, we analyze the parallel components. Under the
assumption of convergence, we have:

a1(∞)⊤b1(∞) = w∗
11, a2(∞)⊤b1(∞) = w∗

21.

Decomposing a1(∞) and a2(∞) leads to:

a1(∞)⊤b1(∞) =
(
a1⊥(∞) + u∗⊤a1(∞)u∗

)⊤
b1(∞)

= αa1(∞)αb1(∞) = w∗
11, (16)

a2(∞)⊤b1(∞) =
(
a2⊥(∞) + u∗⊤a2(∞)u∗

)⊤
b1(∞)

= αa2(∞)αb1(∞) = w∗
21. (17)

Using equations (13)–(15), and noting that

d

dt
α2
b1(t) =

d

dt
(α2

a1
(t) + α2

a2
(t)),

we can integrate the above equation both sides over time from 0 to ∞ to obtain:

α2
a1
(∞) + α2

a2
(∞) = α2

b1(∞) + α2
a1
(0) + α2

a2
(0)− α2

b1(0)︸ ︷︷ ︸
≜α0

. (18)

By solving equations (16), (17), and (18), we can obtain closed-form solution of αa1(∞), αa2(∞),
and αb1(∞) as follows:

α2
a1
(∞) =

2w∗
11

2

√
α2
0 + 4w∗

11
2 + 4w∗

21
2 − α0

, α2
a2
(∞) =

2w∗
21

2

√
α2
0 + 4w∗

11
2 + 4w∗

21
2 − α0

, (19)

α2
b1(∞) =

√
α2
0 + 4w∗

11
2 + 4w∗

21
2 − α0

2
. (20)
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Thus, we can upper bound the proportion of the perpendicular component of a1(∞) and a2(∞)
relative to its total magnitude as follows:

∥a1⊥(∞)∥2
∥a1(∞)∥2 =

βa1(∞)

α2
a1
(∞) + βa1(∞)

≤
β0

(√
α2
0 + 4w∗

11
2 + 4w∗

21
2 − α0

)

2w∗
11

2 ,

∥a2⊥(∞)∥2
∥a2(∞)∥2 =

βa2(∞)

α2
a2
(∞) + βa2(∞)

≤
β0

(√
α2
0 + 4w∗

11
2 + 4w∗

21
2 − α0

)

2w∗
21

2 .

To further refine these bounds, we analyze the terms β0 and S(α0) ≜
√
α2
0 + 4w∗

11
2 + 4w∗

21
2 −

α0. By the definition of β0, it is upper bounded by ∥a1(0)∥2+∥a2(0)∥2, which equals with ∥A(0)∥2F .
Also, by the definition of α0, we have:

−∥b1(0)∥22 ≤ α0 ≤ ∥a1(0)∥22 + ∥a2(0)∥22 = ∥A(0)∥2F .

Noting that the function f(x) =
√
x2 + C − x (where C > 0) is non-negative and monotonically

decreasing for all x ∈ R, we can upper bound S(α0) using the lower bound of α0:

S(α0) ≤ S(−∥b1(0)∥22)

=
√

(−∥b1(0)∥22)2 + 4(w∗
11

2 + w∗
21

2)− (−∥b1(0)∥22)

=
√

∥b1(0)∥42 + 4(w∗
11

2 + w∗
21

2) + ∥b1(0)∥22.

Substituting these bounds for β0 and S(α0) into the inequality ∥a1⊥(∞)∥2
∥a1(∞)∥22

≤ β0S(α0)

2w∗
11

2 , we obtain the

final upper bound for the proportion of the perpendicular component of a1(∞):

∥a1⊥(∞)∥2
∥a1(∞)∥22

≤
∥A(0)∥2F

(√
∥b1(0)∥42 + 4(w∗

11
2 + w∗

21
2) + ∥b1(0)∥22

)

2w∗
11

2 .

A similar bound applies to ∥a2⊥(∞)∥2
∥a2(∞)∥22

:

∥a2⊥(∞)∥2
∥a2(∞)∥22

≤
∥A(0)∥2F

(√
∥b1(0)∥42 + 4(w∗

11
2 + w∗

21
2) + ∥b1(0)∥22

)

2w∗
21

2 .

27



IMPLICIT BIAS AND LOSS OF PLASTICITY IN MATRIX COMPLETION

F.2. Proof for Proposition 3

According to the definition of coupled/decoupled dynamics presented in Definition 2, for the family
of initializations defined in (7) along with the diagonal observations (Ω(d)

diag), we divide the cases to
ensure that all possible scenarios for this family of initializations are covered.

F.2.1. CASE FOR L = 2

First, we consider the depth-2 (L = 2) case. Each diagonal observation, wii(t), is the inner product
of the i-th row of A(t) and the i-th column of B(t). Then, when we take the gradient ∇θ(t)wii(t),
where θ(t) represents the concatenation of A(t) and B(t), this gradient has non-zero components
only corresponding to the i-th row of A(t) and the i-th column of B(t); all other components are
zero for all t ≥ 0. Therefore, for any j ̸= i, the inner product ⟨∇θ(t)wii(t),∇θ(t)wjj(t)⟩ must be

zero. This means that there exists a partition of Ω(d)
diag into disjoint subsets Ω1, . . . ,Ωd, where each

Ωi = {(i, i)}. Therefore, for any initialization, the training dynamics are decoupled.

F.2.2. CASE FOR L ≥ 3 AND 1 < m < ∞
For the deeper matrix case (L ≥ 3), we first note that each diagonal observation wii(t) can be
expressed as:

wii(t) =
d∑

iL−1=1

· · ·
d∑

i1=1

(WL(t))i,iL−1(WL−1(t))iL−1,iL−2 · · · (W1(t))i1,i.

Now, let us consider m satisfying 1 < m < ∞, under which every entry of each weight matrix
Wl(0) (for l = 1, . . . , L) is initialized as a positive value. Given that wii(0) is a sum of products of
these positive entries, its gradient with respect to the parameters θ(0) (which includes the entries of
Wl(0)), ∇θ(0)wii(0), will also consist of components that are sums of products of positive values.
Therefore, it is asserted that each relevant component of ∇θ(0)wii(0) is positive at initialization.
Consequently, for any j ̸= i, since both ∇θ(0)wii(0) and ∇θ(0)wjj(0) have all their corresponding
components positive, their inner product ⟨∇θ(0)wii(0),∇θ(0)wjj(0)⟩ will be non-zero (specifically,
positive). This non-zero inner product signifies coupled dynamics.

F.2.3. CASE FOR L ≥ 3 AND m = ∞
Next, we examine the m = ∞ case, which corresponds to initializing each factor matrix Wl(0) as
a scaled identity, i.e., Wl(0) = αId. The following lemma states that under this initialization, and
for dynamics driven by diagonal observations (from Ω

(d)
diag), all off-diagonal elements of each Wl(t)

remain zero for all t ≥ 0.

Lemma 9 For a set of L matrices W1(t), . . . ,WL(t) ∈ Rd×d, let WL:1(t) = WL(t) · · ·W1(t).
Following gradient flow dynamics in (3), if each factor matrix Wl(0) is initialized as a diagonal
matrix (e.g., Wl(0) = αlId for scalars αl), then all off-diagonal elements of each matrix Wl(t)
remain zero for all t ≥ 0.
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Proof For a given diagonal observation indices Ω(d)
diag, if we consider the gradient flow dynamics for

an (i, j)-th entry of the factor matrix Wl(t) (≜ (wl(t))ij), we have:

d(wl(t))ij
dt

= − ∂ϕ

∂(wl(t))ij

= −
d∑

p=1

(wpp(t)− w∗
pp)

∂wpp(t)

∂(wl(t))ij
,

Here, the derivative of a diagonal element wpp(t) with respect to (wl(t))ij is:

∂wpp(t)

∂(wl(t))ij
= (WL(t)WL−1(t) · · ·Wl+1(t))pi (Wl−1(t)Wl−2(t) · · ·W1(t))jp ,

where the first term is (p, i)-th element of the product WL(t)WL−1(t) · · ·Wl+1(t), and the second
term is (j, p)-th element of the product Wl−1(t)Wl−2(t) · · ·W1(t). We want to show that if all
Wl(t) are diagonal, then d(wl(t))ij

dt = 0 for any off-diagonal element (wl(t))ij (i.e., i ̸= j).
Assume at a given time t that all factor matrices Wl(t) are diagonal. Then, the product P (t) ≜∏L

k=l+1Wk(t) is diagonal. Similarly, the product S(t) ≜
∏l−1

k=1Wk(t) is diagonal. For ∂wpp(t)
∂(wl(t))ij

to be non-zero (given all Wl(t) are diagonal), both (P (t))pi and (S(t))jp must be non-zero. This
requires p = i and j = p, which implies i = j.

However, we are considering an off-diagonal element (wl(t))ij , for which i ̸= j. This means
that if all Wl(t) are diagonal, then for any p:

∂wpp

∂(wl(t))ij
= 0, if i ̸= j

Substituting this into the dynamic equation for (wl(t))ij :

d(wl(t))ij
dt

= −
d∑

p=1

(wpp(t)− w∗
pp) · 0 = 0, if i ̸= j

Initially, Wl(0) are diagonal, so all off-diagonal elements (wl(t))ij are zero for i ̸= j. Since their
time derivatives are zero when they are zero (i.e., when the matrices are diagonal), these off-diagonal
elements remain zero for all t ≥ 0.

With Lemma 9, the factor matrices Wl(t) remain diagonal, so wii(t) = (WL(t))ii · · · (W1(t))ii.
This structure leads to decoupled dynamics because each wii(t) depends exclusively on the set of
parameters {(Wk(t))ii}Lk=1, while wjj(t) (for j ̸= i) depends on the distinct set {(Wk(t))jj}Lk=1.
Consequently, for any j ̸= i, their respective gradients ∇θ(t)wii(t) and ∇θ(t)wjj(t) are orthogonal,
meaning their inner product is zero:

⟨∇θ(t)wii(t),∇θ(t)wjj(t)⟩ = 0.

This orthogonality implies that the learning for each diagonal entry is independent, allowing a
conceptual partition of Ω

(d)
diag into disjoint subsets Ωi = {(i, i)}. Therefore, under this specific

diagonal initialization (the m = ∞ case), the training dynamics are decoupled.
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F.3. Proof for Theorem 4

Before presenting the proof of Theorem 4, we first restate the problem setting. The model is defined
as WL:1(t) = WL(t)WL−1(t) · · ·W1(t), where each factor matrix Wl(t) ∈ Rd×d is subject to
diagonal observations Ω(d)

diag = {(i, i)}di=1, and follows the gradient flow described in (3). We also
assume that all diagonal entries are equal, i.e., w∗ ≜ w∗

11 = w∗
22 · · · = w∗

dd. To simplify notation, we
use ℓ(WL:1(t)) in place of ℓ(WL:1(t); Ωdiag) when the context is clear. The explicit gradient flow
dynamics for each factor matrix is then given by:

Ẇl(t) = −
L∏

i=l+1

Wi(t)
⊤ · ∇ℓ(WL:1(t)) ·

l−1∏

i=1

Wi(t)
⊤, (21)

where ∇ℓ(WL:1(t)) = diag(r1(t), r2(t), · · · , rd(t)). Here, the residual term is defined as ri(t) ≜
wii(t)− w∗. To begin, we first present the preliminary lemma required for the following result.

Lemma 10 Let In denote the n× n identity matrix and Jn ≜ 1n1
⊤
n denote the n× n matrix with

all entries equal to 1. Then the set

S = {aIn + bJn | a, b ∈ R}

is closed under scalar multiplication, addition, and matrix multiplication. Also, any two matrices
A,B ∈ S commute.

Proof Let

A = aIn + bJn and B = cIn + dJn,

with a, b, c, d ∈ R, and let λ ∈ R be an arbitrary scalar.
Scalar Multiplication:

λA = λ(aIn + bJn) = (λa)In + (λb)Jn.

Since λa, λb ∈ R, it follows that λA ∈ S.
Addition:

A+B = (aIn + bJn) + (cIn + dJn) = (a+ c)In + (b+ d)Jn.

Since a+ c, b+ d ∈ R, we have A+B ∈ S.
Matrix Multiplication:

AB = (aIn + bJn)(cIn + dJn).

Using the distributive property and the facts that

InJn = JnIn = Jn and J2
n = nJn,

we expand:

AB = ac InIn + ad InJn + bcJnIn + bdJ2
n

= ac In + adJn + bcJn + bd (nJn)

= ac In + (ad+ bc+ nbd)Jn.

30



IMPLICIT BIAS AND LOSS OF PLASTICITY IN MATRIX COMPLETION

Thus, AB is of the form αIn + βJn with α = ac and β = ad+ bc+ nbd, and hence AB ∈ S.
Commutativity: By the same procedure as above,

AB = (aIn + bJn)(cIn + dJn)

= acIn + (ad+ bc+ nbd)Jn

= caIn + (cb+ da+ ndb)Jn

= BA,

which completes the proof.

F.3.1. CASE FOR L = 2 & L ≥ 3 AND 1 < m < ∞
We will first examine two main scenarios: the depth-2 (L = 2) case and deeper networks (L ≥ 3)
where 1 < m < ∞. The m = ∞ case will be considered separately in the later subsection, as its
initialization with αId warrants distinct treatment.

We now proceed to prove the following auxiliary results, which are used in the proof of Lemma 12.
Based on Lemmas 11–13, we will show that all diagonal entries across all layers are identical, and
likewise, all off-diagonal entries across layers are also equal.

Lemma 11 Suppose we have a ground truth matrix W ∗ ∈ Rd×d whose diagonal entries are the
same that we are observing, i.e., w∗ ≜ w∗

11 = w∗
22 = · · · = w∗

dd and Ω
(d)
diag = {(i, i)}di=1. We

factorize a solution matrix at time t as a product of L matrices,

WL:1(t) = WL(t)WL−1(t) · · ·W1(t), Wl(t) ∈ Rd×d for all l ∈ [L].

Suppose that for all l ∈ [L] and 0 ≤ m ≤ k, the following holds:

W
(m)
l (t) = x(m)Id + y(m) (Jd − Id) ,

for some scalars x(m), y(m) ∈ R where we denote A(k)(t) as k-th derivative with respect to t of a
matrix A(t). Then, the k-th derivative of the product WL:1(t) satisfies

w
(k)
11 (t) = w

(k)
22 (t) = · · · = w

(k)
dd (t).

Proof Let us denote the m-th derivative of each layer matrix by

A(m) ≜ W
(m)
l (t).

Then, the k-th time derivative of the product WL:1(t) is given by the Leibniz rule:

dk

dtk
WL:1(t) =

∑

k1+···+kL=k

(
k

k1, . . . , kL

)
A(kL)A(kL−1) · · ·A(k1).

By the assumption, each A(m) lies in the span of {Id,Jd}, and since this span is closed under matrix
multiplication and scalar multiplication (by Lemma 10), each term in the sum lies in the same span.
Hence, the entire sum W (k)(t) also lies in span{Id,Jd}, which implies that all diagonal entries of
W (k)(t) are equal.
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Lemma 12 Under the setting of Lemma 11 where each factor matrix Wl(0) is initialized according
to (7), the following identities hold for all k ∈ N ∪ {0} under the gradient flow dynamics defined
in (3):

(
W

(k)
l1

(0)
)
ii
=
(
W

(k)
l2

(0)
)
jj
, i, j ∈ [d], l1, l2 ∈ [L],

(
W

(k)
l1

(0)
)
i1j1

=
(
W

(k)
l2

(0)
)
i2j2

, i1 ̸= j1, i2 ̸= j2 ∈ [d], l1, l2 ∈ [L].

Proof For the base case, when k = 0, these identities immediately follow from our initialization
assumptions. Now, suppose the induction hypothesis holds for all orders m < k (with k ≥ 1), which
means we have:

(
W

(m)
l1

(0)
)
ii
=
(
W

(m)
l2

(0)
)
jj
, i, j ∈ [d], l1, l2 ∈ [L],

(
W

(m)
l1

(0)
)
i1j1

=
(
W

(m)
l2

(0)
)
i2j2

, i1 ̸= j1, i2 ̸= j2 ∈ [d], l1, l2 ∈ [L].
(22)

By applying the Leibniz rule to (21), the k-th derivative of Wl(t) is given by:

W
(k)
l (t) = −

∑

i1,...,iL

(
k − 1

i1, . . . , iL

) L∏

r=l+1

W (ir)
r (t)⊤ · ∇ℓ(WL:1(t))

(il) ·
l−1∏

r=1

W (ir)
r (t)⊤, (23)

with
∑

l il = k−1 where each il ≥ 0. Given our induction assumption in equation (22) for all m < k,
let x(m)(0) denote the m-th derivative of the diagonal entries and y(m)(0) the m-th derivative of the
off-diagonal entries at initialization. Note that at initialization. by Lemma 11, under the assumption
that W (m)

l (0) lies in the span of {Id,Jd} leads to w
(m)
11 (0) = w

(m)
22 (0) · · · = w

(m)
dd (0). Therefore,

we know ∇ℓ(WL:1(0))
(il) = r(il)(0)Id for all il < k, where r(il)(0) ≜ r

(il)
11 (0) = · · · = r

(il)
dd (0).

Thus, at initialization, since equation (23) consists of terms involving x(m)(0) and y(m)(0) for all
m < k, we can rewrite the above expression at t = 0 in terms of these derivatives as follows:

W
(k)
l (0) = −

∑

i1,...,iL

(
k − 1

i1, . . . , iL

)
r(il)(0)

∏

r∈[L]\{l}

W (ir)
r (0)

= −
∑

i1,...,iL

(
k − 1

i1, . . . , iL

)
r(il)(0)

∏

r∈[L]\{l}

(arId + brJd) ,

where constants ar and br are composed of x(r)(0) and y(r)(0). Then, by Lemma 10, W (k)
l (0) can

be expressed in terms of only two values—one for the diagonal entries and one for the off-diagonal
entries:

W
(k)
l (0) = αId + βJd, α, β ∈ R,

thus concluding the proof.
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Lemma 13 Under the setting of Lemma 12, the symmetries are preserved for all time t ≥ 0:

(Wl1(t))ii = (Wl2(t))jj for all i, j ∈ [d], l1, l2 ∈ [L],

(Wl1(t))i1j1 = (Wl2(t))i2j2 for all i1 ̸= j1, i2 ̸= j2 ∈ [d], l1, l2 ∈ [L].

Proof By applying Lemma 37 to the result of Lemma 12, we can conclude that the symmetries are
preserved for all timestep t ≥ 0.

By the above lemmas, if the initialization follows the scheme in (7), then all diagonal entries of
the all layers are identical, and all off-diagonal entries are also identical. Under this condition, the
gradient flow dynamics can be easily described by the following lemma.

Lemma 14 Under the same conditions as in Lemma 12, if the diagonal entries of each layer are
identical at timestep t (denoted by x(t)), and if the off-diagonal entries of each layer are identical at
timestep t (denoted by y(t)), then the time derivative of x(t) and y(t) are given as:

ẋ(t) = −(x(t) + (d− 1)y(t))L−1 + (d− 1)(x(t)− y(t))L−1

d
r(t),

ẏ(t) = −(x(t) + (d− 1)y(t))L−1 − (x(t)− y(t))L−1

d
r(t).

Proof For l ∈ [L] the gradient flow dynamics of Wl are written as:

Ẇl(t) = −
L∏

i=l+1

Wi(t)
⊤ · ∇ℓ(WL:1(t)) ·

l−1∏

i=1

Wi(t)
⊤, (24)

where ∇ℓ(WL:1(t)) = diag(r(t), · · · , r(t)). Since Wl(t) is comprised of x(t) in diagonal entries
and y(t) in off-diagonal entries, the above dynamics can be rewritten as follows:

Ẇl(t) = −r(t) [Wl(t)]
L−l · Id · [Wl(t)]

l−1

= −r(t) [Wl(t)]
L−1 . (25)

If we rewrite Wl(t) = (x(t)− y(t))Id + y(t)Jd, its eigenvalues are derived as:

λ1 = x(t) + (d− 1)y(t) for the eigenvector 1,

λ2 = x(t)− y(t) for any eigenvector orthogonal to 1 (multiplicity d− 1).

Here, we denote λi ≜ λi(WL:1(t)), unless otherwise specified. Then, we can decompose Wl(t)
with projection matrix P∥ =

1
dJd and P⊥ = Id − 1

dJd as follows:

Wl(t) = λ1P∥ + λ2P⊥.

Therefore, if we take (L− 1)-th power of Wl(t), we can derive:

[Wl(t)]
L−1 = λL−1

1 P∥ + λL−1
2 P⊥

= (x(t) + (d− 1)y(t))L−1 · 1
d
Jd + (x(t)− y(t))L−1

(
Id −

1

d
Jd

)

= (x(t)− y(t))L−1Id +
(x(t) + (d− 1)y(t))L−1 − (x(t)− y(t))L−1

d
Jd.
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Recalling that Id has 1 on the diagonal and 0 off-diagonal, and Jd has 1 in every entry, the entries of
[Wl(t)]

L−1 are:

(
[Wl(t)]

L−1
)
ii
= (x(t)− y(t))L−1 +

(x(t) + (d− 1)y(t))L−1 − (x(t)− y(t))L−1

d

=
(x(t) + (d− 1)y(t))L−1 + (d− 1)(x(t)− y(t))L−1

d
, ∀i ∈ [d], (26)

(
[Wl(t)]

L−1
)
ij
=

(x(t) + (d− 1)y(t))L−1 − (x(t)− y(t))L−1

d
, ∀i ̸= j ∈ [d]. (27)

This concludes the proof by substituting the above equations to equation (25).

Under the gradient flow dynamics of the diagonal entry x(t) and y(t), we derive the dynamics of
singular value of Wl(t).

Lemma 15 Under the conditions of Lemma 12, the singular values of Wl(t) evolve according to:

σ̇i(t) = −σL−1
i (t)r(t), i = 1, 2, . . . d,

Proof By Lemma 13, each factor matrix Wl(t) is symmetric, having x(t) as its diagonal entries and
y(t) as its off-diagonal entries. The distinct eigenvalues of Wl(t) are λ1(t) = x(t) + (d − 1)y(t)
and λ2(t) = x(t)− y(t) (where λ2(t) has multiplicity d− 1). Their time derivatives are calculated
by:

λ̇i(t) = −λL−1
i (t)r(t),

Note that by setting m > 1, we have λ1(0) ≥ λ2(0) > 0. If L = 2, the solution of above equation is
equal to λi(t) = λi(0) exp

(
−
∫ t
0 r(τ)dτ

)
, which means it maintains the positiveness of λi(0) for

all t ≥ 0. For L > 2, its general solution can be written as follows:

λi(t) =

(
λi(0)

2−L + (L− 2)

∫ t

0
r(τ)dτ

) 1
2−L

,

due to its positiveness at initialization. Then, λi(t) stays strictly positive, since it may diverge to
+∞, but it never reaches zero or changes the sign. Therefore, due to the symmetry and positive
definiteness of Wl(t), we further conclude that λi(t) ≡ σi(t).

By above lemma, we can solve ODE and find σr(t) as follows:

σr(t) =




σr(0) exp

(
−
∫ t
0 r(τ)dτ

)
, L = 2,

(
σr(0)

2−L + (L− 2) ·
∫ t
0 r(τ)dτ

) 1
2−L

, L > 2.
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Since σ1(0) = x(0) + (d − 1)y(0) = α
(
1 + d−1

m

)
and σr(0) = x(0) − y(0) = α(1 − 1

m) for all
i ≥ 2, we can separate above equation as following:

σ1(t) =




α
(
1 + d−1

m

)
exp

(
−
∫ t
0 r(τ)dτ

)
, L = 2,

(
α2−L

(
1 + d−1

m

)2−L
+ (L− 2) ·

∫ t
0 r(τ)dτ

) 1
2−L

, L > 2,

σr(t) =




α(1− 1

m) exp
(
−
∫ t
0 r(τ)dτ

)
, L = 2,

(
α2−L(1− 1

m)2−L + (L− 2) ·
∫ t
0 r(τ)dτ

) 1
2−L

, L > 2.
, r = 2, 3, . . . , d.

Then, we can establish a relationship between σ1(t) and σr(t), thereby identifying an invariant
property independent of time t:

• For L = 2:
σ1(t)

σr(t)
=

m+ d− 1

m− 1
, (28)

• For L > 2:

σ2−L
1 (t)− σ2−L

r (t) = α2−L

((
1 +

d− 1

m

)2−L

−
(
1− 1

m

)2−L
)
. (29)

Furthermore, we can derive a closed-form solution for the singular values by utilizing the
convergence guarantee. From equation (26), the diagonal entries of the solution matrix can be
expressed as:

wii(t) =
(
[Wl(t)]

L
)
ii
=

(x(t) + (d− 1)y(t))L + (d− 1) (x(t)− y(t))L

d
, ∀i ∈ [d].

Since wii(t) converges to a fixed value w∗, and noting that σ1(t) = x(t) + (d − 1)y(t) and
σr(t) = x(t)− y(t), we obtain the following convergence equation:

w∗ =
σL
1 (∞) + (d− 1)σL

r (∞)

d
. (30)

Combining Equations (28) and (30), we derive a closed-form solution for the singular values of
the depth-2 matrix as t → ∞:

σ1(∞) = (m+ d− 1)

√
w∗

m2 + d− 1
,

σr(∞) = (m− 1)

√
w∗

m2 + d− 1
, r = 2, 3, . . . , d.

For the case when L ≥ 3, we cannot obtain an exact analytical solution for σr(∞). Instead, we
derive implicit equations for both σ1(∞) and σr(∞) that cannot be easily solved without specifying
numerical values:

σ2−L
1 (∞)−

(
w∗d− σL

1 (∞)

d− 1

) 2−L
L

= Cα,m,L,d,

(
w∗d− (d− 1)σL

r (∞)
) 2−L

L − σ2−L
r (∞) = Cα,m,L,d, for r = 2, . . . , d.,
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where Cα,m,L,d ≜
(
α
m

)2−L
(
(m+ d− 1)2−L − (m− 1)2−L

)
. If we specify the values of α >

0,m > 1, d ≥ 2, L ≥ 3 and w∗ > 0 for ground-truth value, we can derive σ1(∞) and σr(∞) of
solution matrix of depth-L by substituting the values to above equations.

Furthermore, since WL:1(t) = [Wl(t)]
L, when we diagonalize the factor matrix Wl(t) as

Wl(t) = QΛ(t)Q⊤, we have:
WL:1(t) = QΛL(t)Q⊤,

which indicates σi(WL:1(t)) = (σi(WL:1(t)))
L for all i ∈ [d]. This concludes the proof of

Theorem 4.

Remark. The L ≥ 3 and m = ∞ case could arguably fall under the preceding analysis when
other parameters are held fixed, as m = ∞ implies that all singular values are identical. However,
a slight dependency on the specific value of α persists; for instance, tracking the overall result
becomes challenging if α approaches zero while m = ∞. Therefore, we will restrict the scope of the
aforementioned analysis to finite m. Consequently, the L ≥ 3 and m = ∞ case will be analyzed
separately in the following subsection.

F.3.2. CASE FORL ≥ 3 AND m = ∞
We now examine the m = ∞ case, which corresponds to an initialization scheme like Wl(0) = αId.
By Lemma 9, the factor matrices Wl(t) remain diagonal for all t ≥ 0, and thus the diagonal
entries of the product matrix are wii(t) = (WL(t))ii(WL−1(t))ii · · · (W1(t))ii. Assuming zero-loss
convergence is achieved for any initial choice of α > 0, it follows that wii(∞) = w∗ for all i, and
consequently, the overall matrix WL:1(∞) is diagonal with entries w∗.

Furthermore, let us consider the implications of Lemmas 11–13. These lemmas hold under a
condition y(t) = 0, thereby belonging to span{Id,Jd}), this leads to the result that each diagonal
element of the factor matrices at convergence is (Wl(∞))ii = (w∗)1/L for all i ∈ [d] and l ∈ [L].
This means each layer Wl(∞) becomes (w∗)1/LId, and thus has identical singular values equal to
(w∗)1/L (assuming w∗ ≥ 0). This, in turn, leads to the final claim that for the overall product matrix
WL:1(∞), its singular values σi(WL:1(∞)) satisfy (σi(WL:1(∞)))L = w∗ for all i ∈ [d].

F.3.3. LOSS CONVERGENCE

Actually, we can further show loss convergence under minor initialization assumption with the below
proposition.

Proposition 16 Under the conditions of Theorem 4, assume the initialization scale α is set such
that wii(0) ≤ w∗, specifically,

0 < αL ≤ w∗dmL

(m+ d− 1)L + (d− 1)(m− 1)L
.

Denoting ℓ(t) ≜ ℓ(WL:1(t); Ω
(d)
diag), loss convergence is guaranteed for any L ≥ 2,m > 1, and

d ≥ 2:

ℓ(t) ≤ ℓ(0) exp

(
−2Lα2L−2

(
(d− 1)(m− 1)2L−2 + (m+ d− 1)2L−2

)

dm2L−2
t

)
.
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Proof Recall that the eigenvalues are given by λ1(t) = x(t) + (d− 1)y(t) and λ2(t) = x(t)− y(t).
From Lemma 14, their time derivatives are

λ̇1(t) = −λL−1
1 (t)r(t),

λ̇2(t) = −λL−1
2 (t)r(t).

The diagonal entries wii(t) of WL:1(t) can be expressed in terms of these eigenvalues as

wii(t) =
(x(t) + (d− 1)y(t))L + (d− 1)(x(t)− y(t))L

d

=
λL
1 (t) + (d− 1)λL

2 (t)

d
.

Let the residual be defined as r(t) = wii(t)−w∗, where w∗ is a constant. The time derivative of r(t)
can then be calculated by applying the chain rule to r(t)’s definition and subsequently substituting
the expressions for λ̇1(t) and λ̇2(t):

ṙ(t) =
d

dt
(wii(t)− w∗)

=
L

d
λL−1
1 (t)λ̇1(t) +

L(d− 1)

d
λL−1
2 (t)λ̇2(t)

=
L

d
λL−1
1 (t)

(
−λL−1

1 (t)r(t)
)
+

L(d− 1)

d
λL−1
2 (t)

(
−λL−1

2 (t)r(t)
)

= −



L

d
λ2L−2
1 (t) +

L(d− 1)

d
λ2L−2
2 (t)

︸ ︷︷ ︸
≜K(t)


 r(t). (31)

This gives the first-order linear ordinary differential equation ṙ(t) = −K(t)r(t). The general
solution for r(t) is therefore

r(t) = r(0) exp

(
−
∫ t

0
K(τ)dτ

)
. (32)

Given the initial condition provided, r(0) ≤ 0, and r(t) maintains the same sign as r(0).
Therefore, r(t) ≤ 0 for all t ≥ 0. The choice of m > 1 ensures that λ1(0), λ2(0) > 0. With r(t) ≤ 0
and λi(0) > 0, and assuming L ≥ 1, the derivatives of the eigenvalues satisfy

λ̇1(t) =
d

dt
(x(t) + (d− 1)y(t)) = −(x(t) + (d− 1)y(t))L−1r(t) ≥ 0,

λ̇2(t) =
d

dt
(x(t)− y(t)) = −(x(t)− y(t))L−1r(t) ≥ 0,

because λL−1
i (t) ≥ 0 and r(t) ≤ 0. These non-negative derivatives imply that λ1(t) and λ2(t) are

monotonically non-decreasing. Since they start from positive values, they remain positive for all
t ≥ 0, i.e., λi(t) ≥ λi(0) > 0.
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With above lower bound for λi(t), which is λi(0), we can upper bound the K(t) as follows:

K(t) ≥ L

d
λ2L−2
1 (0) +

L(d− 1)

d
λ2L−2
2 (0)

=
Lα2L−2

(
(d− 1)(m− 1)2L−2 + (m+ d− 1)2L−2

)

dm2L−2
. (33)

By upper bounding the absolute value of (32) with (33), we derive:

|r(t)| ≤ |r(0)| exp(−K(0)t),

and since ℓ(WL:1(t)) =
d
2r

2(t), this leads to loss convergence:

ℓ(WL:1(t)) ≤ ℓ(WL:1(0)) exp(−2K(0)t).
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Appendix G. Proof for Section A

In this section, we provide the proofs for the propositions and theorems presented in Section A. First,
Subsection G.1 presents the general form of Proposition 5 along with its proof. Next, Subsection G.2
details the proof of Theorem 6, focusing on the 2×2 matrix case. Lastly, Subsection G.2.2 generalizes
the core ideas to d× d matrices and provides the proof of Theorem 6 for this general d× d setting.

G.1. General Form and Proof of Proposition 5

We first present the general form of Proposition 5. This proposition is applicable to any “fully discon-
nected case”, a scenario that involves the diagonal entries introduced within this same proposition.

For a d× d ground truth matrix W ∗, the observed entries are given by Ω = {(in, jn)}dn=1. Since
we consider fully disconnected case, in ̸= im, jn ̸= jm for all n,m ∈ [d]. We factorize the solution
model at time t as WA,B(t) = A(t)B(t), where WA,B(t),A(t),B(t) ∈ Rd×d. We consider the
gradient flow dynamics with the loss function defined as in (2).

For a given row index k, since there exists a unique entry (k, j) ∈ Ω, we denote this unique
column index by j(k). Thus, w∗

k,j(k)
and wk,j(k)(t) refer to the ground truth weight w∗

k,j and the

time-varying weight wk,j(t) respectively, where j = j(k). Similarly, for a given column index l,
since there exists a unique entry (i, l) ∈ Ω, we denote this unique row index by i(l). Thus w∗

i(l),l

and wi(l),l refer to the ground truth weight w∗
i,l and the time-varying weight wi,l(t) respectively,

where i = i(l). Defining the residuals as rij(t) := w∗
ij − wij(t), we adopt this compact notation for

residuals as well. Then, we can derive a closed-form solution for arbitrary initialization with below
proposition.

Proposition 17 Consider a ground truth matrix W ∗ ∈ Rd×d and a set of d fully disconnected
observations Ω = {(in, jn)}dn=1. The model is factorized as WA,B(t) = A(t)B(t), where the
factors A(t),B(t) ∈ Rd×d. For each observed pair (in, jn) ∈ Ω, define the constants Pin,jn and
Qin,jn based on the initial values A(0) and B(0):

Pin,jn ≜
d∑

k=1

ain,k(0)bk,jn(0) and Qin,jn ≜
d∑

k=1

(
ain,k(0)

2 + bk,jn(0)
2
)
.

Furthermore, for each such observed pair (in, jn), let the parameter r̄in,jn be determined from the
ground truth entry w∗

in,jn
and the constants defined above, as follows:

r̄in,jn ≜
1

2
log




Pin,jn +
Qin,jn

2

w∗
in,jn

+

√
w∗
in,jn

2 − P 2
in,jn

+
(
Qin,jn

2

)2


 .

Then, assuming convergence to a zero-loss solution (i.e., win,jn(∞) = w∗
in,jn

for all (in, jn) ∈ Ω),
any entry ap,q(∞) of the converged matrix A(∞) and any entry bp,q(∞) of the converged matrix
B(∞) (for arbitrary indices p, q ∈ [d]) are explicitly given by:

ap,q(∞) = ap,q(0) cosh
(
r̄p,j(p)

)
− bq,j(p)(0) sinh

(
r̄p,j(p)

)
,

bp,q(∞) = bp,q(0) cosh
(
r̄i(q),q

)
− ai(q),p(0) sinh

(
r̄i(q),q

)
.
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Proof We can express their evolution in the following vector form using the vectorized parameter

θ(t) :=

[
vec(A(t))
vec(B(t))

]
∈ R2d2×2d2 :

θ̇(t) = −
[
0d2,d2 R(t)
R(t)⊤ 0d2,d2

]
θ(t) (34)

where R(t) ∈ Rd2×d2 is defined as:

R(t) =




r1,j(1)(t)e
⊤
j(1)

r1,j(1)(t)e
⊤
j(1)+d

...
r1,j(1)(t)e

⊤
j(1)+(d−1)d

r2,j(2)(t)e
⊤
j(2)

r2,j(2)(t)e
⊤
j(2)+d

...
rd,j(d)(t)e

⊤
j(d)+(d−1)d




(35)

for ei ∈ Rd2 form the standard basis. Since
[
0d2,d2 R(t)
R(t)⊤ 0d2,d2

]
commutes with any other t values, the

solution is given as:

θ(t) = exp

(
−
∫ τ

0

[
0d2,d2 R(t)
R(t)⊤ 0d2,d2

]
dτ

)
· θ(0) (36)

= exp

(
−
[
0d2,d2 R̄(t)
R̄(t)⊤ 0d2,d2

]
dτ

)
· θ(0) (37)

where

R̄(t) :=

∫ t

0
R(τ)dτ =




r̄1,j(1)(t)e
⊤
j(1)

r̄1,j(1)(t)e
⊤
j(1)+d

...
r̄1,j(1)(t)e

⊤
j(1)+(d−1)d

r̄2,j(2)(t)e
⊤
j(2)

r̄2,j(2)(t)e
⊤
j(2)+d

...
r̄d,j(d)(t)e

⊤
j(d)+(d−1)d



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for r̄i,j(t) =
∫ t
0 ri,j(τ)dτ . If we assume convergence, we get:

θ(∞) = exp

(
−
[
0d2,d2 R̄(∞)
R̄(∞)⊤ 0d2,d2

]
dτ

)
· θ(0) (38)

=

([
Id2 0d2,d2

0d2,d2 Id2

]
−
[
0d2,d2 R̄(t)
R̄(t)⊤ 0d2,d2

]
+

1

2

[
R̄(t)R̄(t)⊤ 0d2,d2

0d2,d2 R̄(t)⊤R̄(t)

]
(39)

− 1

6

[
0d2,d2 R̄(t)R̄(t)⊤R̄(t)

R̄(t)⊤R̄(t)R̄(t)⊤ 0d2,d2

]
+

1

24

[(
R̄(t)R̄(t)⊤

)2
0d2,d2

0d2,d2
(
R̄(t)⊤R̄(t)

)2

]
(40)

− · · ·
)

· θ(0), (41)

which can be simplified as:

θ(∞) =

[
C D
E F

]
θ(0), (42)

with C,D,E and F are defined as following:

C = cosh

(
diag

(
r̄1,j(1) , . . . , r̄1,j(1) , r̄2,j(2) , . . . , r̄2,j(2) , . . . , r̄d,j(d) , . . . , r̄d,j(d)

))
,

F = cosh

(
diag

(
r̄i(1),1, r̄i(2),2, . . . , r̄i(d),d, . . . , r̄i(1),1, r̄i(2),2, . . . , r̄i(d),d

))
,

D = − sinh

([
r̄1,j(1)e

⊤
j(1)

, . . . , r̄1,j(1)e
⊤
j(1)+(d−1)d

, . . . , r̄d,j(d)e
⊤
j(d)

, . . . , r̄d,j(d)e
⊤
j(d)+(d−1)d

]⊤)
,

E = − sinh

([
r̄1,j(1)ej(1) , . . . , r̄1,j(1)ej(1)+(d−1)d, . . . , r̄d,j(d)ej(d) , . . . , r̄d,j(d)ej(d)+(d−1)d

])
.

Here, for any matrix P , the operations cosh(P ) and sinh(P ) are performed elementwise. For a
set of d observed indices Ω, there exists d corresponding unknown variables, r̄ik,jk . If convergence
is guaranteed, the model yields d equations relating these variables to the d ground truth values.
This implies that the variables r̄ik,jk can be characterized as a closed-form. To characterize more
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rigorously, we substitute C,D,E, and F into (42):

θ(∞) =




a1,1(∞)
a1,2(∞)

...
a1,d(∞)

a2,1(∞)
a2,2(∞)

...
a2,d(∞)

...
ad,1(∞)

...
ad,d(∞)

b1,1(∞)
b1,2(∞)

...
b1,d(∞)

b2,1(∞)
b2,2(∞)

...
b2,d(∞)

...
bd,1(∞)

...
bd,d(∞)




=




a1,1(0) cosh(r̄1,j(1))− b1,j(1)(0) sinh(r̄1,j(1))

a1,2(0) cosh(r̄1,j(1))− b2,j(1)(0) sinh(r̄1,j(1))
...

a1,d(0) cosh(r̄1,j(1))− bd,j(1)(0) sinh(r̄1,j(1))

a2,1(0) cosh(r̄2,j(2))− b1,j(2)(0) sinh(r̄2,j(2))

a2,2(0) cosh(r̄2,j(2))− b2,j(2)(0) sinh(r̄2,j(2))
...

a2,d(0) cosh(r̄2,j(2))− bd,j(2)(0) sinh(r̄2,j(2))
...

ad,1(0) cosh(r̄d,j(d))− b1,j(d)(0) sinh(r̄d,j(d))
...

ad,d(0) cosh(r̄d,j(d))− bd,j(d)(0) sinh(r̄d,j(d))

−ai(1),1(0) sinh(r̄i(1),1) + b1,1(0) cosh(r̄i(1),1)

−ai(2),1(0) sinh(r̄i(2),2) + b1,2(0) cosh(r̄i(2),2)
...

−ai(d),1(0) sinh(r̄i(d),d) + b1,d(0) cosh(r̄i(d),d)

−ai(1),2(0) sinh(r̄i(1),1) + b2,1(0) cosh(r̄i(1),1)

−ai(2),2(0) sinh(r̄i(2),2) + b2,2(0) cosh(r̄i(2),2)
...

−ai(d),2(0) sinh(r̄i(d),d) + b2,d(0) cosh(r̄i(d),d)
...

−ai(1),d(0) sinh(r̄i(1),1) + bd,1(0) cosh(r̄i(1),1)
...

−ai(d),d(0) sinh(r̄i(d),d) + bd,d(0) cosh(r̄i(d),d)




. (43)

Then, assuming convergence, for each observation (in, jn) ∈ Ω (for n = 1, . . . , d), we obtain the
equation:

w∗
in,jn = win,jn(∞) = ain,1(∞)b1,jn(∞) + · · ·+ ain,d(∞)bd,jn(∞)

=

d∑

k=1

[(
ain,k(0) cosh(r̄in,jn)− bk,j(in)(0) sinh(r̄in,jn)

)

· (bk,jn(0) cosh(r̄in,jn)− ain,k(0) sinh(r̄in,jn))

]
.
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Let Cn = cosh(r̄in,jn) and Sn = sinh(r̄in,jn). Then we can rewrite above equation as:

w∗
in,jn =

d∑

k=1

(
ain,k(0)bk,jn(0)C

2
n − ain,k(0)

2CnSn − bk,jn(0)
2CnSn + ain,k(0)bk,jn(0)S

2
n

)

=

(
d∑

k=1

ain,k(0)bk,jn(0)

)
(
C2
n + S2

n

)
−
(

d∑

k=1

(
ain,k(0)

2 + bk,jn(0)
2
)
)
CnSn

= Pin,jn cosh(2r̄in,jn)−
Qin,jn

2
sinh(2r̄in,jn), (44)

where Pin,jn =
∑d

k=1 ain,k(0)bk,jn(0) and Qin,jn =
∑d

k=1

(
ain,k(0)

2 + bk,jn(0)
2
)
.

By solving (44) with respect to r̄in,jn , we can get:

2w∗
in,jn = Pin,jn

(
e2r̄in,jn + e−2r̄in,jn

)
− Qin,jn

2

(
e2r̄in,jn − e−2r̄in,jn

)

= e2r̄11
(
Pin,jn − Qin,jn

2

)
+ e−2r̄11

(
Pin,jn +

Qin,jn

2

)
.

Multiply by e2r̄in,jn leads to:

2w∗
in,jne

2r̄in,jn = e4r̄11
(
Pin,jn − Qin,jn

2

)
+ Pin,jn +

Qin,jn

2
.

Rearrange into a quadratic equation by setting u = e2r̄in,jn :
(
Pin,jn − Qin,jn

2

)
u2 − 2w∗

in,jnu+ Pin,jn +
Qin,jn

2
= 0.

By solving the above equation while noting that Pin,jn − Qin,jn
2 ≤ 0 by the definition, we can get

explicit solutions for r̄in,jn :

r̄in,jn =
1

2
log




Pin,jn +
Qin,jn

2

w∗
in,jn

+

√
w∗
in,jn

2 − P 2
in,jn

+
(
Qin,jn

2

)2


 .

Note that each r̄in,jn is solely determined by the initial points θ(0). With r̄in,jn determined for each
observed entry, we have closed-form expressions characterizing the model’s learned relationship for
these observations. Consequently, by (43), we have:

ap,q(∞) = ap,q(0) cosh
(
r̄p,j(p)

)
− bq,j(p)(0) sinh

(
r̄p,j(p)

)
,

bp,q(∞) = bp,q(0) cosh
(
r̄i(q),q

)
− ai(q),p(0) sinh

(
r̄i(q),q

)
.
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G.2. Proof of Theorem 6

In this section, we will provide the analysis of 2× 2 matrix that starting from pre-trained weights
with diagonal observations w∗ ≜ w∗

11 = w∗
22, WA,B(t) cannot converge to a low-rank solution. Let

T1 > t1 be the timestep that concludes the pre-train phase. For the sake of simplicity, we omit the ϵ
term introduced in the pre-train phase. Then, we know from Proposition 17, we have:

A(T1) = B(T1) =

(√
w∗ 0

0
√
w∗

)
. (45)

In the post-train phase, we introduce an additional observation in the off-diagonal entries,
specifically w∗

12 or w∗
21. Without loss of generality, we assume w∗

12 > 0 is revealed while other
observations remain the same, i.e., Ωpost = {(1, 1), (1, 2), (2, 2)}. Note that the gradient of the
post-train loss is:

∇ℓ(WA,B) =

(
w11 − w∗ w12 − w∗

12

0 w22 − w∗

)

=

(
a11b11 + a12b21 − w∗ a11b12 + a12b22 − w∗

12

0 a21b12 + a22b22 − w∗

)
.

For simplicity, we again omit the Ω term in the loss specification. We define the residuals for the
relevant matrix elements as r11 := w11 − w∗, r12 := w12 − w∗

12, and r22 := w22 − w∗.
We begin by demonstrating a pairwise symmetry between the entries of A(t) and B(t), which

simplifies subsequent analysis. To this end, we first provide the time derivatives for the elements
of A(t) and B(t). Given the general gradient flow dynamics Ȧ(t) = −∇ℓ(WA,B(t))B⊤(t) and
Ḃ(t) = −A⊤(t)∇ℓ(WA,B(t)), the component-wise updates are as follows. For A(t):

ȧ11(t) = b11(t)(w
∗ − w11(t)) + b12(t)(w

∗
12 − w12(t)),

ȧ12(t) = b21(t)(w
∗ − w11(t)) + b22(t)(w

∗
12 − w12(t)),

ȧ21(t) = b12(t)(w
∗ − w22(t)),

ȧ22(t) = b22(t)(w
∗ − w22(t)),

(46)

and for B(t):
ḃ11(t) = a11(t)(w

∗ − w11(t)),

ḃ12(t) = a11(t)(w
∗
12 − w12(t)) + a21(t)(w

∗ − w22(t)),

ḃ21(t) = a12(t)(w
∗ − w11(t)),

ḃ22(t) = a12(t)(w
∗
12 − w12(t)) + a22(t)(w

∗ − w22(t)).

(47)

Using the equations above, we first present a result showing that the k-th derivative of each
element in A(t) and B(t) at initialization exhibits a pairwise symmetry:

Lemma 18 Let WA,B(T1) = A(T1)B(T1) ∈ R2×2 be a product matrix, where A(T1) and B(T1)
are matrices that are obtained at the end of the pre-training phase. Suppose the ground truth matrix
satisfies w∗

11 = w∗
22. Then for every k ∈ N ∪ {0}, the following identities hold:

a
(k)
11 (T1) = b

(k)
22 (T1), a

(k)
12 (T1) = b

(k)
12 (T1),

a
(k)
21 (T1) = b

(k)
21 (T1), a

(k)
22 (T1) = b

(k)
11 (T1),

(48)
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and consequently,

w
(k)
11 (T1) = w

(k)
22 (T1). (49)

Proof We prove the statement by induction on k. When k = 0, by the initialization assumption, we
have

a11(T1) = b22(T1), a12(T1) = b12(T1), a21(T1) = b21(T1), a22(T1) = b11(T1),

and therefore w11(T1) = w22(T1).
Assume that for all orders m < k (with k ≥ 1) the identities

a
(m)
11 (T1) = b

(m)
22 (T1), a

(m)
12 (T1) = b

(m)
12 (T1), a

(m)
21 (T1) = b

(m)
21 (T1), a

(m)
22 (T1) = b

(m)
11 (T1),

hold, and hence also w
(m)
11 (T1) = w

(m)
22 (T1). By the Leibniz rule, each element of the k-th derivative

can be written as a finite sum involving derivatives of orders strictly less than k. For A(t):

a
(k)
11 (t) = −

k−1∑

j=0

(
k − 1

j

)(
b
(k−1−j)
11 (t)r

(j)
11 (t) + b

(k−1−j)
12 (t)r

(j)
12 (t)

)
,

a
(k)
12 (t) = −

k−1∑

j=0

(
k − 1

j

)(
b
(k−1−j)
21 (t)r

(j)
11 (t) + b

(k−1−j)
22 (t)r

(j)
12 (t)

)
,

a
(k)
21 (t) = −

k−1∑

j=0

(
k − 1

j

)
b
(k−1−j)
12 (t)r

(j)
22 (t),

a
(k)
22 (t) = −

k−1∑

j=0

(
k − 1

j

)
b
(k−1−j)
22 (t)r

(j)
22 (t),

and for B(t):

b
(k)
11 (t) = −

k−1∑

j=0

(
k − 1

j

)
a
(k−1−j)
11 (t)r

(j)
11 (t),

b
(k)
12 (t) = −

k−1∑

j=0

(
k − 1

j

)(
a
(k−1−j)
11 (t)r

(j)
12 (t) + a

(k−1−j)
21 (t)r

(j)
22 (t)

)
,

b
(k)
21 (t) = −

k−1∑

j=0

(
k − 1

j

)
a
(k−1−j)
12 (t)r

(j)
11 (t),

b
(k)
22 (t) = −

k−1∑

j=0

(
k − 1

j

)(
a
(k−1−j)
12 (t)r

(j)
12 (t) + a

(k−1−j)
22 (t)r

(j)
22 (t)

)
.

By the inductive hypothesis, all derivatives of order less than k satisfy the symmetric relations at
t = T1. Inserting these equalities into the expressions with t = T1 above shows that the symmetry is
maintained at the k-th order:

a
(k)
11 (T1) = b

(k)
22 (T1), a

(k)
12 (T1) = b

(k)
12 (T1), a

(k)
21 (T1) = b

(k)
21 (T1), a

(k)
22 (T1) = b

(k)
11 (T1),
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proving equations (48) and (49).

Lemma 19 Under the setting of Lemma 18, below relationships hold for all t ≥ T1:

a11(t) = b22(t), a12(t) = b12(t),

a21(t) = b21(t), a22(t) = b11(t),
(50)

which further leads to w11(t) = w22(t).

Proof By Lemmas 37 and 18, we may conclude that for all t ≥ T1, equation (50) holds, and therefore
w11(t) = w22(t).

By Lemma 19, all entries of B(t) can be expressed in terms of the entries of A(t) for all t ≥ T1.
From this point onward, we will represent WA,B(t) solely using the elements of A(t). We begin by
simplifying the time derivative of A(t) as follows:

ȧ11(t) = a22(t)(w
∗ − w11(t)) + a12(t)(w

∗
12 − w12(t)),

ȧ12(t) = a21(t)(w
∗ − w11(t)) + a11(t)(w

∗
12 − w12(t)),

ȧ21(t) = a12(t)(w
∗ − w22(t)),

ȧ22(t) = a11(t)(w
∗ − w22(t)).

(51)

Rewriting WA,B(t) in terms of the elements of A(t) yields:

WA,B(t) = A(t)B(t)

=

(
a11(t) a12(t)
a21(t) a22(t)

)(
a22(t) a12(t)
a21(t) a11(t)

)

=

(
a11(t)a22(t) + a12(t)a21(t) 2a11(t)a12(t)

2a21(t)a22(t) a11(t)a22(t) + a12(t)a21(t)

)
. (52)

We can also simplify the time derivative of WA,B(t) as follows:

ẇ11(t) = (w∗ − w11(t))
(
a211(t) + a212(t) + a221(t) + a222(t)

)

+ (w∗
12 − w12(t)) (a11(t)a21(t) + a12(t)a22(t)) ,

ẇ12(t) = 2(w∗
12 − w12(t))

(
a211(t) + a212(t)

)

+ 2(w∗ − w11(t)) (a11(t)a21(t) + a12(t)a22(t)) ,

ẇ21(t) = 2(w∗ − w11(t))(a11(t)a21(t) + a12(t)a22(t)),

ẇ22(t) = ẇ11(t).

(53)

Using (52), we state the basic conservation law: if the matrices are initialized in a balanced
manner, this balancedness is preserved throughout the training process. That is,

A(T1)
⊤A(T1) = B(T1)B(T1)

⊤,

holds at initialization, this leads to

a211(t) + a221(t) = a212(t) + a222(t), ∀t ≥ T1. (54)

46



IMPLICIT BIAS AND LOSS OF PLASTICITY IN MATRIX COMPLETION

Now, we are going to examine the time derivative of the loss:

d

dt
ℓ(WA,B(t)) =

〈
∇ℓ(WA,B(t)), Ẇ (t)

〉

=
〈
∇ℓ(WA,B(t)), Ȧ(t)B(t) +A(t)Ḃ(t)

〉

= Tr
(
∇ℓ⊤(WA,B(t))

(
Ȧ(t)B(t) +A(t)Ḃ(t)

))

= Tr
(
∇ℓ⊤(WA,B(t))Ȧ(t)B(t)

)
+Tr

(
∇ℓ⊤(WA,B(t))A(t)Ḃ(t)

)

= −Tr
(
∇ℓ⊤(WA,B(t))∇ℓ(WA,B(t))B⊤(t)B(t)

)

− Tr
(
∇ℓ⊤(WA,B)A(t)A⊤(t)∇ℓ(WA,B(t))

)

= −Tr
(
∇ℓ(WA,B(t))B⊤(t)B(t)∇ℓ(W⊤

A,B(t))
︸ ︷︷ ︸

:=L1(t)

)

− Tr
(
∇ℓ(W⊤

A,B(t))A(t)A⊤(t)∇ℓ(WA,B(t))
︸ ︷︷ ︸

:=L2(t)

)
)
. (55)

The third equality follows from the fact that for any two matrices A and B of the same size,
⟨A,B⟩ = Tr(A⊤B). The last equation holds due to the cyclic property of the trace. Combining (55)
with Lemma 38, we can ensure L1(t) and L2(t) are both positive semidefinite, which implies the
loss is monotonically non-increasing for all t ≥ T1.

With Lemma 19 and the monotonicity of the loss, we can guarantee positiveness of a11, a22, w11,
and w22 after the pre-train phase:

Lemma 20 For a product matrix WA,B(t) = A(t)B(t) ∈ R2×2, if a11(T1), a22(T1), w11(T1),
and w22(T1) have all positive values, following inequalities hold for all t ≥ T1:

a11(t), a22(t) > 0, a12(t) ≥ 0.

Furthermore,

w11(t), w22(t) > 0

holds for all t ≥ T1.

Proof We will prove the inequalities step by step.
Positiveness of a11(t). For the sake of contradiction, assume that there exists a timestep τ1 > T1

where a11(τ1) = 0 holds. From (52) and Lemma 34, we must have det(A(τ1)) > 0, which implies
that a12(τ1)a21(τ1) < 0. Given the monotonicity of ℓ, WA,B(t) must satisfy:

ℓ(WA,B(t)) ≤ ℓ(WA,B(T1)). (56)

for all t ≥ T1. However, WA,B(τ1) cannot satisfy (56) because w11(τ1), w22(τ1) < 0 and
w12(τ1) = 0 for any τ1 ≥ 0. This contradiction implies that such a τ1 cannot exist.

Positiveness of a22(t). Similarly, let’s assume there exists a time τ2 > T1 such that a22(τ2) = 0
for the first time. We can express WA,B(τ2) as:

WA,B(τ2) =

(
a12(τ2)a21(τ2) 2a11(τ2)a12(τ2)

0 a12(τ2)a21(τ2)

)
.
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where the diagonal entries are negative due to the condition det(A(τ2)) > 0. Therefore, the time
derivative of a22 at timestep τ2 is positive:

ȧ22(τ2) = a11(τ2)(w
∗ − w11(τ2)) > 0.

Since a22(t) is increasing at point τ2, there exists time t′ < τ2 such that a22(t′) < 0 (since a22(t) is
continuous and differentiable), which is contradictory. Consequently, there cannot exist a τ2 such
that a22(τ2) = 0.

Positiveness of a12(t). Given that ℓ is non-decreasing, we can state:

ℓ(WA,B(t)) =
1

2

[
(w∗ − w11(t))

2 + (w∗
12 − w12(t))

2 + (w∗ − w22(t))
2
]

≤ ℓ(WA,B(T1)) =
1

2
w∗
12

2,

for all t ≥ T1. Since (w∗ − w11(t))
2 and (w∗ − w22(t))

2 are non-negative, w12(t) must be non-
negative for all t ≥ T1. From (52), we know w12(t) = 2a11(t)a12(t), which implies a12(t) ≥ 0 for
all t ≥ T1 with the above conclusion which states a11(t) > 0.

Positiveness of w11(t),w22(t). Likewise, assume for the sake of contradiction that there exists
a time τ3 ≥ T1 when w11(τ3) = 0 is first satisfied. This directly implies that a11(τ3)a22(τ3) =
−a12(τ3)a21(τ3). Squaring both sides of the equation yields:

a211(τ3)a
2
22(τ3) = a212(τ3)a

2
21(τ3).

Subtracting a212(τ3)a
2
22(τ3) from both sides:

a211(τ3)a
2
22(τ3)− a212(τ3)a

2
22(τ3) = a212(τ3)a

2
21(τ3)− a212(τ3)a

2
22(τ3).

Factoring:

a222(τ3)
(
a211(τ3)− a212(τ3)

)
= a212(τ3)

(
a221(τ3)− a222(τ3)

)
.

By the conservation law in (54), we have a211(τ3) + a221(τ3) = a212(τ3) + a222(τ3), which leads to
a211(τ3)− a212(τ3) = a222(τ3)− a221(τ3). Replacing a211(τ3)− a212(τ3) with −(a221(τ3)− a222(τ3)):

−a222(τ3)
(
a221(τ3)− a222(τ3)

)
= a212(τ3)

(
a221(τ3)− a222(τ3)

)
.

This gives us:
(
a212(τ3) + a222(τ3)

) (
a221(τ3)− a222(τ3)

)
= 0.

Since a22(τ3) > 0 from the previous result, we can conclude that a21(τ3) = ±a22(τ3). To
determine the sign of a21(τ3), recall that WA,B(τ3) is written as:

WA,B(τ3) =

(
0 2a11(τ3)a12(τ3)

2a21(τ3)a22(τ3) 0

)
.

Since a11(τ3) > 0, a12(τ3) ≥ 0 from the previous result, 2a11(τ3)a12(τ3) ≥ 0 holds. Also,
given that det(WA,B(τ3)) > 0, we can determine that a21(τ3) is negative, which implies a21(τ3) =
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−a22(τ3). Additionally, by the conservation law, we have a211(τ3) = a212(τ3), which leads to
a11(τ3) = a12(τ3) > 0.

Finally, consider the time derivative of w11 at timestep τ3, substituting a11(τ3) and a21(τ3) with
a12(τ3) and −a22(τ3), respectively:

ẇ11(τ3) = (w∗ − w11(τ3))(a
2
11(τ3) + a212(τ3) + a221(τ3) + a222(τ3))

+ (w∗
12 − w12(τ3))(a11(τ3)a21(τ3) + a12(τ3)a22(τ3))

= 2w∗(a212(τ3) + a222(τ3))

> 0,

which contradicts our initial assumption.

Given that the time derivative in the (53) includes the term a11(t)a21(t) + a12(t)a22(t), we need
to verify the sign of a11a21 + a12a22 in order to proceed with the analysis. Below lemma shows that
as long as w12(t) ≤ w∗

12 holds, a11(t)a21(t) + a12(t)a22(t) is always lower bounded by zero.

Lemma 21 For a product matrix WA,B(t) = A(t)B(t) ∈ R2×2, if at any point t ∈ [T1, T2] we
have w12(t) ≤ w∗

12, then the following inequality holds throughout the entire interval [T1, T2]:

a11(t)a21(t) + a12(t)a22(t) ≥ 0.

Proof We first define g(t) ≜ a11(t)a21(t) + a12(t)a22(t). Recall that at T1, we have a12(T1) =
a21(T1) = 0, which implies g(T1) = 0 as well. Note that by (51), at timestep T1, we have

ȧ12(T1) = a11(T1)(w
∗
12 − w12(T1)) + a21(T1)(w

∗ − w11(T1)) > 0,

while other elements remain unchanged. This indicates that g(t) > 0 immediately after T1. We
now show that if g(τ) > 0 for any τ ∈ (T1, T2], then there is no τ ′ ∈ [τ, T2] which satisfies both
g(τ ′) = 0 and d

dtg(t)
∣∣∣
t=τ ′

< 0. This implies that g(t) never becomes negative under the assumption

of w12(t) ≤ w∗
12.

Suppose, for the sake of contradiction, that there exists a τ ′ ∈ [τ, T2] where g(τ ′) = 0 and
d
dtg(t)

∣∣∣
t=τ ′

< 0. Given g(τ ′) = 0 and the conservation law in (54), and the inequalities from
Lemma 20, we can determine that there exist two combinations of the solution:

1. a11(τ
′) = a22(τ

′), a12(τ
′) = −a21(τ

′), a11(τ
′) > a12(τ

′).

2. a11(τ
′) = a22(τ

′), a12(τ
′) = a21(τ

′) = 0.

We take the time derivative of g(t) at timestep τ ′ and substitute the values from (51) as follows:

d

dt
g(t)

∣∣∣
t=τ ′

= ȧ11(τ
′)a21(τ

′) + a11(τ
′)ȧ21(τ

′) + ȧ12(τ
′)a22(τ

′) + a12(τ
′)ȧ22(τ

′)

= 2(w∗ − w11(τ
′))(a11(τ

′)a12(τ
′) + a21(τ

′)a22(τ
′))

+ (w∗
12 − w12(τ

′))(a11(τ
′)a22(τ

′) + a12(τ
′)a21(τ

′)). (57)
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For the first case, substituting equations a11(τ ′) = a22(τ
′) and a12(τ

′) = −a21(τ
′) to (57) leads to:

d

dt
g(t)

∣∣∣
t=τ ′

= (w∗
12 − w12(τ

′))w11(τ
′).

Since w11(t) > 0 for all t ≥ T1, if w12(τ
′) ≤ w∗

12 holds, then g(t) cannot take negative values at
time τ ′.

For the second case, substituting equations a11(τ ′) = a22(τ
′) and a12(τ

′) = a21(τ
′) = 0 to (57)

leads to:
d

dt
g(t)

∣∣∣
t=τ ′

= (w∗
12 − w12(τ

′))a211(τ
′),

which is again a non-negative value if w12(τ
′) ≤ w∗

12, leading to a contradiction.

Lemma 22 For a product matrix WA,B(t) = A(t)B(t) ∈ R2×2, the following inequalities holds
for all timestep t ≥ T1:

w12(t) ≤ w∗
12,

w11(t), w22(t) ≥ w∗,

w21(t) ≤ 0.

Proof We will prove this lemma in several steps:
Step 1: w12(t) ≤ w∗

12 for all t ≥ T1.
We know w12(T1) = 0 ≤ w∗

12. Assume, for the sake of contradiction, that there exists a time
t′ > T1 where t′ is the first timestep such that w12(t

′) > w∗
12. If this were true, there must exist a

time s where T1 ≤ s < t′ such that:

w12(s) = w∗
12, ẇ12(s) > 0.

For these conditions to be met, w12(s) must satisfy:

ẇ12(s) = 2(w∗ − w11(s))(a11(s)a21(s) + a12(s)a22(s)) > 0. (58)

To satisfy (58), there are two possibilities:

(w∗ − w11(s)) > 0 and (a11(s)a21(s) + a12(s)a22(s)) > 0, (59)

or (w∗ − w11(s)) < 0 and (a11(s)a21(s) + a12(s)a22(s)) < 0. (60)

However, neither of these can be true:

1. Equation (60) contradicts Lemma 21, given that s < t′.

2. Equation (59) cannot be satisfied because there is no s where w∗ > w11(s). If there were,
there would be a time s′ where T1 ≤ s′ < s both satisfying w11(s

′) = w∗, and ẇ11(s
′) < 0.

But we find:

ẇ11(s
′) = (w∗

12 − w12(s
′))(a11(s

′)a21(s
′) + a12(s

′)a22(s
′)) ≥ 0.

This is because w12(s
′) < w∗

12, and thus a11(s′)a21(s′) + a12(s
′)a22(s

′) ≥ 0 by Lemma 21.
Therefore, our initial assumption must be false, implying that w12(t) ≤ w∗

12 for all t ≥ T1.
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Step 2: Prove w11(t) ≥ w∗
11 and w22(t) ≥ w∗

22 for all t ≥ T1.
Given w12(t) ≤ w∗

12 for all t ≥ T1, Lemma 21 implies a11(t)a21(t) + a12(t)a22(t) ≥ 0 for all
t ≥ T1. The evolution of w11 is given by:

ẇ11(t) = (w∗−w11(t))(a
2
11(t)+a212(t)+a221(t)+a222(t))+(w∗

12−w12(t))(a11(t)a21(t)+a12(t)a22(t)).

By above equation, if there exists a time t′ ≥ T1 where w11(t
′) = w∗, we can conclude ẇ11(t

′) ≥ 0,
and thus w11(t) ≥ w∗ for all t ≥ T1. By Lemma 19, w22 has the same value as w11, so w22(t) ≥ w∗

for all t ≥ T1.
Step 3: Prove w21(t) ≤ 0 for all t ≥ T1.
The evolution of w21 is given by:

ẇ21(t) = 2(w∗ − w11(t))(a11(t)a21(t) + a12(t)a22(t)).

Since w11(t) ≥ w∗ and a11(t)a21(t) + a12(t)a22(t) ≥ 0 for all t ≥ T1, we can conclude
w21(t) ≤ 0 for all t ≥ T1.

G.2.1. PROOF OF LOSS CONVERGENCE

Recall that the time derivative of the loss function is written as:
d

dt
ℓ(WA,B(t)) = −Tr(L1(t))− Tr(L2(t)),

where L1(t) and L2(t) are defined in (55). To further our analysis, we can expand the time derivative
of the loss by calculating the trace of L1(t) and L2(t). We omit the time index t when clear from
context.

L1 =

(
r11 r12
0 r22

)(
a221 + a222 a11a21 + a12a22

a11a21 + a12a22 a211 + a212

)(
r11 0
r12 r22

)

=

(
r211(a

2
21 + a222) + 2r11r12(a11a21 + a12a22) + r212(a

2
11 + a212) C1

C1 r222(a
2
11 + a212)

)
,

for some time-dependent value C1. Following a similar process, we calculate L2:

L2 =

(
r11 0
r12 r22

)(
a211 + a212 a11a21 + a12a22

a11a21 + a12a22 a221 + a222

)(
r11 r12
0 r22

)

=

(
r211(a

2
11 + a212) C2

C2 r212(a
2
11 + a212) + 2r12r22(a11a21 + a12a22) + r222(a

2
21 + a222)

)
,

again for the time-dependent value C2. With these expressions for L1 and L2, we can now rewrite
equation (55) in a more explicit form:

d

dt
ℓ (WA,B(t)) =− Tr (L1(t))− Tr (L2(t))

=− r211(t)
(
a211(t) + a212(t) + a221(t) + a222(t)

)

− 2r212(t)
(
a211(t) + a212(t)

)

− r222(t)
(
a211(t) + a212(t) + a221(t) + a222(t)

)

− 2r12(t)r22(t) (a11(t)a21(t) + a12(t)a22(t))

− 2r11(t)r12(t) (a11(t)a21(t) + a12(t)a22(t)) . (61)
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Note that the (61) is the non-positive term. Given that L1 and L2 are positive semi-definite, we can
analyze each diagonal entry separately. This leads us to the following inequalities:

r211(a
2
21 + a222) + 2r11r12(a11a21 + a12a22) + r212(a

2
11 + b212) ≥ 0,

r212(a
2
11 + a212) + 2r12r22(a11a21 + a12a22) + r222(a

2
21 + a222) ≥ 0.

By rearranging the above inequalities, we obtain:

−2r11r12(a11a21 + a12a22) ≤ r211(a
2
21 + a222) + r212(a

2
11 + a212),

−2r12r22(a11a21 + a12a22) ≤ r212(a
2
11 + a212) + r222(a

2
21 + a222).

Substituting these inequalities into equation (61), we derive:

d

dt
ℓ(WA,B(t)) ≤ −r211(t)

(
a211(t) + a212(t)

)
− r222(t)

(
a211(t) + a212(t)

)
. (62)

This provides a tighter upper bound on the time derivative of the loss. However, it is still insufficient
to guarantee convergence, as the bound does not depend on the term r12(t). As a result, even though
the right-hand side converges to zero, this alone does not imply that the loss itself converges.

To further tighten the bound, we leverage the positive semidefiniteness of L1 and L2. Specifically,
note that for both QKQ⊤ and Q⊤KQ to be positive semi-definite, the only necessary condition is
K ≽ 0. Therefore, we modify L1(t) to L̃1(t) ≜ ∇ℓ(WA,B(t))

(
B⊤(t)B(t)− µ(t) · e2e⊤2

)
∇ℓ⊤(WA,B(t)),

where µ(t) is chosen to ensure that the matrix B⊤(t)B(t)−µ(t)·e2e⊤2 remains positive semidefinite.
This guarantees that L̃1(t) ≽ 0. To ensure this condition, µ(t) must satisfy:

∣∣∣B(t)⊤B(t)− µ(t) · e2e⊤2
)
| =

∣∣∣∣
(

a221(t) + a222(t) a11(t)a21(t) + a12(t)a22(t)
a11(t)a21(t) + a12(t)a22(t) a211(t) + a212(t)− µ(t)

)∣∣∣∣

= −
(
a221(t) + a222(t)

)
µ(t) + (a11(t)a22(t)− a12(t)a21(t))

2

≥ 0.

Rearranging this inequality with respect to µ(t), we get:

µ(t) ≤ (a11(t)a22(t)− a12(t)a21(t))
2

a221(t) + a222(t)
(63)

=
det(B(t))2

a221(t) + a222(t)
.

Therefore, if we set µ(t) to satisfy the above inequality, we can guarantee L̃1 to be a positive
semidefinite matrix. Now, L̃1(t) can be calculated as:

L̃1 =

(
r11 r12
0 r22

)(
a221 + a222 a11a21 + a12a22

a11a21 + a12a22 a211 + a212 − µ

)(
r11 0
r12 r22

)

=

(
r211(a

2
21 + a222) + 2r11r12(a11a21 + a12a22) + r212(a

2
11 + a212 − µ) C̃

C̃ r222(a
2
12 + a222 − µ)

)
,
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for some C̃. Since the matrix B⊤B−µ·e2e⊤2 is positive semi-definite, we can ensure a212+a222−µ ≥
0. This leads to the following inequality from

(
L̃1

)
11

:

−2r11r12(a11a21 + a12a22) ≤ r211(a
2
21 + a222) + r212(a

2
11 + a212 − µ).

Finally, substituting this inequality into (61), we arrive at:

d

dt
ℓ(WA,B(t)) ≤ −

(
r211(t) + r222(t)

) (
a211(t) + a212(t)

)
− r212(t)µ(t). (64)

To prove the convergence of the loss, our main remaining goal is to establish a time-invariant lower
bound for

min
{
a211(t) + a212(t), µ(t)

}

to apply Grönwall’s inequality.

Lemma 23 For a solution matrix WA,B(t) initialized as WA,B(T1), which represents the state of
the matrix after pre-training up to time T1, the inequality

det (WA,B(t)) ≥ w∗2

holds for all t ≥ T1.

Proof Since w12(t) must satisfy |w12(t)−w∗
12| ≤

√
2ℓ(WA,B(t)) ≤ w∗

12 by the monotonicity of the
loss, we can ensure that w12(t) ≥ 0 for all t ≥ T1. Also, by Lemma 22, we have w11(t), w22(t) ≥ w∗,
and w21(t) ≤ 0 for all t ≥ T1. Under these conditions, det(WA,B(t)) can be lower bounded as:

det(WA,B(t)) = w11(t)w22(t)− w12(t)w21(t) ≥ w∗2,

for all timesteps t ≥ T1.

Lemma 24 For µ(t) defined to satisfy (63) and the entries in A(t), the following inequality holds
for all timesteps t ≥ T1:

min
{
a211(t) + a212(t), µ(t)

}
≥ w∗.

Proof
To prove the lower bound of a211(t)+a212(t), Our goal is to demonstrate that a211(t)+a212(t) ≥ w∗

for all timesteps t after T1. By Lemma 24, we have ∥WA,B(t)∥F ≥
√
2w∗, which leads to:

√
2w∗ ≤ ∥WA,B(t)∥F

=
√
σ2
1 (WA,B(t)) + σ2

2 (WA,B(t)).
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By applying Lemma 35, we have:
√
σ2
1(WA,B(t)) + σ2

2(WA,B(t)) =
√
σ4
1(A(t)) + σ4

2(A(t))

=

√(
σ2
1 (A(t)) + σ2

2 (A(t))
)2 − 2σ2

1(A(t))σ2
2(A(t))

=
√

∥A(t)∥4F − 2 det(A(t))2. (65)

Rewriting (65) while applying Lemmas 35 and 23 leads to:

∥A(t)∥4F ≥ 2w∗2 + 2det(A(t))2

= 2w∗2 + 2det(WA,B(t))

≥ 4w∗2.

Thus, A(t) have to satisfy ∥A(t)∥2F ≥ 2w∗ for all timesteps t ≥ T1. Now, assume that there exists
a time t′ > T1 such that a211(t

′) + a212(t
′) < w∗. To satisfy inequality ∥A(t′)∥2F ≥ 2w∗, we would

need at least a221(t
′)+ a222(t

′) > w∗ to hold. To verify the value of a221(t
′)+ a222(t

′), we take its time
derivative using (51):

d

dt
(a221(t) + a222(t)) = 2a21(t) ˙a21(t) + 2a22(t) ˙a22(t)

= −2a12(t)a21(t)r22(t)− 2a11(t)a22(t)r22(t)

= −2r22(t)(a11(t)a22(t) + a12(t)a21(t))

= 2w11(t)(w
∗ − w11(t)).

Since w11(t) ≥ w∗ holds by Lemma 22 for all t ≥ T1, we conclude a221(t) + a222(t) is monotoni-
cally non-increasing from time t ≥ T1. Since a212(T1)+ a222(T1) is initialized as w∗, this implies that
a221(t

′) + a222(t
′) ≤ w∗. Consequently, there cannot exist a t′ > T1 such that a211(t

′) + a212(t
′) < w∗

holds, which leads to contradiction.
Next, we are now showing that the term det(B(t))2

a221(t)+a222(t)
is lower bounded by w∗. Therefore, if we

set µ(t) as w∗, we can guarantee the positive semidefiniteness of L̃1(t).
By applying Lemma 35 and the lower bound of det(WA,B(t)) by Lemma 23, we have

det (B(t))2

a221(t) + a222(t)
=

det (WA,B(t))

a221(t) + a222(t)
≥ w∗2

a221(t) + a222(t)
.

Also, from the previous result, we have an upper bound on a221(t)+a222(t), which is a221(t)+a222(t) ≤
w∗. Combining these results, the following inequality holds:

det (WA,B(t))

a221(t) + a222(t)
≥ w∗.

Therefore, if we set µ(t) to be w∗, µ(t) can satisfy the positive semidefiniteness condition. By
combining the results, we can finally guarantee:

min
{
a211(t) + a212(t), µ(t)

}
≥ w∗.
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Using the results of Lemma 24, we can rewrite (64) as follows:

d

dt
ℓ(WA,B(t)) ≤ −

(
r211(t) + r222(t)

) (
a211(t) + a212(t)

)
− r212(t)µ(t)

≤ −
(
r211(t) + r212(t) + r222(t)

)
w∗

≤ −2w∗ℓ(WA,B(t)).

Applying Grönwall’s inequality to our previous result, we can now demonstrate loss convergence
where t ≥ T1:

ℓ(WA,B(t)) ≤ ℓ(WA,B(T1))e
−2w∗(t−T1)

=
1

2
w∗
12

2e−2w∗(t−T1). (66)

This inequality allows us to conclude that ℓ(WA,B(t)) converges to zero exponentially.

G.2.2. PROOF OF STABLE RANK BOUND

From (66), we know that at convergence, w11(∞) = w22(∞) = w∗ and w12(∞) = w∗
12. Although

a closed-form expression for w21(∞) is unavailable, Lemma 22 shows that w21(t) ≤ 0 for t ≥ T1,
which implies w21(∞) ≤ 0. This indicates that the test loss remains strictly positive, as the
ground-truth value w∗

21 =
w∗2

w∗
12

is assumed to be strictly positive.
In this section, we leverage the fast convergence rate detailed in (66) to establish bounds on the

singular values of the converged matrix WA,B(∞). Subsequently, these singular value bounds are
used to further bound the stable rank of WA,B(∞).

Lemma 25 The singular values of WA,B(∞) fulfill:

σ1(WA,B(∞)) ≤ w∗ · exp
(
2
w∗
12

w∗

)

σ2(WA,B(∞)) ≥ w∗ · exp
(
−2

w∗
12

w∗

)

Proof We denote the singular values of WA,B(t) as σr(t) for simplicity. By Lemma 32, we can get
general solution of each singular value σr(t) by solving linear differential equation:

σr(t) = σr(s) · exp
(
−2

∫ t

t′=s
⟨∇ℓ(WA,B(t′)),ur(t

′)v⊤
r (t

′)⟩dt′
)
, r = 1, 2 (67)

where ur(t) and vr(t) denotes left and right singular vector of corresponding r-th singular value,
respectively. Since ur(t) and vr(t) are both unit vectors, applying Cauchy-Schwartz inequality, we
can bound

〈
∇ℓ(WA,B(t)),ur(t)v

⊤
r (t)

〉
by:

∣∣∣
〈
∇ℓ(WA,B(t)),ur(t)v

⊤
r (t)

〉∣∣∣ ≤ ∥∇ℓ(WA,B(t))∥F ·
∥∥∥ur(t)v

⊤
r (t)

∥∥∥
F

= ∥∇ℓ(WA,B(t))∥F
=
√
2ℓ(WA,B(t)).
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we can get bound σr(t) as following:

σr(s)·exp
(
−2

√
2

∫ t

t′=s

√
ℓ(WA,B(t′))dt′

)
≤ σr(t) ≤ σr(s)·exp

(
2
√
2

∫ t

t′=s

√
ℓ(WA,B(t′))dt′

)

(68)
With the setting above, in the pre-train section, after T1 timesteps, we prove that σ1(T1) = σ2(T1) =
w∗. Starting from T1 with pre-trained weights, we can lower bound σ2(WA,B(t)) with equations (66)
and (68) when t ≥ T1 as follows:

σ2(t) ≥ σ2(T1) · exp
(
−2

√
2

∫ t

t′=T1

√
ℓ(WA,B(t′))dt′

)

≥ w∗ · exp
(
−2w∗

12

∫ t

t′=T1

e−w∗(t′−T1)dt′
)

= w∗ · exp
(
−2w∗

12

w∗

(
1− e−w∗(t−T1)

))

and when t → ∞, σ2(∞) can be lower bounded by:

σ2(∞) ≥ w∗ · e−2·w
∗
12

w∗

In the same way, we can upper bound σ1(∞) by:

σ1(∞) ≤ w∗ · e2·
w∗
12

w∗

By Lemma 25, we can now lower bound the stable rank of a matrix WA,B(∞):

∥WA,B(∞)∥2F
∥WA,B(∞)∥22

=
σ2
1(WA,B(∞)) + σ2

2(WA,B(∞))

σ2
1(WA,B(∞))

= 1 +
σ2
2(WA,B(∞))

σ2
1(WA,B(∞))

≥ 1 + exp

(
−8

w∗
12

w∗

)
,

which concludes the proof of Theorem 6.
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G.3. Formal Statement and Proof of Theorem 7

We now extend the preceding analysis to the general case involving a ground truth matrix W ∗ ∈ Rd×d.
The solution matrix WA,B ∈ Rd×d is again factorized as WA,B = AB, where both A,B ∈ Rd×d.
In this section, our detailed presentation and proof of Theorem 7 (from the main text) are structured as
follows: we first introduce and prove Theorem 26, which is then followed by its direct consequence,
Corollary 27.

We use the slightly modified loss function:

L(A,B) =
1

2

N∑

n=1

(⟨AB,Xn⟩ − yn)
2 , (69)

where the measurement matrix Xn = eine
⊤
jn

represents a masking matrix, with the n-th observed
entry set to one and all other entries set to zero, and yn ∈ R denotes the ground truth value of the

n-th observation. Then, by defining Θ =

[
A
B⊤

]
∈ R2d×d and X̄n = 1

2

[
0 Xn

X⊤
n 0

]
∈ R2d×2d, we

can rewrite the (69) as:

L(A,B) = L̃(Θ) =
1

2

N∑

n=1

(
⟨ΘΘ⊤, X̄n⟩ − yn

)2

=
1

2
∥F (Θ)− y∥22. (70)

Here, F (Θ) and y represent vectors defined as:

F (Θ) ≜




⟨ΘΘ⊤, X̄1⟩
⟨ΘΘ⊤, X̄2⟩

...
⟨ΘΘ⊤, X̄N ⟩


 ∈ RN , y ≜




y1
y2
...
yN


 ∈ RN . (71)

By reparameterizing A, B to Θ, and Xn to X̄n, we can reduce the parameter matrices into a single
matrix Θ while ensuring the symmetry of ΘΘ⊤. We train the model Θ via gradient flow, where the
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loss evolution is given by:

˙̃L(Θ(t)) = (F (Θ(t))− y)⊤ Ḟ (Θ(t))

= (F (Θ(t))− y)⊤




d
dt⟨Θ(t)Θ(t)⊤, X̄1⟩
d
dt⟨Θ(t)Θ(t)⊤, X̄2⟩

...
d
dt⟨Θ(t)Θ(t)⊤, X̄N ⟩




= 2 (F (Θ(t))− y)⊤




⟨X̄1Θ(t), Θ̇(t)⟩
⟨X̄2Θ(t), Θ̇(t)⟩

...
⟨X̄NΘ(t), Θ̇(t)⟩




= 2 (F (Θ(t))− y)⊤




vec
(
X̄1Θ(t)

)⊤

vec
(
X̄2Θ(t)

)⊤
...

vec
(
X̄NΘ(t)

)⊤



vec
(
Θ̇(t)

)
(72)

= (F (Θ(t))− y)⊤ J(Θ(t)) vec
(
Θ̇(t)

)
. (73)

Here, the Jacobian matrix J(Θ(t)) is defined as:

J(Θ(t)) ≜
∂F (Θ(t))

∂vec(Θ(t)))
=




vec
(
∇Θ⟨Θ(t)Θ(t)⊤, X̄1⟩

)⊤

vec
(
∇Θ⟨Θ(t)Θ(t)⊤, X̄2⟩

)⊤
...

vec
(
∇Θ⟨Θ(t)Θ(t)⊤, X̄N ⟩

)⊤



= 2




vec
(
X̄1Θ(t)

)⊤

vec
(
X̄2Θ(t)

)⊤
...

vec
(
X̄NΘ(t)

)⊤



∈ RN×2d2 .

(74)
With the notations defined above, we state the following theorem:

Theorem 26 Let the combined weight matrix be

Θ ≜

[
A
B⊤

]
∈ R2d×d,

and consider the loss function L̃ defined in (69). Denote

σmin ≜ σmin(J(Θ(0)), σmax ≜ σmax(J(Θ(0)).

If the initialization satisfies:

L̃(Θ(0)) ≤ σ6
min

1152dσ2
max

,

then for every t ≥ 0 the following hold:

L̃(Θ(t)) ≤ L̃(Θ(0)) exp

(
−1

2
σ2
mint

)
,

∥Θ(t)−Θ(0)∥F ≤ 6
√
2σmax

σ2
min

√
L̃(Θ(0)).
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The above theorem tells us that, if the model is initialized with a sufficiently small loss, the model’s
loss will converge to zero quickly, and the parameters will not move significantly from the initializa-
tion. With the above theorem, we can state the following corollary:

Corollary 27 Suppose A and B are initialized as balanced, i.e.:

A(0)⊤A(0) = B(0)B(0)⊤.

Under the conditions of Theorem 26, for every singular index i ∈ [d] and all t ≥ 0:

σi(A(t)) = σi(B(t)) and |σi(A(t))− σi(A(0))| ≤ σmin

4
√
2d

.

Consequently, the stable rank of A(t) remains bounded below by

∥A(t)∥2F
∥A(t)∥22

≥
(√

2∥A(0)∥F − σmin

4
√
2d√

2∥A(0)∥2 + σmin

4
√
2d

)2

.

G.3.1. PROOF OF THEOREM 26

We begin the proof of the theorem by noting that the Jacobian J(·) is a Lipschitz function, as stated
in the following lemma:

Lemma 28 The Jacobian matrix J(W ), as defined in (74), is
√
d-Lipschitz. Specifically, for any

matrices W ,V ∈ Rd×d, the following inequality holds:

∥J(W )− J(V )∥ ≤
√
d∥vec(W )− vec(V )∥, (75)

Proof Note that for each n-th observation,

Jn(Θ) = 2vec
(
X̄nΘ

)⊤

= vec

((
0 Xn

X⊤
n 0

)(
A
B⊤

))⊤

= vec

((
XnB

⊤

X⊤
n A

))⊤
∈ R2d2 .

Let Ml denote the l-th row of a matrix M , and let M·,l denote its l-th column. We have

∥Jn(Θ)∥2F = ∥X⊤
n A∥2F + ∥XnB

⊤∥2F
= ∥ejne⊤inA∥F + ∥eine⊤jnB⊤∥F
= ∥Ain∥22 + ∥B·,jn∥22.

Now, suppose we observe all entries, i.e., N = d2. Then for any fixed n, in = im can be satisfied
for all m ∈ [d], meaning each element of A is observed d times. Similarly, each element of B is
also observed d times.
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Therefore, we can upper bound the Frobenius norm of the Jacobian matrix by the Frobenius
norm of the Jacobian under full observation:

∥J(Θ)∥2F ≤
d2∑

n=1

(
∥X⊤

n A∥2F + ∥XnB
⊤∥2F

)

= d
(
∥A∥2F + ∥B∥2F

)

= d∥Θ∥2F .

By upper bounding the spectral norm of the difference between two Jacobian matrices and
applying the inequality above, we obtain:

∥J(W )− J(V )∥2 = ∥J(W − V )∥2

≤ ∥J(W − V )∥2F
≤ d∥W − V ∥2F ,

which concludes the proof.

Next, we borrow a lemma from Telgarsky [32], which states that for a Lipschitz function J , if we
consider a sufficiently small neighborhood around the initialization Θ(0), then the singular values of
the Jacobian J(Θ) remain close to those at initialization:

Lemma 29 (Lemma 8.3 in Telgarsky [32]) If we suppose ∥vec(Θ) − vec(Θ(0))∥ ≤ σmin

2
√
d

, we
have the following:

σmin(J(Θ)) ≥ σmin

2
, σmax(J(Θ)) ≤ 3σmax

2
,

where we denote σmin ≜ σmin(J(Θ(0)), and σmax ≜ σmax(J(Θ(0)).

For simplicity, we denote θ as the vectorized version of Θ, i.e., θ ≜ vec(Θ). We define the time
step τ , which is the first time step when the trajectory of θ(t) touches the boundary:

τ ≜ inf
t≥0

{
t | ∥θ(t)− θ(0)∥ ≥ σmin

2
√
d

}
.

We now demonstrate the convergence of the loss when t ∈ [0, τ ] using the following lemma.

Lemma 30 For all t ∈ [0, τ ], the loss defined in (69) converges as follows:

L̃(Θ(t)) ≤ L̃(Θ(0)) exp

(
−1

2
σ2
mint

)
,

where we define σmin ≜ σmin(J(Θ(0))).

Proof Recall that the time derivative of the loss can be written as follows, according to (73):

˙̃L(Θ(t)) = − (F (Θ(t))− y)⊤ J(Θ(t)) θ̇(t)

= − (F (Θ(t))− y)⊤ J(Θ(t))J(Θ(t))⊤ (F (Θ(t))− y) ,
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noting that
θ̇(t) = −∇θ(t)L̃(Θ(t)) = −J(Θ(t))⊤(F (Θ(t))− y).

By Lemma 29, for any t ∈ [0, τ ], we can upper bound the above term as follows:

˙̃L(Θ(t)) ≤ −λmin

(
J(Θ(t))J(Θ(t))⊤

)
∥F (Θ(t))− y∥2

≤ −1

2
σ2
minL̃(Θ(t)).

Applying Grönwall’s inequality gives:

L̃(Θ(t)) ≤ L̃(Θ(0)) exp

(
−1

2
σ2
mint

)
for t ∈ [0, τ ].

The above lemma shows that the loss decays rapidly to zero if θ(t) stays within a small neigh-
borhood around the initialization. We now show that if the loss converges quickly near initialization,
then θ(t) does not move far from its initial value:

Lemma 31 Let σmin ≜ σmin(J(Θ(0))) and σmax ≜ σmax(J(Θ(0))). For all t ∈ [0, τ ], the
distance between the weight vector at time t and the initial weight vector is bounded by:

∥θ(t)− θ(0)∥ ≤ 6
√
2σmax

σ2
min

√
L̃(Θ(0)).

Proof We start by evaluating the distance between θ(t) and θ(0) using Lemma 29:

∥θ(t)− θ(0)∥ =

∥∥∥∥
∫ t

0
θ̇(s) ds

∥∥∥∥

=

∫ t

0

∥∥∥J(Θ(s))⊤ (F (Θ(s))− y)
∥∥∥ ds

≤
∫ t

0
σmax(J(Θ(s))) ∥F (Θ(s))− y∥ ds

≤ 3

2
σmax

∫ t

0
∥F (Θ(s))− y∥ ds.

By Lemma 30, we know that the objective function L̃(Θ) satisfies:

∥F (Θ(t))− y∥2 ≤ ∥F (Θ(0))− y∥2 exp
(
−1

2
σ2
mint

)
.

Taking the square root of both sides, we obtain:

∥F (Θ(t))− y∥ ≤ ∥F (Θ(0))− y∥ exp
(
−1

4
σ2
mint

)
.
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Substituting this into the previous inequality:

∥θ(t)− θ(0)∥ ≤ 3

2
σmax∥F (Θ(0))− y∥

∫ t

0
exp

(
−1

4
σ2
mins

)
ds

≤ 6σmax

σ2
min

∥F (Θ(0))− y∥,

where we used the fact that:
∫ t

0
exp(−Cs) ds ≤ 1

C
, forC > 0.

By combining Lemmas 30 and 31, we obtain the following results:

L̃(Θ(t)) ≤ L̃(Θ(0)) exp

(
−1

2
σ2
mint

)
, (76)

∥θ(t)− θ(0)∥ ≤ 6
√
2σmax

σ2
min

√
L̃(Θ(0)), (77)

which hold for t ∈ [0, τ ]. If we can demonstrate that τ = ∞, the proof is complete.
Actually, if we initialize Θ(0) to satisfy the condition:

L̃(Θ(0)) ≤ σ6
min

1152dσ2
max

,

and substitute this condition into (77), we obtain an upper bound for ∥θ(t)− θ(0)∥:

∥θ(t)− θ(0)∥ ≤ 6
√
2σmax

σ2
min

σ3
min√

1152dσmax

=
σmin

4
√
d
.

Recall the definition of τ , which is the first time when θ(t) touches the boundary of the small
ball around the initialization:

τ ≜ inf
t≥0

{
t | ∥θ(t)− θ(0)∥ ≥ σmin

2
√
d

}
.

However, with the condition L̃(Θ(0)) ≤ σ6
min

1152dσ2
max

, θ(t) cannot ever touch the boundary. This
is because ∥θ(t)− θ(0)∥ is bounded above by σmin

4
√
d

, which is strictly less than σmin

2
√
d

. Therefore, the
parameter will remain inside the ball indefinitely, meaning τ = ∞. This completes the proof of the
theorem.

G.3.2. PROOF OF COROLLARY 27

First, we establish the equality σi(A(t)) = σi(B(t)) for all i ∈ [d]. Corollary 27 assumes that A(0)
and B(0) are initialized as “balanced”, satisfying A(0)⊤A(0) = B(0)B(0)⊤. By Lemma 35, this
balanced condition ensures that the singular values of A(t) and B(t) remain identical for all t ≥ 0:

σi(A(t)) = σi(B(t)).
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Second, we address the change in the singular values of a combined parameter matrix Θ(t)
(related to A(t) and B(t)). Theorem 26 states that under a specified condition on the initial loss,
L̃(Θ(0)) ≤ σ6

min
1152dσ2

max
, the deviation of Θ(t) from its initialization Θ(0) is bounded for all t ≥ 0 by:

∥Θ(t)−Θ(0)∥F ≤ σmin

4
√
d
.

Let K = σmin

4
√
d

. By Weyl’s inequality, |σi(X)− σi(Y )| ≤ ∥X − Y ∥2, and noting that ∥·∥2 ≤ ∥·∥F ,
we have for all i ∈ [d]:

|σi(Θ(t))− σi(Θ(0))| ≤ ∥Θ(t)−Θ(0)∥2
≤ ∥Θ(t)−Θ(0)∥F
≤ K.

This inequality allows us to establish bounds for ∥Θ(t)∥F (using reverse triangle inequality) and its
largest singular value σ1(Θ(t)) = ∥Θ(t)∥2:

∥Θ(t)∥F ≥ ∥Θ(0)∥F −K,

σ1(Θ(t)) ≤ σ1(Θ(0)) +K.

This yields the following lower bound on the stable rank of Θ(t):

∥Θ(t)∥2F
∥Θ(t)∥22

≥
( ∥Θ(0)∥F −K

σ1(Θ(0)) +K

)2

=

(∥Θ(0)∥F − σmin

4
√
d

∥Θ(0)∥2 + σmin

4
√
d

)2

.

Furthermore, the balancedness condition implies A(t)⊤A(t) = B(t)B(t)⊤. By the definition
of Θ(t), Θ(t)⊤Θ(t) = A(t)⊤A(t) +B(t)B(t)⊤, this leads to Θ(t)⊤Θ(t) = 2A(t)⊤A(t). This
relationship implies σi(Θ(t)) =

√
2σi(A(t)) for all i. Substituting this into the bounds for Θ(t),

we have ∥Θ(0)∥F =
√
2∥A(0)∥F and σ1(Θ(0)) =

√
2σ1(A(0)) =

√
2∥A(0)∥2. This leads to the

final lower bound on the stable rank of A(t) (which, by balancedness, is equal to that of B(t)):

∥A(t)∥2F
∥A(t)∥22

≥
(√

2∥A(0)∥F −K√
2∥A(0)∥2 +K

)2

=

(√
2∥A(0)∥F − σmin

4
√
d√

2∥A(0)∥2 + σmin

4
√
d

)2

.
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Appendix H. Useful Lemmas

Lemma 32 (Adaptation of Lemma 1 and Theorem 3 in [3]) For any time t, the product matrix
W (t) ∈ Rd,d can be decomposed into its singular value decomposition:

W (t) =
d∑

r=1

σr(t)ur(t)vr(t)
⊤

where σr(t) are the singular values of W (t), and ur(t), vr(t) are the corresponding left and right
singular vectors, respectively. Moreover, if A,B are balanced at initialization, i.e.,

A⊤(0)A(0) = B(0)B⊤(0),

the time evolution of the singular values σr(t) is represented as:

σ̇r(t) = −2 · σr(t) ·
〈
∇ℓ(W (t)),ur(t)vr(t)

⊤
〉
, r = 1, . . . , d (78)

Lemma 33 For any real-valued square matrix A ∈ Rd×d, the absolute value of its determinant
equals the product of its singular values:

|det(A)| =
d∏

r=1

σr

where σr are the singular values of A.

Proof We express A using SVD: A = UΣV ⊤. Applying the determinant to both sides, we get:

det(A) = det(UΣV ⊤)

= det(U) det(Σ) det(V ⊤)

Here, U and V have orthonormal columns, and Σ is diagonal with singular values along its main
diagonal. Since the determinant of an orthonormal matrix is either ±1,

|det(A)| = det(Σ) =
d∏

r=1

σr.

Lemma 34 (Determinant of A(t)) Consider a matrix A(t) ∈ Rd,d initialized as det(A(0)) > 0.
Then, det(A(t)) > 0 for all t ≥ 0.

Proof This follows directly from Lemma 32 and 33. Since the singular values are initialized as
positive, and their evolution is continuous according to the given differential equation, they cannot
become zero or negative. Therefore, A(t) maintains its sign of the determinant at initialization
throughout the optimization process.
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Lemma 35 (Adaptation of Lemma 8 in [27]) Consider a product matrix W (t) = A(t)B(t) ∈
Rd×d, where A(t) and B(t) are of equal size and balanced at initialization. Under these conditions,
the following equality holds for all t ≥ 0 and all singular values:

σr (W (t)) = σr (A(t))2 = σr (B(t))2

where σr(·) denotes the r-th singular value of the respective matrix where r ∈ [d]. Moreover, if
det (A(0)) and det (B(0)) are both positive, then by Lemma 34, we can guarantee that for all
t ≥ 0:

det (W (t)) = det (A(t))2 = det (B(t))2

Lemma 36 (Adaptation of Theorem 1 in [3]) Consider a product matrix W (t) = A(t)B(t) ∈
Rd×d. We can guarantee A(t) and B(t) are analytic functions of t. As a result, W (t) is also an
analytic function of t.

Lemma 37 (Lemma 10 in Razin and Cohen [27]) Let f, g : [0,∞] → R be real analytic func-
tions such that f (k)(0) = gk(0) for all k ∈ N ∪ {0}. Then, f(t) = g(t) for all t ≥ 0.

Lemma 38 (Positive Semidefiniteness of ABA⊤) For matrices A,B ∈ Rd,d, if B is positive
semi-definite, then both ABA⊤ and A⊤BA are positive semi-definite.

Proof For any vector x ∈ Rd:

x⊤ABA⊤x = (A⊤x)⊤B(A⊤x) ≥ 0

since B is a positive semi-definite matrix. In the same way, for any vector x ∈ Rd we have:

x⊤A⊤BAx = (Ax)⊤B(Ax) ≥ 0

which concludes the proof.
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