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1 Introduction

Data discovery and exploration are major components of the workflow of analysts and data scientists. A
survey conducted by the Anaconda data-science platform in 2021 found that analysts spend 40% of their
working hours on data loading and cleaning [2]. Even with this colossal effort, 60-70% of data within an
enterprise still goes unused for analytics [11], remaining as dark data [12, 37].

Recent developments in large language-models (LLMs) have unlocked human-level performance on diverse
domain tasks. The discovery that these models can generalize to diverse domain-specific tasks that they
have not been trained on [33, 34, 3, 15] has led to emergence of the term foundation models [5]. Despite
their promise, serious risks have hampered the reception of foundation models. These include: spurious
generation (including “hallucination”) [13], factual recall limitations [22] and dataset contamination [9].

The goal of this paper is to demonstrate the utility of foundation models to the data discovery and
exploration domain while mitigating the aforementioned risks. We select three representative tasks to show
the promise of foundation models: 1⃝table-class detection, 2⃝column-type annotation and 3⃝join-column
prediction. An outline of our approach is shown in Figure 1a. We call this approach CHORUS.

Prior work has addressed these tasks individually. Landmark approaches like Sherlock [16] trained deep
model architectures for a specific task, requiring 100K-1M labeled data points. More recent work such
as DoDuo [27] and TaBERT [36] has focused on representation learning, learning embeddings for structured
data by improving their performance on one or more downstream tasks.

Foundation models allow a substantially different approach: rather than the classical architecture where
the outputs of the model are task-specific, the inputs and outputs of the model are natural language text.
Training occurs not on tables or data management tasks specifically, but on general text. Performance on
domain-specific tasks is solely by generalization. The promise of foundation models for data profiling,
wrangling and imputation has been outlined in a recent papers [32, 31, 23, 4].

This results in a high degree of flexibility. Novel tasks can be specified in natural text, without need
for expensive data collection—task examples, metadata and constraints are all incorporated into the task
easily. Another advantage of this approach is a unified architecture: tasks can utilize the overall context
and previous outputs. For example, in Figure 1a the table class ElectricVehicle helps with deducing
the outputs Make, Model in the next task.

Further details on all sections of this paper, including the prompts used, can be found in the full report [19].

2 Background

We assume to be given a data collection consisting of a number of relational tables T1,T2,.... Each table
Ti consists of a number of columns, or attributes, A1,A2,... and a number of rows, or tuples, r1,r2,... The
name of a table Ti is, in general, non-informative, for example it may be simply a sequential ID. The columns
may optionally have a name H1,H2,... or consist only of values. In addition to the data collection, we are
also given a reference ontology of table classes C1,C2,..., and a reference ontology of column types τ1,τ2,...
We consider three tasks of interest on the data collection:
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<COL 4, VIN ID>

Brand ? ZIP ?

Nissan Leaf 98112 JN1AZ0CP4C

Tesla Model 3 98074 5YJ3E1EBXL

Ford Transit 98501 1FTBW1YKXP

Hyundai Ioniq 5 98027 KM8KRDAF6P

② Annotate each column with an 
ontology semantic type […]

Make | Model | Zip |  
VIN Prefix

ElectricVehicle

① Detect the ontology class the table 
represents […]

③ Which columns to join on? […]

License No. VIN ID

CHORUS

CHORUS

CHORUS

CHORUS

CHORUS

…
CHORUS

···

(a) An illustration of the three data
discovery tasks considered in this work.

Previous Task Context

🤖
Foundation 

 Model

Current Task

Prefixes

Task k-1

Next Task Context Task k+1

Task k

Ontology

Document 
Collection

Pass
Anchoring

Output

Instructions Data 
Sample

Task-specific 
knowledge

Feasibility 
Checker

Fail

Metadata

Raw output

Demonst
ration

Post- 
processing

Model Inputs

(b) CHORUS system architecture.

Definition 2.1 ( 1⃝Table-class detection). For each table Ti, determine its appropriate class Cj, such that
every row r1,r2,... represents an instance of the Cj type. We adopt this definition from [20].
Definition 2.2 ( 2⃝Column-type annotation). For each table Ti, find a mapping from its attributes (columns)
A1,A2,... to the reference column types τ1,τ2,..., such that each value in Ai is an instance of the τi type.
See [8, 1].
Definition 2.3 ( 3⃝Join-column prediction). Assume an execution log L, a history of user actions including
table joins and their join conditions, which maps many (Ti,Tj)→(Ak,Al) where Ak∈Ti,Al∈Tj. Given
two tables T and T ′, with columns A1,... and A′

1,... respectively, the join-column prediction task is to suggest
a pair (Ak,A

′
l) of columns such that the equality condition Ak=A′

l, which can be used to join the the tables,
matches with the choice in the execution log L. For more discussion, see [35].

3 Approach

Figure 1b shows the architecture of the system. CHORUS has a unified architecture which runs multiple
tasks in the same context, allowing for information flow. Each task is run sequentially, with the output of one
task fed as context into future tasks. For each task instance, CHORUS generates a prompt by concatenating
six inputs: context, demonstration, data samples, metadata, task-specific knowledge, and prefixes. They
form the “Model Inputs” box in Figure 1b. This natural language input is then fed to the foundation model.
The output is controlled by a harness: which mitigates for errors of parsability and feasibility.

Model Harness Constraint checks. The model may not always output a feasible answer. In this setting
we impose three constraints: table types must belong to the ontology classes, column types must belong
to the ontology properties and joins must be on existing columns. An output is infeasible if, in particular,
it is not parsable or if it violates any of the three constraints. If this occurs, CHORUS performs anchoring.

Anchoring. If the constraints are violated, we do not simply move on to the next task. The risk is of
hallucination snowballing [39]: once a foundation model makes a single spurious generation, subsequent
outputs are more likely to also be wrong. The model will make mistakes it would otherwise be able to avoid.
For example, in Figure 2(a): once nonexistent class iucnStatus is suggested, another nonexistent class
animalName follows. Because we maintain context across tasks, we are particularly vulnerable to this.
We call the novel domain-specific mitigation we deploy anchoring, shown and explained in Figure 2(b).

4 Experiments

Baselines We considered the following state-of-the-art systems for data exploration: relevant systems
include TABERT [36], DODUO [27], Sato [38], TURL [8], TaBBIE [17], Auto-suggest [35], Trifecta
Wrangler [30], Paxata, Tableau Prep, and Sherlock. DODUO outperforms TURL and Sherlock on column-type
annotation [27], so we select it for evaluation. Sato and Sherlock are similar, with Sato utilizing additional
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Figure 2: Anchoring illustrated. The LLM hallucinates an imagined label, iucnStatus. Under the standard
approach, this poisons all the upcoming tasks; the nearest-neighbor post-processing cannot recover and
outputs the incorrect label animal. With anchoring, CHORUS intervenes when the first error is detected. A
new conversation is started and a synthesized (false) history is provided to the LLM, in which it did not make
the mistake. With only clean inputs, LLM is able to correctly answer the next task correctly: binomial.

signals not found in our benchmarks, so we evaluate the better-established Sherlock. TaBBIE can embed
tables but is not trained on column-type annotation unlike DoDuo and Tabert, so we avoid it for the
column-type annotation task. TABERT is a work similar to DoDuo and TURL, but from the NLP community
rather than the data management community, so we also test it too. For join-column prediction, Trifacta
Wrangler outperforms Paxata and Tableau Prep [35]. Auto-Suggest is reported to outperform Trifacta
Wrangler, but is a proprietary research project not released publicly. Thus we select Trifacta Wrangler for
testing. In all cases, we use the pretrained embeddings without modification, as provided by the baseline
authors. DODUO provides two embedding variants: one trained on the WikiTables dataset and another
on VizNet. When using DODUO as a baseline we test against both, labelling them DODUO-WIKI and
DODUO-VIZ respectively. We use the GPT-3.5 model [25] for the bulk of experiments.

4.1 Table-class detection

For the first task, 1⃝table-class detection, we tag each table with the DBPedia ontology entry that represents the
row-type of the data. The 237 datasets that comprise the T2Dv2 dataset [26] with table-class correspondences
available. We compare against the baselines DODUO and TABERT. No approach in the prior work provides
out-of-the-box capabilities on this task, so we add a classification layer on top of the pretrained embedding
layer using the approach from [20].

Table 1 shows the results. CHORUS improves on the three baselines—DoDuo-Viz, DoDuo-Wiki and
TaBERT—on all metrics. F1 score is improved by 0.169 points, precision by 17.5 percentage points and
recall by 15.5 percentage points. Of the baselines, DoDuo-Wiki provides the best F1 and precision, while
TaBERT provides the comparable recall. The best performing models, TaBERT and DoDuo-Wiki are trained
on CommonCrawl, a superset of the T2Dv2 benchmark. DoDuo-Viz which is trained on the VizNet, a
dataset disjoint from T2Dv2, has the weakest performance. The numbers for TaBERT are in line with prior
replications [20], while to the best of our knowledge this is the first benchmarking of DoDuo on this task.

4.2 Column-type annotation

Next, we compare the ability of our system to assign classes to table columns. VIZNET is a collection of
tables, extracted by the Sherlock [16] team from the VizNet repository [14] of data visualizations and open
datasets. VizNet comprises 31 million datasets in total. We selected 10 mutually exclusive DBPedia.org
classes to test. We then used stratified sampling to select 1000 columns of each type. We compare against
TaBERT [36], DoDuo [27] and Sherlock [16] on this task. Since Sherlock is designed for column annotation,
we use the out-of-the-box model provided by the original team. For TaBERT and DoDuo we adopt a minimal
shim to adapt to our ten classes. Table 2 contains the results for the VIZNET dataset. Our FM-based approach
improves performance on the measured metrics of F1-score, precision and recall. The best performing
method is Sherlock, narrowly beating DoDuo-VizNet, with a 0.930 F1 score. If we consider methods which
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Table 1: Weighted F1 scores for table-class detection
on T2Dv2 dataset. Systems are compared with the
expert-annotated classes for each table. The n=237
tables each correspond to one of 33 DBPedia.org
classes.

F1-score Precision Recall

DoDuo-Viz 0.654 66.8% 68.3%
DoDuo-Wiki 0.757 78.6% 76.9%
TaBERT 0.746 76.3% 76.8%
CHORUS 0.926 96.1% 92.4%

Table 2: Weighted F1 scores for column-type
annotation on VIZNET, with n = 1000 columns.
Systems are compared with the “gold standard” classes
for each column. Methods which are also pre-trained
on VIZNET are marked with an asterisk ∗.

F1-score Precision Recall

DoDuo-VizNet∗ 0.900 90.3% 89.9%
Sherlock∗ 0.930 92.2% 93.1%

TaBERT 0.380 38.9% 38.3%
DoDuo-Wiki 0.815 82.6% 81.4%
CHORUS 0.865 90.1% 86.7%

Table 3: F1 scores, precision and recall for the
join-column prediction task on n=300 tables.

F1-score Precision Recall

Jaccard 0.575 60.7% 54.7%
Levenshtein 0.718 72.3% 71.3%
Trifacta Wrangler 0.823 82.6% 82.0%
CHORUS 0.895 91.0% 88.0%

Table 4: Weighted F1 scores for table-class detection
on T2Dv2 dataset, for different choices of foundation
model used by CHORUS. Parameter size in brackets.

Table-class correctness

Model choice F1-score Precision Recall

GPT-3.5 (175B) 0.926 96.1% 92.4%
LLaMA 2 (70B) 0.893 92.2% 86.5%
Vicuna/LLaMA (13B) 0.713 79.2% 64.1%
Vicuna/LLaMA (7B) 0.713 75.3% 67.5%

are not specifically pretrained on VizNet (note, which is also the test set) CHORUS is the best performing
on all three metrics. It has comparable F1 and precision to Sherlock, but 6 percentage points lower recall.
Note in particular DoDuo-Wiki, which is the same as DoDuo-Viznet without access to VizNet at pretraining
time, has a large regression in performance, suggesting lower generalizability.

4.3 Join-column prediction

Finally, we evaluate our approach’s ability to suggest which columns are the correct choice for a join, the
join-column prediction task. We use the GitNotebooks dataset from [35], a collection of Python notebooks
(and their associated relational tables) including which joins the user ran, collected from Github. For this
task, we compare with three baselines. Jaccard similarity, J, is the first. Two columns are selected such that
argmaxc∈CT ,c′∈CT ′J(c,c′) where J(X,Y )= |X∩Y |/|X∪Y |. This is a commonly used approach in the
literature [6, 7, 24, 35]. Another baseline is Levenshtein distance [21], which selects the pair of column names
with the smallest edit distance between them. The final baseline is Trifacta Wrangler [30], a commercial
product spun off from the Wrangler research line [18]. Table 3 shows the quality of estimates for our approach
and the baselines. We measure the quality of the predictions by the same criteria as the previous tasks. By
these metrics, our approach improves the quality of predictions and beats the next-best approach by a clear
margin: F1 score is improved by 0.072, precision by 8.4 percentage points and recall by 6.0 percentage points.

4.4 Miscellaneous

Dataset contamination Here we perform an experiment to validate whether any of the testing data occurred
in the training corpus of the large-language model, an issue called dataset contamination or data leakage.
Because these models are trained on internet data [10] and we use public benchmarks, they may have seen
the test data in training. We test on seven guaranteed-unseen tables (listed in the technical report [19])
and their columns, all uploaded between April–June 2023 to the federal data repository Data.gov. They are
guaranteed-unseen because the foundation model training was completed on or before March 2023. Repeating
the supervised column-type annotation task as in Section 4.2, we measure a 0.857 F1 score, 90.0% precision
and 81.8% recall. This is within 0.01 F1 points, 0.1% precision and 5% recall of the benchmark results.

Open-source models To demonstrate the versatility of this approach, we run CHORUS with three alternative,
open-source foundation models on the table-class detection task. We consider Vicuna [40], a variant of
LLaMA [28], and the more advanced model LLaMA 2 [29]. Table 4 shows the results. While OpenAI’s
GPT model performs best, the best open-source model is very competitive. LLaMA 2 outperforms the best
baseline model for this task—DoDuo-Wiki—by 0.136 F1 points, on precision by 13.6 percentage points
and on recall by 9.6 percentage points. This model lags behind the GPT model by only 0.03 F1 points.

0This work is supported by the National Science Foundation under Grants NSF-BSF 2109922 and NSF IIS 2314527.
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