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Abstract

Transformers have been widely adopted in natural language processing, computer
vision, and other domains due to their exceptional performance across a variety
of tasks. However, the computational cost of Transformers is prohibitively high,
particularly when handling long input sequences, significantly increasing both
training and inference time. Although various token pruning methods have been
proposed to reduce the computational burden of Transformers, most approaches
overlook critical differences in sequences in terms of length and complexity, leading
to suboptimal compression efficiency.

In this paper, we propose AD-TP, an Attribution-Driven Adaptive Token Pruning
method designed to retain only the most informative tokens. We analyze the
performance of using accumulated attention values to measure token importance
and find that attention values do not accurately reflect the actual contribution of
each token to text understanding. Additionally, we observe significant variations
in the length and complexity of different sequences within the dataset. Based on
these insights, we adopt Integrated Gradients to evaluate token importance and
introduce a lightweight adaptive token retainer module that dynamically generates
pruning configurations for each input sequence. In addition, we incorporate both
teacher supervision and self-supervised learning objectives to enhance the training
efficiency, accuracy, and robustness of the model.

Experiments conducted on GLUE, SQuAD, and 20News demonstrate that AD-TP
outperforms state-of-the-art token pruning and model compression methods in both
accuracy and computational efficiency. On GLUE, AD-TP reduces FLOPs by an
average of 7.8x while improving performance by 0.6%.

1 Introduction

Transformers such as GPT and BERT are central to Natural Language Processing (NLP) due to
their strong language modeling capabilities [1, 2]. However, their self-attention mechanism scales
quadratically with sequence length, resulting in high computational cost and latency. For instance,
processing 512 tokens requires over 1.5 billion Floating-Point Operations (FLOPs), limiting real-time
or edge deployment. These challenges have motivated increasing interest in model compression
techniques to enhance efficiency without sacrificing performance.

To address the computational bottlenecks inherent in large-scale Transformer models, researchers
have explored several major compression techniques, including pruning [3H5], quantization [6H8]],
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low-rank decomposition [9], and knowledge distillation [10,[11]. Among these, token pruning has
received increasing attention due to its hardware-agnostic design and its ability to adaptively retain
informative tokens based on sequence content [[12].

Recent efforts have applied token pruning to compress Transformer models and accelerate inference.
Early work such as POWER-BERT [13]] adopted layer-wise embedding pruning and achieved a
4.5x speedup, but required retraining under multiple constraints. LAT [14] addressed this by using
LengthDrop to generate sub-models via evolutionary search, yet it pruned all sequences to a fixed
length, leading to under-pruning or over-pruning depending on the sequence. Subsequent methods
like SpAtten [15] and TR-BERT [16] introduced length-aware or content-aware strategies, but either
lacked semantic adaptability or incurred high training costs. LTP [[17] further improved adaptiveness
by learning per-layer thresholds to prune unimportant tokens, but still applied fixed thresholds during
inference.

Despite these advances, two key challenges remain: (i) most approaches rely on attention scores to
assess token importance, which may not accurately reflect true contribution; and (ii) many pruning
strategies adopt static configurations, ignoring variations in sequence complexity. Addressing these
limitations requires a more accurate importance estimation method and a mechanism that dynamically
adjusts pruning decisions based on each sequence.

To address the above limitations, we propose AD-TP, an Attribution-Driven Adaptive Token Pruning
method in this work. We analyze the effectiveness of cumulative attention scores in evaluating token
importance, and find that attention-based measures fail to reliably identify the tokens that should be
preserved during pruning. To overcome this, we adopt an attribution method based on Integrated
Gradients (IG), which more accurately captures which tokens truly drive the predictions of the model.
Moreover, we observe substantial variation in the complexity of different sequences. To accommodate
this, we design an adaptive token retainer module, which integrates an Adaptive Retention Ratio
Predictor (ARP) and a Token Saliency Predictor (TSP) to dynamically determine the token retention
ratio for each sequence.

Specifically, this work makes the following major contributions:

* We propose AD-TP, which introduces a lightweight adaptive token retainer that dynamically
determines the retention ratio based on sequence complexity, thereby significantly reducing
computational cost.

* We introduce a novel attribution-based token importance estimation approach, which lever-
ages IG to quantify the relationship between model predictions and sequence features,
enabling a more accurate assessment of the contribution of each token to the output.

* We design a knowledge distillation framework with dual normalization to align attribution
features between teacher and student models, and incorporate self-supervision to enhance
token-level reasoning in the student model.

» Through comprehensive experimental evaluations, AD-TP achieves average FLOPs reduc-
tions of 7.02x and 7.37x on the GLUE benchmark using 6-layer and 12-layer Transformers,
respectively, without sacrificing accuracy. Furthermore, AD-TP also demonstrates superior
performance on long-sequence tasks.

2 Related Work

Token Pruning Existing token pruning methods can be broadly classified into two categories based
on their retention strategies. The first type relies on attention-based scoring, using attention weights
to estimate token importance. For instance, SpAtten [15] ranks tokens based on attention scores,
while POWER-BERT [13]] and LTP [17] perform sequence pruning based on attention representations
using fixed or learnable thresholds. STTABT [18] traces attention backward across layers to assess
token contribution, and LAD [19] transfers attention knowledge for dynamic pruning in small models.
The second type uses prediction-based pruning, introducing predictors before each Transformer layer
to estimate token retention. TR-BERT [16] employs reinforcement learning, and Transkimmer [20]
uses a two-layer MLP to score tokens. These approaches explicitly model importance and offer better
pruning accuracy and flexibility. The working mechanism of Transformer models and the underlying
principles of token pruning are detailed in Appendix
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Attribution Method Based on Integrated Gradients Attribution methods assign model predic-
tions to sequence features using saliency metrics like gradients [21]. Recent work applies attribution
to analyze attention patterns in Transformers [22H24]. Among these, IG offers stable and continuous
estimates by integrating gradients along input paths, and has been widely adopted for interpreting
deep models in NLP [25]]. In aspect-based sentiment analysis, IG effectively identifies tokens relevant
to specific aspects [26]]. It has also been used with pre-trained models like BERT and RoBERTa to
extract features important for classification, thereby improving performance [27]]. IG further reveals
how linguistic constructs such as negation and conjunctions influence predictions in text classification
tasks [28]]. To address the discreteness of embedding spaces, Roy et al. [29] introduced the Unified
Discretized IG method, enhancing interpretability for large language models such as BERT. The
fundamental principles of the IG are detailed in Appendix[A.2]

3 Motivation

In this section, we analyze the strengths and limitations of attention-based token importance esti-
mation, examine variations in sequence length and complexity, and summarize the challenges in
designing adaptive token pruning methods.

3.1 Impact of Token Importance Estimation Strategies on Model Performance

Token importance estimation is crucial for effective pruning. Most existing methods rely on atten-
tion mechanisms to assess token importance; however, such mechanisms focus on token-to-token
interactions and tend to overlook the independent semantic contribution of individual tokens [30].
To evaluate the effectiveness of different estimation strategies, we compare three approaches on the
SST-2 and MRPC datasets: a random strategy (as a lower bound), an attention strategy, and a residual
strategy (as an upper bound). As shown in Fig.[] the attention-based approach still leaves substantial
room for improvement in pruning performance, indicating a discrepancy between attention scores
and the actual semantic contribution of tokens. To address this issue, we propose an attribution-based
method that leverages IG to quantify the marginal contribution of each token to the model output,
enabling more accurate and interpretable token selection.

3.2 Limitations of Fixed and Learnable Thresholds

Most pruning frameworks adopt either fixed or globally learned thresholds, which fail to account
for the variability in sequence length (Fig. [2) and complexity (Fig. 3) across and within datasets.
Although LTP [17]] improves flexibility by learning layer-wise thresholds during training, these
thresholds remain static at inference time and lack instance-level adaptability. To overcome this
constraint, we propose a dynamic pruning mechanism that adjusts the pruning ratio for each sequence
based on estimated token saliency and structural complexity.

3.3 Challenges

Despite the significant potential of attribution-driven adaptive token pruning methods in improving
model efficiency while preserving predictive performance, several challenges remain in practical im-
plementation. First, the IG method must remain stable and effective under conditions of sparse token
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Figure 4: Overview of the AD-TP framework. The red dashed box represents the Attribution-Aware
Adaptive Token Retainer, which consists of ARP and TSP.

retention. Second, the adaptive token retainer must be sufficiently lightweight to avoid introducing
additional inference overhead. Third, given that the training process involves knowledge distillation,
token removal inevitably leads to information loss and results in representation misalignment between
the student and teacher models.

4 Attribution-Driven Adaptive Token Pruning

In this section, we present the AD-TP method in detail. The overall framework is illustrated in Fig. ]
This approach prunes sequences by introducing an Attribution-Aware Adaptive Token Retainer, which
consists of an ARP and a TSP. AD-TP leverages IG to assess token saliency and combines teacher
supervision with self-supervised to guide pruning. Additionally, an attribution-based distillation
strategy is employed to enhance model representation and performance.

4.1 Problem Definition

Given an input token sequence = = {x1, 23, ..., T, }, where x; denotes an input token and n is
the sequence length. Transformer first maps the token sequence into a d-dimensional embedding
sequence E = {e1, e, ..., e, } through an embedding layer. Each e; represents the embedding of
token x;.

4.2 Attribution-Aware Adaptive Token Retainer

As illustrated in Fig. 5] the Attribution-Aware Adaptive Token Retainer consists of two main compo-
nents: ARP on the left estimates the complexity of the sequence and determines the retention ratio p,.,



while TSP on the right evaluates the importance of each token in the embedding sequence E. Based
on the retention ratio, this module dynamically generates a sparse representation, enabling adaptive
pruning of the sequence.

In the ARP module, the embedding of the special classi-
fication token [CLS], denoted as x4 € R?, is first used as

a global representation of the input sequence. This global =t N
: : Adaptive i Token Saliency
token is then passed through a linear layer and an argmax Reenion Raio e Predictor
function G to produce a one-hot vector that selects p,. from TTFI‘I—FFTH .. -
a candidate list L,. The process is defined as: ' e E Toten Soevey
Linear Layer Linear Layer
s A
xg =ejcLs), T, = linear (z4) €)) } e
Global Token i
one_hot =G (z,), pr=one_hot-Lp @ | ! 1

where efcLs) € R¢ denotes the final-layer embedding of
the [CLS] token, and G is the argmax activation function,
which maps the logits x, to a one-hot vector indicating
the selected retention ratio.

Figure 5: Attribution-Aware Adaptive
Token Retainer.

To identify key tokens under the retention ratio p,, the
TSP assigns a saliency score S € R™ to each token. Each
embedding from E is passed through a linear layer, ReLU activation, and another linear projection to
produce the score:
S = linears (ReLU (linear; (E))) 3)

Based on the adaptive retention ratio p,. and the token saliency scores S, we select the top p, % most
important tokens to construct an adaptive sparse sequence for subsequent computation.

4.3 Token Saliency Estimation Based on Integrated Gradients

In AD-TP, IG are used to supervise both token pruning and knowledge distillation. IG computes
attribution scores by integrating gradients along a path from a baseline input (e.g., [PAD]) to the
actual input, and is formally defined as follows:

Em:aFC(E’Jr%x(EfE’)) L @

IGij (.Fc7 E) = (eij — e;j) X 661-]- m

k=1

where m is the number of integration steps, [ is the predicted score for class c, and e;; is the j-th
feature of the i-th token. The baseline € ; is set as the [PAD] embedding. In our setup, m = 1.

To reduce the influence of low-information dimensions, the teacher model retains only the top-K IG
dimensions per token and computes their L2 norm. To minimize training complexity and avoid noise,
the student model retains all dimensions.

ay . = || TopK (1Gapprox ; (Fyc, B)) |2, a5 = || (1Gapprox ; (Fy.c, Ey)) |12 ®)

where a . and a; . represent the attribution scores of token x; with respect to class c in the teacher
and student models, respectively. F; . and F . are the corresponding prediction functions, and E}
and I are the input embeddings.

4.4 Joint Supervision Based on Teacher and Self-Supervision

In this section, we describe how to train the Attribution-Aware Adaptive Token Retainer based
on attribution scores. The training process integrates teacher supervision and self-supervised. We
perform a weighted fusion of the attribution scores ai, . from the teacher model and ai, . from the
student model to construct a unified supervision signal:

al. = (1 —k)aj .+ kal ., k=min(1.0,epoch/num_epoch) (6)

where, epoch is the current step and num_epoch is the total number of training epochs. In the
early stage of training, due to the limited attribution capability of the student model, the supervision
primarily relies on the teacher model. As training progresses, the scores of the student model are
gradually incorporated to enhance self-supervised learning.
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Figure 6: Dual normalization process of attribution scores.

Since the student model retains fewer tokens after pruning, its attribution scores are not directly
comparable to those of the teacher model. To address this, we introduce a dual normalization strategy
to ensure scale alignment and highlight relative importance. As illustrated in Fig. [} L2 normalization
is first applied to eliminate inter-dimensional disparities, followed by sequence-level normalization to
convert scores into relative weights.
L
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To train the ARP, we use the average saliency score of each sample as a threshold. Tokens exceeding
this value determine the target retention ratio, which is then mapped to a candidate list index y as the
supervision signal.
i ad’ q
Ogpg = —=——, y =round (l X f) ®)
n n
where, ¢ is the number of tokens above the mean saliency score, n represents the total number of
tokens in the sequence that participate in the saliency evaluation, and [ is the size of the candidate
ratio list. Adjusting ! allows the model to adapt to different computational budgets. The ARP loss is
defined as:
Larp =Lcor (z,,y) 9
where, Lc is the cross-entropy loss, and £ 4rp encourages x, to match the target index in the
candidate list.

Meanwhile, we train the TSP module to estimate token saliency scores. The fused attribution scores
ag"" are ranked, and the top p% tokens are labeled as 1, while the remaining tokens are labeled as 0 to
construct a binary supervision signal BA. The loss function is defined as follows:

1 n
L =— L i, BA; 10
TSP = ; BCE (s ) (10)
where s; denotes the predicted saliency of the i-th token in the sequence, obtained from Equation (3).
L pcE represents the binary cross-entropy loss function.

4.5 Opverall Objective

In this section, we describe the overall training objective of AD-TP. To ensure a smoother overall
distillation process, we also apply a dual normalization strategy to the attribution scores of both the
teacher and student models:
l l

ape = llavelly  ase = llasel, (11)

ol abi

q,% __ t,c i s,c
At,c = n 1’ agﬂz? - n 1,3 (12)

Zi:l Qi c 21:1 as,c

To represent attribution globally, per-class vectors ag . and af . are concatenated across C classes:

c c
A= el Ac=| 2 al (13)
where || denotes the concatenation operation, which aggregates the attribution scores across all
categories along a specified dimension. To mitigate pruning-induced loss, an attribution distillation
loss minimizes the L2 distance between teacher and student representations:

Lia=||A"— A%, (14)
The final training objective combines classification loss, logits-based distillation, attribution loss, and
token retainer supervision:
L=1—a)lce+ aLigit + BL1G +7(Larp + L1sp) (15)
Hyperparameters «, 3, and «y control the contribution of each term.



5 Experiments

Datasets and Evaluation Metrics. We evaluate AD-TP on 8§ tasks from the GLUE benchmark and
extend the evaluation to two long-text datasets: SQuAD v2.0 [31]] and 20News [32]]. Each GLUE task
adopts task-specific evaluation metrics; SQuAD v2.0 is evaluated using the F1 score, while 20News
uses accuracy. In addition, inference efficiency is assessed using FLOPs, a hardware-agnostic metric
that reflects the computational cost of model inference.

Implementation Details. All experiments are implemented in PyTorch with Huggingface Trans-
formers on an NVIDIA RTX 3060. The teacher is a 12-layer BERT-base, and the student uses either
6 or 12 layers. We tune learning rates and distillation weights («, (3, v) across defined ranges. All
hyperparameter configurations and dataset-specific settings are provided in Appendix [A.3]

Existing Methods for Comparison. To evaluate AD-TP comprehensively, we compare it with
representative pruning methods and other model compression techniques. POWER-BERT [13] uses
progressive word-vector elimination; LAT [14] dynamically adjusts sequence length via LengthDrop;
and LTP [[17] learns attention-based pruning thresholds. Transkimmer [20] employs token-level
predictors, while ToP [33]] combines ranking distillation with coarse-to-fine pruning. We also include
DistilBERT [34] and CoFi [35] as baselines for distillation and structured pruning. Unlike these
approaches, AD-TP adaptively predicts retention ratios based on sequence complexity, enabling more
flexible and efficient compression. It can also be integrated with orthogonal techniques for further
gains.

5.1 Main Results

Table 1: Comparison of AD-TP and mainstream pruning methods on GLUE in terms of accuracy and
FLOPs. T and S denote the teacher and student models, respectively. All baseline results are from
ToP [23], except BERT-base (T) and BERT6 (S). Bold and underlined values indicate the best and
second-best results.

Model Method CoLA RTE QQpP MRPC SST-2 MNLI QNLI STS-B
< Matthews FLOPs Acc. FLOPs Acc. FLOPs F1 FLOPs Acc. FLOPs Acc FLOPs Acc. FLOPs Pearson FLOPs
BERT-base (T) - 60.3+07 1.00x 69.7+05 1.00x 91.5+09 1.00x 91.4x03 1.00x 93.7+05 1.00x 84.9+04 1.00x 91.7+05 1.00x 89.0+02 1.00x
BERTH6 (S) - 512411 1.00x 66.1+04 1.00x 90.4+03 1.00x 89.2x08 1.00x 91.0+08 1.00x 81.7+09 1.00x 89.3:x08 1.00x 87.8+05 1.00x
PoWER-BERT  Atten-value 523 4.50x 674 3.40x 90.2 4.50x 88.1 2.70x 92.1 2.40x 83.8 2.60x 90.1 2.00x 85.1 2.00x
LAT Atten-value - - - - - - - - 92.8 2.90x 84.4 2.80x - - - -
LTP Atten-value 523 8.66x 63.2 6.84x 90.4 7.44x 87.1 6.02x 923 3.59x 83.9 3.74x 89.3 3.91x 87.5 5.25x
ToP Atten-value 60.5 9.62x 70.0 7.10x 91.2 8.04x 89.2 6.32x 935 3.82x 84.7 4.27x 90.6 4.35x 87.6 5.32x
AD-TP6 1G 55.3+04  13.78x+02  70.1407 4.25x:04 904405 7.05x+03 89.8+09 6.83x+03 92.0:07 7.98x:t04 84.9+10 545x+07 89.5:05 4.17x+03 88.2406 6.63x407
AD-TP12 1G 5694106  13.89x+04 712107 489x:07 9l4i06  7.85xi05 90.8:06 6.97xi04 94.7:03 8.45xi06 854104 5.69xi02 902106 4.52x:104 88.7104  6.66x103

Table 2: Comparison of Token Pruning Methods  Table 3: Comparison with Distillation and Struc-

on Long-Sequence Tasks. tured Pruning.
SQuADV2.0 20News CoLA MRPC 20News

Model Method F1 FLOPs Acc. FLOPs Model Matt. FLOPs Fl FLOPs Acc. FLOPs
BERT6 51.2+11 1.00x 89.2+08 1.00x 85.0+12 1.00x
B‘é‘gﬁ?e ) ;Z‘éi“ } '88" gg‘gﬂ” } '88" DistlBERT6  49.0 2.00x 869  200x 858  2.00x
- 0-0£08 HUx D12 HUx CoFi6 38.0 9.10x 86.3 7.70x 85.9 5.90x

Transkimmer  Prediction 75.7 4.67x 86.1 8.11x AD-TP6 553104 13.78x+02 89.8:09 6.83x+03 87.3+05 8.74x:05
PoWER-BERT  Attention - - 86.5 2.91x BERT-basel2  60.3+07 1.00x 91.4+03 1.00x  86.7+07 1.00x
LTP Attention 75.6 3.10x 85.2 4.66x CoFil2 39.8 9.10x 90.0 4.00x 86.4 7.70x

ToP Attention 759 4.12x 87.0 8.26x AD-TP12 56.9+06 13.89x+04 90.8:06 6.97x+04 88.6+03 8.82x+0:2

AD-TP6 1G 76.2+06 5.07x+02 87.3+05 8.74x+05

Comparison with Token Pruning Methods. We evaluate AD-TP on the GLUE benchmark and
two long-sequence datasets. As shown in Table[I] AD-TP6 consistently improves both accuracy and
efficiency over the unpruned student model. AD-TP12 achieves a 7.37x FLOPs reduction compared
to the teacher model while maintaining competitive performance, and outperforms the state-of-the-art
ToP method on several tasks. This highlights the advantage of IG over attention-based metrics in
accurately estimating token saliency. On long-sequence tasks (Table2)), AD-TP6 delivers significant
gains. Notably, it surpasses BERT-base in accuracy on 20News while reducing FLOPs by 8.74x.

Comparison with Other Model Compression Methods. We compare AD-TP with DistilBERT
and CoFi using both 6-layer and 12-layer BERT models (Table [3). AD-TP achieves significantly
higher FLOPs reduction than DistilBERT (e.g., 8.7x vs. 2.0x for BERT6), while maintaining or



improving accuracy. Compared to CoFi, AD-TP consistently delivers better performance under
similar or higher compression ratios. Notably, CoFi6 suffers a marked accuracy drop, whereas
AD-TP6 preserves model performance. These results demonstrate that AD-TP achieves efficient and
robust compression across both compact and large-scale Transformer models.

5.2 Ablation study

Impact of the Teacher Model and Loss Components.
We conduct ablation studies on 5 variants of AD-TP to

. w/o Teacher Model
= who £

evaluate the contribution of each distillation component:
removing (1) the teacher model, (2) the cross-entropy loss
Lc g, (3) the logits-based loss Ly4i:, (4) the attribution

®
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L
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distillation loss L, and (5) the retainer loss (Larp +
Lrsp). As shown in Fig. [7| removing any component
degrades performance, with the absence of the teacher
model or retainer loss causing the most significant drop
(7-8%). These results confirm the essential role of both the
teacher model and the Attribution-Aware Adaptive Token
Retainer in guiding effective pruning and preserving model
accuracy.
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Figure 7: Ablation study of distillation

Impact of the ARP. To assess the effectiveness of components.

our adaptive pruning strategy, we compare three meth-
ods: (i) a static retention ratio fixed at 0.3; (ii) a ran-
dom ratio selected from a predefined candidate list with
the same average; and (iii) our proposed adaptive method (AD-TP). As shown in Table [}
all methods share the same architecture and differ only in how the retention ratio is deter-
mined. Results show that the adaptive strategy consistently outperforms the others under com-
parable FLOPs, demonstrating the benefit of adjusting pruning strength based on sequence
complexity. Additional experimental results on more datasets are provided in Appendix [A4]

5.3 Effectiveness Under Different FLOPs Budgets

We evaluate the effectiveness of the AD-TP method under
varying FLOPs budgets and compare it with two token
pruning approaches: LTP and ToP. To ensure a fair com-
parison, we utilize the official implementations of LTP and

Table 4: Ablation study of the adaptive
token retainer.

ToP and apply grid search to optimize their hyperparame- Model SST-2 20News
ters so that each method achieves its best performance un- cc. P A p
der a given FLOPs constraint. As shown in Fig.[§] AD-TP Static 912 030 857 030
. : ; Random 905 030 825 030
consistently outperforms both baselines across different Adapive 920 029 873 027

tasks under varying FLOPs constraints. On the MRPC,
under a 60% relative FLOPs constraint, AD-TP achieves
3% higher F1 score than LTP and 2% higher than ToP. Under the same F1 score (87) constraint,
AD-TP reduces FLOPs by approximately 34% compared to LTP and 9% compared to ToP.
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Figure 8: Performance comparison of AD-TP, LTP, and ToP under different FLOPs budgets.
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5.4 Impactof o, 3, and ~

To analyze the impact of individual loss weights in the objective function, we systematically vary
the hyperparameters «, (3, and y on the SST-2, RTE, and 20News. As shown in Fig.[9] a smaller
value of a reduces the guidance effect from the teacher model predictions, leading to a decline in
performance. Increasing 8 and - enhances learning by improving attribution alignment and token
retention. However, excessively large values may cause the model to overfit certain sub-objectives,
thereby degrading overall accuracy. It is noteworthy that the optimal value of « remains relatively
consistent across different tasks, while the best-performing values of S and « vary depending on the
task, indicating that attribution and retention mechanisms require task-specific tuning.

5.5 Impact of Candidate List Length L,

In the process of adaptive retention ratio prediction,

we define a candidate list vector L, containing pos-
sible retention ratios. To investigate how the length ~ *
of this candidate list impacts model performance P P
and convergence speed, we conducted compara- :
tive experiments using 3 candidate lists of different
lengths. Specifically, List @ contains 5 coarse- %] /, “ o
grained values, List @ includes 10 medium-grained :O / 2w / —
values, and List @ comprises 20 fine-grained val- e A NN EE )
ues. As shown in Fig. [0} the results demonstrate o o

that shorter lists (List @) enable faster convergence (a) SST-2 (b) 20News

but achieve lower accuracy, while longer lists (List  Fjgure 10: Impact of candidate list length on

®) result in. higher accuracy but slower CONver-  model accuracy and convergence speed in ARP.
gence. Considering both performance and training

efficiency, we select List @ as the final configura-
tion, as it strikes an optimal balance between accuracy and convergence speed. Detailed configurations
of the candidate list and supporting results in additional datasets are documented in AppendixA.3]

Aceuracy

\
e
—

5.6 Evaluation of TSP

To evaluate the effectiveness of TSP, we randomly sampled

1,000 examples from the validation sets of SST-2 and Typle 5: Consistency Between TSP and
MRPC, and conducted a quantitative comparison using [G Scores.

two metrics: (i) Spearman p: measures the consistency of
token-importance rankings between TSP and IG; (i) MSE Dataset Spearman p  MSE
(Mean Squared Error): measures the numerical similarity

between the importance scores predicted by TSP and those SST-2 0.812 0.0119
derived from IG. As shown in Table 5] TSP achieves high MRPC 0.778 0.0143
ranking consistency (p > 0.75) and low numerical error

compared with IG, indicating that the module can effectively learn and approximate the saliency
distribution derived from IG.




5.7 Sensitivity of Model Performance to the Number of IG Steps

To reduce computational overhead, we set the IG step count m = 1 by default in our implementation.
To examine the sensitivity of model performance to this approximation, we conducted additional
experiments with different values of m € {1,3,5, 7}. The results are summarized in Table@

Table 6: Performance of AD-TP with different IG step counts.
Dataset m=1 m=3 m=5 m=7

SST-2 92.0 92.1 92.5 92.3
MRPC  89.8 89.6  90.0 905

Experimental results show that the model exhibits low sensitivity to the choice of m. Increasing
the number of IG steps brings only slight and unstable performance improvements (typically less
than 1%), while the computational cost grows approximately linearly with m. For example, when
m = 10, the training time increases by about tenfold, which is impractical in resource-constrained
or distributed environments. Therefore, m = 1 achieves a good balance between performance and
efficiency.

6 Conclusion

In this work, we propose an attribution-driven adaptive token pruning method, AD-TP, for Transformer
model compression to reduce computational resource requirements. In contrast to traditional methods
that rely on accumulating attention weights to assess token importance, AD-TP applies IG to more
accurately evaluate the contribution of each token to the model prediction. Furthermore, AD-TP
addresses the issue of mismatched pruning ratios and sequence complexity in conventional token
pruning methods. It introduces a lightweight adaptive token retainer that dynamically selects an
appropriate pruning ratio based on sequence complexity to better retain important tokens. To the
best of our knowledge, AD-TP is the first Transformer compression method that explicitly considers
sequence complexity and implements adaptive token pruning. By combining teacher supervision with
self-supervision, AD-TP effectively reduces computational overhead while maintaining performance.
Extensive experimental results demonstrate that AD-TP achieves a 4% reduction in FLOPs and
an 8% improvement in performance compared to existing state-of-the-art token pruning methods,
showing significant advantages. Limitations: this work focuses only on pruning at the input layer,
and extending adaptive token pruning to other layers of the model remains an important direction for
future research.
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A Appendix

A.1 Transformer and Token Pruning

Each basic Transformer encoder layer consists of a multi-head attention (MHA) mechanism and a feed-forward
neural network (FNN) module, each surrounded by residual connections. Suppose that each Transformer layer
contains N}, attention heads. Given an input sequence X = {z1, ...,z } of length n, the MHA computes the
importance of each token with respect to all other tokens as follows:

Np,

MHA(X) =Y Att (WQ,W,’;,W(},WZ;,X) (16)
h=1

where Wg ) , W;(l’h), W‘(,l ’h), Wg ) e R denote the projection matrices for query, key, value, and output,
respectively. Let d be the hidden dimension, and d}, the output dimension of each attention head, typically set to
d/Np. The computation for a single attention head is given by:

a7

Att(WQ’Wwav,Wo,X):Wo-softmaz( N

W G

Subsequently, the output of the MHA is passed through a residual connection followed by layer normalization,
as defined by the following equation:
XJMHAZLN(MHA(X)-FX) (18)

Then, X m 4 is fed into the FNN, sequentially passes through two feed-forward layers, and is then combined
with the original input via a residual connection to produce the following output:

FNN (Xyua) =maz (0, XprmaWi + b1) Wa + bo (19)
Xout = LN (FNN (Xyvaa) + XnvmA) (20)

where, W1 and b1, and W5 and b, are the weights and biases of the two feed-forward layers, respectively.
To reduce the computational overhead of Transformers, token pruning removes redundant tokens from the
sequence based on importance estimation. A common approach is to introduce a sparse binary mask to identify

and discard unimportant tokens, thereby reducing the number of tokens involved in attention and feed-forward
computations. With such a mask, the input can be reformulated as:

X =X Ma5ktoken — X]Wa,sk (21)

where Maskioken € {0,1}" indicates whether each token is retained. The outputs of the MHA and FNN
modules are given by:

Np,

MHA, (X)=Y_ Att (wg, Wi, Wi, W, XMask) 22)
h=1

XMHA — IN(MHA,, (X) + Xasask) (23)

FNN (Xfé,ﬁ;;‘) = max (0, XMHAW, 4 bl) Wo + bo (24)

The original computational complexity of the Transformer is O (n2) By introducing a sparse mask, the number
of tokens involved in computation can be significantly reduced in tasks, thereby improving overall inference
efficiency.

A.2 Integrated Gradients

IG is a widely used attribution method for interpreting predictions made by neural networks. It aims to quantify
the contribution of each input feature to the model output by constructing an interpolation path between the
original input and a predefined baseline input, and then integrating the gradients along this path. Compared to
conventional gradient-based approaches, 1G effectively mitigates the gradient saturation problem and provides
more stable attribution results, especially in deep networks that use nonlinear activation functions.

Given a model prediction function F, an input z, and a baseline input x’, the IG of the i-th feature is defined as:

U OF (2 + £ (z — 1))
1G; = i — ; X e
(x) = (zi — ;) /a . B
Since the integral is difficult to compute analytically in practice, it is typically approximated using a Riemann
sum. By dividing the interval [0, 1] into m sub-intervals, we obtain:
1 COF (2 + £ (2 — o
IGi(z) ~ (@ — ;) - — Z ( 37;:1( ) (26)

m
k=1

(25)
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Table 7: Parameter settings for different datasets.
Dataset Learning Rate  Epochs  Batch Size  « 5 o

CoLA 265 20 32 09 50 10
MNLI 3e-5 30 16 0.8 50 500
SST-2 2e-5 30 32 08 10 100
QNLI 2e-5 30 32 09 100 100
MRPC 3e-5 30 16 09 100 100
QQP 4e-5 30 16 1.0 100 500
RTE 2e-5 30 16 09 10 500
STS-B 5e-5 10 16 08 10 100

This method obtains relatively accurate feature attributions through multiple forward and backward passes,
without modifying the original model architecture. In our approach, IG is used to quantify the saliency of each
token. These saliency scores are then employed to estimate the importance of tokens to the model output, guiding
the subsequent token retainer strategy and revealing the primary focus of the model.

A.3 Implementation Details

All experiments are implemented using the PyTorch framework and the Huggingface Transformers library on
a single NVIDIA RTX 3060 GPU. The teacher model is a fine-tuned BERT-base with 12 Transformer layers,
768-dimensional hidden units, and 12 attention heads. The student model adopts two configurations with 6 or 12
Transformer layers, keeping other hyperparameters consistent with the teacher. E]The teacher is trained for 5
epochs on each task, and the best validation checkpoint is used for evaluation. The learning rate is fixed at 2e-5,
with a batch size of 32.

For the student model, learning rates are searched in {2e-5, 3e-5, 4e-5, 5e-5, 6e-5}, and the distillation weight o
is selected from {0.6, 0.7, 0.8, 0.9, 1.0}. Other hyperparameters 3 and -y are tuned over {1, 10, 50, 100} and {10,
50, 100, 200, 400, 500}, respectively. The candidate list for pruning ratios is defined as L, = {0.1,0.2,...,1.0}.
Detailed task-specific configurations are reported in Table[7]

A.4 Additional Results on ARP Effectiveness

To further support the analysis in Section[5.4] we provide additional results on the RTE and MRPC datasets. As
in the main experiments, we compare three pruning strategies: Static, Random, and Adaptive (AD-TP), using
the same model architecture. These approaches differ only in the method used to determine the token retention
ratio. The corresponding experimental results are summarized in Table[§]

Table 8: Ablation study of the adaptive token retainer.

RTE MRPC
Acc. P F1 p

Static 66.2 030 874 0.30
Random 67.5 030 88.1 0.30
Adaptive 70.1 043 89.8 0.32

Model

A.5 Candidate List Configuration and Full Results

To support the analysis in Section[5.5} we provide the detailed configuration of the candidate list vector L, along
with the corresponding experimental results. We define three candidate lists with varying granularity levels for
adaptive retention ratio prediction:
* List @: {0.2,0.4,0.6,0.8,1.0}
* List @: {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0}
* List ®: {0.05,0.1,0.15,0.2,0.25,0.3,0.35,0.4,0.45,
0.5,0.55,0.6,0.65,0.7,0.75,0.8,0.85,0.9,0.95,1.0}

The experimental results on the MRPC dataset are shown in Fig[TT]

We use the pretrained models and tokenizers from https://huggingface.co/.
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Figure 11: Impact of Candidate List Length on Model Accuracy and Convergence on MRPC.

A.6 Inference Overhead vs. Latency

To analyze the inference overhead introduced by the Retainer module (TSP + ARP), we measured the computa-
tional cost and latency across different datasets and input lengths. The Retainer module consists of lightweight
1-2 layer feed-forward networks with fewer than 0.8M parameters, which is approximately 1% of BERT-base.
Therefore, the additional inference cost is negligible compared to the Transformer backbone. Although the
pruning benefits become less pronounced for shorter input sequences, the overall inference time is still reduced,
as shown in Table

Preliminary wall-clock latency measurements were conducted on an RTX 3060 GPU. Despite the additional
modules, AD-TP achieves 30-55% reduction in end-to-end latency compared with BERT-base on SST-2, MRPC,
and SQuAD, particularly for inputs longer than 64 tokens.

Table 9: Inference latency comparison between BERT-base and AD-TP on an RTX 3060 GPU.
Dataset Input Length BERT-base (ms) AD-TP (ms) | Gain

SST-2 128 9.7 4.5 51.5%
MRPC 64 6.1 3.8 37.7%
SQuADv2.0 512 21.5 12.3 42.8%

These results demonstrate that the Retainer module introduces minimal inference overhead while providing
significant end-to-end latency reduction. Future work will include evaluating AD-TP on mobile and edge CPUs
to further validate its deployment efficiency in real-world settings.

A.7 Training Cost Analysis

To analyze the additional computational cost introduced by the teacher model and Integrated Gradients (IG)
supervision, we compared the training time of AD-TP and BERT-base across the eight GLUE tasks. The teacher
model and IG are used only during the training phase; during inference, the proposed method relies solely on
the lightweight TSP and ARP modules, requiring neither backpropagation nor teacher guidance. Therefore, the
inference efficiency and deployability of the model are not affected.

As shown in Table[T0] training with IG supervision increases the overall training time by approximately 20-30%
compared to BERT-base training without the teacher model and IG. This additional cost is considered reasonable,
given that AD-TP substantially reduces FLOPs and improves computational efficiency during inference.

These results indicate that the training-time overhead introduced by IG and the teacher model remains moderate,
while offering significant improvements in inference efficiency.

A.8 Broader Impact

This work proposes an attribution-driven adaptive token pruning method, AD-TP, for Transformer model
compression to reduce computational resource consumption. The potential positive societal impacts include
reduced computational and energy consumption during inference, which may contribute to more environmentally
sustainable Transformer deployments. Additionally, lowering the resource requirements of widely used models
like Transformer may improve accessibility for academic or industrial groups with limited computational
infrastructure.
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Table 10: Training time comparison between AD-TP and BERT-base on the GLUE benchmark (RTX

3060 GPU).
Dataset Epochs Batch Size BERT-base (h) AD-TP (h)
CoLA 20 32 0.83 1.17
MNLI 30 16 33.00 40.50
SST-2 30 32 3.50 4.33
QNLI 30 32 7.08 8.67
MRPC 30 16 0.25 0.33
QQP 30 16 22.67 28.83
RTE 30 16 0.17 0.20
STS-B 10 16 0.20 0.25

As a general-purpose model compression technique, the proposed method does not target any specific downstream
application. However, there is a potential indirect risk that efficiency improvements could lower the barrier to
deploying Transformer models in sensitive or harmful contexts (e.g., misinformation systems or large-scale
surveillance), by making model execution cheaper. While our work is purely algorithmic and does not involve

model deployment, we acknowledge this possibility.

To mitigate such risks, we encourage responsible use of model compression techniques, especially when
applied to models used in real-world decision-making or content generation tasks. Transparency about pruning
configurations and performance trade-offs is also essential when sharing compressed models.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction accurately summarize the method, theoretical framework,
and experimental results, consistent with Sections [3]to Sections 3]

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims made in the
paper.

¢ The abstract and/or introduction should clearly state the claims made, including the contributions
made in the paper and important assumptions and limitations. A No or NA answer to this
question will not be perceived well by the reviewers.

¢ The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

* Itis fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations listed in Section[@]
Guidelines:
* The answer NA means that the paper has no limitation while the answer No means that the paper
has limitations, but those are not discussed in the paper.

¢ The authors are encouraged to create a separate "Limitations" section in their paper.

¢ The paper should point out any strong assumptions and how robust the results are to violations of
these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide
closed captions for online lectures because it fails to handle technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to address problems
of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms that
preserve the integrity of the community. Reviewers will be specifically instructed to not penalize
honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete
(and correct) proof?

Answer: [NA]
Justification: No theoretical proofs or results.
Guidelines:

¢ The answer NA means that the paper does not include theoretical results.
* All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
¢ All assumptions should be clearly stated or referenced in the statement of any theorems.
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* The proofs can either appear in the main paper or the supplemental material, but if they appear in
the supplemental material, the authors are encouraged to provide a short proof sketch to provide
intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental
results of the paper to the extent that it affects the main claims and/or conclusions of the paper
(regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide information relevant to reproducing the results in Sections[d] [5} and the
Appendix.

Guidelines:

» The answer NA means that the paper does not include experiments.

« If the paper includes experiments, a No answer to this question will not be perceived well by the
reviewers: Making the paper reproducible is important, regardless of whether the code and data
are provided or not.

* If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might suffice,
or if the contribution is a specific model and empirical evaluation, it may be necessary to either
make it possible for others to replicate the model with the same dataset, or provide access to
the model. In general. releasing code and data is often one good way to accomplish this, but
reproducibility can also be provided via detailed instructions for how to replicate the results,
access to a hosted model (e.g., in the case of a large language model), releasing of a model
checkpoint, or other means that are appropriate to the research performed.

* While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe the
architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should either be
a way to access this model for reproducing the results or a way to reproduce the model (e.g.,
with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer:
Justification: Model weights are public. We intend to release the code pending internal review.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).

¢ The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.
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* The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

¢ The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

¢ At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).

* Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specity all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]
Justification: Provided in Section[d]and the Appendix.
Guidelines:

¢ The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail that is
necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate informa-
tion about the statistical significance of the experiments?

Answer: [Yes]
Justification: We report the standard error in the experimental results presented in Section[5.1]
Guidelines:

* The answer NA means that the paper does not include experiments.

e The authors should answer "Yes" if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

¢ The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

* The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

¢ The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error of the
mean.

* Itis OK to report 1-sigma error bars, but one should state it. The authors should preferably report
a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is
not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

« If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]
Justification: Sufficient information on the computational resources is included in Section[3}
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud
provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual experimental
runs as well as estimate the total compute.

19



9.

10.

11.

* The paper should disclose whether the full research project required more compute than the
experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it into
the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the Neur[PS Code
of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: The research conducted in the paper conforms in every respect with the NeurIPS Code
of Ethics.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

« If the authors answer No, they should explain the special circumstances that require a deviation
from the Code of Ethics.

¢ The authors should make sure to preserve anonymity (e.g., if there is a special consideration due
to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts
of the work performed?

Answer: [Yes]

Justification: Both potential positive societal impacts and negative societal impacts are discussed in
Societal Impact section of the Appendix [A.6]

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal impact or
why the paper does not address societal impact.

« Examples of negative societal impacts include potential malicious or unintended uses (e.g.,
disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied to particular
applications, let alone deployments. However, if there is a direct path to any negative applications,
the authors should point it out. For example, it is legitimate to point out that an improvement in
the quality of generative models could be used to generate deepfakes for disinformation. On the
other hand, it is not needed to point out that a generic algorithm for optimizing neural networks
could enable people to train models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitor-
ing misuse, mechanisms to monitor how a system learns from feedback over time, improving the
efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or
scraped datasets)?

Answer: [NA]
Justification: No such release artifacts.
Guidelines:

¢ The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with necessary
safeguards to allow for controlled use of the model, for example by requiring that users adhere to
usage guidelines or restrictions to access the model or implementing safety filters.

» Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.
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12.

13.

14.

15.

* We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]
Justification: Assets are properly credited.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a URL.
* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of service of
that source should be provided.

« If assets are released, the license, copyright information, and terms of use in the package should
be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided
alongside the assets?

Answer: [NA]
Justification: No new assets released.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their sub-
missions via structured templates. This includes details about training, license, limitations,
etc.

* The paper should discuss whether and how consent was obtained from people whose asset is
used.

¢ At submission time, remember to anonymize your assets (if applicable). You can either create an
anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include
the full text of instructions given to participants and screenshots, if applicable, as well as details about
compensation (if any)?

Answer: [NA]
Justification: Does not involve crowdsourcing or research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

¢ Including this information in the supplemental material is fine, but if the main contribution of the
paper involves human subjects, then as much detail as possible should be included in the main

paper.
¢ According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.
Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an
equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]
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Justification: Does not involve crowdsourcing or research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent) may be
required for any human subjects research. If you obtained IRB approval, you should clearly state
this in the paper.

* We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

* For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard
component of the core methods in this research? Note that if the LLM is used only for writing,

editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or
originality of the research, declaration is not required.

Answer: [Yes]

Justification: This study proposes a token pruning method for Transformer-based pre-trained language
models, specifically using BERT-base and a 6-layer BERT model. The use of these models is essential
to the core methodological design and experimental evaluation, as detailed in Sections [ and [5

Guidelines:

* The answer NA means that the core method development in this research does not involve LLMs
as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
should or should not be described.
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