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Abstract

Previous studies have made great advances in001
RST discourse parsing through neural frame-002
works or efficient features, but they split the003
parsing process into two subtasks and heavily004
depended on gold segmentation. In this pa-005
per, we introduce an end-to-end method for006
sentence-level RST discourse parsing via trans-007
forming it into a text-to-text generation task.008
Our method unifies the traditional two-stage009
parsing and generates the parsing tree directly010
from the input text without requiring a compli-011
cated model. Moreover, the EDU segmentation012
can be simultaneously generated and extracted013
from the parsing tree. Experimental results014
on the RST Discourse Treebank demonstrate015
that our proposed method outperforms existing016
methods in both tasks of sentence-level RST017
parsing and discourse segmentation. Consid-018
ering the lack of annotated data in RST pars-019
ing, we also create high-quality augmented data020
based on several filtering strategies, which fur-021
ther improves the performance.022

1 Introduction023

Discourse parsing involves determining the struc-024

ture of elementary units forming a discourse and025

how they are connected with each other. In a026

coherent text, units are often organized logically027

and semantically with certain relationships. Early028

studies have demonstrated that discourse parsing029

can benefit various downstream NLP tasks, includ-030

ing sentiment analysis (Polanyi and van den Berg,031

2011; Bhatia et al., 2015), summarization (Louis032

et al., 2010; Gerani et al., 2014), question answer-033

ing (Jansen et al., 2014) and machine translation034

evaluation (Joty et al., 2017).035

RST parsing based on Rhetorical Structure The-036

ory (Mann and Thompson, 1987), is one of the037

most common and influential parsing methods in038

discourse analysis. According to RST, a text is first039

segmented into several clause-like units as leaves of040

the corresponding parsing tree, called elementary041
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Government lending was not intended to be a way to 

obfuscate spending figures, hide fraudulent activity, or 

provide large subsidies.
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EDU1: Government lending was not intended to be a way
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EDU3: hide fraudulent activity,

EDU4: or provide large subsidies.

Figure 1: An example from RST Discourse TreeBank.

discourse units (EDUs). Through certain rhetorical 042

relations among adjacent spans, such as Elabora- 043

tion and Joint, underlying EDUs or larger text spans 044

are recursively linked and merged to form their par- 045

ent nodes, representing the concatenation of them. 046

Finally, a hierarchical tree structure is constructed. 047

Besides rhetorical relations, sibling nodes in the 048

parsing tree contain a kind of nucleus-satellite re- 049

lations to show who is more central or equal to 050

the discourse structure. Figure 1 shows an RST 051

parsing tree for a sentence from the RST Discourse 052

TreeBank (Carlson and Marcu, 2001), which is the 053

most common discourse corpus. 054

In the past, various approaches have been pro- 055

posed for both document-level and sentence-level 056

RST parsing, which can be mainly divided into 057

bottom-up and top-down methods. Earlier work 058

like transition-based approaches utilized the repre- 059

sentation learned through manually-designed fea- 060
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tures or neural networks to build shift-reduce061

parsers (Ji and Eisenstein, 2014; Yu et al., 2018).062

The whole parsing tree is gradually built in a se-063

quence of actions, including shift and reduce. Then,064

benefiting from the development of neural net-065

works, top-down approaches (Lin et al., 2019; Liu066

et al., 2019; Zhang et al., 2020) made use of the067

pointer network (Vinyals et al., 2015) to segment068

text into shorter units recursively until no more069

units can be generated.070

Although many advances have been made in071

RST parsing, the real performance of existing meth-072

ods may be far from satisfactory. Most studies073

before followed the traditional settings to split the074

parsing process into two stages, namely segmenting075

EDUs and building parsing trees. They employed076

their models only on the second stage and treated077

the gold EDU segmentation as a requisite, which078

is, however, infeasible in real application scenarios.079

The segmenter trained in the first stage can gener-080

ate automatic segmentation as a substitute, but the081

performance of those parsing methods would drop082

a lot accordingly. This may be caused by errors in083

segmenters transmitting to the parsing stage. More-084

over, previous methods relied on additional features085

or complicated frameworks for different parts of086

parsing like relation label prediction, which did not087

take full advantage of knowledge in the task.088

In this paper, we focus on sentence-level RST089

parsing and introduce a simple end-to-end method090

which can generate the target parsing tree di-091

rectly from the corresponding text. It is benefi-092

cial since sentence-level discourse analysis has093

relatively high accuracy and can be applied to094

many NLP tasks like sentence compression (Sori-095

cut and Marcu, 2003). Moreover, sentence-level096

parsing is essential and serves as a basic step in097

some document-level parsers (Wang et al., 2017;098

Kobayashi et al., 2020). Therefore, the improve-099

ment of sentence-level parsing may promote further100

progress in discourse parsing.101

Our proposed method converts RST parsing into102

a text-to-text generation task by reformulating the103

parsing tree into a natural language sequence. The104

information contained in text content, hierarchical105

structures, and relation labels in the parsing tree can106

be integrated and learned together by the generation107

model. Experimental results demonstrate that our108

method outperforms existing approaches without109

using gold segmentation. In addition, our method110

can generate the EDU segmentation simultaneously111

during parsing, which has even better performance 112

than other segmenters specifically trained on this 113

task. In view of the lack of annotated data in RST 114

parsing, we also attempt to generate high-quality 115

augmented data to obtain extra enhancement. 116

Our primary contributions are as follows: (1) 117

we propose a simple but effective end-to-end ap- 118

proach to sentence-level RST parsing without using 119

gold segmentation and additional auxiliary informa- 120

tion; (2) our method generates the parsing tree with 121

the EDU segmentation simultaneously and outper- 122

forms existing models on both tasks; (3) we attempt 123

to generate augmented data according to certain 124

strategies to further improve the performance. The 125

code will be released to the community. 126

2 Related Work 127

Discourse parsing describes the hierarchical tree 128

structure of a text and can be used in quality eval- 129

uation like coherence and other downstream ap- 130

plications. In the past, various approaches on 131

both sentence-level and document-level RST pars- 132

ing have been proposed, mainly divided into two 133

classes: top-down and bottom-up paradigms. 134

In earlier studies, bottom-up methods have 135

been first purposed since various kinds of hand- 136

engineered features were mainstream tools and 137

more suitable to represent local information. Sori- 138

cut and Marcu (2003) first proposed a bottom-up 139

CKY-like approach with syntactic and lexical fea- 140

tures for sentence-level parsing. Models with CKY- 141

like algorithms (Hernault et al., 2010; Joty et al., 142

2013; Feng and Hirst, 2014; Li et al., 2014) utilized 143

diverse features to learn the scores for different sub- 144

trees and searched all possible parsing trees to find 145

the most likely one for a text. Although these meth- 146

ods achieved high accuracy, they suffered from 147

slow parsing speed. 148

Another common bottom-up method is the 149

transition-based parser, which generates the RST 150

parsing tree during a sequence of shift and reduce 151

action decisions. Ji and Eisenstein (2014) intro- 152

duced a neural shift-reduce parser with representa- 153

tion learning methods. Wang et al. (2017) proposed 154

a two-stage parser based on SVMs with plenty of 155

features. Then Yu et al. (2018) trained a transition- 156

based parser with implicit syntactic features from 157

dependency parsing and achieved great success. Al- 158

though transition-based methods can benefit from 159

low time complexity, they only unitize the local 160

information for each decision and may not achieve 161
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the best result in the long run.162

Thanks to the recent advancement of neural163

methods, it is possible to represent the text effec-164

tively in a global view, which promoted top-down165

parsers. Lin et al. (2019) first presented a seq2seq166

model for sentence-level RST parsing based on167

pointer networks (Vinyals et al., 2015) and Liu168

et al. (2019) improved it with hierarchical structure.169

Then Zhang et al. (2020) extended their methods170

to document-level RST parsing. Kobayashi et al.171

(2020) constructed subtrees for three granularity172

levels of text and merged them together.173

Despite the better performance of top-down mod-174

els, most of them still utilized gold EDU segmenta-175

tion as a necessity and dropped a lot in performance176

when using automatic segmenters. However, it is177

more practical that the parsing tree should be con-178

structed directly from the input text. And the two-179

stage process may lead to error accumulation from180

segmenting to parsing. Nguyen et al. (2021) intro-181

duced an end-to-end parsing model, but it relied on182

different frameworks for structure and relation la-183

bel prediction and improved the performance with184

the help of artificial sentence guidance. In addi-185

tion, we find contemporaneous work of Zhang et al.186

(2021) just before our submission. They introduce187

a complicated system with rerankers and we follow188

ACL’s policy and do not make comparisons with189

this work. Our end-to-end approach, on the other190

hand, transforms RST parsing into a text generation191

task, eliminating the need for additional knowledge192

and specific frameworks.193

3 Our Method194

Over the past year, a new paradigm in NLP195

emerged based on powerful pretrained language196

models and brought remarkable improvement on197

many tasks. Instead of adapting pretrained models198

to different downstream tasks through specific net-199

work layers and objective engineering, now down-200

stream tasks are reformulated close to the tasks201

used during pretraining (Liu et al., 2021). Many202

studies have proved that knowledge contained in203

pertrained models can be used directly to deal with204

text classification or generation. However, it still205

remains a significant challenge for more complex206

data structures, such as the tree structure in RST207

parsing.208

Motivated by the idea above, we propose a209

method to reformulate the parsing tree into the210

form of a linear sequence so as to utilize existing211

seq2seq models. We show that our new text-to-text 212

task can make great use of the latent knowledge 213

in pretrained models like T5, without additional 214

features or neural frameworks. Although the target 215

output is not the parsing tree, it can be restored 216

and evaluated through a series of post-processes, 217

resulting in more accurate predictions. 218

3.1 Binarization 219

In the original RST Discourse TreeBank, RST pars- 220

ing trees are stored as a set of text spans together 221

with their relation labels. To a mononuclear rela- 222

tion, the span of the satellite is assigned a certain 223

rhetorical relation, and that of the nucleus is as- 224

signed the label Span. Multinuclear relations hold 225

among two or more spans of the nucleus, which 226

are assigned the same rhetorical relations. Marcu 227

(2000) first formally encoded the RST parsing tree 228

in the form of a constituent tree, as shown in Fig- 229

ure 2(a), which was followed and used by the ma- 230

jority of subsequent parsing methods. 231

On the other hand, there are some n-ary trees in 232

the corpus because multinuclear relations can link 233

more than two spans, namely nodes in the parsing 234

tree. The standard process is to turn them into 235

their right-heavy binarized versions. Both of the 236

processes above aim to make parsing trees more 237

regular and suitable for training and evaluation. 238

Since they also help to linearize the parsing tree in 239

our method, we perform the same steps before the 240

linearization. The relation labels are all the same 241

for the leaves of minimum n-ary subtrees, so new 242

intermediate nodes added during binarization just 243

need to be assigned the same labels. The binary 244

constituent tree in Figure 2(b) is transformed from 245

the examples in Figure 1 and Figure 2(a). 246

3.2 Linearization 247

Based on the priority level contained in brackets, 248

we attempt to represent hierarchical architecture 249

by nesting several pairs of brackets. The lineariza- 250

tion is carried out from the bottom up according to 251

postorder traversal. We replace each leaf that rep- 252

resents a single EDU with a sequence comprised 253

of a left bracket, text content, a right bracket, and 254

its nuclearity and rhetorical relation labels. Blank 255

characters are added to each interval between dif- 256

ferent elements. 257

As for intermediate nodes, we perform the same 258

process except that the concatenation of new rep- 259

resentations of two child nodes serves as the text 260

content. Since the root does not contain any la- 261
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EDU1

(a) Constituent Tree
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EDU2 EDU3 EDU4

(Satellite, Elaboration)

(Nucleus, joint)

(Nucleus, joint)

(Nucleus, joint)

(Nucleus, joint)

[ [ Government lending was not intended to be a way ] Nucleus span [ [ to obfuscate spending figures, ] Nucleus joint [ [

hide fraudulent activity, ] Nucleus joint [ or provide large subsidies. ] Nucleus joint ] Nucleus joint ] Satellite elaboration ]

EDU1

(b) Binarization

(c) Linearization

Figure 2: The process of reformulation for the RST parsing tree from Figure 1 according to our method.

bels, it simply merges two child nodes with a pair262

of outermost parentheses. The postorder traversal263

ensures that intermediate nodes will be processed264

after their child nodes are updated, and the root is265

the last one to be considered, resulting in the final266

linear sequence of the parsing tree.267

Benefiting from binarization, the format of refor-268

mulated sequences is unified, with each pair of in-269

ner brackets followed by two relation labels, which270

can be better understood by pretrained language271

models. Considering that Paolini et al. (2021)272

proved and encouraged the use of the entire input273

to promote the performance, our linear sequence is274

designed to contain a complete copy of the corre-275

sponding input text. Besides, we use square brack-276

ets in linearization to avoid confusion since the277

input text itself may contain parentheses. The tar-278

get linear sequence of the RST parsing tree in Fig-279

ure 2(b) is shown in Figure 2(c).280

3.3 Seq2seq Training281

Since the input and new output of the task are both282

sequences, RST parsing can thus be trained or fine-283

tuned on any generation model as a text-to-text284

generation task. Pretrained seq2seq models like285

T5 (Raffel et al., 2020) are able to transfer the re-286

lated latent knowledge to our new RST parsing287

task, since the reformulated sequences are quite288

close to natural language text. Despite the lack289

of annotated data in the parsing task, our method290

works well without extra complicated frameworks291

or features. In the meantime, the subtasks of EDU292

segmentation and prediction of structure and rela- 293

tions are all integrated into the single process of text 294

generation, which is superior to other approaches 295

in terms of efficiency. 296

3.4 Postprocessing 297

In postprocessing, we should first modify and align 298

the output sequence from generation models with 299

the format we design during the linearization. Then 300

an algorithm is executed on the cleaned sequence 301

to restore the node information of the RST parsing 302

trees (the constituent trees). 303

Clear the format errors Format errors are in- 304

evitable since our output sequences directly come 305

from generation models. And the main errors in- 306

clude redundant or lost content, spelling mistakes, 307

and mismatched brackets or relation labels. Con- 308

sidering that the part of the text spans in the output 309

sequence should match the input sentence, we em- 310

ploy an algorithm of Levenshtein Distance based 311

on dynamic programming to modify the output se- 312

quence. If the content inside a pair of brackets 313

should be totally deleted, the brackets and follow- 314

ing labels will be abandoned together. 315

Then we calculate the number of brackets, labels 316

and EDUs in the sequence to be processed. EDUs 317

are always inside the innermost brackets. For a 318

binary tree, its reformulated sequence must contain 319

(2n − 1) pairs of brackets and (2n − 2) pairs of 320

relation labels, if the number of EDUs equals n. 321

When there are more or less close brackets and 322

relation labels, we remove or add the corresponding 323
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Algorithm 1 Restore the constituent tree
Input: Target sequence S, input sentence I
1: Initialization: T = [], nodes = [], i = 0
2: Seq_unit = S.split(’]’)
3: Uk = Seq_unit[k].split(’[’), 0 ≤ k < len(Seq_unit)
4: repeat
5: if ’[’ in Seq_unit[i] then
6: cur_label = Ui+1[0]
7: cur_text = Ui[-1]
8: push(nodes, (cur_text, cur_label))
9: else if len(nodes) > 1 then

10: (text1, label1) = pop(nodes)
11: (text2, label2) = pop(nodes)
12: push(T, (text1, label1, text2, label2))
13: cur_label = Ui+1[0]
14: cur_text = text1 + ’ ’ + text2
15: push(nodes, (cur_text, cur_label))
16: end if
17: i = i + 1
18: until I = top(nodes).text
Output: T as the set of connected constituents in the con-

stituent tree

number of them at the end of the sequence. The324

relation labels added are randomly selected in order325

not to interfere with the prediction of model. Our326

algorithm ensures that errors of open brackets will327

not influence the following restoration.328

Restore the constituent tree We implement a re-329

cursive algorithm based on the designed format in330

reformulation to reconstruct the constituent tree331

through continually merging bottom text spans.332

More details are shown in Algorithm 1. In our333

experiments, no more than 4% of the output se-334

quences have format errors, and all of them can335

be fixed and converted into the sets of connected336

constituents using our algorithm without ground337

truth parsing trees.338

4 Experiments339

In this section, we introduce the dataset and set-340

tings in our experiments and present the results of341

our end-to-end method for both sentence-level RST342

parsing and discourse segmentation. The improve-343

ment of the augmented data we create is demon-344

strated as well.345

4.1 Datasets346

We implement our experiments on the RST Dis-347

course TreeBank (Carlson et al., 2001), which is348

the standard dataset also used by other studies. It is349

the largest available discourse corpus and contains350

Dataset #Training #Test

Doc-level RST-DT 347 38
Sent-level RST-DT 7156 951
Discourse Segmentation 7156 991

Table 1: The statistics of datasets for different tasks.

385 Wall Street Journal English articles selected 351

from the Penn Treebank (Marcus et al., 1993), 347 352

for training and 38 for test. 353

To construct the dataset for sentence-level RST 354

parsing, we follow the same preprocessing step 355

as Joty et al. (2012); Liu et al. (2019); Lin et al. 356

(2019). We segment sentences from raw text using 357

the nltk tools and then select those that consist of 358

several EDUs and form the subtrees of document- 359

level parsing trees. In all, we obtain 7156 sentences 360

for training, together with their parsing trees, and 361

906 for test, which is a bit smaller than the scale 362

reported by Lin et al. (2019) (7321 for training and 363

951 for test). This may be due to the different ways 364

of identifying sentences. Fortunately, we are pro- 365

vided with the test set created by Lin et al. (2019) 366

to replace the one processed by ourselves, ensuring 367

a fair test and comparison. 368

As for discourse segmentation, we directly use 369

7156 sentences in the sentence-level RST parsing 370

task for training and the same test set as Lin et al. 371

(2019). Our training set is also smaller compared 372

with the one they used. For both tasks, we ran- 373

domly select 10% of the training data for hyperpa- 374

rameter tuning. An overview of these datasets is 375

shown in Table 1. 376

4.2 Model and Settings 377

In our experiments, we select T5-base (Raffel et al., 378

2020) as the pretrained model. The family of T5 379

models is the encoder-decoder model pretrained on 380

various tasks converted into the text-to-text format, 381

which caters to our method. We also attempt the 382

byte-level ByT5 (Xue et al., 2021) and other gen- 383

erative pretrained models, such as BART (Lewis 384

et al., 2020), but they are less effective. 385

In the training process, we set the batch size to 386

16, and the maximum input and output sequence 387

length to that of the longest sequence, which is not 388

longer than 512. The training epoch is set to 50 389

in end-to-end parsing and 40 in experiments with 390

augmented data. The Adamw optimizer is used 391

with a learning rate of 3e-4 together with the cosine 392

learning rate decay scheduler, and the warmup rate 393
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is set to 0.1.394

During inference, we employ beam search with395

a beam size of 8 without repetition penalty since396

our target sequence may contain repeated relation397

labels and brackets. To achieve stable decoding398

performance, we average the model parameters399

over the last five epochs. All the experiments are400

repeated at least five times with different random401

seeds, and the average results are reported.402

4.3 Evaluation Metric403

To evaluate the performance of our method, we fol-404

low RST-Parseval metrics (Marcu, 2000), contain-405

ing micro-averaged F1-scores of unlabeled (Span)406

and labeled (Nuclearity, Relation). For fair compar-407

ison, we use 18 rhetorical relations defined in Carl-408

son and Marcu (2001), same as other sentence-level409

RST parsing studies (Liu et al., 2019; Lin et al.,410

2019).411

In the task of discourse segmentation, we evalu-412

ate the performance only with respect to the intra-413

sentential segment boundaries and report the results414

of precision, recall, and micro-averaged F1-score415

to keep the same with Wang et al. (2018).416

4.4 Data Augmentation417

Before demonstrating the experiment results, we in-418

troduce our data augmentation strategies. The lack419

of annotated RST parsing trees has been hinder-420

ing research on discourse parsing since annotators421

must be experts in discourse analysis and the man-422

ual designed for the annotation is quite complicated.423

From this point, we intend to expand the training424

set with the augmented data, which is generated425

and filtered according to our designed rules.426

Considering that the RST-DT consists of only427

a small part of the documents in the WSJ corpus428

and the rest remain without annotation, we can use429

them to create silver data which keep the same430

domain with the RST-DT. First, the documents in431

the WSJ corpus that are not selected for annotation432

in RST-DT are extracted and split into sentences433

similarly. We choose three parsers trained by our434

end-to-end method with different random seeds and435

utilize them to generate candidate output sequences436

for each sentence we have selected. In this way, we437

can get the initial and promiscuous instances for438

parsing, each instance with an input sentence and439

three plausible output sequences.440

To obtain the high-quality data, we check these441

sequences according to the format we design in the442

reformulation. And the rule of annotation for RST443

Dataset #Sentence #Avg EDU #Avg word

Training set 7156 2.49 21.41
Initial silver data 41833 2.80 26.54
+ content check 39258 2.61 25.37
+ brackets match 37360 2.43 24.29
+ labeling rules 37324 2.42 24.26

Table 2: The statistics of our augmented dataset and
original training set.

parsing is also taken into consideration. We first 444

discard the sequences that have redundant or miss- 445

ing content compared with their input sentences. 446

Then, if the numbers of EDUs, brackets, and re- 447

lation labels are not matched, the corresponding 448

sequence will also be abandoned. For the rest of 449

the sequences, we employ Algorithm 1 on each 450

of them to restore the constituent information and 451

check whether the relation labels follow the rule 452

of annotation. When nucleus and satellite relations 453

appear together, they should be assigned the label 454

Span and a rhetorical relation label respectively. 455

And two nucleus relations should use the same re- 456

lation labels other than the label Span. 457

Through the strategies above, we get those well- 458

formed sequences that follow the labeling rules 459

and have no format errors. If an input sentence 460

still pairs with more than one candidate output se- 461

quence, we decide the target sequence via majority 462

voting. The details of our augmented dataset fil- 463

tered with different strategies are shown in Table 2. 464

It can be found that the average numbers of EDUs 465

and words in the augmented dataset gradually ap- 466

proach those of the training set during filtering, 467

which helps to reduce the distribution difference 468

between the two datasets. 469

4.5 Experimental Results 470

We evaluate our method on both tasks: (a) sentence- 471

level RST parsing; (b) discourse segmentation. 472

Benefiting from our end-to-end method, the parsing 473

tree can be directly built from the corresponding 474

input text without using gold EDU segmentation. 475

And the EDU segmentation is predicted simultane- 476

ously during parsing and can be extracted from the 477

generated parsing tree as the attached results. 478

RST parsing Since our end-to-end method uni- 479

fies the traditional two stages of RST parsing, we 480

compare our results with the models that also do 481

not make use of gold EDU segmentation (Soricut 482

and Marcu, 2003; Joty et al., 2012; Lin et al., 2019). 483

6



Approach S N R

Soricut and Marcu (2003) 76.70 70.20 58.00
Joty et al. (2012) 82.40 76.60 67.50
Lin et al. (2019) (Pipeline) 91.14 85.80 76.94
Lin et al. (2019) (Joint) 91.75 86.38 77.52

Our Method
End-to-end parser 92.88 88.22 80.27
+ data augmentation 93.27 88.70 80.89

Table 3: Results for sentence-level RST parsing without
gold EDU segmentation. The columns of S, N and R
indicate the micro-averaged F1-scores of Span, Nucle-
arity and Relation respectively.

76

80

84

88

92

50% 60% 70% 80% 90% 100%
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Figure 3: The performance variation curve with differ-
ent portions of the training set.

These methods utilized extra trained automatic seg-484

menters to generate imprecise segmentation and485

send it to their parsing models to build the parsing486

tree. Besides the pattern of the pipeline, Lin et al.487

(2019) proposed jointly training the segmenting488

and parsing models to further improve the perfor-489

mance on both tasks.490

We demonstrate the results in Table 3. The per-491

formance of our end-to-end method is substantially492

better than the existing state-of-the-art model, with493

the improvement of approximately 1.1, 1.8 and 2.7494

absolute points in Span, Nuclearity and Relation495

respectively. The obvious advancement in Nucle-496

arity and Relation illustrates that the integration of497

relation labels and input text can be learned more498

effectively through our reformulation, compared499

with the traditional form of classification tasks with500

separate frameworks.501

It is also worth noting that the joint model of502

Lin et al. (2019) utilized the extra instances of the503

discourse segmentation task, which do not exist504

in the training set of the RST parsing. Given that505

Approach P R F1

Human Agreement 98.50 98.20 98.30

Soricut and Marcu (2003) 83.80 86.80 85.20
Fisher and Roark (2007) 91.30 89.70 90.50
Joty et al. (2012) 88.00 92.30 90.10
Li et al. (2018) 91.08 91.03 91.05
Wang et al. (2018) 92.04 94.41 93.21
Lin et al. (2019) (BERT) 92.05 95.03 93.51
Lin et al. (2019) (ELMo) 94.12 96.63 95.35
Lin et al. (2019) (Joint) 93.34 97.88 95.55

Our Method
Extraction from parsing 95.50 96.85 96.17
+ data augmentation 95.99 96.64 96.32

Table 4: Results for discourse segmentation. The
columns of P, R and F1 indicate the Precision, Recall
and micro-averaged F1-score respectively.

our training set is already smaller than theirs, our 506

method achieves better performance with less data. 507

To further explore the influence of the scale of 508

training data, we experiment with 50%, 60%, 70%, 509

80% and 90% of the training set. The results in 510

Figure 3 show that our method can outperform the 511

state-of-the-art model by only using 60% of the 512

training set. And the performance curve indicates 513

that more instances may still be able to promote 514

the performance of the parser. 515

Then we combine the original training set with 516

our augmented data and repeat the training process 517

similarly. The results of our end-to-end parser with 518

the help of the augmented data can also be found 519

in Table 3, which get further enhancement of about 520

0.5 absolute point on all of Span, Nuclearity and 521

Relation. 522

Discourse segmentation In fact, a parsing tree 523

itself contains the EDU segmentation of the corre- 524

sponding text because it is EDUs that serve as the 525

leaves of the tree structure. Since we built the pars- 526

ing tree from the input sentence without gold EDU 527

segmentation, we equivalently perform the segmen- 528

tation task at the same time through extracting the 529

EDU segmentation from the generated parsing tree. 530

We evaluate the performance and show the results 531

in Table 4. 532

The performance of segmentation extracted 533

from parsing trees surpasses the best joint model 534

from Lin et al. (2019) in Precision and F1-score. 535

And with the help of augmented data, we get about 536

2.7 and 0.8 absolute points of increase in Preci- 537
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sion and F1-score, but a 0.5 point drop in Recall538

compared with the existing state-of-the-art model.539

With the significant improvement in precision, the540

segmenter may generate fewer wrong EDUs that541

do not exist in the gold segmentation set, reducing542

the error accumulation. Moreover, considering that543

we use a smaller training set compared with other544

studies and the existing state-of-the-art model was545

trained specifically on this task, our method shows546

superiority in terms of efficiency.547

4.6 Error Analysis548

In Figure 4, we show the respective performances549

of instances with different numbers of EDUs. The550

micro F1-scores of Span and Nuclearity drop as551

the number of EDUs increases, while Relation552

achieves a low score when the instance only in-553

cludes two EDUs. We suppose that the increas-554

ing difficulty of parsing longer sentences reduces555

the performance of our method since it remains556

a challenging problem for the language model to557

understand long sequences. In addition, short sen-558

tences may not contain sufficient information for559

the model to infer the Relation label, considering560

that there are 18 rhetorical relations to be identified,561

while the nuclearity relations only contain two.562

The portion of instances with format errors is563

also reported in Figure 4. The rapid growth of for-564

mat errors as the number of EDUs increases shows565

the difficulty for the model in generating long se-566

quences precisely in keeping with the constraints of567

our formats. It can also be proven by the decreasing568

average EDUs of silver data when more filtering569

rules are added. It is challenging but significant for570

future research to explore how to improve our end-571
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to-end method when dealing with long sequences 572

since it is the main performance bottleneck. 573

We also show the confusion matrix for eight se- 574

mantically similar rhetorical relation labels in Fig- 575

ure 5, some of which are also mentioned in other 576

studies. Our method fails to effectively distinguish 577

between Temporal and Joint, Comparison and Con- 578

trast, but succeeds in Explanation and Elaboration. 579

Some examples of our successfully predicted in- 580

stances and format errors in output sequences can 581

be found in Appendix A and B respectively. 582

5 Conclusion 583

In this paper, we propose a simple but effective 584

end-to-end method for sentence-level RST parsing 585

to generate the parsing tree directly from the in- 586

put text. We convert RST parsing into text-to-text 587

generation by reformulating each parsing tree into 588

an equivalent linear sequence. Benefiting from 589

the latent knowledge in pretrained models, our 590

method does not require additional features or neu- 591

ral frameworks and can simultaneously perform 592

the discourse segmentation during parsing. Experi- 593

mental results show that our method substantially 594

outperforms existing approaches on both tasks. Fur- 595

thermore, we create high-quality augmented data 596

to alleviate the lack of annotated RST parsing trees 597

and further improve the performance of our method. 598

In future research, we will explore how to better 599

deal with long sequences and effectively apply our 600

method to document-level RST parsing. 601
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2021, Virtual Event / Punta Cana, Dominican Repub-826
lic, 7-11 November, 2021, pages 2432–2446. Associ-827
ation for Computational Linguistics.828

A Example Demonstration829

Figure 6 shows an instance mistakenly la-830

beled Summary as Elaboration by the other831

parser Nguyen et al. (2021), but is successfully832

predicted by our method. We also demonstrate the833

corresponding output sequence from our method834

together with the restored parsing tree and the ex-835

tracted EDU segmentation.836

B Format Errors837

Figure 7 shows some example format errors from838

our generated output sequences.839
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(a) Input Sentence

The natural resources development concern said proceeds will be used to repay long-term debt, which stood at 598 million Canadian dollars 

(US$510.6 million) at the end of 1988.

(b) Output Sequence

[ [ The natural resources development concern said ] Satellite attribution [ [ proceeds will be used ] Nucleus span [ [ to repay long-term debt, ] 

Nucleus span [ [ [ which stood at 598 million Canadian dollars ] Nucleus span [ (US$510.6 million) ] Satellite summary ] Nucleus same-unit [ at 

the end of 1988. ] Nucleus same-unit ] Satellite elaboration ] Satellite enablement ] Nucleus span ]

(c) Restored Constituents

(which stood at 598 million Canadian dollars Nucleus span (US$510.6 million) Satellite summary)

(which stood at 598 million Canadian dollars (US$510.6 million) Nucleus same-unit at the end of 1988. Nucleus same-unit)

(to repay long-term debt, Nucleus span which stood at 598 million Canadian dollars (US$510.6 million) at the end of 1988. Satellite elaboration)

(proceeds will be used Nucleus span to repay long-term debt, which stood at 598 million Canadian dollars (US$510.6 million) at the end of 1988. 

Satellite enablement)

(The natural resources development concern said Satellite attribution proceeds will be used to repay long-term debt, which stood at 598 million 

Canadian dollars (US$510.6 million) at the end of 1988. Nucleus span)

(d) Parsing Tree

Root

(Satellite attribution)

EDU2 EDU3

(Nucleus span)

(Satellite elaboration)

(Nucleus span)

(Nucleus span)

(Satellite enablement)

EDU1 (Nucleus same-unit)(Nucleus same-unit)

(Satellite summary)(Nucleus span)

EDU4 EDU5 EDU6

(f) Mistaken Label

(e) EDU Segmentation

EDU1: The natural resources development concern said 

EDU2: proceeds will be used 

EDU3: to repay long-term debt, 

EDU4: which stood at 598 million Canadian dollars 

EDU5: (US$510.6 million) 

EDU6: at the end of 1988. 

Figure 6: An example of the output sequence and postprocessing using our method. The red part shows we correctly
predict Summary while the other parser mistakenly labels Elaboration. The blue part represents the labels for the
text spans before them.

[ [ [ "Oh, I bet ] Satellite attribution [ it'll be up 50 points on Monday," ] Nucleus span ] Nucleus span [ said Lucy Crump, a 78-year-old retired 

housewife in Lexington, Ky. ] Satellite attribution ]

(a) Matching Errors

[ [ An interest rate is guaranteed for between one and seven years, ] Nucleus span [ [ after which holders get 30 days ] Nucleus span [ [ to choose 

another guarantee period or to switch to another insurer's contract ] Nucleus span [ [ without the surrender charges ] Nucleus span [ that are 

common to annuities. ] Satellite elaboration ] Satellite elaboration ] Satellite temporal ] Satellite contrast ]

(b) Content Errors

[ [ Everytime (Every time) he sees me, ] Satellite background [ he gets very nervous." ] Nucleus span ]

Figure 7: Several examples of format errors in output sequences. The red part is missed and the blue part is the true
content in the corresponding input sentence.
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