
MO-DDN: A Coarse-to-Fine Attribute-based
Exploration Agent for Multi-object Demand-driven

Navigation

Hongcheng Wang1,3∗ Peiqi Liu2∗

Wenzhe Cai4 Mingdong Wu 1,3 Zhengyu Qian 2 Hao Dong 1,3†
1CFCS, School of CS, PKU 2School of EECS, PKU 3PKU-Agibot Lab

4School of Automation, Southeast University

Abstract

The process of satisfying daily demands is a fundamental aspect of humans’ daily
lives. With the advancement of embodied AI, robots are increasingly capable
of satisfying human demands. Demand-driven navigation (DDN) is a task in
which an agent must locate an object to satisfy a specified demand instruction,
such as “I am thirsty.” The previous study typically assumes that each demand
instruction requires only one object to be fulfilled and does not consider individual
preferences. However, the realistic human demand may involve multiple objects. In
this paper, we introduce the Multi-object Demand-driven Navigation (MO-DDN)
benchmark, which addresses these nuanced aspects, including multi-object search
and personal preferences, thus making the MO-DDN task more reflective of real-
life scenarios compared to DDN. Building upon previous work, we employ the
concept of “attribute” to tackle this new task. However, instead of solely relying
on attribute features in an end-to-end manner like DDN, we propose a modular
method that involves constructing a coarse-to-fine attribute-based exploration agent
(C2FAgent). Our experimental results illustrate that this coarse-to-fine exploration
strategy capitalizes on the advantages of attributes at various decision-making
levels, resulting in superior performance compared to baseline methods. Code and
video can be found at https://sites.google.com/view/moddn.

1 Introduction

In the field of psychology, the creation of demands directs the motivation for human behavior in the
real world, and behavior ultimately leads to the fulfillment of the demand [1–4]. For example, an
individual might crave sweet iced tea, prompting them to search for object such as tea, sugar, ice,
and water, and then combine them to make sweet iced tea. Recently, with the rapid development
of embodied AI and large language models, researchers are interested in using robots to meet
various human demands [5–13]. Demand-driven Navigation (DDN) [14] is a variant of ObjectGoal
Navigation (ON) [15–21], which requires an agent to find an object that satisfies a given demand
instruction. For example, when a user gives the agent an instruction such as “I am thirsty,” the robot
has to search the entire environment for objects such as water, tea, coffee, etc., depending on what is
available within the environment.

In previous work [14], demand instructions often exhibit a low level of complexity, lack consideration
for user preferences, and typically require only one object to fulfill each instruction. However,

∗Equal contribution.
†Corresponding author.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://sites.google.com/view/moddn

Figure 1: An Example of Multi-object Demand-driven Navigation. A user plans to host a party
at his new house and outlines some basic demands (highlighted in orange), along with specific
preferences for different individuals (highlighted in red). The agent parses these demands and locates
multiple objects in various locations in the scene to fulfill them. Despite not meeting the preferred
“ice cream” demand, the agent successfully addresses basic demands, such as organizing lunch.

real-world situations frequently involve more intricate instructions, necessitating the coordination
of multiple objects to satisfy a demand. For example, in the BEHAVIOR-1K [22], daily tasks
often involve the interaction of multiple objects. Furthermore, individual users may have distinct
preferences. For instance, when presented with the basic demand “I am thirsty,” one user may prefer
sparkling water while another may favor juice. However, satisfying preferred demands is obviously
more difficult than satisfying basic demands, so the agent needs to be flexible in prioritizing goals
depending on both the situations of users and environments.

We introduce a new benchmark, Multi-object Demand-driven Navigation (MO-DDN), in which
demand instructions are comprised of basic and preferred demand components. An agent must find
a combination of objects (we call it a “solution” later) that satisfies the demand. The agent should
satisfy the user’s preferred demands as much as the situation allows. We use GPT-4 3 to automatically
generate and modify tasks and perform manual checks. Our settings are similar to Multi-object
Navigation (MON) [23–25], but we use a demand instruction to combine potentially multiple objects
in a form that is consistent with common sense and personal preferences of humans rather than a
list of object categories in MON. The number and category of objects in a solution are not known in
advance but require an agent to reason on its own. Moreover, solutions that satisfy the same demand
may have a different number of objects. We argue that MO-DDN has similar advantages over MON
as DDN has over ON.

We consider MO-DDN to be a crucial preliminary step in task planning. Today, with sufficient
meta-information provided (e.g., position, state, and category of all objects in the scene), large
language models can provide satisfactory task planning results [26–29, 5]. However, maintaining
and providing accurate meta-information can be challenging and inconvenient in real life. The
user’s interactions with the scene change the meta-information frequently. Moreover, since the user
is not necessarily omniscient about the scene, especially in unfamiliar scenes, it is possible that if
the user parses the demand himself and directly provides the desired objects, these desired objects
may not exist in the scene. Even if the user can provide comprehensive meta-information, delivering
the meta-information to the agent is time-consuming and inconvenient for the user. Therefore, the
purpose of MO-DDN is to provide timely and accurate meta-information depending on a convenient
demand instruction in natural language for later task planning or, more later, object manipulation.

3we use gpt-4-0125-preview API in this paper here and later, unless otherwise noted.

2

In the recently ObjectGoal Navigation work, benefiting from the development of Vision Language
Models (VLMs) [30–36] and Large Language Models (LLMs) [37–42], some ObjectGoal Navigation
methods return to a modular manner [43, 44, 17, 45–50] rather than an end-to-end manner [19, 51–
58]. While maintaining the core concept of the “attribute” from the end-to-end agent of the previous
work [14], we modify the training of the attribute model to make it applicable to multi-object search,
and propose a coarse-to-fine attribute-based exploration modular agent, C2FAgent. In the coarse
exploration phase, similar to the modular methods in ObjectGoal Navigation, we use a depth camera
to reconstruct the environment point clouds and an object detection module, GLEE [31], to label
the objects in the point clouds. Additionally, the point clouds are compressed and segmented into
several 2D rectangular blocks, and thus each detected object belongs to a block. For each block, we
calculate the similarity of the objects’ attribute features and the instruction’s attribute features as a
metric for choosing a waypoint. We calculate basic demand similarity scores and preferred demand
similarity scores separately and select blocks according to a weighted sum of the two scores. In the
fine exploration phase (i.e., when the agent arrives at the waypoint), we train an end-to-end attribute
exploration module to identify and report the target object to compose the solution.

The experimental results show that our proposed method outperforms the baselines, and the ablation
study shows that the attribute model improves exploration efficiency in different phases. We argue that
this coarse-to-fine design allows for the incorporation of prior knowledge from external foundation
models in the coarse exploration phase and task-relevant world-grounding exploration in the fine
exploration phase. Moreover, the ablation study on the weighted sum of the basic and preferred
similarity scores demonstrates that increasing the preferred weights allows the agent to prioritize
searching for the preferred solution and increasing the basic weights allows the agent to prioritize
searching for the basic solutions. Therefore, users can adjust the weights to influence the agent’s
behavior freely, which is a flexible way to handle personal preferences.

Our main contributions are listed as follows:

• We propose a new benchmark, MO-DDN, which considers multi-object combinations as
solutions and more complex and diverse demand instructions. MO-DDN can be regarded as
a crucial preliminary step in task planning.

• We extend the training process of the attribute model, enabling the attribute features to work
well in a multi-object setting. Based on the new version of attribute features, We design a
coarse-to-fine attribute-based exploration agent, C2FAgent, for this benchmark, allowing
the attribute features to play an important role in different exploration phases.

• The experimental results show that the attribute features do improve the efficiency of
exploration, and the experimental results substantially surpass the baselines. Ablation study
shows that attribute-based exploration is more efficient than frontier-based exploration [59]
and LLM-based waypoint selection.

2 Related Work

2.1 Visual Navigation

Goal Description In general terms, visual navigation involves the continuous generation of ac-
tions based on RGB-D and GPS+Compass inputs until a specified objective is reached [60]. Visual
navigation tasks vary in their goal description, such as step-by-step instructions in Vision-Language
Navigation (VLN) [61–68], audio in Audio-visual Navigation [69–74], object categories in Object-
Goal Navigation (ON) [15–21], object category lists in MultiObject Navigation (MON) [43, 23–25],
and demand instructions in Demand-driven Navigation (DDN) [14]. Our proposed benchmark,
MO-DDN, can be viewed as a multi-object version of DDN. Although, like DDN, MO-DDN’s inputs
are demand instructions, MO-DDN’s solutions are multi-object rather than single-object, as in DDN.

Previous Method Overview In ON, with the rise of object detection models [31, 30, 75, 76], object
segmentation models [77–80], and large language models, modular methods [43, 44, 17, 45–50]
are gradually being developed. They greatly improve navigation efficiency and success rate by
building semantic maps and navigable maps and then planning paths on the maps. Meanwhile, end-
to-end methods [19, 51–58] focus more on learning associations in object-object and object-scene to
help reason about the potential location of target objects. In MON, previous work has focused on

3

studying how to quickly construct [25], memorize [24, 43], and use semantic maps [81] or implicit
representations [23] of scenes. In DDN, the concept of attributes is introduced as a way of expressing
what an object shows when it fulfills a demand, e.g., quenching thirst is an attribute of water in the
context of demand “I am thirsty”. In this paper, we extend the concept of attributes and propose a
new method to train the attribute model. We combine the advantages of modular and end-to-end
methods and propose a coarse-to-fine attribute-based exploration modular agent.

2.2 Foundation Large Model in Embodied Task

Foundation Large Models refer to self-supervised pre-trained models trained on large Internet-scale
datasets, which have demonstrated promising capabilities across various embodied tasks. Large
language models (LLMs) such as GPT-4 [82], LLaMA [83, 40], and Gemma [84] exhibit performance
comparable to humans in task planning [26–29, 85], common sense reasoning [86] and question
answering [87–90, 34, 91]. Furthermore, researchers use LLMs to synthesize task datasets [14].
The CLIP model [92], which employs contrastive learning with image and text pairs, showcases
strong semantic extraction abilities in navigation [14, 93, 21, 68, 94]. Visual Language Models
offer understanding of images such as image descriptions [95–98], object detection [31, 30, 75,
76], and object segmentation [77–80] for downstream embodied tasks. This paper uses LLMs,
specifically GPT-4, to generate task instructions, solutions, and attribute examples for attribute
learning. Furthermore, we employ GLEE [31], a state-of-the-art object detection model, to detect
object categories within the field of view for attribute feature extraction.

3 Multi-object Demand-driven Navigation

Following the basic settings in DDN, let D denote a set of demand instructions, Se denotes a set
of navigable scenes, and O denotes a set of object categories. Let So denote a set of solutions for
demand instructions. An element in So (i.e., a solution) is a subset of O. In each episode, similar
to the DDN task, an agent is randomly initialized to a location within a mapless environment and
receives a demand instruction DI ∈ D in natural language. In this benchmark, a demand instruction
consists of two parts: one is basic demand instruction DIb, and the other is preferred demand
instruction DIp, e.g., “ I need a comfortable place to play computer games, preferably with good
lighting.” Each DI has two sets of solutions, i.e., basic solution Sob and preferred solution Sop
for DIb and DIp, respectively. For example, {desk, soft chair} is an element in Sob for the above
example demand instruction, and {desk, soft chair, table lamp} is an element in Sop.

Then, at each time step, the agent should choose an action from MoveAhead, RotateRight,
RotateLeft, LookUp, LookDown, Find, and Done. The action Find is similar in MON, which
automatically reports the objects in the field of view. To reduce the difficulty of the MO-DDN task
and focus it on navigation, if the agent chooses Find, all objects in the field of view with distance
below the threshold dfind will be recorded in a found list FL, instead of requiring the bounding box
of the target object as in DDN. The found list FL is used to calculate the basic and preferred success
rate later. When the agent chooses Done, or the number of choices Find reaches a threshold nfind,
or the number of steps reaches a threshold nstep, the episode ends and the success rate is calculated.
For a specific demand instruction DI , We calculate the basic success rate as follows:

SRb =
1

N

N∑
i=1

max
sb∈Sob

∑
o∈FL 1o∈sb

Len(sb)
(1)

where N donates the number of testing episodes, sb donates a basic solution in the solution set of
DI , FL donates the found list that the agent reports, o donates an object category. The preferred
success rate SRp is calculated similarly. To summarize, the success rate of an episode is the value
with the highest percentage of satisfaction among all solutions. We also calculate the SPL [60]
corresponding to SRb and SRp. We generate 300 tasks, encompassing 358 object categories from
the HSSD dataset [99]. These tasks are referred to as HSSD’s world-grounding tasks, indicating that
objects in these tasks are in the HSSD dataset. We generate some language-grounding tasks to train
the attribute model afterward. Language-grounding means that the objects in the solutions can be
everything that makes sense rather than restricting objects in HSSD. Please see the supplementary
material for details about task generation A.1.1, task metrics A.1.2, and task dataset statistics A.1.3.

4

4 Method

4.1 Attribute Model Training

In this section, we describe how to train the MO-DDN’s attribute model that extends from the
attribute model in DDN. In DDN, the training of attribute features is constrained by the assumption
that each instruction requires only one attribute that can be satisfied by a single object. Such attribute
features may not work well under multi-object settings. This paper proposes directly mapping
demand instructions and object categories into the same attribute feature space. Such a mapping
can learn multiple attribute features simultaneously to address multi-object search. Concretely, the
core function of the attribute model is to map a demand instruction in D or an object category in O
to several attribute features in Rd (R is the set of real numbers, d is the dimension of the attribute
features) that are in the shared attribute feature space. In order to enable the alignment of the attribute
features of instructions and objects, we design a discrete codebook and five losses. The alignment
means that for a demand instruction and an object in its solution, one of the attribute features of the
instruction and one of the attribute features of the object have a high cosine similarity.

Instruction/
Object

GPT-4

CLIP-Text-
Encoder

Ins/Obj
Features

CLIP-Text-
Encoder

Shared
Codebook

Recon Ins/Obj
Features

Ins/Obj
MLP

Encoder

Language-grounding
Attribute Features

Center of
Clustering

K-Means

Initialization

Ins/Obj
MLP

Decoder

Attributes

Ground-Truth Ins/Obj
Attribute Features

Ins/Obj
Attribute Features

Quantized Ins/Obj
Attribute Features

Figure 2: Attribute Model. This figure shows the architecture of the attribute model. Instructions and
objects share the same model architecture. Instructions and items share the same model architecture.
For parameters, they share only the parameters of the shared codebook, while the parameters of the
MLP Encoder and Decoder are independent. Only the red with flames modules in the figure will be
trained while the blue with snowflakes CLIP model parameters will be frozen.

4.1.1 Codebook and Its Initialization

The reason for using a discrete codebook is similar to VQ-VAE, i.e., different attributes are inherently
discrete from each other. Then using a discrete codebook as an attribute feature space is a better way to
represent the relationships between attributes than a continuous attribute feature space. The codebook
is essentially some feature vectors, and in our experiments, we choose 128 as the number of vectors
and 768 as the vector dimension (same with CLIP ViT-L/14’s text dimension); thus, the codebook is a
128×768 matrix. we use CLIP-Text-Encoder (ViT-L/14) to encode the language-grounding attributes
generated in the supplementary material Sec A.2.1 into attribute features. These attribute features
are then clustered using K-means [100] to get 128 clustering centers. The feature vectors of these
128 clustering centers are used to initialize the codebook, making the codebook as a subspace of the
CLIP feature space.

4.1.2 Definition of Losses

In our method, there are two attribute models that share the same architecture, the instruction attribute
model AMins and the object attribute model AMobj , shown in Fig. 2. In both models, only MLP
Encoder and CLIP Encoder will be used in C2FAgent, Codebook and MLP Decoder are only used to
train MLP Encoder. We obtain the k1 instruction attributes and k2 object attributes (the green square
in Fig. 2) by prompting GPT-4 for “what attributes can satisfy this instruction?” and “what attributes
does this object have?”, respectively. For the five losses used to train the two attribute models, see the
pseudo-code 1.

5

Algorithm 1: Losses in Attribute Training
Input: An instruction and an object in the intruction’s solution
Output: Five losses
begin

// Variables in parentheses are full names.
1. Ins Attributes = AskGPT-4(Instruction);
2. Obj Attributes = AskGPT-4(Objects) ;
3. GT-IAF (GT Ins Attribute Features)= CLIP(Ins Attributes) // shape=(k1, d)
4. GT-OAF (GT Obj Attribute Features)= CLIP(Obj Attributes) // shape=(k2, d)
5. IF (Ins Feature) = CLIP(Instruction) // shape=(1, d)
6. OF (Obj Feature) = CLIP(Objects) // shape=(1, d)
7. IAF (Ins Attribute Features) = Ins MLP_Encoder(IF) // shape=(k1, d)
8. OAF (Obj Attribute Features)= Obj MLP_Encoder(OF) // shape=(k2, d)
9. Attribute Loss = MSE(GT-IAF, IAF) + MSE(GT-OAF, OAF) ;
10. Q-IAF (Quantized IAF) = Codebook(IAF)// shape=(k1, d)
11. Q-OAF (Quantized OAF) = Codebook(OAF)// shape=(k2, d)
12. Commitment Loss = MSE(IAF, stop-gradient(Q-IAF)) + MSE(OAF, stop-gradient(Q-OAF)) ;
13. VQ Loss = MSE(Q-IAF, stop-gradient(IAF)) + MSE(Q-OAF, stop-gradient(OAF));
14. Recon IF = Ins MLP_Decoder(IAF) // shape=(1, d)
15. Recon OF = Ins MLP_Decoder(OAF) // shape=(1, d)
16. Reconstruction Loss = MSE(Recon IF, IF) + MSE(Recon OF, OF);
17. Matching Loss = Minimumi=1..k1,j=1..k2 (MSE(ith IAF, jth OAF))

end

The full loss function is shown below:

Loss = λ1 ×Attribte Loss+ λ2 × V Q Loss+

λ3 × Commit Loss+ λ4 ×Recon Loss+ λ5 ×Matching Loss (2)

where λ1 is 2.0, λ2 is 1.0, λ3 is 0.25, λ4 is 1.0, and λ5 is 1.0. Attribute Loss provides a direct loss for
directing the MLP Encoder to learn the projections of IF and OF to IAF and OAF 4. The next three
items VQ Loss, Commitment Loss and Reconstruction Loss can be referred to VQ-VAE Loss [101].
Our motivation in using these three items is to provide indirect constraints that enable the IF and OF
to be projected into the shared codebook’s feature space. To provide a direct alignment of the attribute
features of a given instruction and objects that satisfy the given instruction, we design Matching Loss.
An instruction and an object in the instruction’s solution theoretically have at least one attribute that
matches, i.e., an attribute of the object that necessarily satisfies part of this instruction; otherwise, the
object should not be part of the instruction’s solution. We consider the most similar pair of attribute
features among the k1 IAF and the k2 OAF to be a match, and therefore need to reduce the error of
this pair of attribute features.

In the end, only the instruction and object MLP Encoders and CLIP-Text-Encoder are used in
navigation, and other part like codebook and MLP Decoder are not used. Since this codebook is
initialized by CLIP features and the ground-truth attribute features are also encoded by CLIP, the
attribute feature space we get can actually be seen as a subspace of the CLIP semantic space. We
hope that this design will improve the generalization of attribute features, since the CLIP semantic
space shows good generalization and performance on many tasks [94, 93, 102].

4.2 Coarse-to-fine Exploration Agent

In this section, we describe how attribute features work in navigation. The agent switches between
coarse and fine exploration phases back and forth until the number of Find executions reaches the
upper limit nfind or the number of steps reaches the upper limit nstep. Fig. 3 illustrates a general
overview of the entire navigation policy and Fig. 4 and Fig. 5 show the details of the coarse and fine
exploration phase, respectively. In both the coarse and fine exploration phase, we load the parameters
of Ins MLP Encoder and Obj MLP Encoder from the attribute training for waypoint (i.e., block)
selection and end-to-end fine exploration. We argue that this coarse-to-fine design allows for the
incorporation of prior knowledge from external foundation large models in the coarse exploration
phase and task-relevant world-grounding exploration in the fine exploration phase.

4The abbreviations in this section are inherited from the pseudo-code 1.

6

Environment

Task Input
RGB-D
Image

Object
Detection

Build Point
Cloud (PC)

Coarse Exploration Phase

Segment PC
into Block

Calculate
Block Score

Select High
Score Block

Plan Path to
Selected Block

Fine Exploration Phase

Feature
Encoder

When Arrived at
Selected Block,
Switch Coarse

to Fine

Transformer
Encoder LSTM

Actor

Action

When Action is Find, Switch Fine to Coarse

Action

Basic
&Preferred
Demand

Figure 3: Navigation Policy. The agent continuously switches between a coarse exploration phase
and a fine exploration phase until the Find count limit nfind is reached or the total number of steps
nstep is reached. See Sec. 4.2.1 and Sec. 4.2.2 for details about the two phases. In each timestep, the
GLEE model is used to identify and label objects in the RGB and project them to the point cloud.

Figure 4: Coarse Exploration. This figure presents the process of building and labeling the point
clouds, segmenting the blocks, and calculating the scores for each block.

4.2.1 Coarse Exploration Phase

In this phase (see Fig. 4), the agent receives the RGB-D input, pose, and the demand instruction.
We then use the camera parameters and depth map to compute partial point clouds of the current
observation and merge them with the previously observed point clouds. We use an object detection
model, GLEE, to detect objects in the RGB image and project them into the depth map, labeling
the point clouds. We segment the point clouds into many rectangular blocks according to x and
y coordinates, and each block is a b × b square, where b is 2 in experiments. Thus, each detected
object belongs to a block (according to the center of the object’s point clouds). We use the instruction
attribute features to query objects in each attribute block, and each block will then get a score. We use
two different ways to generate instruction attribute features; see the LLM branch and MLP branch at
the bottom in Fig. 4. For the LLM branch in Fig. 4, we use GPT-4 to generate language-level basic
and preferred attributes separately and use CLIP-Text-Encoder to obtain basic and preferred attribute
features. These two attribute features can be used to calculate two scores, basic and preferred scores.
Adjusting the weights of these two scores can control whether to prioritize the search for basic or
preferred solutions. The formula for calculating the score (i.e., the process of query) is as follows:

s =
∑

o∈block

(rp × max
i=1..k1;j=1..k2

f i
pref_ins ∗ f j

o + rb × max
i=1..k1;j=1..k2

f i
basic_ins ∗ f j

o) (3)

Where f j
o denote jth attribute features of the object o, f i

basic_ins denote ith basic attribute features of
the instruction (so do f i

pref_ins), ∗ denotes cosine similarity, and rb and rp are adjustable weights for
whether to find basic or preferred solutions. If deployed in a real environment, these two weights

7

can be freely adjusted by the user to apply to different situations. We conduct an ablation study
on these two weights and discuss in detail how they affect the basic and preferred solutions in the
experimental section. For the MLP branch, we use the Ins MLP Encoder from attribute training to
map the instruction features into k1 attribute features, and we use a similar query process to compute
scores. MLP branch is a lightweight alternative that neither requires remote LLM nor consumes
computational resources to run local LLMs. If deployed in a real environment, the agent is free to
choose one of the branches according to the current LLM availability. We report the results of the
two branches separately in the experimental section. Finally, we randomly choose a point in the
highest-scoring and never-visited block as the waypoint. Then, the agent navigates to the point by a
path-planning algorithm. Please see supplementary material for details about the coarse exploration
module, the path-planning algorithm and blocks’ score visualizations A.3.1.

4.2.2 Fine Exploration Phase

Figure 5: Fine Exploration. We employ imitation learning to train an end-to-end module in this
phase. This module loads the Ins MLP Encoder and Obj MLP Encoder’s parameters as initialization
from attribute training, along with a Transformer Encoder to integrate features. The output feature
corresponding to the CLS token is combined with GPS+Compass features and a previous action
embedding and passed through an LSTM to generate actions by an actor.

In this phase, we train an end-to-end module using imitation learning similar to DDN. The alignment
capabilities of CLIP in the visual and textual domains allow Obj MLP Encoder to still extract object
attribute features through CLIP-Visual-Encoder’s object features. The self-attention mechanism in the
Transformer Encoder learns the association between the attribute features of the objects in the current
field of view and the attribute features of the instructions, which can implicitly determine whether
these objects need to be reported. Following BERT [103] and ViT [104], we add a CLS token as the
output of the feature fusion. For more training and hyperparameter details, see the supplementary
material A.3.2.

5 Experiment

5.1 Experimental Settings

We use habitat-sim and habitat-lab as our simulator and HSSD as our scene dataset. We randomly
select 30 tasks as testing tasks and the remaining 270 tasks as training tasks(i.e., unseen task and seen
task in Tab. 5.3, respectively). These training tasks are used to collect trajectories to train the fine
exploration module, VTN and ZSON. HSSD splits the scenes into val scenes and train scenes (i.e.,
unseen scenes and seen scenes in Tab. 5.3, respectively). In all experimental settings, the judgment
distance of the found list dfind is one meter, and a maximum number of Find nfind is five times,
and the maximum step number nstep is 300. A single RTX 4090 is enough to run the experiments.
More experimental settings are available in the supplementary material A.4.

8

Table 1: Baseline Comparison. Values in parentheses represent standard deviations. * represents the
usage of ground truth semantic labels in the RGB image. The bold fonts represent optimal values.

Method
Seen Scene

Seen Task Unseen Task
SRb SRp SPLb SPLp SRb SRp SPLb SPLp

Random 4.36 (0.36) 3.30 (0.07) 4.10 (0.45) 2.92 (0.04) 3.47 (0.27) 2.40 (0.22) 3.14 (0.26) 2.17 (0.25)
VTN 7.50 (3.01) 4.79 (3.02) 4.19 (1.16) 2.45 (1.51) 5.17 (1.53) 4.06 (1.15) 3.38 (0.59) 3.01 (0.99)

ZSON 6.75 (2.61) 3.79 (0.82) 4.27 (1.95) 2.41 (0.82) 4.33 (1.26) 3.08 (0.75) 3.02 (1.22) 2.18 (0.65)
DDN 8.10 (2.20) 6.62 (0.94) 5.95 (2.09) 4.73 (1.20) 6.70 (2.41) 4.52 (0.85) 4.67 (1.52) 3.14 (0.96)

MOPA+LLM* 18.61 (3.75) 13.25 (1.99) 3.00 (1.26) 2.18 (0.58) 14.67 (1.44) 10.22 (1.28) 2.03 (0.13) 1.55 (0.19)
FBE+LLM* 13.25 (0.35) 9.95 (2.3) 3.9 (0.71) 3.24 (0.96) 10.00 (1.80) 8.03 (2.23) 3.37 (0.54) 2.99 (0.73)

C2FAgent (MLP branch) 18.58 (2.78) 12.45 (2.30) 6.99 (1.72) 5.53 (1.05) 13.91 (2.91) 8.44 (0.87) 4.45 (0.77) 3.43 (0.41)
C2FAgent (LLM branch) 23.82 (3.89) 14.28 (3.72) 7.94 (1.30) 5.80 (1.00) 15.93 (1.68) 8.65 (0.71) 6.21 (1.81) 4.60 (1.40)

Method
Unseen Scene

Seen Task Unseen Task
SRb SRp SPLb SPLp SRb SRp SPLb SPLp

Random 6.60 (0.67) 4.47 (0.47) 6.02 (0.71) 4.07 (0.44) 4.63 (0.52) 3.46 (0.40) 4.18 (0.50) 3.18 (0.42)
VTN 8.61 (4.25) 6.12 (3.84) 4.76 (1.96) 3.64 (1.86) 6.83 (1.04) 3.47 (1.55) 3.48 (0.15) 1.97 (0.56)

ZSON 6.89 (1.50) 5.06 (1.71) 4.02 (1.19) 3.46 (1.92) 5.33 (0.76) 2.94 (0.51) 2.70 (1.02) 1.91 (0.57)
DDN 10.00 (2.50) 5.93 (0.86) 7.89 (1.93) 4.86 (0.52) 7.10 (2.95) 4.70 (1.81) 5.37 (2.46) 3.48 (1.45)

MOPA+LLM* 17.83 (9.41) 14.17 (1.93) 3.06 (0.53) 2.96 (0.31) 10.33 (2.08) 6.72 (1.92) 1.19 (0.23) 0.78 (0.24)
FBE+LLM* 14.00 (4.47) 8.03 (2.23) 3.13 (0.66) 2.99 (0.73) 9.67 (1.53) 6.86 (1.04) 1.78 (0.58) 2.12 (0.68)

C2FAgent (MLP branch) 17.97 (2.87) 12.35 (2.49) 5.49 (1.23) 3.77 (0.70) 12.17 (3.71) 6.93 (1.63) 3.51 (1.05) 2.46 (0.59)
C2FAgent (LLM branch) 23.06 (1.58) 15.98 (0.87) 6.52 (0.91) 5.11 (0.51) 15.88 (2.63) 9.48 (1.30) 6.03 (0.77) 4.50 (0.48)

5.2 Baselines

Random is a method for randomly selecting actions. VTN [15] is an end-to-end closed-vocabulary
ObjectGoal Navigation method. ZSON [21] is an end-to-end open-vocabulary ObjectGoal Navigation
method. MOPA+LLM [43] is a modular-based Multi-object Navigation method using LLM to select
target objects. FBE+LLM [59] is a modular-based Multi-object Navigation method that uses
frontier-based exploration (FBE) and LLM to find objects. DDN [14] is an end-to-end Single-
object Demand-driven Navigation method. For more details about baselines in training and method
modifications, please see supplementary material A.4.2.

5.3 Baseline Comparison

The experimental results are in Tab. 5.3. Random reflects the difficulty of MO-DDN. The two
end-to-end ON methods, VTN and ZSON, perform poorly, only slightly higher than Random. In
comparison, though DDN uses attribute features designed for single object-instruction pairs, DDN’s
attribute features still provide some prior knowledge, outperforming VTN and ZSON. FBE+LLM
and MOPA+LLM use different exploration strategies, but both use LLM to select waypoints. Both of
them acquire the ground truth semantic label in the current RGB image when asking LLM whether
or not to perform Find5, and they outperform the three end-to-end methods. MOPA+LLM obtains
suboptimal results in many cases, better than FBE+LLM, which may stem from the fact [43] that its
exploration strategy is superior to FBE, allowing more objects to be detected.

Our method outperforms the baseline in the vast majority of settings. Attribute similarity scores are a
good substitute for LLM for waypoint selection. Compared to MOPA+LLM, which requires 5.15
requests to the LLM per episode on average, C2FAgent (LLM branch) only needs to request the LLM
to parse instructions into attributes once at the beginning and achieves better performance. Moreover,
C2FAgent (MLP branch) does not need LLM parsing and gets results comparable to MOPA+LLM.
We also find that when no object meets the demand in the current detected object list, each block has
a low score, approximating a randomly selected block to explore. In contrast, when there exists an
object that meets the demand, the corresponding block has a significantly higher score than the other
blocks. This indicates that the attribute model can balance exploration and exploitation on its own.

5.4 Ablation Study

In this section, we would like to discuss the following four questions:

• Q1: Is selecting waypoints by attribute feature similarity scores better than FBE, LLM and
CLIP features’ similarity scores?

5when other actions are performed, the ground truth semantic label will not be provided, and only the
GLEE [31] detection will be provided.

9

Table 2: Ablation on Coarse Exploration (Q1)

Method SRb SRp SPLb SPLp

Coarse+Fine (Ours) 23.82 (3.89) 14.28 (3.72) 7.94 (1.30) 5.80 (1.00)
FBE+Fine 14.56 (5.57) 11.36 (5.45) 4.94 (0.84) 3.92 (0.95)
LLM+Fine 13.69 (4.91) 9.47 (2.57) 5.12 (0.72) 3.32 (0.07)
CLIP+Fine 12.51 (3.85) 7.65 (2.77) 4.52 (0.87) 3.05 (0.43)

Table 3: Ablation on Fine Exploration (Q2)

Method SRb SRp SPLb SPLp

Coarse+Fine (Ours) 23.82 (3.89) 14.28 (3.72) 7.94 (1.30) 5.80 (1.00)
Coarse+ZSON 8.74 (5.07) 4.21 (2.0) 6.72 (4.29) 3.45 (2.0)
Coarse+VTN 16.89 (4.57) 10.87 (4.73) 5.36 (1.11) 3.83 (1.32)
Coarse+Random 5.82 (1.22) 4.63 (0.93) 4.04 (2.52) 3.27 (2.12)

Table 4: Ablation on Attribute Training (Q3)

Method SRb SRp SPLb SPLp

Ours 23.82 (3.89) 14.28 (3.72) 7.94 (1.30) 5.80 (1.00)
Ours w/o VQ-VAE 18.34 (1.33) 11.42 (0.23) 5.63 (0.72) 4.72 (0.63)
Ours w/o codebook init 17.36 (2.32) 12.02 (2.54) 5.73 (1.14) 4.56 (1.18)

Table 5: Ablation on Score Weights (Q4)

Method (C2FAgent) SRb SRp SPLb SPLp

rb = 1, rp = 2 19.89 (2.00) 15.05 (1.58) 7.91 (1.32) 6.20 (0.64)
rb = 1, rp = 1 23.82 (3.89) 14.28 (3.72) 7.94 (1.30) 5.80 (1.00)
rb = 1, rp = 0 25.10 (2.06) 12.43 (1.04) 9.26 (2.07) 5.34 (1.09)

• Q2: Do attribute features also work in the end-to-end fine exploration modules? How about
replacing the fine exploration module with VTN and ZSON?

• Q3: Do VQ-VAE losses and codebook initialization contribute to experimental results?
• Q4: Can adjusting the weights of basic and preferred scores affect agent behavior?

In the ablation study, we report the results in the seen tasks and seen scenes. Ours refers to C2FAgent
(LLM branch). The experimental results for all four questions are in Tab. 5.4. For specific experimen-
tal setups, please see supplementary materials A.4.3.

For Q1, the experimental results demonstrate that attribute-based coarse exploration outperforms rule-
based FBE, commonsense-based LLM and CLIP-based exploration. For Q2, the experimental results
show that the fine exploration module utilizes the prior in the attribute model well, outperforming
the VTN, which has larger model parameters, and the ZSON, which has been pre-trained on 36M
total episodes and fine-tuned on the same trajectory dataset with Ours. In addition, we note that
Coarse+VTN exceeds VTN, suggesting that the coarse exploration module can steer the agent to
the region where it is more likely to find objects that satisfy the demand. For Q3, we find that
the performance decreases after removing the VQ-VAE Loss or codebook initialization. Since the
attribute model itself is trained on language-grounding tasks and thus agnostic to the task being
evaluated, we can argue that the VQ-VAE Loss and the initialization contribute to the generalizability
of attribute features. For Q4, adjusting the weights of two scores can indeed affect the agent’s
behavior. By tuning up rp, SRp and SPLp increase, while SRb and SPLb decrease; and vice versa.
This characteristic allows the user to freely decide whether to prioritize the search for the basic or
preferred solution in the current situation. For example, when a user who likes Coke is very thirsty,
he can increase rb to allow the agent to satisfy the basic demand with a higher success rate, while in
the general case, rp can be increased to allow the agent to try to satisfy the preferred demand.

6 Conclusion and Discussion

In this paper, we propose a new benchmark, MO-DDN, which can be regarded as a multi-object
version of DDN. Moreover, MO-DDN can be considered a crucial preliminary step in task planning.
We also propose a coarse-to-fine attribute-based exploration agent, extending the concept of “attribute”
to a multi-object setting. The agent uses attribute features in different exploration phases. The
experimental results show that our method outperforms the baselines, and the attribute features
improve exploration efficiency. The ablation study also demonstrated the effectiveness of our method.

Limitations and Broader Societal Impacts In this paper, we assume that the number of attributes
of both instructions and objects is fixed values (i.e., k1 and k2). Though this facilitates training and
its experimental results outperform baselines, there are still some gaps with real life. Future work
could consider more flexible attribute features. Please see A.5 for more limitation discussion. To the
best of our knowledge, there are no observable adverse effects on society.

Acknowledgments and Disclosure of Funding

This work was supported by The National Youth Talent Support Program (8200800081), National
Natural Science Foundation of China (No. 62376006) and National Natural Science Foundation of
China (No. 62136001).

10

References
[1] R. J. Taormina and J. H. Gao, “Maslow and the motivation hierarchy: Measuring satisfaction

of the needs,” The American journal of psychology, vol. 126, no. 2, pp. 155–177, 2013.

[2] J. E. Gawel, “Herzberg’s theory of motivation and maslow’s hierarchy of needs,” Practical
Assessment, Research, and Evaluation, vol. 5, no. 1, p. 11, 2019.

[3] A. Maslow, Motivation And Personality: Motivation And Personality: Unlocking Your Inner
Drive and Understanding Human Behavior by A. H. Maslow. Prabhat Prakashan, 1981.
[Online]. Available: https://books.google.com/books?id=DVmxDwAAQBAJ

[4] A. H. Maslow, “A dynamic theory of human motivation.” 1958.

[5] M. Ahn, A. Brohan, N. Brown, Y. Chebotar, O. Cortes, B. David, C. Finn, C. Fu, K. Gopalakr-
ishnan, K. Hausman et al., “Do as i can, not as i say: Grounding language in robotic affor-
dances,” arXiv preprint arXiv:2204.01691, 2022.

[6] J. Liang, W. Huang, F. Xia, P. Xu, K. Hausman, B. Ichter, P. Florence, and A. Zeng, “Code
as policies: Language model programs for embodied control,” in 2023 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2023, pp. 9493–9500.

[7] W. Huang, F. Xia, T. Xiao, H. Chan, J. Liang, P. Florence, A. Zeng, J. Tompson, I. Mordatch,
Y. Chebotar et al., “Inner monologue: Embodied reasoning through planning with language
models,” arXiv preprint arXiv:2207.05608, 2022.

[8] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, J. Dabis, C. Finn, K. Gopalakrishnan, K. Haus-
man, A. Herzog, J. Hsu et al., “Rt-1: Robotics transformer for real-world control at scale,”
arXiv preprint arXiv:2212.06817, 2022.

[9] D. Driess, F. Xia, M. S. Sajjadi, C. Lynch, A. Chowdhery, B. Ichter, A. Wahid, J. Tompson,
Q. Vuong, T. Yu et al., “Palm-e: An embodied multimodal language model,” arXiv preprint
arXiv:2303.03378, 2023.

[10] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, X. Chen, K. Choromanski, T. Ding, D. Driess,
A. Dubey, C. Finn et al., “Rt-2: Vision-language-action models transfer web knowledge to
robotic control,” arXiv preprint arXiv:2307.15818, 2023.

[11] W. Huang, C. Wang, R. Zhang, Y. Li, J. Wu, and L. Fei-Fei, “Voxposer: Composable 3d value
maps for robotic manipulation with language models,” arXiv preprint arXiv:2307.05973, 2023.

[12] R. Wu and Y. Zhao, “Vat-mart: Learning visual action trajectory proposals for manipulating 3d
articulated objects,” in International Conference on Learning Representations (ICLR), 2022,
2022.

[13] G. Zhou, Y. Hong, and Q. Wu, “Navgpt: Explicit reasoning in vision-and-language navigation
with large language models,” in Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 38, no. 7, 2024, pp. 7641–7649.

[14] H. Wang, A. G. H. Chen, X. Li, M. Wu, and H. Dong, “Find what you want: Learning
demand-conditioned object attribute space for demand-driven navigation,” Advances in Neural
Information Processing Systems, vol. 36, 2024.

[15] H. Du, X. Yu, and L. Zheng, “Vtnet: Visual transformer network for object goal navigation,”
arXiv preprint arXiv:2105.09447, 2021.

[16] W. Cai, S. Huang, G. Cheng, Y. Long, P. Gao, C. Sun, and H. Dong, “Bridging zero-shot
object navigation and foundation models through pixel-guided navigation skill,” arXiv preprint
arXiv:2309.10309, 2023.

[17] D. S. Chaplot, D. P. Gandhi, A. Gupta, and R. R. Salakhutdinov, “Object goal navigation using
goal-oriented semantic exploration,” Advances in Neural Information Processing Systems,
vol. 33, pp. 4247–4258, 2020.

11

https://books.google.com/books?id=DVmxDwAAQBAJ

[18] F. Zhu, X. Liang, Y. Zhu, Q. Yu, X. Chang, and X. Liang, “Soon: Scenario oriented object
navigation with graph-based exploration,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2021, pp. 12 689–12 699.

[19] R. Fukushima, K. Ota, A. Kanezaki, Y. Sasaki, and Y. Yoshiyasu, “Object memory transformer
for object goal navigation,” in 2022 International Conference on Robotics and Automation
(ICRA). IEEE, 2022, pp. 11 288–11 294.

[20] K. Zhou, K. Zheng, C. Pryor, Y. Shen, H. Jin, L. Getoor, and X. E. Wang, “Esc: Explo-
ration with soft commonsense constraints for zero-shot object navigation,” in International
Conference on Machine Learning. PMLR, 2023, pp. 42 829–42 842.

[21] A. Majumdar, G. Aggarwal, B. Devnani, J. Hoffman, and D. Batra, “Zson: Zero-shot object-
goal navigation using multimodal goal embeddings,” Advances in Neural Information Process-
ing Systems, vol. 35, pp. 32 340–32 352, 2022.

[22] C. Li, R. Zhang, J. Wong, C. Gokmen, S. Srivastava, R. Martín-Martín, C. Wang, G. Levine,
M. Lingelbach, J. Sun et al., “Behavior-1k: A benchmark for embodied ai with 1,000 everyday
activities and realistic simulation,” in Conference on Robot Learning. PMLR, 2023, pp.
80–93.

[23] P. Marza, L. Matignon, O. Simonin, and C. Wolf, “Multi-object navigation with dynami-
cally learned neural implicit representations,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2023, pp. 11 004–11 015.

[24] S. Wani, S. Patel, U. Jain, A. Chang, and M. Savva, “Multion: Benchmarking semantic map
memory using multi-object navigation,” Advances in Neural Information Processing Systems,
vol. 33, pp. 9700–9712, 2020.

[25] P. Chen, D. Ji, K. Lin, W. Hu, W. Huang, T. Li, M. Tan, and C. Gan, “Learning active camera
for multi-object navigation,” Advances in Neural Information Processing Systems, vol. 35, pp.
28 670–28 682, 2022.

[26] X. Liu, H. Palacios, and C. Muise, “Egocentric planning for scalable embodied task achieve-
ment,” Advances in Neural Information Processing Systems, vol. 36, 2024.

[27] B. Y. Lin, C. Huang, Q. Liu, W. Gu, S. Sommerer, and X. Ren, “On grounded planning for
embodied tasks with language models,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 37, no. 11, 2023, pp. 13 192–13 200.

[28] Z. Wu, Z. Wang, X. Xu, J. Lu, and H. Yan, “Embodied task planning with large language
models,” arXiv preprint arXiv:2307.01848, 2023.

[29] J. Mendez-Mendez, L. P. Kaelbling, and T. Lozano-Pérez, “Embodied lifelong learning for
task and motion planning,” in Conference on Robot Learning. PMLR, 2023, pp. 2134–2150.

[30] T. Cheng, L. Song, Y. Ge, W. Liu, X. Wang, and Y. Shan, “Yolo-world: Real-time open-
vocabulary object detection,” in Proc. IEEE Conf. Computer Vision and Pattern Recognition
(CVPR), 2024.

[31] J. Wu, Y. Jiang, Q. Liu, Z. Yuan, X. Bai, and S. Bai, “General object foundation model for
images and videos at scale,” 2024.

[32] J.-B. Alayrac, J. Donahue, P. Luc, A. Miech, I. Barr, Y. Hasson, K. Lenc, A. Mensch, K. Milli-
can, M. Reynolds et al., “Flamingo: a visual language model for few-shot learning,” Advances
in neural information processing systems, vol. 35, pp. 23 716–23 736, 2022.

[33] Z. Yang, L. Li, K. Lin, J. Wang, C.-C. Lin, Z. Liu, and L. Wang, “The dawn of lmms:
Preliminary explorations with gpt-4v (ision),” arXiv preprint arXiv:2309.17421, vol. 9, no. 1,
p. 1, 2023.

[34] J. Chen, D. Zhu, X. Shen, X. Li, Z. Liu, P. Zhang, R. Krishnamoorthi, V. Chandra, Y. Xiong,
and M. Elhoseiny, “Minigpt-v2: large language model as a unified interface for vision-language
multi-task learning,” arXiv preprint arXiv:2310.09478, 2023.

12

[35] D. Zhu, J. Chen, X. Shen, X. Li, and M. Elhoseiny, “Minigpt-4: Enhancing vision-language
understanding with advanced large language models,” arXiv preprint arXiv:2304.10592, 2023.

[36] W. Wang, Z. Chen, X. Chen, J. Wu, X. Zhu, G. Zeng, P. Luo, T. Lu, J. Zhou, Y. Qiao et al.,
“Visionllm: Large language model is also an open-ended decoder for vision-centric tasks,”
Advances in Neural Information Processing Systems, vol. 36, 2024.

[37] W. X. Zhao, K. Zhou, J. Li, T. Tang, X. Wang, Y. Hou, Y. Min, B. Zhang, J. Zhang, Z. Dong
et al., “A survey of large language models,” arXiv preprint arXiv:2303.18223, 2023.

[38] A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Roberts, P. Barham, H. W.
Chung, C. Sutton, S. Gehrmann et al., “Palm: Scaling language modeling with pathways,”
Journal of Machine Learning Research, vol. 24, no. 240, pp. 1–113, 2023.

[39] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan,
P. Shyam, G. Sastry, A. Askell et al., “Language models are few-shot learners,” Advances in
neural information processing systems, vol. 33, pp. 1877–1901, 2020.

[40] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bashlykov, S. Batra,
P. Bhargava, S. Bhosale et al., “Llama 2: Open foundation and fine-tuned chat models,” arXiv
preprint arXiv:2307.09288, 2023.

[41] Y. Shen, K. Song, X. Tan, D. Li, W. Lu, and Y. Zhuang, “Hugginggpt: Solving ai tasks with
chatgpt and its friends in hugging face,” Advances in Neural Information Processing Systems,
vol. 36, 2024.

[42] G. Team, R. Anil, S. Borgeaud, Y. Wu, J.-B. Alayrac, J. Yu, R. Soricut, J. Schalkwyk, A. M.
Dai, A. Hauth et al., “Gemini: a family of highly capable multimodal models,” arXiv preprint
arXiv:2312.11805, 2023.

[43] S. Raychaudhuri, T. Campari, U. Jain, M. Savva, and A. X. Chang, “Mopa: Modular object
navigation with pointgoal agents,” in Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision, 2024, pp. 5763–5773.

[44] S. Gupta, J. Davidson, S. Levine, R. Sukthankar, and J. Malik, “Cognitive mapping and
planning for visual navigation,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2017, pp. 2616–2625.

[45] H. Luo, A. Yue, Z.-W. Hong, and P. Agrawal, “Stubborn: A strong baseline for indoor object
navigation,” in 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2022, pp. 3287–3293.

[46] S. Rudra, S. Goel, A. Santara, C. Gentile, L. Perron, F. Xia, V. Sindhwani, C. Parada, and G. Ag-
garwal, “A contextual bandit approach for learning to plan in environments with probabilistic
goal configurations,” in 2023 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2023, pp. 5645–5652.

[47] Y. Liang, B. Chen, and S. Song, “Sscnav: Confidence-aware semantic scene completion for
visual semantic navigation,” in 2021 IEEE international conference on robotics and automation
(ICRA). IEEE, 2021, pp. 13 194–13 200.

[48] G. Georgakis, B. Bucher, K. Schmeckpeper, S. Singh, and K. Daniilidis, “Learning to map for
active semantic goal navigation,” arXiv preprint arXiv:2106.15648, 2021.

[49] S. Y. Min, Y.-H. H. Tsai, W. Ding, A. Farhadi, R. Salakhutdinov, Y. Bisk, and J. Zhang, “Self-
supervised object goal navigation with in-situ finetuning,” in 2023 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2023, pp. 7119–7126.

[50] G. Kumar, N. S. Shankar, H. Didwania, R. D. Roychoudhury, B. Bhowmick, and K. M.
Krishna, “Gcexp: Goal-conditioned exploration for object goal navigation,” in 2021 30th IEEE
International Conference on Robot & Human Interactive Communication (RO-MAN). IEEE,
2021, pp. 123–130.

13

[51] W. B. Shen, D. Xu, Y. Zhu, L. J. Guibas, L. Fei-Fei, and S. Savarese, “Situational fusion of
visual representation for visual navigation,” in Proceedings of the IEEE/CVF international
conference on computer vision, 2019, pp. 2881–2890.

[52] A. Mousavian, A. Toshev, M. Fišer, J. Košecká, A. Wahid, and J. Davidson, “Visual represen-
tations for semantic target driven navigation,” in 2019 International Conference on Robotics
and Automation (ICRA). IEEE, 2019, pp. 8846–8852.

[53] R. Druon, Y. Yoshiyasu, A. Kanezaki, and A. Watt, “Visual object search by learning spatial
context,” IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 1279–1286, 2020.

[54] W. Yang, X. Wang, A. Farhadi, A. Gupta, and R. Mottaghi, “Visual semantic navigation using
scene priors,” arXiv preprint arXiv:1810.06543, 2018.

[55] A. Pal, Y. Qiu, and H. Christensen, “Learning hierarchical relationships for object-goal
navigation,” in Conference on Robot Learning. PMLR, 2021, pp. 517–528.

[56] B. Mayo, T. Hazan, and A. Tal, “Visual navigation with spatial attention,” in Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, 2021, pp. 16 898–16 907.

[57] R. Dang, Z. Shi, L. Wang, Z. He, C. Liu, and Q. Chen, “Unbiased directed object attention
graph for object navigation,” in Proceedings of the 30th ACM International Conference on
Multimedia, 2022, pp. 3617–3627.

[58] J. Ye, D. Batra, A. Das, and E. Wijmans, “Auxiliary tasks and exploration enable objectgoal
navigation,” in Proceedings of the IEEE/CVF international conference on computer vision,
2021, pp. 16 117–16 126.

[59] B. Yamauchi, “A frontier-based approach for autonomous exploration,” in Proceedings 1997
IEEE International Symposium on Computational Intelligence in Robotics and Automation
CIRA’97.’Towards New Computational Principles for Robotics and Automation’. IEEE, 1997,
pp. 146–151.

[60] P. Anderson, A. Chang, D. S. Chaplot, A. Dosovitskiy, S. Gupta, V. Koltun, J. Kosecka,
J. Malik, R. Mottaghi, M. Savva et al., “On evaluation of embodied navigation agents,” arXiv
preprint arXiv:1807.06757, 2018.

[61] P. Anderson, Q. Wu, D. Teney, J. Bruce, M. Johnson, N. Sünderhauf, I. Reid, S. Gould,
and A. Van Den Hengel, “Vision-and-language navigation: Interpreting visually-grounded
navigation instructions in real environments,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2018, pp. 3674–3683.

[62] F. Zhu, Y. Zhu, X. Chang, and X. Liang, “Vision-language navigation with self-supervised
auxiliary reasoning tasks,” in Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, 2020, pp. 10 012–10 022.

[63] H. Wang, W. Wang, W. Liang, C. Xiong, and J. Shen, “Structured scene memory for vision-
language navigation,” in Proceedings of the IEEE/CVF conference on Computer Vision and
Pattern Recognition, 2021, pp. 8455–8464.

[64] A. Majumdar, A. Shrivastava, S. Lee, P. Anderson, D. Parikh, and D. Batra, “Improving vision-
and-language navigation with image-text pairs from the web,” in Computer Vision–ECCV
2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part VI
16. Springer, 2020, pp. 259–274.

[65] X. Wang, Q. Huang, A. Celikyilmaz, J. Gao, D. Shen, Y.-F. Wang, W. Y. Wang, and L. Zhang,
“Vision-language navigation policy learning and adaptation,” IEEE transactions on pattern
analysis and machine intelligence, vol. 43, no. 12, pp. 4205–4216, 2020.

[66] Y. Long, X. Li, W. Cai, and H. Dong, “Discuss before moving: Visual language navigation via
multi-expert discussions,” arXiv preprint arXiv:2309.11382, 2023.

[67] Y. Hong, Q. Wu, Y. Qi, C. Rodriguez-Opazo, and S. Gould, “Vln bert: A recurrent vision-
and-language bert for navigation,” in Proceedings of the IEEE/CVF conference on Computer
Vision and Pattern Recognition, 2021, pp. 1643–1653.

14

[68] D. Shah, B. Osiński, S. Levine et al., “Lm-nav: Robotic navigation with large pre-trained
models of language, vision, and action,” in Conference on robot learning. PMLR, 2023, pp.
492–504.

[69] C. Chen, Z. Al-Halah, and K. Grauman, “Semantic audio-visual navigation,” in Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 15 516–
15 525.

[70] C. Chen, U. Jain, C. Schissler, S. V. A. Gari, Z. Al-Halah, V. K. Ithapu, P. Robinson, and
K. Grauman, “Soundspaces: Audio-visual navigation in 3d environments,” in Computer Vision–
ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings,
Part VI 16. Springer, 2020, pp. 17–36.

[71] C. Chen, S. Majumder, Z. Al-Halah, R. Gao, S. K. Ramakrishnan, and K. Grauman, “Learning
to set waypoints for audio-visual navigation,” arXiv preprint arXiv:2008.09622, 2020.

[72] H. Wang, Y. Wang, F. Zhong, M. Wu, J. Zhang, Y. Wang, and H. Dong, “Learning semantic-
agnostic and spatial-aware representation for generalizable visual-audio navigation,” IEEE
Robotics and Automation Letters, 2023.

[73] Y. Yu, W. Huang, F. Sun, C. Chen, Y. Wang, and X. Liu, “Sound adversarial audio-visual
navigation,” arXiv preprint arXiv:2202.10910, 2022.

[74] A. Younes, D. Honerkamp, T. Welschehold, and A. Valada, “Catch me if you hear me: Audio-
visual navigation in complex unmapped environments with moving sounds,” IEEE Robotics
and Automation Letters, vol. 8, no. 2, pp. 928–935, 2023.

[75] M. Hussain, “Yolo-v1 to yolo-v8, the rise of yolo and its complementary nature toward digital
manufacturing and industrial defect detection,” Machines, vol. 11, no. 7, p. 677, 2023.

[76] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and S. Zagoruyko, “End-to-end
object detection with transformers,” in European conference on computer vision. Springer,
2020, pp. 213–229.

[77] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao, S. Whitehead, A. C.
Berg, W.-Y. Lo et al., “Segment anything,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2023, pp. 4015–4026.

[78] L. Ke, M. Ye, M. Danelljan, Y.-W. Tai, C.-K. Tang, F. Yu et al., “Segment anything in high
quality,” Advances in Neural Information Processing Systems, vol. 36, 2024.

[79] S. Ren, F. Luzi, S. Lahrichi, K. Kassaw, L. M. Collins, K. Bradbury, and J. M. Malof, “Segment
anything, from space?” in Proceedings of the IEEE/CVF Winter Conference on Applications
of Computer Vision, 2024, pp. 8355–8365.

[80] P. O. O Pinheiro, R. Collobert, and P. Dollár, “Learning to segment object candidates,” Ad-
vances in neural information processing systems, vol. 28, 2015.

[81] J. Kim, E. S. Lee, M. Lee, D. Zhang, and Y. M. Kim, “Sgolam: Simultaneous goal localization
and mapping for multi-object goal navigation,” arXiv preprint arXiv:2110.07171, 2021.

[82] J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman, D. Almeida,
J. Altenschmidt, S. Altman, S. Anadkat et al., “Gpt-4 technical report,” arXiv preprint
arXiv:2303.08774, 2023.

[83] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix, B. Rozière,
N. Goyal, E. Hambro, F. Azhar et al., “Llama: Open and efficient foundation language models,”
arXiv preprint arXiv:2302.13971, 2023.

[84] G. Team, T. Mesnard, C. Hardin, R. Dadashi, S. Bhupatiraju, S. Pathak, L. Sifre, M. Rivière,
M. S. Kale, J. Love et al., “Gemma: Open models based on gemini research and technology,”
arXiv preprint arXiv:2403.08295, 2024.

[85] C. H. Song, J. Wu, C. Washington, B. M. Sadler, W.-L. Chao, and Y. Su, “Llm-planner:
Few-shot grounded planning for embodied agents with large language models,” 2023.

15

[86] Z. Zhao, W. S. Lee, and D. Hsu, “Large language models as commonsense knowledge for
large-scale task planning,” Advances in Neural Information Processing Systems, vol. 36, 2024.

[87] Z. Shao, Z. Yu, M. Wang, and J. Yu, “Prompting large language models with answer heuristics
for knowledge-based visual question answering,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2023, pp. 14 974–14 983.

[88] S. Yu, J. Cho, P. Yadav, and M. Bansal, “Self-chained image-language model for video
localization and question answering,” Advances in Neural Information Processing Systems,
vol. 36, 2024.

[89] J. Guo, J. Li, D. Li, A. M. H. Tiong, B. Li, D. Tao, and S. Hoi, “From images to textual prompts:
Zero-shot visual question answering with frozen large language models,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 10 867–10 877.

[90] J. Cui, Z. Li, Y. Yan, B. Chen, and L. Yuan, “Chatlaw: Open-source legal large language model
with integrated external knowledge bases,” arXiv preprint arXiv:2306.16092, 2023.

[91] Y. Zhuang, Y. Yu, K. Wang, H. Sun, and C. Zhang, “Toolqa: A dataset for llm question
answering with external tools,” Advances in Neural Information Processing Systems, vol. 36,
2024.

[92] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell,
P. Mishkin, J. Clark et al., “Learning transferable visual models from natural language supervi-
sion,” in International conference on machine learning. PMLR, 2021, pp. 8748–8763.

[93] V. S. Dorbala, G. Sigurdsson, R. Piramuthu, J. Thomason, and G. S. Sukhatme, “Clip-nav:
Using clip for zero-shot vision-and-language navigation,” arXiv preprint arXiv:2211.16649,
2022.

[94] A. Khandelwal, L. Weihs, R. Mottaghi, and A. Kembhavi, “Simple but effective: Clip embed-
dings for embodied ai,” in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2022, pp. 14 829–14 838.

[95] P. Kinghorn, L. Zhang, and L. Shao, “A region-based image caption generator with refined
descriptions,” Neurocomputing, vol. 272, pp. 416–424, 2018.

[96] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan, “Show and tell: A neural image caption
generator,” in Proceedings of the IEEE conference on computer vision and pattern recognition,
2015, pp. 3156–3164.

[97] X. Chen and C. Lawrence Zitnick, “Mind’s eye: A recurrent visual representation for image
caption generation,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2015, pp. 2422–2431.

[98] T. Wang, J. Zhang, J. Fei, Y. Ge, H. Zheng, Y. Tang, Z. Li, M. Gao, S. Zhao, Y. Shan et al.,
“Caption anything: Interactive image description with diverse multimodal controls,” arXiv
preprint arXiv:2305.02677, 2023.

[99] M. Khanna*, Y. Mao*, H. Jiang, S. Haresh, B. Shacklett, D. Batra, A. Clegg, E. Undersander,
A. X. Chang, and M. Savva, “Habitat Synthetic Scenes Dataset (HSSD-200): An Analysis of
3D Scene Scale and Realism Tradeoffs for ObjectGoal Navigation,” arXiv preprint, 2023.

[100] S. Lloyd, “Least squares quantization in pcm,” IEEE transactions on information theory,
vol. 28, no. 2, pp. 129–137, 1982.

[101] A. Van Den Oord, O. Vinyals et al., “Neural discrete representation learning,” Advances in
neural information processing systems, vol. 30, 2017.

[102] S. Y. Gadre, M. Wortsman, G. Ilharco, L. Schmidt, and S. Song, “Cows on pasture: Baselines
and benchmarks for language-driven zero-shot object navigation,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 23 171–23 181.

[103] J. Devlin, “Bert: Pre-training of deep bidirectional transformers for language understanding,”
arXiv preprint arXiv:1810.04805, 2018.

16

[104] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. De-
hghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby, “An image is worth
16x16 words: Transformers for image recognition at scale,” ICLR, 2021.

17

A Appendix / supplemental material
• Multi-object Demand-driven Navigation Task A.1

– Task Dataset Generation A.1.1
– Task Metrics A.1.2
– Task Dataset Statistics A.1.3

• Attribute Feature Training A.2
– Training Data Preparation A.2.1
– Attribute Training Details A.2.2

• Details about Coarse-to-Fine Exploration A.3
– Design Details and Visualizations for Coarse Exploration Module A.3.1
– Training Details about Fine Exploration Module A.3.2

• Experiments A.4
– Details about Experimental Settings A.4.1
– Details about Baselines A.4.2
– Details about Ablation Study A.4.3
– Details about LLM’s Prompt in Experiments A.4.4

• More Limitations A.5

A.1 Multi-object Demand-driven Navigation Task

A.1.1 Task Dataset Generation

We base our instruction generation process on the 466 object categories in the HSSD dataset [99]. In
short, we perform three steps while generating the task: LLM pre-generation, LLM revision, and
manual review (we use gpt-4-0125-preview API in this paper). In the first step, we prompt the LLM
with task definition, available object category list, task format, and generation guidelines to generate
the raw tasks. In the second step, we prompt the LLM with previous raw tasks one by one. We let the
LLM check whether the input raw task is in the task format, whether the objects involved are in the
given object category list, and whether the demand instructions and the solutions correspond to each
other, and let the LLM state the reason for the revision before providing the result of the revision. In
the third step, we manually check the generated tasks, removing overly far-fetched tasks and adding
more obvious solutions.

Here are some examples. For each example, we only show part of the solution.

task instruction: I need to display my photography collection, preferably with good lighting.
basic solution: [picture frame, bookshelf]
preferred solution: [picture frame, bookshelf, table lamp], [picture frame, bookshelf, ceiling lamp]

task instruction: I need a sleeping arrangement for a guest staying over one night; I hope the bed is
comfortable enough.
basic solution: [single bed, blanket, pillow], [sofa, blanket]
preferred solution: [king bed, blanket, pillow], [double bed, blanket, pillow]

task instruction: Train my small dog with water and treats, preferably it is for pet only.
basic solution: [mixing bowl], [pet bowl], [bowl]
preferred solution: [pet bowl]

task instruction: I need to work on a writing project but prefer a quiet and comfortable space.
basic solution: [desk, swivel chair, notebook], [desk, straight chair, laptop]
preferred solution: [desk, swivel chair, notebook, earphone, room divider]

We use the following prompts to generate the raw tasks:

System Prompt: You are an AI assistant that can understand human demands and imagine what
human demands can be met with existing object categories.

18

Prompt:
Task Generation: Demand-Driven Navigation
Objective: Create a navigation task where an agent must locate an object within a specific
category that satisfies given demands and preferences.
Category:
bed, sofa, cup, desktop....
Task Requirements:
- **Basic Demand:** Describe the fundamental requirement for the object.
- **Preference:** Detail any additional preferences that refine the object selection.

###Demand-driven Navigation Task Template###
{
"task_instruction": $basic_demand$, $preference$
"basic_demand_instruction": "String"
"preferred_demand_instruction": "String"
"basic_solution": [[object_a, object_c], [object_b]]
"preferred_solution": [[object_a, object_c, object_d], [object_b, object_f]]
}
This should be in dict format.
basic_solutio is a list whose elements are lists, and each element represents a solution that meets the
basic_demand_instruction; each solution may consist of one or more objects.
preferred_solution is a list whose elements are lists, and each element represents a solution that meets
both the basic_demand_instruction and preference; each solution may consist of one or more objects.
"[object_g]" represents that just object_g can meet the demand.
"[object_x, object_y, object_z]" represents that only the combination of object x, y, and z can meet
the demand.

Example
$Example Tasks$

###Additional Guideline ###
Avoid demands related to needing a specific place or location.
**Focus on generating novel demands, possibly in the realm of entertainment, that don’t require a
specific place.**
Finalize the task using the provided template, ensuring it is concise and formatted correctly.
**Whenever possible, generate task_instruction that requires multiple combinations of objects to be
met, such as [object_a, object_c, object_d] and [object_b, object_c, object_e].**

Previously Generated Task Instructions:
$Previous Task Instruction Example$

Process
Determine "basic_demand_instruction" and "preferred_demand_instruction" based on the object
category.
Sequentially consider how each object or combination thereof meets the demands.
Finalize your response in the provided dict format, ensuring logical consistency between "ba-
sic_solution" and "preferred_solution."
Make the response more concise and clear and can be executed as "json.loads(task)".
Please sequentially generate ten tasks split by "=========", and make sure the task is totally
different from the previously generated task instructions.

We use the following prompts to revise the raw tasks:

System Prompt: You are an AI assistant that can help check whether objects meet the demands,
equipped with common life knowledge. Your reply should be in JSON string format.

19

Prompt:
Task Verification and Modification
Objective: Evaluate the provided task for logical consistency and feasibility. Modify it as
necessary to ensure all requirements are met accurately.
###Object Category###
bed, sofa, cup, desktop....

###Demand-driven Navigation Task Template###
{
"task_instruction": $basic_demand$, $preference$
"basic_demand_instruction": "String"
"preferred_demand_instruction": "String"
"basic_solution": [[object_a, object_c], [object_b]]
"preferred_solution": [[object_a, object_c, object_d], [object_b, object_f]]
}
This should be in dict format.
basic_solution is a list whose elements are lists, and each element represents a solution that meets the
basic_demand_instruction; each solution may consist of one or more objects.
preferred_solution is a list whose elements are lists, and each element represents a solution that meets
both the basic_demand_instruction and preference; each solution may consist of one or more objects.
"[object_g]" represents that just object_g can meet the demand.
"[object_x, object_y, object_z]" represents that only the combination of object x, y, and z can meet
the demand.

###To be modified Task in JSON String Format###
$Task Dict$

Instructions:
1. Verify Object Categories: Ensure all items in ’basic_solution’ and ’preferred_solution’ are from
the provided Object Category. Replace or remove any items that do not belong.
2. Expand Object Lists: Identify additional items within the Object Category that can fulfill the
’basic_demand_instruction’ and ’preferred_demand_instruction’. Add these items to ’basic_solution’
and ’preferred_solution’ as appropriate.
3. Validate Combination Solutions: Assess if each combination of objects in ’basic_solution’
meets the ’basic_demand_instruction’ and if removing any object from these combinations
makes them invalid. Apply the same verification for ’preferred_solution’ concerning both
’basic_demand_instruction’ and ’preferred_demand_instruction’.
4. Ensure Subset Relationship: Confirm ’preferred_solution’ is a subset of ’basic_solution’. If not,
integrate missing combinations from ’preferred_solution’ into ’basic_solution’.

Evaluation and Modification Steps:
- Begin by reviewing the JSON string of the current task for any logical inconsistencies or missing
elements.
- Identify and explain any aspects that are not rational or feasible within the context of the given
Object Category.
- Propose modifications, ensuring all suggested items are included in the Object Category and adhere
to the Demand-driven Navigation Task Template.
Final Instruction:
- Present a brief critique of the task’s initial setup, highlighting any irrational elements. - Offer a
detailed plan for rectification, including specific changes to ’basic_solution’ and ’preferred_solution’.
Ensure these modifications respect the original Object Category and meet the template requirements.
- Your response should conclude with a revised JSON string format of the task, reflecting all necessary
adjustments for coherence and completeness.

20

Table 6: A Comparison Between MO-DDN and DDN. The slash symbol "/" distinguishes between
basic and preferred data. The left side of the slash indicates basic, and the right side indicates
preferred.

MO-DDN DDN

Preference ✓
Multi-object ✓

Number of Object Category 358 109
Average Instruction Length 17.44 7.5

Average Number of Solution 17.51/50.4 2.3
Average Number of Object Per Solution 2.41/3.59 1

A.1.2 Task Metrics

SRbasic =
1

N

N∑
i=1

max
sb∈Sob

∑
o∈FL 1o∈sb

Len(sb)
(4)

An example of calculating SRbasic in an episode: when the agent finds object [a, b, c, d, e, f] and the
solutions are object [a, b, c, x, y] or [d, e, m, n], the SRbasic is max(len(a,b,c)

len(a,b,c,x,y) ,
len(d,e)

len(d,e,m,n)), i.e.,
0.6.

We calculate the SPL [60] using the following formula:

SPLbasic =
1

N

N∑
i=1

SRi
basic

li
max(pi, li)

(5)

where SRi
basic is the success rate of ith episode, i.e., SRi

basic = maxsb∈Sob

∑
o∈FL 1o∈sb

Len(sb)
, li is the

length of the shortest path of an episode, and pi is the length of the path taken by the agent in an
episode.

A.1.3 Task Dataset Statistics

In MO-DDN, we generate 300 tasks, encompassing 358 object categories from the HSSD dataset.
Notably, the average instruction length in MO-DDN is 17.44, significantly longer than the average
length of 7.5 in DDN. On average, there are 17.51 basic solutions and 50.4 preferred solutions per
task (note that preferred solutions also include basic demands so that the number will be higher
than just basic solutions), much more than the average solution number of 2.3 in DDN. Each basic
solution will contain 2.41 objects, and each preferred solution will contain 3.59 objects, while only
one object is in the solution of DDN. In general, MO-DDN increases the complexity of instructions
and the diversity of solutions. This makes MO-DDN more relevant to real-life environments and
more difficult. We create a table to compare the differences between DDN and MO-DDN shown in
Tab. 6.

A.2 Attribute Feature Training

A.2.1 Training Data Preparation

Due to the restricted scope of object categories within the HSSD dataset, the tasks are limited to 358
object categories, a significantly smaller subset than those observed in real-world scenarios, which
may cause overfitting on trained task and object categories. To address this limitation and enhance
attribute feature generalization (i.e., we would like the attribute feature to be universal and not limited
to the HSSD dataset), we introduce language-grounding tasks by prompting GPT-4 to generate tasks
without constraints on object categories and learn attribute features over these language-grounding
tasks. In these tasks, a broader array of objects and instructions is employed, thereby fostering
improved diversity and generalization of attribute features. Then, for each language-grounding task,
we ask GPT-4 to answer the questions “What attributes are required to fulfill these demands?” and
“What attributes are inherent to these objects?” This process yields language-level attributes for
instructions and objects, which is used for training attribute features.

21

We use the following prompts to generate language-grounding tasks:

System Prompt: You are a household task generator. Generate a list of ten daily household tasks or
needs that a person might have. These should be tasks that are commonly encountered in a daily
living environment.

Prompt:
Task Introduction
Generate a list of ten daily household tasks or needs that a person might have. These should be tasks
that are commonly encountered in a daily living environment.

Task Example
$Some Task Examples$

Task Format
String: List[List[String]]
For example, task_instruction: [["ObjectA", "ObjectB"], ["ObjectC", "ObjectD", "ObjectE"],
["ObjectF"], ["ObjectG", "ObjectH"]]

Instructions
- Generate a list of 10 unique daily household tasks or needs and separate them with "=========".
- Generated ten tasks should be distinct from each other and Example.
- Each task should be clear, concise, and understandable for an agent to execute or recognize.
- Avoid repetitive tasks; ensure each one is distinct.
- Consider a variety of household needs, including cleaning, maintenance, personal care, and
organizational tasks.
- For each task, generate ten different objects or objects’ combinations (e.g., [ObjectA, ObjectB] is
a combination, [ObjectC, ObjectD, ObjectE] is another combination, [ObjectF] is a single object,
[ObjectG, ObjectH] is another combination) that can satisfy the demand or be used to complete the
task.
- Follow the format of the example provided in the Task Format.
- Each Object should be enclosed in double quotes, for example, "ObjectA".

Here are some language-grounding tasks:

task instruction: I want to exercise at home, focusing on my abdominal muscles, preferably with
minimal noise.
basic solution: [exercise bike],[yoga mat, dumbbell]
preferred solution:[yoga mat]

task instruction: I need a secure way to store small valuables at home, preferably in a method that’s
not immediately obvious to guests.
basic solution: [safe],[bookcase, book]
preferred solution:[bookcase, book]

task instruction: I need an efficient method to keep track of my daily hydration, preferably with a
solution that’s easy to transport.
basic solution: [water bottle],[thermos]
preferred solution:[water bottle]

task instruction: I want to relax in my garden with a chair that gently rocks, but I prefer it to be able
to withstand the weather conditions.
basic solution: [rocking chair, gazebo], [camp chair, umbrella]
preferred solution:[rocking chair, gazebo]

We can see that the language-grounding task uses some objects that do not appear in the HSSD
dataset. We then generate several attributes for each task’s instructions and objects.

We use the following prompts to generate attributes for instructions:

22

System Prompt: You are a household attribute generator. Generate a list of attributes or functions that
can be used to satisfy the given instructions.

Prompt:
Attribute Introduction
Every object or item in the world has some attributes or functions that can be used to meet human
demands. For example, water has the properties or functions of being drinkable, usable for washing
clothes, capable of dissolving some solids, and suitable for bathing.
When a human need is satisfied by a certain object or item, it is essentially the attributes of that object
that meet this demand. Therefore, we can deduce the required attributes or functions from a specific
demand.

Attribute Format
String: List[String]
For example, "instruction": ["Attribute1", "Attribute2", "Attribute3", "Attribute4"]

Example
$Some Examples$

The Given Instruction
$Instruction$

Instructions
for each demand, generate four attributes or functions that can be used to satisfy the given demand,
separated by "=============".
Instructions and Attribute should be separated by ": ".
Each attribute or function should be clear, concise, and understandable for an agent to execute or
recognize.
Avoid using words that are too general or vague.
The attribute or function can be a word or phrase.
Avoid using synonyms or similar words that can be used interchangeably.
Consider a variety of attributes, including personal, organizational, and functional attributes.
Follow the Attribute Format provided above.
Maintain the order of The Given Instruction same with the original.

Here are instructions and their attributes.

task instruction: I want to exercise at home without assembling bulky equipment, preferring compact
and versatile fitness tools.
attributes: [resistance bands, adjustable dumbbells, foldable yoga mat, doorway pull-up bar]

task instruction: I want to easily access my jewelry collection and minimize clutter, preferably by
displaying the pieces.
attributes:[hanging organizers, jewelry stands, "drawer dividers, wall-mounted display]

task instruction: I want to keep my cosmetics organized and easily accessible, preferably in a tidy
arrangement.
attributes:[compartmentalized storage, transparent containers, countertop design, cosmetic organiz-
ers]

task instruction: I want a simple way to track grocery needs, preferably one that the whole family can
access.
attributes:[shared list, real-time updating, accessible by multiple users, simple interface]

We use the following prompts to generate attributes for objects:

System Prompt: You are a household attribute generator. Generate a list of attributes or functions that
can be used to satisfy the given demand.

23

Prompt:
Attribute Introduction
Every object or item in the world has some attributes or functions that can be used to meet human
demands. For example, water has the properties or functions of being drinkable, usable for washing
clothes, capable of dissolving some solids, and suitable for bathing.
When a human need is satisfied by a certain object or item, it is essentially the attributes of that object
that meet this demand. We can obtain the attributes and functions of an object from common sense or
experience.

Attribute Format
String: List[String]
For example, Object1: ["Attribute1", "Attribute2", "Attribute3", "Attribute4"]

Example Object
water: ["drinkable", "usable for washing clothes", "capable of dissolving some solids", "suitable for
bathing"]=============
apple: ["sweet", "edible", "vitamin C", "vitamin A"]=============
book: ["readable", "hold information", "hold data," "hold text"]=============
shirt: ["comfortable", "cloth", "wearable", "can be worn"]=============

Example Attribute
$ Example Attributes$

The Given Objects
$ Object Category$

Guidance
For each object, generate four attributes or functions that can be used to satisfy a demand, separated
by "=============".
Object and Attribute should be separated by ": ".
Each attribute or function should be clear, concise, and understandable for an agent to execute or
recognize.
Avoid using words that are too general or vague.
The attribute or functions can be a word or phrase.
Avoid using synonyms or similar words that can be used interchangeably.
Consider a variety of attributes, including personal, organizational, and functional attributes.
Follow ### Attribute Format ### provided above. Follow the content format of ### Example
Attribute ###.
Maintain the Given object unchanged and only generate the attributes or functions.

Here are objects and their attributes.

object: long-handled duster
attributes:[extended reach cleaning, dust-attracting fibers, flexible head for tight spaces, washable
and reusable]

object: rocking chair
attributes:[relaxation, comfortable seating, aesthetic addition to room, soothes babies]

object: adjustable table
attributes:[height customization, ergonomic design, collapsible for storage, multi-use surface]

object: dusting brush
attributes:[removes surface dust, gentle on delicate items, reaches tight spaces, ergonomic handle]

A.2.2 Attribute Training Details

The full loss function is shown below:

24

Loss = λ1 ×Attribte Loss+ λ2 ×Matching Loss+

λ3 × V Q Loss+ λ4 × Commit Loss+ λ5 ×Recon Loss (6)

where λ1 is 2.0, λ2 is 1.0, λ3 is 1.0, λ4 is 0.25, and λ5 is 1.0.

A.3 Details about Coarse-to-Fine Exploration

A.3.1 Design Details for Coarse Exploration Module

For the LLM branch, GPT-4 generates the attributes of the instruction in natural language. For
example, “I need a comfortable place to read, preferably with natural light.” has basic attributes of
“comfortable seating”, “quiet environment” and has preferred attributes of “natural light”. Then, we
use the CLIP-Text-Encoder to encode these language-level attributes into the instruction attribute
features. For the MLP branch, we use CLIP-Text-Encoder to encode the instruction into the instruction
features and then use Ins MLP Encoder to encode the instruction features into the instruction attribute
features.

For the path-planning algorithm, we use the habitat-sim built-in greedy planner. We ensure each
step is on an already explored point clouds to avoid navigating through unexplored points. In this
paper, for a fair comparison, baselines and ablations that involve building maps and traveling on
them will all use habitat-sim’s built-in greedy planner, including but not limited to MOPA+LLM and
FBE+LLM.

We provide some block score visualizations. A darker red color means a higher cosine similarity
between the attribute features of the objects and the instruction. The darkness of the color is based on
the rank of the block score among all blocks, not the actual score. Since scores are not calculated for
blocks that have been visited before, only a single coarse exploration is included in the visualization.
Note that the block with the highest score (i.e., the darkest color) is likely to contain objects that can
satisfy the demands. See Fig. 6, Fig. 7, Fig. 8, Fig. 9, Fig. 10. We also provide a visualization of
block scores with different weights at Fig. 11.

A.3.2 Training Details about Fine Exploration Module

We use the standard transformer encoder from the official PyTorch 1.13.1 implementation, where
d_model is 768, nhead is 8, num_layers is 6, and other parameters remain default. The embedding dim
of action is 64. The embedding dim of GPS+Compass is 32. The input dim of LSTM is 768+64+32,
its hidden_size is 1024, and its num_layers is 2. The depth model is a simple five-layer CNN model
and a two-layer MLP model.

We collect about 50,000 trajectories to train the fine exploration module under seen tasks and seen
scenes settings in Experiments Sec. 5 using imitation learning. We collect trajectories by following
steps: 1) randomly select a scene and a task, 2) initialize agent within two meters (i.e., block size
in coarse exploration) of a target object, 3) use habitat-sim’s built-in greedy planner to get the next
step, 4) when the distance to the target object is less than 0.2 meters, turn left/right or look up/down
according to the height and position of the object, 5) when the target object is in the field of view,
execute Find and close this trajectory. The trajectories we collect here are relatively short and end
with only one execution of Find. The average length of these trajectories is 9.19. This is because the
fine exploration module only needs to take on exploration within a block, and therefore, the goal of
learning only needs to be a trajectory within a block. Training with such short trajectories is very
efficient and requires few computational resources (only a RTX 4090 graphics card is needed). The
standard deviation of the trajectory length is 5.62. The median trajectory length is 8. The plurality
of trajectory lengths is 3. The maximum trajectory length is 51. The minimum trajectory length is
2. We trained the model on a single RTX 4090 using imitation learning and cross-entropy loss, i.e.,
considering the action prediction as a classification task, consuming about 12h.

We keep switching between the two exploration phases until the number of Find reaches nfind, and
then execute Done. When Find is executed in the fine exploration phase, switch back to the coarse
exploration phase to continue selecting the next waypoint.

25

Computer
Armchair
Table

Figure 6: Block Visualizations. Instruction: I need to take quick notes during a meeting, preferably
with a device that saves them digitally. Solution: Computer, Armchair, Table.

A.4 Experiments

A.4.1 Details about Experimental Settings

The effect of each action is as follows:

• MoveAhead: Move forward 0.25 meters.

• RotateRight: Turn right 30 degrees.

• RotateLeft: Turn left 30 degrees.

• LookUp: Turn the camera up 30 degrees.

• LookDown: Turn the camera down 30 degrees.

• Find: Record objects with a distance less than dfind in the current field of view to the found
list.

• Done: End the current episode and report the success rate and SPL.

Note that we want to focus the benchmark on navigation. When executing Find, the simulator will
automatically add objects to the found list that have distances less than dfind in the current field of
view, regardless of whether or not they are recognized by the object detection module GLEE. Such
detection is done by the simulator, so the agent does not get the ground truth semantic label, except
when Find determinations are made by MOPA+LLM and FBE+LLM.

Our method and baselines can be trained on a single RTX 4090, which will take about one day for
each method. We report the mean and standard deviation for at least three seeds. We test the agent
for 100 epochs in each seed, which takes about 8 hours.

26

Wall shelf

Cabinet

Figure 7: Block Visualizations. Instruction: I need to store a collection of fine china, preferably in a
way that displays them elegantly. Solution: Wall shelf, Cabinet.

A.4.2 Details about Baselines

Since many baselines are policies in a single object navigation setting, we make some modifications
to their action space. In their original policy, Done is modified to Find, and Done is automatically
output when the number of Find executions reaches the upper limit nfind.

For Random, we let the agent randomly select an action other than Done and execute it. When the
number of Find reaches the maximum number of executions nfind or the number of steps reaches
the limit, execute Done.

For VTN, it is trained in the original paper in two stages, imitation learning without LSTM and
reinforcement learning with LSTM. We remove the reinforcement learning phase here because we
find that in the MO-DDN task, using reinforcement learning to train VTN leads to performance
degradation. We, therefore, chose to collect 20,000 trajectories and train the VTN using imitation
learning with an LSTM module. We collect trajectories by following these steps: 1) randomly select
a scene and a task, 2) initialize agent at a random position, 3) set a target object according to the
solution, 4) use habitat-sim’s built-in greedy planner to get the next step, 5) when the distance to
the target object is less than 0.2 meters, turn left/right or look up/down according to the height and
position of the object, 6) when the target object is in the field of view, execute Find, 7) go back to
step 3 until all objects in the solution have been searched for, and then execute Done. The average
length of these trajectories is 49.15. We replace the VTN’s original goal description with the CLIP
features of the demand instruction. During evaluating, the agent executes Done when the number of
Find reaches the maximum number of executions nfind or the number of steps reaches the limit.

27

Dryer

Figure 8: Block Visualizations. Instruction: I need to quickly dry a batch of laundry, but I prefer an
fast and energy-efficient method. Solution: Dryer.

For ZSON, we use imitation learning to fine-tune the official ZSON’s trained weights using the
trajectories collected in the VTN. We take the CLIP features of the demand instruction as ZSON’s
goal descriptions. During evaluating, the agent executes Done when the number of Find reaches the
maximum number of executions nfind or the number of steps reaches the limit.

For DDN, we train the agent using the trajectories collected in the VTN. For training the attribute
model in DDN, we concatenate all objects in a solution at the language level and encode them with
CLIP-Text-Encoder as object features. If two solutions satisfy the same demand instruction, then
the object features corresponding to these two solutions are positive samples. During evaluating, the
agent executes Done when the number of Find reaches the maximum number of executions nfind or
the number of steps reaches the limit.

For MOPA+LLM, we use map-building and object-detection models that are the same as our method,
and we use LLM to make selections for currently recognized objects. When the LLM selects an
object as a target, we use habitat-sim’s built-in greedy planning to walk near it; if the LLM does
not select any object, it chooses a random point on the already explored map. Compared to the
original MOPA implementation, we replace the point goal agent with the built-in greedy planner of
habitat-sim. When the agent reaches the target, we prompt the LLM to decide whether to perform the
Find action. The prompts we use are in Sec. A.4.4.

For FBE+LLM, we use the FBE as the exploration module and then let the LLM choose which
objects that have been explored meet the demand and serve as targets for the habitat-sim’s built-in
greedy planner to walk around. If the LLM does not select an object, the agent continues to explore
using the FBE method. When the agent reaches the target, we prompt the LLM to decide whether to
perform the Find action. The prompts we use are in Sec. A.4.4.

A.4.3 Details about Ablation Study

Ablation on Coarse Exploration For FBE+Fine, we use FBE to select waypoints and then use
the habitat-sim’s built-in greedy planner to get to the waypoints. We use the fine exploration module
to locate the target objects when arriving at the waypoints. For LLM+fine, we use LLM to select

28

Sofa
Side tableCeiling lamp

Figure 9: Block Visualizations. Instruction: I need to find a comfortable place to read for my study
group, preferable with good lighting. Solution: Sofa, Side table, Ceiling lamp.

waypoints, and everything else is the same as FBE+Fine. The prompts we use are in Sec. A.4.4. For
CLIP+fine, we replace attribute features with CLIP features to compute cosine similarity as block
scores.

Ablation on Fine Exploration For Coarse+ZSON/VTN, we use the same trajectory dataset used
to train the fine exploration module to train ZSON and VTN and then replace the fine exploration
module with ZSON/VTN. For Coarse+Random, we replace the fine exploration module with randomly
selecting an action except for Done.

Ablation on Attribute Training For Ours w/o VQ-VAE, we set the weight of VQ Loss, Commit
Loss, and Recon Loss to zero and only maintain Attribute Loss and Matching Loss. For Ours w/o
initialization, we do not load the clustering centers to codebook.

Ablation on Score Weights We modify the attribute query to adjust the weighting of the basic and
preferred scores. See 3 for the exact formula.

A.4.4 Details about LLM’s Prompt in Experiments

In our baseline experiments and ablation study, we use LLM to select the waypoint (e.g., MOPA+LLM,
FBE+LLM, and LLM+Fine) and decide whether to perform the Find action or not (e.g., MOPA+LLM
and FBE+LLM).

We use the following prompts to let LLM select the waypoint:

System Prompt: You are an AI assistant that can understand human demands and imagine what
human demands can be met with some combinations of objects. Now, I need you to assist in selecting
positions on the map based on current location and recorded object locations.

29

Dining table
Straight chair

Figure 10: Block Visualizations. Instruction: I need to organize a small evening gathering but want
to avoid any accidents with real candles. Solution: Dining table, Straight chair.

Prompt:
Task
Now, I hope you can help me more efficiently select areas in the scene for exploration using
your knowledge. Specifically, I will provide you with the current records of objects available for
exploration, along with their names, positions, and distances in ### Explored Object List###. You
need to choose one of them and proceed to explore the area nearby (if you determine that none of the
objects on the ### Explored Object List ### are suitable, you can choose to output FBE, and I will
use Frontier Base Exploration in this round). My goal is to find a set of objects that can complement
each other to meet my demands. I will give you the objects I have already found (in ### Found
Object List ###), and your task is to consider the objects already found (if not empty) and efficiently
search for the missing ones to meet my requirements.
Demand Instruction
$Instruction$
Found List
$Found List$
Explored Object List
$Object in Point Clouds$

30

ArmChair

Sofa
BedSofa

Stool

Figure 11: The Effect of rb and rp. This is an example used only to demonstrate scoring blocks.
The darker the color in the figure, the higher the block score. When the task is “Find a place to sit,
prefering a comfortable and soft place”, lowering rp (left) ignores preferences, so ArmChair, Sofa
and Stool can get a high score (dark red); raising rp (right) focuses on preferences, so Sofa and Bed
can get a high score.

Reply Format
"I choose: {obj_name}"
The "" placeholder must be included in the response; it is used to identify the answer. You must
strictly output the names from the ### Explored Object List ###; you cannot invent other objects
or provide multiple objects. For example, if you think the most probable object to explore next is
"apple", you should output "I choose: apple". If you think none of the objects in the list are suitable,
you can choose to output "I choose: FBE"
Requirement
You need to carefully consider this: In order to meet my demand, besides the objects mentioned in
Found Object List ###, what other types of objects need to be searched for, and which of these
objects are most likely to appear near an object in the ### Explored Object List ###. In the end, I
only need you to output the name of the most probable object from the ### Explored Object List ###
as the area you should prioritize exploring next. Please strictly follow the format I declared in ###
Reply Format ###. Please think carefully and select the relatively best object as the next exploration
target. Only when you can’t think of any good choices should you output FBE.

We use the following prompts to let LLM decide whether to perform the Find action or not:

System Prompt: You are an AI assistant that can understand human demands and imagine what
human demands can be met with some combinations of objects.

31

Prompt:
Task
Surrounding Object List ### declares the objects currently around you. You need to carefully
inspect them to see if there are any that are relevant to the demand I stated in ### Demand Instruction
###, and that can be used in conjunction with previously found objects (in ### Found Object List
###). If any of the objects in ### Surrounding Object List ### might be potentially useful, report
“Find”. If there are no objects that could be useful or relevant, report “Skip”.
Demand Instruction
$Instruction$
Found List
$Found List$
Surrounding Object List###
$ground truth semantic label in the current field of view $
Reply Format
I will execute $Action$.
You should replace the Action with Find or Skip, "$$" is an identifier used to specify the range of the
answer; please make sure you will not use it in other places.
Requirement
Exploration steps reflect the progress of exploration. In total, you can perform max_step
exploration steps, and currently, $current_step$ steps have been completed. You can execute ’Find’ a
total of 5 times, and so far, you have executed it $current_find_time$ times. Please consider both the
progress of exploration and the number of explorations performed to decide whether to execute ’Find’
or ’Skip’ now. Feel free to use your imagination and try to find any object that might be potentially
useful. Don’t waste your find opportunities.
You can take your time to consider whether the surrounding objects can help me meet my demand
and also think about which objects among the surrounding ones can complement those already found.
However, you must strictly use the answer format declared in ### Reply Format ###.

A.5 More Limitations

In our method, we do not let the agent decide to choose Done until the number of Find reaches a
threshold or the number of steps reaches a threshold. This leads to the possibility that the objects
in the found list already fully satisfy the demand instruction, yet the agent will still enter the coarse
exploration module to select the next waypoint, resulting in a low SPL value. Future work could
explore the attribute features used for decision-making in Done.

32

NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and precede the (optional) supplemental material. The checklist does NOT
count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We demonstrate the conclusions in the Experiment Section 5.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss limitations in the Conclusion Section 6.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.

33

• The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: This paper does not have theoretical results

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: A full description of the model and prompts for large language models are
provided in our main paper 5 and supplementary material A.4. We will release all the code
and dataset if this paper is accepted.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

34

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: But we will release all the code and dataset if this paper is accepted.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details

35

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Please see the main paper 5 and supplemental material A.4.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report the standard deviation of results in Tab. 5.3.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: A single RTX4090 is enough to train and test our agent. It takes one day to
train the agent and two days to test. Please see the supplemental material for details A.4.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.

36

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We do.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: by [Yes]

Justification: We discuss them in the Conclusion Section 6.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We focus on navigation. To the best of our knowledge, it does not have a high
risk.

Guidelines:

• The answer NA means that the paper poses no such risks.

37

https://neurips.cc/public/EthicsGuidelines

• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We follow the protocol for the dataset.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We provide some examples of our task dataset in the supplemental mate-
rial A.1.1.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: the paper does not involve crowdsourcing nor research with human subjects.

38

paperswithcode.com/datasets

Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: the paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

39

	Introduction
	Related Work
	Visual Navigation
	Foundation Large Model in Embodied Task

	Multi-object Demand-driven Navigation
	Method
	Attribute Model Training
	Codebook and Its Initialization
	Definition of Losses

	Coarse-to-fine Exploration Agent
	Coarse Exploration Phase
	Fine Exploration Phase

	Experiment
	Experimental Settings
	Baselines
	Baseline Comparison
	Ablation Study

	Conclusion and Discussion
	Appendix / supplemental material
	Multi-object Demand-driven Navigation Task
	Task Dataset Generation
	Task Metrics
	Task Dataset Statistics

	Attribute Feature Training
	Training Data Preparation
	Attribute Training Details

	Details about Coarse-to-Fine Exploration
	Design Details for Coarse Exploration Module
	Training Details about Fine Exploration Module

	Experiments
	Details about Experimental Settings
	Details about Baselines
	Details about Ablation Study
	Details about LLM's Prompt in Experiments

	More Limitations

