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ABSTRACT

Low-rank recurrent neural networks (RNNs) have recently gained prominence
as a framework for understanding how neural systems solve complex cognitive
tasks. However, training and interpreting these networks remains an important open
problem. Here we address these challenges by adopting a view of low-rank RNNs
as parametrizing a low-dimensional ordinary differential equation (ODE) using a
set of nonlinear basis functions. This perspective, which arises from an approach
known as the “neural engineering framework”, reveals that low-rank RNNs are
equivalent to neural ODEs with a single hidden layer. We show that training a low-
rank RNN to implement a particular dynamical system can thus be formalized as
least-squares regression in a random basis. This allows us to propose a new method
for finding the smallest RNN capable of implementing a dynamical system using a
variant of orthogonal matching pursuit. More generally, our perspective clarifies
limits on the expressivity of low-rank RNNs, such as the fact that without inputs, a
low-rank RNN with sigmoidal nonlinearity can only implement odd-symmetric
functions. We delve further into the role of inputs in shaping network dynamics and
show that RNNs can produce identical trajectories using a wide variety of static or
time-varying dynamics; this highlights the importance of perturbations for inferring
dynamics from observed neural trajectories. Finally, we highlight the usefulness
of our framework by comparing to RNNs trained using backprop-through-time on
neuroscience-inspired tasks, showcasing that our method achieves faster and more
accurate learning with smaller networks than gradient-based training.

1 INTRODUCTION

Recurrent neural networks (RNNs) provide a popular tool for analyzing the computational capabilities
of neural populations and the mechanisms that enable them to carry out complex cognitive tasks
(Miller et al., 2003; Barak, 2017; Mastrogiuseppe & Ostojic, 2018; Schaeffer et al., 2020; Duncker &
Sahani, 2021; Dubreuil et al., 2022). A substantial literature focuses on “goal-driven” or “task-driven”
approaches in which an RNN is trained to perform a particular cognitive task of interest, and then
analyzed to determine what dynamics it uses to solve the task Mante et al. (2013); Sussillo (2014);
Kanitscheider & Fiete (2017); Pollock & Jazayeri (2020); Turner et al. (2021). However, both the
training and the interpretation of such networks are noteworthy problems of interest.

A wide variety of methods have been proposed for training RNNs on cognitive tasks, including:
(1) reservoir computing methods, in which a fixed set of random recurrent weights generate a high-
dimensional nonlinear dynamics, and training is applied only to output weights (Jaeger, 2001; Maass
et al., 2002); (2) FORCE training, in which a set of random recurrent weights are adjusted using
iterative low-rank updates via recursive least-squares Sussillo & Abbott (2009); DePasquale et al.
(2018); and (3) methods that adjust all recurrent weights using deep-learning inspired approaches such
as back-propagation-through-time (BPTT) Pearlmutter (1990); Sussillo & Barak (2013); Lillicrap &
Santoro (2019). Although recent literature has focused primarily on this latter class of gradient-based
training methods, they nevertheless face a variety of challenges, including high computational cost,
sensitivity to initialization and hyper-parameters (e.g., learning rate, network size), and susceptibility
to vanishing and exploding gradients (Lukoševičius & Jaeger, 2009; Schuessler et al., 2020; Langdon
& Engel, 2022; Liu et al., 2023).
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Even once they are trained (via any of the above methods), interpreting RNNs to gain insight
into task performance remains challenging. Common approaches tend to rely on finding fixed or
“slow” points and then using dimensionality reduction methods to visualize projected flow fields
Sussillo & Barak (2013); Mante et al. (2013). However, fixed-point finding algorithms are difficult to
apply to high-dimensional systems, and it often unclear how accurately low-D projections reflect a
network’s true dynamics. Previous work has shown that task-trained RNNs with similar performance
can nevertheless exhibit different dynamics, raising the question of whether their solutions reveal
universal features of task computations (Barak, 2017; Williams et al., 2021).

One recent advance that overcomes or alleviates many of these difficulties is a theory of low-rank
RNNs (Mastrogiuseppe & Ostojic, 2018; Beiran et al., 2021; Dubreuil et al., 2022; Valente et al.,
2022). Rather than training a high-dimensional network and then attempting to visualize its behavior
using low-D projections, this literature has shown that a wide variety of tasks can be implemented
directly in RNNs with intrinsically low dimension, where the dimensionality is set by the rank of the
recurrent weight matrix plus input dimensions.

A parallel arm of research has focused on developing methods to embed low-dimensional quantities
into high-dimensional network activity (Eliasmith & Anderson, 2003; Stewart, 2012; Abbott et al.,
2016; Boerlin et al., 2013; Alemi et al., 2018). Of particular relevance to our work is the Neural
Engineering Framework (NEF), which formalizes encoding a stimulus into neuron action potentials
using basis functions, and learning an appropriate linear decoder via regression. While NEF has been
widely explored, we are not aware of prior work explicitly describing non-linear recurrent dynamics
in NEF networks as low-rank RNNs. Additionally, while Beiran et al. (2021) use such a regression
framework, there is no interpretational geometric insight through the use of basis functions.

In this work, we propose an alternate RNN training strategy that is deterministic, requires low
compute time while also addressing interpretability issues of such models. First, we use NEF to
provide an alternate view of low-rank RNNs. Specifically, we develop flexible representations
through the construction of a randomized basis spanned by the low-dimensional dynamical system.
These basis functions are used as regressors to embed a target non-linear ODE in the low-rank
RNN using least-squares regression, thereby overcoming issues of gradient-based training. Second,
using this framework we provide empirical and theoretical evidence regarding the representational
limits of low-rank RNNs. In particular, we emphasize the necessity of neuron-specific inputs for
embedding odd-symmetric dynamics. Third, using a variant of orthogonal matching pursuit we derive
the smallest RNN that can implement any target ODE. Fourth, we offer novel insights on on the
influence of time-varying inputs in embedding both autonomous and non-autonomous ODEs. Using
this, we provide empirical evidence on how similar trajectories can arise from significantly different
dynamical systems. Additionally, we utilize this finding to underscore the necessity of perturbations
for differentiating between these systems. Lastly, we also apply our method to learn simulated ODEs
which arise from a neuroscience binary decision making task, thereby proving the effectiveness of
our method.

2 BACKGROUND: RECURRENT NEURAL NETWORKS (RNNS)

Consider a population of d rate-based neurons, with membrane potentials x = [x1, · · · , xd]> and
firing rates denoted by �(x) = [�(x1), . . . ,�(xd)]>, where �(·) is a scalar function mapping the
membrane potential to firing rate (e.g., sigmoid, hyperbolic tangent, or ReLU). The dynamics of a
generic RNN are given by the vector ordinary differential equation and a linear output:

ẋ = �x+ J�(x) + Iu(t) (1)
z = W�(x), (2)

where J is a d ⇥ d recurrent weight matrix, I is a d ⇥ din matrix of input weights, u(t) is a din-
dimensional input signal, and ẋ = [dx1

dt , . . . ,
dxd
dt ]

> denotes the vector of time derivatives of x. To
describe behavioral outputs, the model contains a mapping from network activity to an output variable
z: where W denotes a dout ⇥ d matrix of readout weights.
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Figure 1: Two equivalent views of low-rank RNNs. (A) Standard view of rank-1 RNN with 8
neurons x and 1 latent dimension z. (B) Alternate view of the same network, now framed in terms
of the dynamics of latent z. This shows that a low-rank RNN is equivalent to a neural ODE with a
single hidden layer (Chen et al., 2018). (C) Basis functions obtained by sampling slope parameters
mi ⇠ N (0, 1), but without input (vt = 0). (D) Attempting to fit an example ODE using this basis
recovers only the odd-symmetric component, since all basis functions are odd symmetric. (E) Adding
inputs allows basis functions have random horizontal offsets. Here we sampled the input weights
Ii ⇠ N (0, 1) and set input vt = 1. (Note that this could also be obtained by using per-neuron
“biases”). (F) Least squares fitting of n using the basis from (E) provides good fit to the target ODE.

2.1 LOW-RANK RNNS

This network model described above becomes a low-rank RNN if the recurrent weight matrix J has
reduced rank r < d, which implies it can be factorized as:

J = MN> =
rX

i=1

min
>
i . (3)

Here mi and ni represent the columns of the d⇥ r matrices M and N , respectively. In this case, the
state vector x(t) will evolve in a subspace of at most r + din dimensions (Mastrogiuseppe & Ostojic,
2018; Dubreuil et al., 2022). Activity in the remaining dimensions will decay to zero due to the decay
term (�x) in (eq. 1).

In this setting, the network state x can be re-written as
x(t) = M(t) + Iv(t), (4)

where  is a so-called “latent” vector representing activity in the r-dimensional recurrent subspace,
and v(t) represents the low-pass filtered input signals u(t) Dubreuil et al. (2022); Valente et al.
(2022). Finally, the low-dimensional recurrent dynamics can be represented in terms of a differential
equation: ̇ = F (,u), where F is a nonlinear function of the latent state  and input u.

3 AN ALTERNATE VIEW OF LOW-RANK RNNS

In the framework described above, training a low-rank RNN to produce a desired output z(t) from
an input u(t) requires learning the model parameters {N,M, I,W}, which is typically carried out
using back-propagation through time Valente et al. (2022). Here we describe a different approach
to low-rank RNNs, which greatly simplifies this training procedure and provides a more intuitive
portrait of the network’s dynamical capabilities.

We begin by considering the problem of embedding an arbitrary low-dimensional dynamical system
into a low-rank RNN. Specifically, suppose we wish to set the model parameters so that z obeys the
dynamics of an particular nonlinear ODE:

ż = g(z), (5)
for some function g. We will then identify this output with the latent vector defining the network’s
activity in the recurrent subspace: z(t) , (t). This implies that the dimensionality of the output is
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equal to the rank of the network, r = dout, and constrains the output weights to be the projection
operator onto the column space of M , that is, W = M(M>M)�1. We are then left with the problem
of setting the weights M , N , and I so that the latent vector, which we now refer to as z(t), evolves
according to (eq. 5). (Note however the model output need match the dimensionality of the latent
variable; in cases where desired output is lower-dimensional than z, the output can be expressed
as z0 = Az, where A is some fixed matrix of output weights that, for example, selects only one
component of z.)

For simplicity, we begin with the case of a scalar z. This corresponds to an RNN with rank-1 recurrent
weight matrix J = mn>, which is simply an outer product of weight vectors m and n. Assume that
the input is also scalar, and that the input vector I is orthogonal to m (although we can relax this
constraint later). Following previous work (Beiran et al., 2021; Dubreuil et al., 2022; Valente et al.,
2022) (eq. 4), the network state can be decomposed as a time-varying linear combination of m and I:

x(t) = mz(t) + Iv(t), (6)

where v(t) represents the low-pass filtered input, resulting from the linear dynamical system v̇ =
�v + u(t). The fact that m and I are orthogonal means that we can write the dynamics governing
the latent variable explicitly as:

ż = �z+ n>�(mz+ Iv(t)) (7)

a result shown previously in Valente et al. (2022), and which is schematized in Fig. 1. Given this
expression, our goal of embedding an arbitrary ODE ż = g(z) into the network can be viewed as
setting the model parameters so that

g(z) + z ⇡ n>�(mz+ Iv(t)) (8)

To achieve this, note that the right-hand-side can be viewed as a linear combination of terms
�(miz+ Iiv(t)) with weights ni, for i 2 {1, . . . , d}. Each of these terms can be viewed as a basis
function in z for representing the target g(z) + z. More specifically, if � is the hyperbolic tangent
function, each such term is a shifted, scaled tanh function in z, where mi is the slope and Iiv(t)
is the offset. This means that we can view the problem of embedding g(z) into a low-rank RNN
as the problem of setting m and I to build an appropriate set of basis functions, and setting n so
that the linear combination of basis functions approximates g(z) + z. This approach formalizes the
connection between low-rank RNNs and the NEF (Eliasmith & Anderson, 2003; Barak & Romani,
2021), and shows that a low-rank RNN corresponds to a neural ODE with a single hidden layer (Chen
et al., 2018; Pellegrino et al., 2023; Pals et al., 2024).

Already, this perspective makes an important limitation clear: if the inputs v(t) are zero, the basis
functions are all odd-symmetric (that is, g(miz) = �g(�miz) for all z), crossing the origin only at
zero. (see Fig. 1C). Because �z is also odd-symmetric, and the linear combination of odd-symmetric
functions is odd-symmetric, this means that in the absence of inputs, the network can only capture
the odd-symmetric component of g(z). A low-rank RNN is therefore not a universal approximator
unless it has inputs, or equivalently, different biases or offsets to each neuron. If the � is instead taken
to be ReLu, the problem is even more severe: each basis function is a linear function with non-zero
slope on either z > 0 or z < 0. Thus the network can only approximate g(z) that are piecewise linear
functions broken at the origin. (See SI Fig. SI-1).

If we set the filtered input to be the constant v = 1, we see that the problem of embedding an arbitrary
ODE in a low-rank RNN amounts to fitting the ODE in a basis of shifted and scaled basis functions
in z. To achieve this, we propose to sample the scales (elements of m) and offsets (elements of I) to
obtain a random basis, and then fit n by least-squares regression, namely:

n̂ = (�(zgridm
> + I>)>�(zgridm

> + I>))�1�(zgridm
> + I>)>

�
g(zgrid) + zgrid

�
, (9)

where zgrid denotes a grid of points at which we wish to fit g(z). Note that we could use weighted
least squares if we care more about accurately approximating certain regions of g(z), or add a small
ridge penalty if the design matrix (whose columns are given by the basis functions evaluated at zgrid)
is ill-conditioned.

Fig. 1 shows an illustration of this approach for an example ODE, here chosen to be a cubic polynomial
with two stable fixed points and one unstable fixed point. Note that the network cannot approximate
g(z) when the inputs are set to zero (Fig. 1C-D), but can do so with near-perfect accuracy when both
the m vector and the (constant) inputs Iv are drawn from a Gaussian distribution (Fig. 1E-F)).
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Figure 2: Embedding a 2-dimensional nonlinear ODE into a rank-2 RNN. (A) Example basis functions
obtained by sampling M and I coefficients from a zero-mean Gaussian, producing randomly oriented,
scaled, and shifted hyperbolic tangent functions. (B) A target two-dimensional nonlinear dynamical
system, containing a stable limit cycle on a circle of radius one, represented as a flow field (left), or
by its component functions g1(z) = dz1

dt and g2(z) =
dz2
dt (right). (C) Least squares fitting of weight

vectors n1 and n2 produces a near perfect match to the target flow field, and functions g1 and g2.
(D) Output firing rates phi(xi) for 10 example units (i.e i 2 {1, . . . , 10}) during the red example
trajectory shown in panel C. (E) Simulated trajectories from the true ODE (blue trace in panel B)
and latent variable of the fitted RNN (red trace from panel C), plotted as a function of time, showing
good agreement between the target ODE and the RNN output. Note that fitting was closed-form, and
did not require backprop-through-time.

3.1 MULTI-DIMENSIONAL DYNAMICAL SYSTEMS

We can apply this same regression-based approach to higher-dimensional nonlinear dynamical
systems, where rank r = dim(z) > 1. In two dimensions, the basis functions are given by
�(m1iz1 + m2iz2 + Ii), which are scaled, shifted tanh functions with a random orientation (see
Fig. 2A). Approximating a 2D dynamical system with a rank-2 RNN can then be written as the
problem of fitting two different nonlinear functions g1(z) and g2(z) using two different linear
combinations of the same 2D basis functions:

g(z) =


g1(z)
g2(z)

�
⇡ �


z1
z2

�
+


n>
1 �(Mz+ I)

n>
2 �(Mz+ I)

�
, (10)

where M = [m1m2] is a d⇥ 2 matrix whose columns define the slope and orientation of each basis
function, I is once again a column vector of offsets, and we have assumed constant input (v = 1).
Note once again that if we do not include inputs, the basis functions are all radially odd-symmetric
around the origin. Thus, once again, the RNN will only be able to capture radially odd-symmetric
g(z), and is not a universal approximator unless we include nonzero offsets Iv 6= 0.

To embed a given multi-dimensional ODE g(z) into a low-rank RNN, we once again generate a
random basis by sampling the elements of M 2 Rd⇥2 and I 2 Rd from a Gaussian distribution. The
problem factorizes into learning each column vector ni for each dimension of the g, we have:

n̂i = (�(ZgridM
> + I>)>�(ZgridM

> + I>))�1�(ZgridM
> + I>)>

�
g(Zgrid) + Zgrid), (11)

for i = 1, 2. This differs from the 1D case above only in that Zgrid is now a r-column matrix of
grid points, where each row contains the coordinates of a single point in z. Note that these grid

5
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points need not be uniformly sampled; we could sample them from an arbitrary distribution, or use a
collection of points from simulating the ODE from a variety of starting points.

Fig. 2 shows an application to an example 2-dimensional nonlinear ODE, in this case containing a
stable limit cycle. Note that this 2D system is highly nonlinear and not radially odd-symmetric, so
once again (Section A.2), embedding the system in a low-rank RNN fails if we do not include inputs
(or per-neuron biases).

4 FINDING THE SMALLEST RNN FOR A GIVEN DYNAMICAL SYSTEM

We now turn to the question of finding the smallest RNN that can accurately implement a known
nonlinear dynamical system, g(z), focusing on a scalar z. In other words we aim to determine the
minimum number of neurons (d0 << d) needed by the network to approximate the function g(z). Our
goal is thus to solve an optimization problem that imposes a sparsity constraint on the dimensionality
of our basis set B(m, I), while still solving for an appropriate linear weighting n.

More formally, this implies selecting the best d0 entries from B(m, I), to create a basis:

Bd0(m, I) =

2

664

�(mi1z+ Ii1)
�(mi2z+ Ii2)

...
�(mid0z+ Iid0 )

3

775 , where {i1, i2, . . . , id0} ✓ {1, 2, . . . , d}.

Then, a linear weighting [n0 n0] is learned using least squares regression, where:

g(z) ⇡ �n0 ⇤ z + n0>Bd0(m, I) where {n0 = 1⇥ d0 vector} (12)
To achieve the desired optimization of approximating g(z), we begin with a large enough B(m, I)
obtained by sampling from a uniform grid of values for m, I . We then follow an iterative approach,
wherein at each iteration t, we greedily pick a basis function ij that has the highest alignment to
the current residual estimate of g(z). This can be observed as an adaptation of the well-established
orthogonal matching pursuit (OMP) framework. A more detailed description of this process is
provided below in Algorithm 1. It is worth noting, changing the original basis set B(m, I) to
B0(m, I) , could result in the algorithm converging to a different minima (global minima in B0(m, I)
could be different from global minima in B(m, I)). However, if the basis sets are equivalent we
observe similar performance across simulations (Fig SI-9)).

Algorithm 1 OMP for finding smallest RNN
1: Select a grid of values z.
2: Create global basis set B using uniformly sampled m, I values.
3: Initialize n weights using linear decay term only: n0 = �(z>z)�1z>g(z).
4: Initialize residual: r0 = g(z)� n0 ⇤ (�z)
5: At each iteration t:

1. Find basis vector with highest correlation with residual: it = argmaxi ||BT
i rt�1|||

2. Add new entry to the solution basis, Bt  Bi

3. Solve to find new linear weights n0
t using Eqn 9

4. Compute the updated residual: rt = g(z)� n0
t
>Bt

5. Check for termination based on a predefined sparsity threshold d0 = len(Bt)

In Fig 3, we apply this method to a simulated 1D ODE, with two stable fixed points and one unstable
fixed point. The first row shows the greedily-added basis functions, multiplied by their corresponding
learned linear weightings. The bottom row shows their linear combination against the true underlying
ODE. Through this iterative process, we observe with just 5 neurons our network almost perfectly
reconstructs the target ODE.

It is worth noting, previous work (e.g., Luo et al. (2023); Valente et al. (2022)) have similar dynamics
which are learned using BPTT with much larger networks (typically 512 neurons). Our method
instead provides an empirical framework to find the minimum number of neurons needed to fit
dynamics within estimated margins of error. Furthermore, we believe this could be used to provide
insights on hyper-parameter values (such as number of neurons) for neural ODE models or other
artificial networks.

6
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Figure 3: Finding the smallest RNN for a particular nonlinear dynamical system using orthogonal
matching pursuit (OMP). (A) Scaled basis functions selected after 1, 3, 5, and 10 iterations of OMP,
along with the linear decay term �x for an example ODE (shown below). (B) Target ODE (black)
and RNN fit after each step of OMP. (C) Mean squared error (MSE) between target ODE and RNN
approximation as a function of the number of RNN neurons added by OMP.

5 NEW INSIGHTS INTO THE ROLE OF INPUT DYNAMICS

In Sec. 3, we demonstrated the importance of the presence of inputs in basis functions, B(m, I) =
�(mz+ Iv(t)). Now, we highlight the influence of the type of inputs (constant or time-varying), in
representing arbitrary ODEs. Specifically, our framework so far shows how autonomous ODEs (g(z))
are embedded via constant filtered inputs represented as v = 1, that do not evolve over time. Here we
extend our framework to embed non-autonomous ODEs (g(z, t)) by introducing a dynamical system
that governs the evolution of v(t).

Recent work has suggested an identifiability issue in uncovering underlying low-dimensional dynam-
ics from high-dimensional neural activity, however the role inputs play in this hasn’t been explored
(Turner et al., 2021; Langdon & Engel, 2022; Liu et al., 2023; Qian et al., 2024). Furthermore,
previous work on time varying inputs (Rajan et al., 2016; Remington et al., 2018; Galgali et al.,
2023a) has focused primarily on whether observed trajectories were input driven or dynamics driven .
We note here that this latter category can be subdivided into cases where the dynamics themselves are
fixed in time or fluctuating due to inputs.

In Fig. 4, we illustrate using our framework to train low-rank RNNs that produce an identical
trajectories (blue, red lines in the bottom row) through vastly different dynamical systems (quiver
plots in bottom row). In all cases shown, the input dimension I is orthogonal to the dynamics
subspace m. Specifically, we demonstrate the following cases:
1. Autonomous ODE: Following the general treatment in Sec. 3 above, we embed an ODE of the
form ż = g(z). The quiver plot (bottom row of panel A) represents the autonomous ODE flow-field
illustrated through arrows of the same length across time, for each value of z. Note, this embedding
is achieved through inputs that are fixed in time (v = 1). Additionally in the bottom row of panel A,
the true trajectory (blue - computed using Euler integration), and the low-rank RNN (red - trained
using Eqn 9), both start at the unstable fixed point (z = �6), and eventually converge to the stable
fixed point (z = +6). The almost perfect overlap indicates the efficacy of our method.
2. Non-Autonomous ODE: In panels B,C,D we embed time-varying dynamics of various kinds into
different low-rank RNNs. Our training objective was to create time-varying flow fields that produce a
trajectory identical to the autonomous ODE case. The existence of time-varying dynamics can be
observed by noting arrows of different lengths across time bins (i.e each row of quiver plot).
We first discuss how to embed such dynamics into the low-rank RNN. Intuitively, because the dynamic
being approximated represents a different function over time, the basis functions also need to evolve
in time. To achieve this embedding, we modeled inputs v(t) with an exponential decay given by
v̇ = �v. This decay results in time-varying basis functions, as different v(t) values are computed at
each Euler time-step when defining �(mz+ Iv(t)).
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Figure 4: Creating indistinguishable time-varying dynamical systems with time-varying inputs. We
show four different time-varying dynamical systems that give rise to the same (blue) target trajectory.
(A) Top: we defined a target ODE defined by an inverted quadratic function (top), then embedded
into an RNN with constant input (following the methods in Sec. 3). Bottom: we then simulated
a trajectory that starts just right of the unstable fixed point and converges to the stable fixed point.
Here the flow field dynamics do not vary in time. A perturbed input into the RNN (orange) follows
the same trajectory, but shifted downward (earlier) in time. (B) We trained an RNN to produce a
dynamic flow field using time varying basis functions, whose offsets shifted in time after clamping
on an input u at time zero. Here we set the target to be a time-varying linear dynamical system with a
single stable fixed point that moved from left to right. Note that the RNN latent (red) still follows the
target trajectory (blue). However, the same perturbation shown in A now converges back to the target
trajectory. (C) Network trained to produce the same target trajectory using a moving unstable fixed
point. (D) Network trained to produce the same target trajectory using no fixed points. Note however
that the trajectory arising from a perturbed initial point (yellow) varies wildly across these models.

Below, we expand on the specific dynamical system governing ODEs that can be approximated using
such time-varying basis functions.

1. Moving fixed points: As already highlighted, the dynamical system of the target ODE is of
the form ż = g(z, t). Panels B, C present specific cases, where this dynamic represents an
underlying flow-field which arises due to the diffusion of a single stable or unstable fixed
point.
In other words, our target ODE represents the trajectory of a moving fixed point, modelled
through a linear dynamic term in z -

ż = g(z(t0)� ↵ ⇤ (z0 � z(t0))� z0 (13)
The above equation clearly highlights the systems’ state depends on both {z0, t0}, repre-
senting a coarse spacing and a corresponding Euler time bin respectively. First, the term
↵ ⇤ (z0 � z(t0)) introduces a linear time-varying correction which moves the fixed point of
this system z0 to z(t0) with a rate ↵, as shown in the top rows. Second, ↵ must be positive
for panel B (to move a single stable fixed point), and negative for panel C (to move a single
unstable fixed point). Third, while the fixed point dynamic described above is linear, the
system still evolves non-linearly due to the function g, as shown by the quiver plots. Lastly,
in the absence of these dynamics the system decays to the fixed point defined by z0.

2. No fixed points: Similar to the moving fixed point case, we can define a system with no
fixed points during the movement from -6 to +6. In this case, the target ODE is defined by
the non-linear evolution of z(t) with a time-invariant shift given as

ż = g(z(t0))� z0 (14)

In the bottom row of panels B,C,D the true trajectory (blue) and RNN approximated trajectory (red)
overlap. Critically, they are all identical, and in fact match the trajectories observed in the bottom row

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

of panel A. However, as discussed above, they all represent dramatically different target flow-fields,
also showcased via their quiver plots.

Our results provide insight into how non-autonomous dynamics can be embedded into low-rank
RNNs through time-varying inputs. It is worth noting that most current methods typically interpret
low-dimensional dynamics post-training. One specific method that has gained popularity is the
zero-finding method, which relies on finding fixed points (Sussillo & Barak, 2013; Smith et al., 2021).
Our discussion on non-autonomous dynamics suggests, how similar trajectories can be observed in
the presence of dynamical fixed points/ no fixed points at all. This presents a possible failure mode for
such techniques. Additionally, we consider the effects of perturbations in the initial point (orange line
in bottom row) for these different systems. As observed, while the learned RNN trajectory (black) is
identical across all panels, small perturbations in the initial point lead to wildly different trajectories
in different models, validating that observations of fixed trajectories are generally not sufficient to
uniquely identify the underlying dynamical system Galgali et al. (2023b).

6 COMPARISON WITH BPTT FOR NEUROSCIENCE TASKS

Finally, we apply our framework on two neuroscience inspired tasks (Wong & Wang, 2006; Sussillo
& Barak, 2013; Luo et al., 2023) and compare our networks against RNN models trained with
backprop-through time. Specifically, we implement:

1. 3-bit flip-flop task: The network receives a series of bits (-1 or +1) in 3 registers, and must
store the polarity of the most recent bit in each register (Sussillo & Barak, 2013).

2. Binary decision-making: Following previous literature, we model a sensory evidence
accumulation task using bi-stable attractors (Wong & Wang, 2006). Sensory inputs drive the
system from an unstable fixed point towards one of two stable fixed points, each associated
with a different choice (see Appendix B for details).

In Sec. 4, we find the smallest low-rank (r = 1) network (N = 10 neurons) that almost perfectly fits
a bi-stable attractor ODE. Here, we compare our model against networks of the same size (and rank)
trained using BPTT. As shown, our method provides a closed form solution in one step, as compared
to networks trained with BPTT which take an order of one/two more magnitudes to converge. In Fig. 5,
panels B,C depict loss curves across a wide range of RNN models trained with BPTT. Consistent
with previous findings we observe lower training loss for larger networks, although they take longer
to converge. Additionally, low-rank networks (r = 1, panel C) have comparable performance for
tasks with lower dimensionality. Second, our method qualitatively has better reconstruction of test
trajectories (panel A). More importantly, our model significantly outperforms networks (order of
magnitude lower test mean-squared error) of the same size (and rank) on a set of test target trajectories
(panel D), thereby proving the efficacy of our method.

7 DISCUSSION

In this paper, we present an alternative view on low-rank RNNs that emphasizes interpretability and
highlights the representational capacity of such networks. The focus of our work lies in defining a
randomized basis which is used to embed an arbitrary non-linear dynamical system. We demonstrate
that inputs are essential for capturing odd-symmetric functions through theoretical and empirical
evidence. This extends previous work Valente et al. (2022); Dubreuil et al. (2022); Beiran et al. (2021)
and offers clarifying insights into when such models behave as universal function approximators.
While previous work discusses universal approximation Beiran et al. (2021) for such networks, we
believe we’re the first to provide a geometric basis function interpretation.

Furthermore, our formulation allows learning the parameters of this RNN in closed form with
regression. By directly modeling the low-dimensional activity and transforming to neural activity
space via a fixed linear projection, we reduce the number of parameters needed to be learnt. We
achieve this by presenting an NEF approach Eliasmith & Anderson (2003) to train low-rank RNNs (a
result also highlighted in Beiran et al. (2021)). Our novelty lies in overcoming gradient-based training
issues (in cases with known/estimated ODEs), similar to vector-field regression or teacher forcing
algorithms Heinonen et al. (2018); Bhat et al. (2020); Hess et al. (2023), with the added advantage of
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Figure 5: Comparisons to RNNs trained using backprop-through-time (BPTT) for neuroscience
inspired tasks. (A) Target and trained RNN model outputs for one bit in the “3-bit flip-flop task”. Our
model (left) achieves near perfect accuracy using only 3 neurons and a rank-3 weight matrix; low
rank and full rank networks trained using BPTT do not achieve nearly the same level of accuracy. (B)

Training loss as a function of number of training epochs for different networks. (Our network, which
is trained in one step using least-squares regression is shown in purple for comparison). (C,D) Train
and test error for RNNs trained to perform a binary decision-making task using bi-stable attractor
dynamics (Wong & Wang, 2006; Luo et al., 2023).

not being stochastic across runs and requiring lower compute resources. Additionally, we directly
provide an intuition on the role each neuron plays in the low-rank RNN. Our framework can thus
be used as an alternative to task-training in neuroscience, to model novel behavioral tasks. Another
exciting finding of our work is using OMP to approximate the smallest RNN (from a basis set), which
could be used to drive insights on hyper-parameter values for such models. Together, this presents a
promising future direction for studying how perturbing connectivity relates to unstudied behavioral
outputs, or guiding experimentalists on capturing neurons with characteristic neural profiles (using
OMP) for specific tasks.

We also present novel findings on the influence of input driven dynamics. Specifically, we directly
link how non-autonomous ODEs can be embedded in low-rank RNNs through time-varying basis
functions. Empirically, we demonstrate that identical trajectories can be generated from trajectories
of moving fixed points, no fixed points or stationary target ODEs. The presence of dynamics in fixed
points suggests a potential failure mode in current methods for interpreting such networks’ dynamics
Sussillo & Barak (2013); Smith et al. (2021). Furthermore, we link the RNN connectivity to these
target ODEs through dynamics along the input dimension. A potential future direction would be to
guide causal perturbation experiments needed to uncover such dynamics. Additionally, although not
explored here, the conversion of non-autonomous dynamics to autonomous dynamics could play a
critical role in neuroscientific insight. Lastly, we prove the efficacy of our method by applying it to
various neuroscience inspired tasks. We note our method outperforms models of similar size/rank
trained with BPTT.

We conclude by discussing some limitations of our work. Our method relies on knowing (or estimating
via finite differencing methods) the underlying latent dynamic. Additionally, the complexity of our
framework lies in defining or estimating this underlying ODE. While in Sec. 5 we provide instances
of embedding non-autonomous ODEs, arguably extending this to other higher order systems could
be tricky. This might be especially useful while modeling multi-region brain interactions, where the
state of the target ODE depends on another complex dynamical system as well. However, overall
we believe the new insights provided by our framework outweighs its limitations and provides an
exciting set of future directions.
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