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ABSTRACT

Few-shot relation extraction aims to recognize novel relations with few labeled
sentences in each relation. Previous metric-based few-shot relation extraction
methods classify by comparing the embeddings of query sentence embedding
with those prototypes generated by the few labeled sentences embedding using a
learned metric function. However, the generalization ability of these methods on
unseen relations in different domains is limited, since these domains always have
significant discrepancies from those in the training dataset. Because the prototype
is essential for extracting relations between entities in the latent space. To extract
new relations in various domains more effectively, we propose to learn more in-
terpretable and robust prototypes by learning from prior knowledge and intrinsic
semantics of relations. We improve the prototype representation of relations more
efficiently by using prior knowledge to explore the connections between relations.
The geometric interpretability of the prototype is improved by making the classifi-
cation margins between sentence embedding clearer through contrastive learning.
Besides, for better-extracting relations in different domains, using a cross-domain
approach makes the generation process of the prototype take into account the gap
between other domains, which makes the prototype more robust. The experimen-
tal results on the benchmark FewRel dataset demonstrate the advantages of the
proposed method over some state-of-the-art methods.

1 INTRODUCTION

Relation extraction aims to automatically identify the relations between entities in sentences, which
plays a vital role in machine reading comprehension. Relation extraction is often regarded as a
multi-classification task and solved by supervised learning methods Kate & Mooney (2010); Riedel
et al. (2010). Especially, deep learning methods have achieved impressive performance on this kind
of task. The finetuning-based model BERT proposed in Devlin et al. (2018) shows state-of-the-art
performance on many classification tasks. However, these methods work based on a large amount of
labeled data. When the labeled data is insufficient, their performance degenerates significantly. Re-
lation extraction is a core issue in many scientific fields (e.g., biomedicine and materials). However,
in these specific domains, the annotation cost for some classes imposes restrictions on the general-
ization of current RE models to new relation concepts efficiently. As for this, few-shot learning has
raised great interest.

Few-shot learning methods aim to alleviate the heavy reliance on the large annotated corpus since
they can identify the sentences of a novel class by exploiting the pre-trained model and a few labeled
examples of the novel class. Currently, metric-based few-shot learning methods make classification
by calculating the similarity of query sentences and the prototypes generated by a few labeled sup-
port samples. However, these methods only work when the novel classes are in the same domain as
the classes employed to train the few-shot learner Gao et al. (2019). In other words, the prototypes
generated by few-shot learning methods always fail to generalize to classes in different domains. But
it is vital due to the difficulty to construct large labeled datasets in the mentioned scientific domains.

To address this issue, the method to bridge the discrepancy for few-shot relation extraction is of great
interest. Existing domain adaptation methods can extract a shared feature representation of multiple
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different domains Ganin et al. (2016); Shen et al. (2018); Shi et al. (2018). However, these methods
only work when the labels on classes in both the source and target domain are the same Gao et al.
(2019).

In summary, when a class lacks a large amount of annotated data and its domain also does not have
a large labeled corpus, then the problem cannot be perfectly solved by either few-shot learning or
domain adaptation separately. For easy description, we call the above problem the cross-domain
few-shot relation extraction problem, which is lacking research in natural language processing.

Cross-domain few-shot learning methods have shown the potential to deal with this problem. Al-
though the domain adaptation method in Wang et al. (2018a) can merge data from different domains
in the shared latent space learned by the encoder, the generated prototypes have two limitations: 1)
it does not explicitly keep the geometrical structure of the classes in the source domain; 2) it does
not explicitly minimize the distance between domains.

In this paper, we tackle the cross-domain few-shot relation extraction problem by improving the
representation of the prototype. The core observation of this paper is that the distributions of sen-
tence embedding in different classes and domains are significantly different. Consequently, when
the metric function used to measure the similarity of the query sentence and prototype may overfit
to specific distribution in the training stage and result in a decrease in performance on unseen rela-
tions in different domains. To address this issue, we propose to learn more interpretable and robust
prototypes by learning from prior knowledge of the connection of relations and intrinsic semantics
of relations. We make the prototype more efficient by exploring the connections between relations
and increasing the geometric interpretability of the prototype. Moreover, to improve the robustness
of the prototypes in different domains, the connection between different domains is also taken into
account when generating the prototypes in the training stage.

The contributions of this paper can be summarized as follows:

• We improve the prototype representation of relations more efficiently by using prior knowl-
edge and contrastive learning.

• A cross-domain approach is applied to utilize the gap between various domains, which
makes the prototype more robust when the model is used in different domains.

• The proposed method is evaluated on the Pubmed domain and the Semeval domain. It
shows that it can significantly outperform some state-of-the-art methods on cross-domain
few-shot relation extraction problems.

2 RELATED WORK

In the following, the related few-shot learning methods and domain adaptation methods are reviewed
in detail.

2.1 FEW-SHOT LEARNING

Generally, the few-show learning methods can be divided into three categories Munkhdalai & Yu
(2017): (1) data-based methods, (2) algorithm-based methods, (3) metric-based methods.

Data-based methods augment the data with prior knowledge to overcome the difficulty of insuffi-
cient data Wu et al. (2018); Gao et al. (2018); Cong et al. (2020). For example, Cong et al. Cong
et al. (2020) assign pseudo-labels to unlabeled samples for training. It works on cross-domain clas-
sification tasks when BERT aligns the features extracted from the source sentence and the target
sentence. However, it is time-consuming and requires extra space to train the model.

Algorithm-based methods use prior knowledge to search for an effective initial solution for multiple
tasks simultaneously, which makes it easy to adapt to new tasks Finn et al. (2017); Yoo et al. (2018).
For example, the model trained by MAML Finn et al. (2017) can work well on new tasks after
fine-tuning. Although these methods perform well on many tasks, they cannot work well on the
cross-domain relation extraction tasks Gao et al. (2019), as they fail to reduce the discrepancy of
different domains.
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Metric-based methods learn an encoder based on a metric to refine the sentence embedding in the
latent space such that the learned latent space can generalize to novel relations with few labeled
samples in the same domain Vinyals et al. (2016); Snell et al. (2017); Triantafillou et al. (2017);
Soares et al. (2019). For example, the prototype network Snell et al. (2017) and the matching
net Wang et al. (2018b) use Euclidean distance between sentence embedding and relation prototype
to identify the relation of the sentence. Generally, these metric-based methods extract the relation
of the sentence based on the prototype of the relations, and the prototype is determined by the
embedding of labeled sentences in the corresponding relation. The sentences are embedded by
a learned encoder. However, the learned encoder in these methods does not explicitly keep the
geometric structure of the classes in the latent space. Moreover, they also can not merge different
domains with significant discrepancies. Therefore, these methods usually have a good performance
on relation extraction tasks with insufficient labeled data only when the tasks belong to the same
domain.

2.2 DOMAIN ADAPTATION

Domain adaption studies how to benefit from different but related domains, and it is employed to deal
with various tasks in computer vision Yang et al. (2021); Zhao et al. (2020) and natural language
processing Shen et al. (2018); Glorot et al. (2011); Nguyen & Grishman (2014). Unfortunately,
some existing domain adaptation methods Nguyen et al. (2015) do not be suitable for our scenario
since they require a large number of labeled samples in the target domain in the training process.
Although other methods do not require labeled data of the target domain in the training stage, they
require different domains to have the same labels, such as comments on laptops and restaurants Fu
et al. (2017); Shen et al. (2018); Goodfellow et al. (2014); Shi et al. (2018); Goodfellow et al. (2014);
Li et al. (2018); Shi et al. (2018). Therefore, these methods perform well for relation extraction in
the target domain only if the target and source domains are highly related. In other words, existing
domain adaptation cannot obtain good results for relation extraction if there are non-overlapping
relations in the target domain and source domain.

3 METHODS

Our key purpose is to improve the generalization ability of few-shot relation extraction models to
arbitrary unseen domains by improving the representation of prototypes. There are two domains in
the cross-domain few-shot relation extraction problem: the source domain and the target domain.
We assume that 1) the source domain and the target domain are significantly different; 2) the labels
(relations) on the source domain and target domain are different; 3) there are only a few labeled
samples in the target domain. To address the problem, prior knowledge is utilized to explore the
connection between different relations in the source domain. And contrastive learning method is
also employed to improve the geometric interpretability of the generated prototype. To bridge the
gap between these domains, Wasserstein distance is used to modify the representation of prototypes.

The structure of the proposed method is illustrated in Fig. 1, which mainly includes three phases,
namely, the learning phase, the adaptation phase, and the prediction phase. In the following, we
introduce them one by one.

3.1 LEARNING PHASE

The learning phase is to learn an encoder to map the input sentence into the latent space. This
paper adopts BERT Devlin et al. (2018) as the encoder. All available data of the source domain
and the target domain is used to train the encoder Enc(·). DS and RS denotes the sentence set and
corresponding relation set of the source domain. RS includes all different relations in the source
domain. DT = {DLT,DUT}, including the labeled sentence set DLT and unlabeled sentence set
DUT, is the sample set of the target domain. The corresponding relation set of DLT is denoted by
RLT.

In order to allow the encoder to extract more interpretable prototypes that can be used to improve
the relational extraction accuracy and generalizability, this paper proposes to use two loss functions
L(θE) and Ladv(θE) for this purpose. The representation loss L(θE) is to make the encoder not
only extract the relation of the source domain with prior knowledge but also improve the geometric
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Figure 1: The structure of the proposed method

interpretability of the prototypes in the source domain. And the adversary lossLadv(θE) is to modify
the representation of prototypes while taking the domain discrepancy into consideration.

The representation loss L(θE) is defined as follows.

L(θE) = Lcls + ρLcon, (1)

where Lcls is the cross entropy loss, Lcon is the proposed contrastive loss, and ρ is a hyperparameter,
and it is set to 0.2 based on some preliminary experiments.

Like the commonly used few-shot learning methods Gao et al. (2019), the support set S and query
set Q are randomly selected from the source domain dataset to train the encoder in each training
iteration. The support set S includes N relations, and each relation includes K sentences. The
relation set of the support set is denoted asRS = {rs|s ∈ S}. The query setQ includes the same N
relations as the support set, and each relation includes Q sentences.

The prototype vri plays a vital role to extract relation ri. In the initialization, vri , i = 1, . . . , |R| is
defined as follows.

vri = mri + hri −m, (2)

where mri is the mean of the embedding set {xs|s ∈ DS , rs = ri}; hri is the representation of
the relation ri, which is extracted by GNN from the prior knowledge G = (R,W). G = (R,W)
denotes the global relation graph of the source domain, where R includes all different relations
in the source domain, and W consists of the link weight between relations; m is the mean of the
embedding of all sentences (i.e., {xs|s ∈ DS}) in the source domain. The details of the calculation
for the initial vri can refer to Qu et al. (2019).

In the learning phase, the encoder is learned iteratively. In each iteration, a support set S and a
query setQ are randomly chosen from the source domain dataset to learn the encoder. Similarly, the
prototype of the relation is also updated set by set based on the Bayesian model as follows Qu et al.
(2020).

vR′ ← vR′ +
ε

2
∇vR′ logp(vR′ |XS ,RS ,G) +

√
εẑ, (3)

where R′ denotes the relations sampled for the support set S; ẑ is a random noise from the stan-
dard Gaussian distribution; ε is a hyperparameter, and it is set to 0.1 based on some preliminary
experiments.

Based on the chain rule, the p(RS |xS ,vR′) in Eq. (3) can be calculated as follows.

p(vR′ |XS ,RS ,G) ∝ p(RS |XS ,vR′)p(vR′ |G), (4)

where the p(vR′ |G) can be seen as the prior distribution of vR′ and p(RS |XS ,vR′) is the condi-
tional probability of the relation of the sentence in the support set.

The prior distribution p(vR′ |G) of the prototype is parameterized as follows.

p(vR′ |G) =
∏
r∈R′

p(vr|hr), (5)
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where hr is the prototype extracted from the global relation graph G = (R,W) Qu et al. (2019).

The conditional probability of the relation of the support set p(RS |XS ,vR′) is estimated as follows.

p(RS |XS ,vR′) =
∏
s∈S

p(rs|xs,vR′)

=
∏
s∈S

∏
r∈R′

exp(xs · vr)∑
r′∈R′ exp(xs · vr′)

.
(6)

The prior knowledge is used to modify the representation of prototypes by considering the connec-
tion between relations. To explicitly maintain the geometric structure of the relations in the source
domain and increase the intrinsic semantics of relations, we introduce a contrastive loss Lcon to deal
with this issue for getting more interpretable and robust prototypes for more accurate target domain
relation extraction. The contrastive loss in Eq. (1) is defined as follows.

Lcon = LS2S + LS2V, (7)

where the LS2S means the distance between sentence embedding and the LS2V is the distance be-
tween sentence embedding and the prototype. By using this loss, we hope the learned encoder can:
1) minimize the distance between sentences in the same class. 2) minimize the distance between the
embedding of sentences and their prototypes and maximize the distance between the embedding of
sentences and other prototypes.

To minimize the intraclass distance between the embedding of sentences, LS2S is defined as fol-
lows Soares et al. (2019); Ding et al. (2021).

LS2S=
1

N2

∑
i,j

exp(δ(xi,xj))∑
j′ exp((1− δ(xi,xj′)d(xi,xj′)))

, (8)

where xi is the embedding of sentence i ∈ S, and

δ(xi,xj) =

{
1 ri = rj
0 Otherwise

, (9)

d(xi,xj) =
1

1 + exp( xi

∥xi∥ ·
xj

∥xj∥ )
, (10)

where ri denotes the relation of sentence xi in the support set; d(·, ·) Soares et al. (2019) denotes
the distance between vectors (i.e., the similarity between different vectors).

To minimize the distance between the embedding of sentences and their prototypes and maximize
the distance between the embedding of sentences and other prototypes, LS2V is defined as follows.

LS2V =
1

N2

∑
r∈RS

N∗K∑
i=1

log(d̂(vr,xi)), (11)

where

d̂(vr,xi) =

{
d(vr,xi) ri = r
1− d(vr,xi) Otherwise

. (12)

We enable the encoder to extract relations in the source domain more effectively by minimizing
LθE . Meanwhile, the accuracy of relation extraction in the target domain is improved. However, it
still can not perform well enough when adapting to domains with large discrepancies. To deal with
this issue, an adversarial loss Ladv is proposed to encourage the sentences embedding in different
domains as close as possible in the shared latent space so that the prototypes can be modified during
training. The adversarial loss Ladv(θE) is defined as follows.

Ladv = Wd(BSource, B̃Target), (13)

where BSource = {x1, · · · ,xbatch size} and B̃Target = {x̃1, · · · , x̃batch size} are minibatch of the
sentence embedding in the source domain and target domain, respectively. Wd(·, ·) denotes the
wasserstein distance of two subsets.
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Algorithm 1 Training for Cross Domain Few-Shot Relation Extraction
Input: Data from source domain and target domain; Global relation graph G of the source domain;
Number of relations in the support set and query set N; Number of sentence(s) in the source domain
K; Number of sentence(s) in the query domain Q; Number of epoch E.
Output: The parameter of the encoder θE
Initialization: S = ∅,Q = ∅, the prototypes vR initialized by Eq.
(2).

1: for epoch = 1, · · · , E do
2: Randomly sample N relations vR′ = {r1, . . . , rN} in the source domain
3: for j = 1, . . . ,N do
4: S ∪ SampleSentences(xi, rj), i = 1, 2, ...,K
5: Q ∪ SampleSentences(xi, rj), i = 1, 2, ...,Q
6: end for
7: Update prototype vR′ as Eq. (3).
8: Compute representation loss L(θE) by Eq. (1).
9: θE ← Adam(θE,∇L(θE))

10: Extract sentence embedding in the support set sampled in the source domain BSource and a
minibatch of sentence embedding in the target domain BTarget.

11: Compute adversarial loss Ladv(θE) by Eq. (13).
12: θE ← Adam(θE,∇Ladv(θE)
13: end for

To reasonably minimize the discrepancy between the source and target domain, the Wasserstein
distance (also known as Earth Moving Distance) Eq. 14 is used here Cuturi (2013). The data in both
domains follow a discrete probability distribution. These distributions are regarded as quality point
scattered across the latent space.

WdM,α(s, t) := minP∈Uα(s,t) < P,M >, (14)

where s and t denote the distribution of the representation of sentences in source BSource and target
domain B̃Target, respectively. P is a joint distribution of source and target domain, which is in the
set of Uα(s, t). M ∈ R|BSource| × R|B̃Target| denotes the cost from the source domain to the target
domain, where each element in the matrix is computed by a distance metric Mij = |xi − x̃j |2.

Compared with other methods, such as commonly used Kullback-Leibler (KL) divergence, the
Wasserstein distance take the structure of the latent space into consideration. Thus, the Wasser-
stein distance is able to maintain the previous geometric structure while the KL divergence cannot
obtain the same performance. The similarity of data with different distributions in the same latent
space may not be accurately measured by KL divergence. As the KL divergence between different
data distributions may be the same, which cannot take the geometric structure into consideration,
but the Wd distance can avoid this problem.

By using the proposed method, the advantage of using contrastive loss can be enhanced. The ge-
ometric structure of the source domain will be useful for the classification of the target domain.
Therefore, the representation of the sentences will gain better properties.

Finally, based on the loss L(θE), the parameter θE of the encoder is updated by the Adam opti-
mizer Kingma & Ba (2015). The pseudo-code of training the encoder is shown in Algorithm 1.

3.2 ADAPTATION PHASE

In the adaptation phase, a few labeled samples of the target domain is used to generate the prototype
of the relations in the target domain based on the learned encoder. We assume that we have a labeled
support set Ŝ and an unlabeled query set Q̂ in the target domain. The support set Ŝ includes N̂

relations, and each relation has K̂ sentences. The query set Q̂ includes some unlabeled sentences.
Clearly, the prototypes vr̂ generated as follows:

vr̂ =
1

K̂

K∑
i=1

x̂iI(i, r), (15)
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where x̂i is the embedding of the sentence i in the support set generated by the learned encoder, and
I(i, r) is an indicator function, defined as

I(i, r) =
{

1 ri = r̂
0 Otherwise

. (16)

3.3 PREDICTION PHASE

The prediction phase is to predict the relation of the sentence of the query set Q̂ in the target domain.
Based on the prototype of the relation in the query set, the relation of a sentence q is determined as

rq = argmaxr
x̂q · v̂r∑N

i=1 x̂q · vri

. (17)

4 EXPERIMENTS

In this section, we conduct experiments on one benchmark dataset to evaluate our proposed ap-
proach. We make a comprehensive analysis of our approach and compare it with state-of-the-art
approaches.

4.1 DATA

In the experimental study, the FewRel dataset Gao et al. (2019) is chosen, which is a widely used
benchmark for few-shot relation extraction. It contains data from four different domains, including
Wikipedia, SemEval-2010 task 8, NYT, and Pubmed. For our experiment setting, we use 44,800
sentences (64 classes and 700 sentences per class) from Wikipedia as the training set and 11,200
sentences (16 classes and 700 sentences per class) from Wikipedia as the validation set. And we use
1,000 sentences (10 classes and 100 sentences per class) from Pubmed. Also, we use Semeval as the
testing set to conduct another experiment. The Wikipedia data serves as the source domain, while
the Pubmed and Semeval data are the target domains. There are no overlapping sentences between
training, validation, and testing sets.

Beyond that, a global knowledge graph that consists of 828 unique relations in the source domain
serves as the prior knowledge. The embedding of each relation in the graph has been processed
by TransE algorithm Bordes et al. (2013). Then the graph is constructed as a 10-nearest neighbor
graph as the final global relation graph in the source domain G. The graph only contains relations in
Wikipedia dataset (source domain), which can not be used to train the model on other datasets.

4.2 COMPARISON AND ANALYSIS

We choose the following methods for comparison.

Proto Snell et al. (2017): The algorithm of the prototype network. A few-shot relation extraction
method that extracts relations by measuring the distance between the sentence embedding and the
prototype.

Proto+adv Gao et al. (2019): The Proto algorithm uses a discriminator to adjust the source and
target domains.

MTB Soares et al. (2019): The algorithm, called Matching The Blanks, builds task agnostic relation
representations solely from the entity-linked text.

GNN Garcia & Bruna (2017): The algorithm uses Graph Neural Network (GNN) to predict the
relation.

MAML Finn et al. (2017): The algorithm, called Model-Agnostic Meta-Learning, solves few-shot
learning problems by meta-learning method.

Siamese Koch et al. (2015): The algorithm uses temporal CNN and an attention mechanism for
few-shot learning.

DaFeC Cong et al. (2020): The algorithm improves domain adaptation performance for few-shot
classification via clustering.
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REGRAD Qu et al. (2020): The algorithm completes the few-shot relation extraction task via
Bayesian meta-learning on the relation graph.

REGRAD+adv Qu et al. (2020): The algorithm adds an adversarial part to the REGRAD model.

Alg 5-way
1-shot

5-way
5-shot

10-way
1-shot

10-way
5-shot

Proto 66.22 77.47 49.77 65.63
Proto+adv 41.09 67.26 28.32 40.01
MTB 56.42 68.28 40.74 54.56
GNN 36.44 37.19 26.00 28.07
Siamese 66.58 78.69 52.30 64.45
MAML 66.62 78.53 51.90 65.57
DaFeC 30.21 30.51 15.17 17.27
Regrad 71.70 80.74 61.66 74.06
Regrad+adv 65.10 71.61 56.44 56.71
ours 76.30 84.71 67.87 75.84

Table 1: Results of the cross-domain few-shot relation extraction on the Pubmed dataset. We
run all the algorithms on the same conditions.

Alg 5-way
1-shot

5-way
5-shot

10-way
1-shot

10-way
5-shot

Proto 41.39 59.51 27.62 42.96
Proto+adv 26.96 48.06 13.15 28.19
MTB 34.03 47.90 21.40 30.57
GNN 32.13 37.12 14.71 17.92
Siamese 41.67 53.57 28.06 39.52
MAML 42.75 52.87 27.89 43.06
DaFeC 24.72 25.98 11.17 13.37
Regrad 49.56 64.57 36.17 54.10
Regrad+adv 50.71 65.46 38.61 54.56
ours 53.21 67.16 39.99 57.00

Table 2: Results of the cros-domain few-shot relation extraction on the Semeval dataset. We
run all the algorithms on the same conditions.

As there are few studies on the cross-domain few-shot relation extraction task, the state-of-the-
art algorithms in the few-shot relation extraction task and few-shot relation extraction algorithm
together with the adversarial part Gao et al. (2019); Qu et al. (2020); Cong et al. (2020) are chosen
as the baseline in this paper. The Regrad and Regrad+adv algorithms are re-implemented as the
paper Qu et al. (2020). The DaFeC algorithm is re-implemented as the paper Cong et al. (2020).
Other algorithms are re-implemented by Gao et al. Gao et al. (2019). Bertbase is used as the encoder
to project the sentences into the latent space for all algorithms. Besides, the hyper-parameters used
in our method remain the same with the setting of Gao et al. (2019); Qu et al. (2020).

The prediction accuracy on the target domain is used as the criterion to judge the performance of the
algorithms. The comparison results are shown in Table 1 and Table 2.

The performance of these baselines is not competitive on the cross-domain few-shot relation extrac-
tion task. The results of GNN and DaFeC are less competitive, showing that these methods are less
effective to solve the cross-domain few-shot relation extraction task. The methods specifically de-
signed for few-shot tasks, such as prototype network (Proto) and MTB, cannot outperform well on
this specific task. Compared with other meta-learning methods, such as MAML and Siamese, our
approach can better generalize to different domains. The most competitive algorithm is the Regrad,
but the performance on the cross-domain task can not surpass our method. Previous adversarial
methods only merge the source and target domains by puzzling the employed discriminator. How-
ever, the effectiveness of the method is highly correlated with the dataset and algorithm. In other
words, the performance of the algorithm will reduce when applied to some datasets and algorithms.

Our model surpasses state-of-the-art models because our model can ensure a better geometric struc-
ture of the latent space. The distance between sentence embedding in the same class is closer, and
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Alg 5-way
1-shot

5-way
5-shot

10-way
1-shot

10-way
5-shot

Original 71.70 80.74 61.66 74.06
With Wd 72.79 80.69 64.55 73.49
With con 73.80 81.02 62.95 73.25
With Wd and con 76.30 84.71 67.87 75.84

Table 3: Ablation results of the cross-domain few-shot relation extraction on the Pubmed dataset.
Alg 5-way

1-shot
5-way
5-shot

10-way
1-shot

10-way
5-shot

Original 49.56 64.57 36.17 54.10
With Wd 52.19 66.08 39.26 54.79
With con 51.67 65.03 39.42 54.27
With Wd and con 53.21 67.16 39.99 57.00

Table 4: Ablation results of the cross-domain few-shot relation extracttion on the Semeval dataset.

the distance in different classes is farther. In addition, when the prototype is the relation representa-
tion of a given sentence embedding, the distance between the sentence embedding and the prototype
is closer, otherwise, it is farther. Besides, by optimizing the adversarial loss, the distribution of
the target domain is as close as possible to the source domain. Thus, the performance is further
improved in the cross-domain relation extraction task.

4.3 ABLATION STUDY

In this subsection, we study the impact of contrastive loss and adversarial loss on generalization
accuracy. The model only optimizes cross-entropy loss Lcls is named as original model here. We
conduct some ablation study on FewRel dataset, where we compare three variant methods, i.e.,
original model with LWd, with Lcon and with both of the loss. The results are presented in Table 3
and Table 4.

First, we find that the contrastive loss effectively improves the performance of the target domain by
utilizing the geometric structure of the latent space. Moreover, the adversarial loss further improves
the performance of the target domain by reducing the discrepancy between the source and target
domains. The observation shows that combining both of the loss can help the method solve the
cross-domain few-shot relation extraction problem well.

5 CONCLUSION

In this paper, we have proposed a novel method by integrating the method of few-shot learning and
domain adaptation to solve the cross-domain few-shot relation extraction task. To improve the in-
terpretably of the representation of prototypes, we have designed a representation loss, including a
cross-entropy loss and a contrastive loss. Besides, an adversarial loss has been further employed to
consider the discrepancy between different domains. Extensive experiments have demonstrated that
our method performs better than some existing state-of-the-art relation extraction methods. More-
over, the effectiveness of each used loss also has been validated by experiment.
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