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Abstract

Rules have a number of desirable properties. It is easy to understand, infer new
knowledge, and communicate with other inference systems. One weakness of the
previous rule induction systems is that they only find rules within a knowledge base
(KB) and therefore cannot generalize to more open and complex real-world rules.
Recently, the language model (LM)-based rule generation are proposed to enhance
the expressive power of the rules. In this paper, we revisit the differences between
KB-based rule induction and LM-based rule generation. We argue that, while
KB-based methods inducted rules by discovering data commonalities, the current
LM-based methods are “learning rules from rules”. This limits these methods to
only produce “canned” rules whose patterns are constrained by the annotated rules,
while discarding the rich expressive power of LMs for free text.
Therefore, in this paper, we propose the open rule induction problem, which aims to
induce open rules utilizing the knowledge in LMs. Besides, we propose the Orion
(open rule induction) system to automatically mine open rules from LMs without
supervision of annotated rules. We conducted extensive experiments to verify
the quality and quantity of the inducted open rules. Surprisingly, when applying
the open rules in downstream tasks (i.e. relation extraction), these automatically
inducted rules even outperformed the manually annotated rules. 2

1 Introduction

Rules induction is a classical problem aiming to find rules from datasets [5, 7]. Previous work has
focused on discovering rules within a system. For example, one of the core tasks of inductive logic
programming (ILP) is to mine shared rules in the form of Horn clauses from data. Early studies
are mainly applied to relatively small relational datasets. Since the axioms of rules is limited to the
existing entities and relations within the datasets, the expressiveness of such rules is limited and
brittle. John McCarthy pointed out these rules lack commonsense and “are difficult to extend beyond
the scope originally contemplated by their designers” [18]. In recent years, with the emergence of
large-scale knowledge bases (KB) [3] and open information extraction [4] systems, rules mined from
them (e.g. AMIE+ [8], Sherlock [26]) are built on a richer set of entities and relations. Nevertheless,
both the quantity of knowledge and the complexity of rules are still far weaker than the real-world
due to the expressive power of these knowledge bases.

Recently, with the rapid development of pre-trained language models (LM) [6, 22], researchers
have found that pre-trained LMs can be used as high-quality open knowledge bases [21, 28] and
commonsense knowledge bases [27, 25]. Based on the expression of natural language for complex
relationships, the LM as a knowledge base can be used to generalize rules with more expressive
power. Based on LMs, Comet [14] proposed to generate new rules (if-then clauses) for arbitrary
texts. The generative model is trained on annotated if-then rules in the form of natural language.
∗Corresponding author
2Code and datasets are available at https://github.com/chenxran/Orion
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P(hypothesis|premise)

x is founder of y

Premise atom

x is CEO of y

x is a member of y

x was the secretary of y

Steve Jobs is founder of Apple

Bill Gates is founder of Microsoft

Edmund Berkeley is founder of ACM

P(instance|premise)
Instantiation Inducted rules

support

x worked at the brokerage Morgan Stanley
for about 11 years until 2005, when he and
some Morgan Stanley colleagues quit and
later founded the hedge fund y

…

Inducted rules

x is the founder and CEO of y

x serves on the board of  y

x is currently a venture capitalist at y

Figure 1: Inducting rules from LMs. We show running examples of Orion.

Therefore, Comet relaxes the form of knowledge in rules from a structured KB, to open natural
language. We know that Comet focuses on some specific domains (e.g. social interactions), but when
we want to use Comet for open rule generation, training based on annotated rules will constrains the
generated rules. Since there are only 23 different types of relations in Comet’s training corpus (i.e.
ATOMIC2020 [14]), the rules inducted by Comet are limited to these types (e.g. As a result, PersonX
feels). Besides, the model only learns patterns from the manually annotated rules, which restricts its
ability to generate novel rules.

Therefore, we revisit the differences between KB-based rule induction and LM-based rule generation
methods. We argue that, leaving aside the difference in knowledge forms, their main difference is
that the KB-based method inducts rules by observing common pattern of a group of entities from the
data, while the LM-based method only learns from the annotated rules. Namely, the former inducts
rules from data, while the latter learns rules from rules. In this case, although the LM contains
far more open knowledge than the KB, the current LM-based method still only generates “canned”
rules. We believe that the current LM-based rule generation method departs from the principle of
KB-based rule induction, i. e., to summarize the commonality of data.

In this paper, we propose to recapture the commonality of the data in the LM-based method, i.e.,
using the LM itself as a knowledge source and discover commonalities within it. We first proposed
the open rule induction problem based on the commonality of knowledge in LMs. Then, we proposed
an unsupervised open rule induction system, Orion. Instead of training the LM to generate rules that
conform to human annotations, we propose to let the LM “speak” the commonalities of the data by
itself. In this way, rules are not constrained by annotations.

To capture data patterns and mine rules directly from LMs, we use prompts to probe the knowledge
of LMs [21]. Prompts’ predictions reflect the knowledge in LMs. For example, in Fig. 1, based on
prompt: x is founder of y, we probe instances such as Steve Jobs-Apple, Bill Gates-Microsoft, etc.
From these instances, we further use LM to induct other expressions they support, such as x is CEO
of y, etc. Notice that unlike Comet which learns from annotated rules, we directly mine the patterns
from knowledge in LMs. In addition, taking full advantage of the expressive power of LMs, we
inducted rules for the complex example at the bottom of Fig. 1.

The significance of our proposed open rule induction in this paper is twofold. First, from the
perspective of rule induction, we gain more expressive rules to approach the real-world. And by
adding these rules to downstream tasks, the effect can be significantly improved. We will empirically
verify this in Sec 6.1. Second, from the LM perspective, rules can identify potential errors in language
models. For example, in Fig. 1, if we wrongly inducted the hypothesis x was the secretary of y, this
suggests that the LM has some kind of cognitive bias. We will elaborate this in Sec 6.2.

2 Open Rule Induction Problem

2.1 Preliminary: Rules in KB-based Methods

We refer to the definition of rules based on the Horn clause in KB-based rule induction to help define
our problem. In a Horn clause, an atom is a fact that can have variables at the subject and/or object

2



position. For example, (x, founderOf, y) is an atom whose subject and object are variables. A
Horn clause contains a head and a body, where the head is an atom, and the body is a collection of
atoms. A rule is then an implication from body to head: body1 ∧ · · · bodyn ⇒ head. An instantiation
of a rule is a copy of that rule, where all variables are replaced by specific instances in the KB.

2.2 Problem Definition

We define the atom of an open rule as a natural language sentence describing some relationship
between subject and object. For simplicity, we assume both subject and object are variables. For
example, (x, is founder of, y) is an atom which describes the relation between x and y. In defining
the open rule, for simplicity, we only consider the bodies with one atom. As we will describe in Sec 3,
the open rule can be easily extended to more variables by slightly modifying prompts. We define an
open rule as a derivation from a premise atom to a hypothesis atom.
Definition 1 (Open rule). An open rule is a implication from the premise atom (x, rp, y) to hypothesis
atom (x, rh, y):

(x, rp, y)⇒ (x, rh, y) (1)
where rp and rh are natural language descriptions. The rule implies that instance pairs with rp
relation also (very often) has rh relation.

For example, the open rule (x, is founder of, y) ⇒ (x, is CEO of, y) means that (very often) the
founder of an organization is the CEO of it. And (Steve Jobs, is founder of, Apple)⇒ (Steve Jobs, is
CEO of, Apple) in an instantiation of the rule. As we will show in Sec 3, generalizing the open rules
to more than two variables is easy. And we will discuss the potential extension of the open rules with
new variables in Appendix ??.

To model to the uncertainty of the open rule, in our problem definition, we use probability to represent
the open rule: PLM (rh|rp) denotes the probability of inferring hypothesis (x, rh, y) from premise
(x, rp, y). PLM () means the probability is derived from the language model LM . For simplicity, we
will use P () instead of PLM () in the rest of this paper.

For a given premise atom (x, rp, y), we want to induct k most relevant hypothesis atoms from the
LM. Specifically, we define the problem as follows:
Problem Definition 1 (Open rule induction). For a given premise atom (x, rp, y) and k, find top k
rh w.r.t. P (rh|rp).

We compute P (rh|rp) by the marginal distribution of the instantiation (ins) as below:

P (rh|rp) =
∑
ins

P (rh|ins, rp)P (ins|rp) (2)

where P (ins=(x0, y0)|rp) denotes the conditional probability distribution of x0, y0 corresponding
rp. And P (rh|ins=(x0, y0), rp) denotes the conditional probability of (x0, rh, y0) given (x0, rp, y0)
and the specific instance (x, y). For example, P (ins=(Steve Jobs,Apple)|rp=is founder of) denotes
the probability of instance x=Steve Jobs and y=Apple for the relation is founder of in the LM. And
P (rh=is ceo of|ins=(Steve Jobs,Apple), rp=is founder of) denotes the conditional probability of
(Steve Jobs, is ceo of,Apple), given that (Steve Jobs, is founder of,Apple).

Note that, when ins=(Steve Jobs,Apple) is known, whether the instantiation has relation is ceo of is
also known. That is, given the ins, rh is independent from rh. So we have:

P (rh|rp) =
∑
ins

P (rh|ins)︸ ︷︷ ︸
Applicability

P (ins|rp)︸ ︷︷ ︸
Instantiation

(3)

2.3 Rationale of the Open Rule Induction Problem

We use the concept of support in KB-based rule induction to explain Eq. (3) and Problem 1. Support
is the core metric in KB-based rule induction, which quantifies the amount of instances following the
rule in the dataset. We will analogize the terms in Eq. (3) to the factors of support as below.

Instantiation First, we consider P (ins|rp) as the instantiation by the language model. The probabil-
ity can be considered as the typicality of this instance for rp by the LM.
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Applicability Second, we consider P (rh|ins) in Eq. (3) as the applicability of rh to ins in the LM.
For example, for a well-trained LM, we can get P (rh = is ceo of|Steve Jobs, Apple) with a high
probability.

In summary, Eq. (3) denotes the expected number of instantiations that can be applied to the
hypothesis atom w.r.t. their applicability. This is consistent with the idea of support in the KB-based
rule induction. We will elaborate how to compute P (ins|rp) and P (rh|ins) via the LM in Sec 3.

3 Masked Language Models for Relational Descriptions

In this section, we illustrate how to calculate the two terms in Eq. (3), i.e., P (rh|ins) and P (ins|rp).
For LMs, both probabilities can be considered as special cases of the masked language model (MLM),
i.e. P (mask|masked sentence). From the MLM perspective, P (rh|ins = (x, y)) is equivalent to
predicting the masked text between x and y, while P (ins = (x, y)|rp) is equivalent to predicting the
masked x, y for given rp. Since MLM is a typical goal of the language model pre-training, we can
directly use existing pre-trained LMs to predict the masks.

Probability probing via prompts To compute the two probabilities, we construct following prompts:

• For P (rh|ins = (x, y)): x <mask> y.

• For P (ins = (x, y)|rp): <mask>x rp <mask>y .

For example, we use the prompt Steve Jobs <mask> Apple. to compute P (rh|ins =
(Steve Jobs,Apple)), and the prompt <mask>x is founder of <mask>y. to compute P (ins =
(x, y)|rp = is founder of). In our problem, one mask may correspond to multiple tokens. Therefore
we use Bart [16] as our LM, which uses seq2seq to decode one or more tokens for each mask.

Although we only consider rules with two variables in this paper, our method can be easily generalized
to arbitrary number of instances by modifying the prompts (e.g. from x <mask> y. to x <mask> y
<mask> z).

Relational description generation via weak supervision We noticed that MLM are not directly
applicable to computing P (rh|ins) and P (ins|rp). For P (rh|instances) we require the LM to
generate text describing exactly the relationships between x and y. Similarly, for P (instances|rp),
the generated text fragments are required to be exactly instances/entities. However, the original
MLM task for language model pre-training does not have these restrictions. It may predict arbi-
trary descriptions which leads to a lot of noise. For example. Bart predicts “Tokyo Metropolitan
Government,Japan,Japan.Tokyo, Japan.” for prompt Tokyo <mask> Japan.

To ensure that the LM correctly predicts P (rh|ins) and P (ins|rp), we continue training the LM on
relational description corpora. We obtain a large-scale relational description corpus using the weak
supervision technique [15], and use it to construct two separate training corpora for P (rh|ins) and
P (ins|rp), respectively. For P (rh|ins), we only mask out text except the named entities, and train
the LM to predict the mask. For P (ins|rp), we only mask out named entities.

Specifically, starting from the Wikipedia and Bookcorpus [32], we searched for sentences containing
one or two named entities. We consider that these sentences are (likely) describing the relationship
between entities. We continue to train two Bart models on each of these two corpora, which are used
to predict P (rh|ins) and P (ins|rp), respectively. We used the Spacy NER library to automatically
extract the named entities. We filtered the entities related to dates and numbers. The resulting dataset
consists of 93.63 millions samples. The continuing train plays the role of denoising the generative
process in Eq. (3), which is also used in [24].

4 Supported Beam Search for Rule Decoding

Another challenge of solving Problem 1 is to efficiently generate rh of a crowd of instantiations.
Although we can compute P (rh|ins)P (ins|rp) according to Sec 3, computing Eq. (3) is still in-
tractable: (a) the search space grows exponentially according to the length of the generated rule; (b)
we need to find the rh that has the top k probability among all instantiations, rather than for a single
instantiation as in standard decoder.
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Beam search for instantiation First, for the exponential number of all possible instances, we use
the model for P (ins|rp) trained in Sec 3 to generate the top k instantiations, denoted as INS:

INS = topkins(P (ins|rp)) (4)

We use beam search, a common and efficient way for decoding INS. Beam search is a search
heuristic to maintain a beam of size k containing a set of probable outputs. It generates rh from
beginning to end, conditioning on the instances and already-generated text.

We use these k instances to approximate Eq. (3).

P (rh|rp) ≈
∑

ins∈INS

P (rh|ins)P (ins|rp) (5)

Supported beam search To solve Problem 1, we need to consider the support from different
instantiations. A straightforward method is to first generate top k rh for ins ∈ INS separately
with beam search, and then fuse these rh. However, this risks making locally optimal decisions
which are actually globally sub-optimal for all instantiations. These top k beams for each individual
instantiation may not be shared by different instantiations. Therefore, in order to decode the rules, we
need to consider the support of all instantiations in our decoding heuristic.

We propose supported beam search (STS) which decodes the open rules by considering all instantia-
tions. The probability of generating the next word considering all instantiations is:

P (beam′ = beam+ w|rp) = P (w|beam, rp)P (beam|rp)

≈
∑

ins∈INS

P (w|rp, beam, ins)P (ins|beam, rp)P (beam|rp) (Eq. (5))

=
∑

ins∈INS

P (w|rp, beam, ins)P (beam|ins, rp)P (ins|rp) (Bayesian rule)

=
∑

ins∈INS

P (w|beam, ins)P (beam|ins)P (ins|rp) (Independence)

(6)

where beam′ = beam+ w means appending the word w at the end of beam, which forms a longer
beam. P (w|beam, ins) can be computed via fine-tuned Bart of P (rh|ins) in Sec 3. P (beam|ins)
is computed and updated by:

P (beam′ = beam+ w|ins) = P (w|ins, beam)P (beam|ins) (7)

Here P (beam′ = beam+w|rp) can be considered as the global score of w, as it aggregates different
instantiations. And P (beam′ = beam+ w|ins) can be considered as the local score of w, as it only
considers the instantiation of ins.

Algorithm In our implementation, we decode different instantiations in INS simultaneously via
batches. We assemble different instances of ins ∈ INS into one batch. In each step of the decoding,
we aggregate the local scores of w to compute its global score. We uniformly select the top k words
w.r.t. their global scores for all instantiations. That is, we maintain identical beams for different
instances in the batch, instead of maintaining individual beams for each instance individually.

Algorithm 1: Supported beam search
1 Function SupportedBeamSearch(rp, INS, k):
2 batch_beams← {NULL}
3 P (beam = NULL|ins)← 1 for ins ∈ INS
4 P (beam = NULL|rp)← 1
5 for timestep t = 1 · · ·T do
6 Update P (beam′|ins) for len(beam′) = t and ins ∈ INS by Eq. (7)
7 Update P (beam′|rp) for len(beam′) = t by Eq. (6)
8 batch_beams← topkbeam′(P (beam′|rp)) // Greedily select top k beams

w.r.t. their global scores.

9 return batch_beams
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We show the pseudo-code of supported beam search in Algo. 1. Unlike the traditional beam search
which maintains separate beams for different samples in a batch, we maintain a set of shared
beams for all instances, denoted as batch_beams. At each timestamp, we update the local score
P (beam|rp, ins) and global score P (beam|rp) in turn. Then in line 8 we greedily selects the top k
beams w.r.t. the P (beam|rp), i.e., the approximated goal of Problem 1.

5 Experiments

All the experiments run over a cloud of servers. Each server has 4 Nvdia Tesla V100 GPUs.

5.1 Datasets

Manual constructed dataset To evaluate the effectiveness of open rule induction, we constructed
our own benchmark dataset with 155 premise atoms. We call it “OpenRule155” for convenience
in this section. First, to construct premises describing different relationships between x and y, we
collect 121 premise relations from 6 relationship extraction datasets (Google-RE [21], TREx [21],
NYT10 [23], WIKI80 [9], FewRel [9], SemEval [11]) and one knowledge graph (Yago2). We
converted all relations of these datasets into premise atoms, and obtained a total of 121 premise atoms
after removing duplicates. We also selected 34 relations from Yago2. We select these 34 relations
because they occur frequently in the bodies of inducted rules by AMIE+ and RuLES. So we think
these relations have a higher inductive value. We asked the annotators to annotate each premise with
5 hypothesis. We filtered out duplicates and low quality hypothesis and ended up with an average of
3.3 hypothesis atoms for each premise.

Converting relations to premise atoms We convert a relation into a premise atom via the template
(x, is relation of, y) or (x, relation, y). For example, the relation <founderOf> and <believeIn> in
Yago2 will be transformed into (x, is founder of, y) and (x, believe in, y), respectively.

Relation extraction datasets We also conducted experiments over relation extraction datasets to
evaluate whether Orion extracts the annotated relations from given texts. We use Google-RE, TREx,
NYT10, WIKI80, FewRel, SemEval as the relation extraction datasets.

5.2 Baselines

LM-based baselines We use the following LM-based rule generation baselines:

1. Comet: The input of Comet is a premise atom, and the output is a collection of hypothesis
atoms with different relations. To compare with the top 10 rules inducted by Orion, we
select 10 relations of Comet. See Appendix for the list of relations. Note that the hypothesis
atoms generated by Comet are not always describing the relationship between x and y,
but may be describing about x only. For each selected relation of Comet, we generate 10
hypothesis atoms. If there are hypothesis atoms of both x and y, we choose the one with the
highest probability. Otherwise, we choose the one with the highest probability among the
descriptions of x.

2. Prompt: Inspired by the work on prompt-based knowledge extraction from LMs [21], we
proposed a prompt-based method as a baseline. We use the prompt: if rp then <mask>. and
take the LM’s prediction for <mask> as rh. Specifically, we use Bart as the LM and select
the top 10 predictions as rh.

3. Prompt (fine-tuned): We came up with a stronger baseline by fine-tuning the above prompt
model. We collect a set of such sentences “if sent1 then sent2” from Wikipedia and
Bookcorpus and mask sent2. Then we fine-tune the prompt model over these sentences.

KB-based baselines We use AMIE+ [8] and RuLES [12] as the KB-based rule induction baselines.

Ablations We also considered the following ablation models.

• Without continuing training P (rh|ins) or P (ins|rp) In Sec 3, we propose to generate
relational descriptions by continuing training Bart. To verify its effect, we replace the models
for P (rh|ins) or P (ins|rp) with the original Bart as an ablation.
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• Without STS To verify the effectiveness STS, we replace STS with the original beam search.
When decoding, we first use beam search for each ins ∈ INS separately to generate the top
k rh w.r.t. P (rh|rp, ins). Then we aggregate these hypothesis atoms according to Eq. (5)
and select the top k of them.

5.3 Main Results

Table 1: Results over the OpenRule155.
Our Dataset BLEU-1 BLEU-2 BLEU-4 ROUGE-L METEOR self-BLEU-2
Prompt 17.77 3.65 0.48 18.65 12.94 86.63
Prompt (fine-tuned) 20.95 7.58 0.86 22.37 17.24 82.13
Comet 21.58 8.15 1.04 23.45 5.44 90.78
Orion - STS 44.92 20.24 1.21 49.72 39.68 89.84
Orion - train P (ins|rp) 15.85 3.11 0.00 32.91 13.19 90.29
Orion - train P (rh|ins) 19.17 3.05 0.07 34.99 10.30 83.54
Orion 45.41 21.29 1.30 50.37 40.41 90.94

We report the performance of the models on the OpenRule155 in Table 1. We use BLEU-1/2/4 [20],
ROUGE-L [17], and METEOR [2] to evaluate whether the model-inducted rh is similar to the
manually annotated hypothesis. We also report the self-BLEU-2 [31] of the model, which is used to
measure the diversity (the smaller the more diverse).

We compare Orion with the LM-based baselines. From the perspective of quality, Orion significantly
outperforms the baselines. From the perspective of generated diversity, the diversity of Orion is also
competitive with Comet.

Ablations We also compare with the ablation models in Table 1. First, we find that the effectiveness
of the models reduces after removing any module. This verifies the effectiveness of the proposed
modules in this paper. In particular, we find that continuing train P (rh|ins) has the most significant
effect on the model. As we mentioned in Sec 3, this is because that without continuing training, Bart
easily produces noisy text that does not describe the relationship between x and y.

5.4 Comparison with the KB-based Rule Induction

In Sec 1, we claimed that open rules are more flexible than rules inducted from KBs. In this subsection,
we verify this by comparing the results of Orion and KB-based rule induction systems.

Rules from KB-based induction Specifically, we compared the rules inducted by Orion and by the
KB-based methods AMIE+ [8] and RuLES [12]. We use AMIE+ and RuLES to induct rules on
Yago2 [13]. For a fair comparison, we also only retain the rules generalized by AMIE+ and RuLES
which contain exactly two variables. AMIE+ and RuLES mined 115 and 47 rules that meet the
requirement, respectively.

Comparing open rule induction with KB-based Horn rules In order to verify the inductive ability
of Orion, for each Horn rule body ⇒ head inducted by the KB-based methods, we converted the
relation of body into a premise atom according to the conversion method in Sec 5.1. AMIE+ and
RuLES have 24, 20 different bodies, respectively. For each converted premise atom, we use Orion to
induct k = 5, 10, 20 corresponding open rules. We manually evaluate whether these inducted rules
are correct. During the human evaluation, we require a correct rule to be plausible, unambiguous,
and fluent. For example, we label “[X] is a provincial capital of [Y]⇒ [X] is the largest city in [Y]”
as correct, because this inference is plausible to be valid. In contrast, we will label “[X] lives in [Y]
⇒ [X] grew up in the east end of [Y]” as incorrect, because the probability that [X] happens to grow
up on the east end is too low.

The results are shown in Table 2. It can be found that the accuracy of Orion is competitive with
AMIE+ and RuLES. As k increases, Orion keeps finding new rules without decrease in accuracy.
Note that besides the bodies covered by AMIE+ and RuLES, Orion also generalizes rules from novel
premises. This indicates that Orion finds substantially more rules than the KB-based methods with
competitive quality.
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Table 2: Comparisons with KB-based methods.
Accuracy #Rules

AMIE+ 55.7 115
RuLES 51.1 47
Orion (k=5) 50.0 120
Orion (k=10) 49.2 240
Orion (k=20) 51.3 480

5.5 Effect for Complex Premises

Orion is able to generate rules for complex premises, as the pre-training corpora of LMs contain
extensive complex texts. We show two examples from TREx and FewRel in Table 3 with (k = 5).
It can be seen that Orion generates valid rules for complex and long texts. On the other hand, the
rules generated by Comet are often only about x, not about the relationship between x and y. And
these rules are often about human characteristics, even if x is a country in case 1. This is due to the
limitation of Comet’s training data that leads to the bias of the generated rules.

Table 3: Effect of complex rule induction. Original sentence of Case 1: [X]’s emergence from
international isolation has been marked through improved and expanded relations with other nations
such as [Y], France, Japan, Sweden, and India. Case 2: His guitar work on the title track is credited
as what first drew [X] to him, who two years later invited allman to join him as part of [Y].

Orion Comet

C1

[X] has a long history of diplomatic relations with [Y]. <xReact>: happy.
[X] is the largest exporter of oil to [Y]. <xReason>: [X] is no longer isolated.
[X]’s economy is heavily dependent on [Y]. <xWant>: to make new friends.
[X]’s foreign policy is based on its close relationship with [Y]. <isAfter>: [X] gets a new job.
[X] has been the largest exporter of uranium to [Y]. <isBefore>: [X] has a better relationship

with [Y].

C2

[X], guitarist and singer of [Y]. <xReact>: happy.
[X] and his band [Y]. <xReason>: his guitar work.
[X] has been a fan of [Y]. <xWant>: to play a song.
[X] was a fan of [Y]. <isAfter>: [X] plays guitar on the song.
[X] was a fan of the band [Y]. <isBefore>: his guitar work.

6 Application

6.1 Introducing Open Rules in Relation Extraction

Setup We apply the inducted open rules to relation extraction to verify its value. To do this, We
introduce the inducted open rules as extra knowledge, and evaluate whether the inducted rules
improve the effect of relation extraction models. We used ExpBERT [19] as the backbone. ExpBERT
introduces several textual descriptions of all candidate relations as external knowledge. For example,
for the relation spouse, ExpBERT introduces external knowledge in the form of x’s husband is y
into the BERT model. The original descriptions of each relation in ExpBERT comes from manual
annotation. To verify the effect of inducted open rules, we replace these manual annotated rules with
the open rules inducted by Orion.

Specifically, We follow the settings in ExpBERT and use the Spouse and Disease [10] for evaluation.
For each relation, we construct the corresponding premise atom according to Sec 5.1. We following
the settings of ExpBERT and use k = 29, 41 hypothesis atoms inducted by Orion as for Disease and
Spouse, respectively. For example, for relation spouse, Orion generates hypothesis atoms like (x, is
married to, y) as the external descriptions. In addition, we modified ExpBERT to allow the training
process to fine-tune the parameters that were frozen in the original ExpBERT, as we found that this
will improve the model’s effectiveness.
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Results From Table 4, our automatic inducted rules even outperforms the manually annotated rules.
We think that this is because Orion’s rules are more unbiased and diverse than the manual annotations.
This strongly verified the applicability of the open rules.

Table 4: F1 scores on relation extraction tasks. The annotated rules are from the original ExpBERT.
Averaged over 5 runs.

Spouse Disease
BERT 46.43± 0.84 40.20± 2.43
ExpBERT + annotated rules 76.04± 0.47 56.92± 0.82
ExpBERT + inducted open rules 76.05± 0.52 57.68± 1.34

Coverage evaluation We also directly evaluate whether the open rules inducted by Orion cover the
target relation. For the bottom example in Fig. 1, since we can extract the relation founder from x
worked ... founded the hedge fund y., we expect the model to also induct x is founder of y given the
premise.

For this purpose, we transform the samples in the relation extraction dataset into premise atoms by
replacing the entity pairs with x and y, respectively. We induct rules from these premise atoms and
evaluate whether the hypothesis atoms cover the corresponding relations. For each target relation, we
convert it to a hypothesis atom via the method in Sec 5.1, and use the converted hypothesis atom as
the ground truth. We compute the correlation between the inducted rh and the ground truth.

We report the results of FewRel, NYT10, WIKI80, TREx, Google-RE, and SemEval in Table 5.
Since the number of samples is different for different datasets and relations, in order to get a uniform
evaluation, we select 5 training samples uniformly as premise atoms for each relation in each dataset.
Note that there are k = 10 hypothesis atoms for each premise. To evaluate the coverage, we report
the one with the highest score. Orion outperforms the baseline by a large margin.

Table 5: Results on relation extraction datasets.
FewRel NYT10 WIKI80 TREx Google-RE SemEval

BLEU-2/4
Comet 0.60/0.00 0.73/0.00 0.36/0.00 0.82/0.11 0.60/0.00 1.80/0.00
Prompt 0.95/0.00 0.64/0.00 0.87/0.00 1.45/0.11 0.79/0.00 0.90/0.00
Orion 9.08/0.08 8.34/0.51 7.24/0.30 9.03/1.14 9.22/0.00 5.69/0.00

ROUGE-L
Comet 3.02 5.70 2.44 4.77 4.19 7.82
Prompt 15.35 15.10 16.38 15.80 16.44 12.54
Orion 38.72 36.72 36.75 39.51 36.93 37.90

METEOR
Comet 1.60 3.03 1.19 2.14 2.08 4.60
Prompt 9.94 9.84 10.87 11.50 8.41 8.47
Orion 25.28 25.78 23.8 26.29 24.67 26.71

6.2 Application: Error Identification in Language Models

We use inducted rules to identify potential errors in the pre-trained LM. Some rules that defy human
commonsense are incorrectly inducted. This is actually due to the bias of the language model.
Specifically, we found the bias of the language model caused by its pre-training corpus. We list some
examples in Table 6.

7 Related Work

As a classical problem, rule induction has gained extensive studies. Related researches include
mining association rules [1], logical rules [29], etc. Traditional methods of rule induction tend
to work only on small knowledge bases. In recent years, with the emergence of large-scale open
knowledge graphs [13] and open information extraction systems [4], studies have focused on mining
rules from such large-scale knowledge bases [26, 8]. However, the representation capability of even
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Table 6: Examples of identified errors
Inducted rule: [X] is the politician of [Y].⇒ [X] was the founder and president of [Y].
Identified error: The training corpus description of politician has a disproportionate number
of founder and president entities. This led to a bias in LM’s perception: it assumes that
politician is always founder and president.
Inducted rule: [X] is an instance of [Y].⇒ [X] is a lower house of [Y].
Identified error: The frequency of political entities in the training corpus is too high. The LM
tends to generate political entity descriptions.

the largest knowledge bases still do not approximate the real-world, especially from the perspective
of commonsense.

On the other hand, reserchers found that pre-trained LMs can be used as open knowledge bases [21,
28] and commonsense knowledge bases [27, 25]. Due to the unstructured form of knowledge
representation, the language model is much more capable for representing open knowledge. Using
the language model as a basis, we want to mine open rules. Comet [14] is a relevant attempt. It learns
from ATOMIC2020 [14] to generate rules in the form of if-then clauses. However, influenced by the
manual annotation of ATOMIC2020, Comet’s rules are “canned” and repetitive [30]. In this paper,
we want to generate rules unsupervised directly from LM’s knowledge, thus achieving open rule
induction.

8 Conclusion

For rule induction, in order to break the limitation of representation in KBs, we propose to use
unstructured text as atoms of rules. Based on pre-trained language models, we propose the open
rule induction problem. To solve this problem, we propose the Orion system, which extracts rules
from the language model completely unsupervised. We also propose to optimize Orion by continuing
training the language model, as well as the decoding heuristic.

We conducted a variety of experiments. We verified that the effectiveness of Orion exceeds that of
LM-based and KB-based baselines. In addition, an application to the relation extraction task found
that the model with Orion’s inductive rules even outperformed that of manually annotated rules. We
also used Orion’s rules to identify potential errors in language models.
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