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Abstract

CORL1 is an open-source library that provides thoroughly benchmarked single-file
implementations of both deep offline and offline-to-online reinforcement learning
algorithms. It emphasizes a simple developing experience with a straightforward
codebase and a modern analysis tracking tool. In CORL, we isolate methods
implementation into separate single files, making performance-relevant details
easier to recognize. Additionally, an experiment tracking feature is available to
help log metrics, hyperparameters, dependencies, and more to the cloud. Finally,
we have ensured the reliability of the implementations by benchmarking commonly
employed D4RL datasets providing a transparent source of results that can be
reused for robust evaluation tools such as performance profiles, probability of
improvement, or expected online performance.

1 Introduction

Deep Offline Reinforcement Learning (Levine et al., 2020) has been showing significant advancements
in numerous domains such as robotics (Smith et al., 2022; Kumar et al., 2021), autonomous driving
(Diehl et al., 2021) and recommender systems (Chen et al., 2022). Due to such rapid development,
many open-source offline RL solutions2 emerged to help RL practitioners understand and improve
well-known offline RL techniques in different fields. On the one hand, they introduce offline RL
algorithms standard interfaces and user-friendly APIs, simplifying offline RL methods incorporation
into existing projects. On the other hand, introduced abstractions may hinder the learning curve for
newcomers and the ease of adoption for researchers interested in developing new algorithms. One
needs to understand the modularity design (several files on average), which (1) can be comprised of
thousands of lines of code or (2) can hardly fit for a novel method3.

In this technical report, we take a different perspective on an offline RL library and also incorporate
emerging interest in the offline-to-online setup. We propose CORL (Clean Offline Reinforcement
Learning) – minimalistic and isolated single-file implementations of deep offline and offline-to-online
RL algorithms, supported by open-sourced D4RL (Fu et al., 2020) benchmark results. The uncom-
plicated design allows practitioners to read and understand the implementations of the algorithms
straightforwardly. Moreover, CORL supports optional integration with experiments tracking tools
such as Weighs&Biases (Biewald, 2020), providing practitioners with a convenient way to analyze

1CORL Repository: https://github.com/corl-team/CORL
2https://github.com/hanjuku-kaso/awesome-offline-rl#oss
3https://github.com/takuseno/d3rlpy/issues/141

37th Conference on Neural Information Processing Systems (NeurIPS 2023) Track on Datasets and Benchmarks.
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the results and behavior of all algorithms, not merely relying on a final performance commonly
reported in papers.

We hope that the CORL library will help offline RL newcomers study implemented algorithms and
aid the researchers in quickly modifying existing methods without fighting through different levels
of abstraction. Finally, the obtained results may serve as a reference point for D4RL benchmarks
avoiding the need to re-implement and tune existing algorithms’ hyperparameters.
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Figure 1: The illustration of the CORL library design. Single-file implementation takes a yaml
configuration file with both environment and algorithm parameters to run the experiment, which logs

all required statistics to Weights&Biases (Biewald, 2020).

2 Related Work

Since the Atari breakthrough (Mnih et al., 2015), numerous open-source RL frameworks and libraries
have been developed over the last years: (Dhariwal et al., 2017; Hill et al., 2018; Castro et al., 2018;
Gauci et al., 2018; Keng & Graesser, 2017; garage contributors, 2019; Duan et al., 2016; Kolesnikov
& Hrinchuk, 2019; Fujita et al., 2021; Liang et al., 2018; Fujita et al., 2021; Liu et al., 2021; Huang
et al., 2021; Weng et al., 2021; Stooke & Abbeel, 2019), focusing on different perspectives of
the RL. For example, stable-baselines (Hill et al., 2018) provides many deep RL implementations
that carefully reproduce results to back up RL practitioners with reliable baselines during methods
comparison. On the other hand, Ray (Liang et al., 2018) focuses on implementations scalability and
production-friendly usage. Finally, more nuanced solutions exist, such as Dopamine (Castro et al.,
2018), which emphasizes different DQN variants, or ReAgent (Gauci et al., 2018), which applies RL
to the RecSys domain.

At the same time, the offline RL branch and especially offline-to-online, which we are interested
in this paper, are not yet covered as much: the only library that precisely focuses on offline RL
setting is d3rlpy (Takuma Seno, 2021). While CORL also focuses on offline RL methods (Nair
et al., 2020; Kumar et al., 2020; Kostrikov et al., 2021; Fujimoto & Gu, 2021; An et al., 2021;
Chen et al., 2021), similar to d3rlpy, it takes a different perspective on library design and provides
non-modular independent algorithms implementations. More precisely, CORL does not introduce
additional abstractions to make offline RL more general but instead gives an "easy-to-hack" starter
kit for research needs. Finally, CORL also provides recent offline-to-online solutions (Nair et al.,
2020; Kumar et al., 2020; Kostrikov et al., 2021; Wu et al., 2022; Nakamoto et al., 2023; Tarasov
et al., 2023) that are gaining interest among researchers and practitioners.

2



Although CORL does not represent the first non-modular RL library, which is more likely the CleanRL
(Huang et al., 2021) case, it has two significant differences from its predecessor. First, CORL is
focused on offline and offline-to-online RL, while CleanRL implements online RL algorithms. Second,
CORL intends to minimize the complexity of the requirements and external dependencies. To be more
concrete, CORL does not have additional requirements with abstractions such as stable-baselines
(Hill et al., 2018) or envpool (Weng et al., 2022) but instead implements everything from scratch in
the codebase.

3 CORL Design

Single-File Implementations

Implementational subtleties significantly impact agent performance in deep RL (Henderson et al.,
2018; Engstrom et al., 2020; Fujimoto & Gu, 2021). Unfortunately, user-friendly abstractions and
general interfaces, the core idea behind modular libraries, encapsulate and often hide these important
nuances from the practitioners. For such a reason, CORL unwraps these details by adopting single-file
implementations. To be more concrete, we put environment details, algorithms hyperparameters, and
evaluation parameters into a single file4. For example, we provide

• any_percent_bc.py (404 LOC5) as a baseline algorithm for offline RL methods comparison,

• td3_bc.py (511 LOC) as a competitive minimalistic offline RL algorithm (Fujimoto & Gu,
2021),

• dt.py (540 LOC) as an example of the recently proposed trajectory optimization ap-
proach (Chen et al., 2021)

Figure 1 depicts an overall library design. To avoid over-complicated offline implementations, we treat
offline and offline-to-online versions of the same algorithms separately. While such design produces
code duplications among realization, it has several essential benefits from the both educational and
research perspective:

• Smooth learning curve. Having the entire code in one place makes understanding all its
aspects more straightforward. In other words, one may find it easier to dive into 540 LOC of
single-file Decision Transformer (Chen et al., 2021) implementation rather than 10+ files of
the original implementation6.

• Simple prototyping. As we are not interested in the code’s general applicability, we could
make it implementation-specific. Such a design also removes the need for inheritance from
general primitives or their refactoring, reducing abstraction overhead to zero. At the same
time, this idea gives us complete freedom during code modification.

• Faster debugging. Without additional abstractions, implementation simplifies to a single
for-loop with a global Python name scope. Furthermore, such flat architecture makes
accessing and inspecting any created variable easier during training, which is crucial in the
presence of modifications and debugging.

Configuration files

Although it is a typical pattern to use a command line interface (CLI) for single-file experiments in the
research community, CORL slightly improves it with predefined configuration files. Utilizing YAML
parsing through CLI, for each experiment, we gather all environment and algorithm hyperparameters
into such files so that one can use them as an initial setup. We found that such setup (1) simplifies
experiments, eliminating the need to keep all algorithm-environment-specific parameters in mind,
and (2) keeps it convenient with the familiar CLI approach.

4We follow the PEP8 style guide with a maximum line length of 89, which increases LOC a bit.
5Lines Of Code
6Original Decision Transformer implementation: https://github.com/kzl/decision-transformer
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Experiment Tracking

Offline RL evaluation is another challenging aspect of the current offline RL state (Kurenkov &
Kolesnikov, 2022). To face this uncertainty, CORL supports integration with Weights&Biases
(Biewald, 2020), a modern experiment tracking tool. With each experiment, CORL automatically
saves (1) source code, (2) dependencies (requirements.txt), (3) hardware setup, (4) OS environment
variables, (5) hyperparameters, (6) training, and system metrics, (7) logs (stdout, stderr). See
Appendix B for an example.

Although, Weights&Biases is a proprietary solution, other alternatives, such as Tensorboard (Abadi
et al., 2015) or Aim (Arakelyan et al., 2020), could be used within a few lines of code change. It is
also important to note that with Weights&Biases tracking, one could easily use CORL with sweeps
or public reports.

We found full metrics tracking during the training process necessary for two reasons. First, it removes
the possible bias of the final or best performance commonly reported in papers. For example, one
could evaluate offline RL performance as max archived score, while another uses the average scores
over N (last) evaluations (Takuma Seno, 2021). Second, it provides an opportunity for advanced
performance analysis such as EOP (Kurenkov & Kolesnikov, 2022) or RLiable (Agarwal et al., 2021).
In short, when provided with all metrics logs, one can utilize all performance statistics, not merely
relying on commonly used alternatives.

4 Benchmarking D4RL

4.1 Offline

In our library, we implemented the following offline algorithms: N%7 Behavioral Cloning (BC), TD3
+ BC (Fujimoto & Gu, 2021), CQL (Kumar et al., 2020), IQL (Kostrikov et al., 2021), AWAC (Nair
et al., 2020), ReBRAC (Tarasov et al., 2023), SAC-N, EDAC (An et al., 2021), and Decision
Transformer (DT) (Chen et al., 2021). We evaluated every algorithm on the D4RL benchmark (Fu
et al., 2020), focusing on Gym-MuJoCo, Maze2D, AntMaze, and Adroit tasks. Each algorithm was
run for one million gradient steps8 and evaluated using ten episodes for Gym-MuJoCo and Adroit
tasks. For Maze2d, we use 100 evaluation episodes. In our experiments, we tried to rely on the
hyperparameters proposed in the original works (see Appendix D for details) as much as possible.

The final performance is reported in Table 1 and the maximal performance in Table 2. The scores
are normalized to the range between 0 and 100 (Fu et al., 2020). Following the recent work by
Takuma Seno (2021), we report the last and best-obtained scores to illustrate each algorithm’s potential
performance and overfitting properties. Figure 2 shows the performance profiles and probability of
improvement of ReBRAC over other algorithms (Agarwal et al., 2021). See Appendix A for complete
training performance graphs.

Based on these results, we make several valuable observations. First, ReBRAC, IQL and AWAC are
the most competitive baselines in offline setup on average. Note that AWAC is often omitted in recent
works.

Observation 1: ReBRAC, IQL and AWAC are the strongest offline baselines on average.

Second, EDAC outperforms all other algorithms on Gym-MuJoCo by a significant margin, and to our
prior knowledge, there are still no algorithms that perform much better on these tasks. SAC-N shows
the best performance on Maze2d tasks. However, simultaneously, SAC-N and EDAC cannot solve
AntMaze tasks and perform poorly in the Adroit domain.

Observation 2: SAC-N and EDAC are the strongest baselines for Gym-MuJoCo and Maze2d,
but they perform poorly on both AntMaze and Adroit domains.

Third, during our experiments, we observed that the hyperparameters proposed for CQL in Kumar
et al. (2020) do not perform as well as claimed on most tasks. CQL is extremely sensitive to the

7N is a percentage of best trajectories with the highest return used for training. We omit the percentage when
it is equal to 100.

8Except SAC-N , EDAC, and DT due to their original hyperparameters. See Appendix D for details.
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Figure 2: (a) Performance profiles after offline training (b) Probability of improvement of ReBRAC
to other algorithms after offline training. The curves (Agarwal et al., 2021) are for D4RL benchmark

spanning Gym-MuJoCo, Maze2d, AntMaze, and Adroit datasets.

Table 1: Normalized performance of the last trained policy on D4RL averaged over 4 random seeds.
Task Name BC BC-10% TD3+BC AWAC CQL IQL ReBRAC SAC-N EDAC DT

halfcheetah-medium-v2 42.40 ± 0.19 42.46 ± 0.70 48.10 ± 0.18 50.02 ± 0.27 47.04 ± 0.22 48.31 ± 0.22 64.04 ± 0.68 68.20 ± 1.28 67.70 ± 1.04 42.20 ± 0.26
halfcheetah-medium-replay-v2 35.66 ± 2.33 23.59 ± 6.95 44.84 ± 0.59 45.13 ± 0.88 45.04 ± 0.27 44.46 ± 0.22 51.18 ± 0.31 60.70 ± 1.01 62.06 ± 1.10 38.91 ± 0.50
halfcheetah-medium-expert-v2 55.95 ± 7.35 90.10 ± 2.45 90.78 ± 6.04 95.00 ± 0.61 95.63 ± 0.42 94.74 ± 0.52 103.80 ± 2.95 98.96 ± 9.31 104.76 ± 0.64 91.55 ± 0.95

hopper-medium-v2 53.51 ± 1.76 55.48 ± 7.30 60.37 ± 3.49 63.02 ± 4.56 59.08 ± 3.77 67.53 ± 3.78 102.29 ± 0.17 40.82 ± 9.91 101.70 ± 0.28 65.10 ± 1.61
hopper-medium-replay-v2 29.81 ± 2.07 70.42 ± 8.66 64.42 ± 21.52 98.88 ± 2.07 95.11 ± 5.27 97.43 ± 6.39 94.98 ± 6.53 100.33 ± 0.78 99.66 ± 0.81 81.77 ± 6.87
hopper-medium-expert-v2 52.30 ± 4.01 111.16 ± 1.03 101.17 ± 9.07 101.90 ± 6.22 99.26 ± 10.91 107.42 ± 7.80 109.45 ± 2.34 101.31 ± 11.63 105.19 ± 10.08 110.44 ± 0.33

walker2d-medium-v2 63.23 ± 16.24 67.34 ± 5.17 82.71 ± 4.78 68.52 ± 27.19 80.75 ± 3.28 80.91 ± 3.17 85.82 ± 0.77 87.47 ± 0.66 93.36 ± 1.38 67.63 ± 2.54
walker2d-medium-replay-v2 21.80 ± 10.15 54.35 ± 6.34 85.62 ± 4.01 80.62 ± 3.58 73.09 ± 13.22 82.15 ± 3.03 84.25 ± 2.25 78.99 ± 0.50 87.10 ± 2.78 59.86 ± 2.73
walker2d-medium-expert-v2 98.96 ± 15.98 108.70 ± 0.25 110.03 ± 0.36 111.44 ± 1.62 109.56 ± 0.39 111.72 ± 0.86 111.86 ± 0.43 114.93 ± 0.41 114.75 ± 0.74 107.11 ± 0.96

Gym-MuJoCo avg 50.40 69.29 76.45 79.39 78.28 81.63 89.74 83.52 92.92 73.84

maze2d-umaze-v1 0.36 ± 8.69 12.18 ± 4.29 29.41 ± 12.31 65.65 ± 5.34 -8.90 ± 6.11 42.11 ± 0.58 106.87 ± 22.16 130.59 ± 16.52 95.26 ± 6.39 18.08 ± 25.42
maze2d-medium-v1 0.79 ± 3.25 14.25 ± 2.33 59.45 ± 36.25 84.63 ± 35.54 86.11 ± 9.68 34.85 ± 2.72 105.11 ± 31.67 88.61 ± 18.72 57.04 ± 3.45 31.71 ± 26.33
maze2d-large-v1 2.26 ± 4.39 11.32 ± 5.10 97.10 ± 25.41 215.50 ± 3.11 23.75 ± 36.70 61.72 ± 3.50 78.33 ± 61.77 204.76 ± 1.19 95.60 ± 22.92 35.66 ± 28.20

Maze2d avg 1.13 12.58 61.99 121.92 33.65 46.23 96.77 141.32 82.64 28.48

antmaze-umaze-v2 55.25 ± 4.15 65.75 ± 5.26 70.75 ± 39.18 56.75 ± 9.09 92.75 ± 1.92 77.00 ± 5.52 97.75 ± 1.48 0.00 ± 0.00 0.00 ± 0.00 57.00 ± 9.82
antmaze-umaze-diverse-v2 47.25 ± 4.09 44.00 ± 1.00 44.75 ± 11.61 54.75 ± 8.01 37.25 ± 3.70 54.25 ± 5.54 83.50 ± 7.02 0.00 ± 0.00 0.00 ± 0.00 51.75 ± 0.43
antmaze-medium-play-v2 0.00 ± 0.00 2.00 ± 0.71 0.25 ± 0.43 0.00 ± 0.00 65.75 ± 11.61 65.75 ± 11.71 89.50 ± 3.35 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
antmaze-medium-diverse-v2 0.75 ± 0.83 5.75 ± 9.39 0.25 ± 0.43 0.00 ± 0.00 67.25 ± 3.56 73.75 ± 5.45 83.50 ± 8.20 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
antmaze-large-play-v2 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 20.75 ± 7.26 42.00 ± 4.53 52.25 ± 29.01 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
antmaze-large-diverse-v2 0.00 ± 0.00 0.75 ± 0.83 0.00 ± 0.00 0.00 ± 0.00 20.50 ± 13.24 30.25 ± 3.63 64.00 ± 5.43 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

AntMaze avg 17.21 19.71 19.33 18.58 50.71 57.17 78.42 0.00 0.00 18.12

pen-human-v1 71.03 ± 6.26 26.99 ± 9.60 -3.88 ± 0.21 76.65 ± 11.71 13.71 ± 16.98 78.49 ± 8.21 103.16 ± 8.49 6.86 ± 5.93 5.07 ± 6.16 67.68 ± 5.48
pen-cloned-v1 51.92 ± 15.15 46.67 ± 14.25 5.13 ± 5.28 85.72 ± 16.92 1.04 ± 6.62 83.42 ± 8.19 102.79 ± 7.84 31.35 ± 2.14 12.02 ± 1.75 64.43 ± 1.43
pen-expert-v1 109.65 ± 7.28 114.96 ± 2.96 122.53 ± 21.27 159.91 ± 1.87 -1.41 ± 2.34 128.05 ± 9.21 152.16 ± 6.33 87.11 ± 48.95 -1.55 ± 0.81 116.38 ± 1.27

door-human-v1 2.34 ± 4.00 -0.13 ± 0.07 -0.33 ± 0.01 2.39 ± 2.26 5.53 ± 1.31 3.26 ± 1.83 -0.10 ± 0.01 -0.38 ± 0.00 -0.12 ± 0.13 4.44 ± 0.87
door-cloned-v1 -0.09 ± 0.03 0.29 ± 0.59 -0.34 ± 0.01 -0.01 ± 0.01 -0.33 ± 0.01 3.07 ± 1.75 0.06 ± 0.05 -0.33 ± 0.00 2.66 ± 2.31 7.64 ± 3.26
door-expert-v1 105.35 ± 0.09 104.04 ± 1.46 -0.33 ± 0.01 104.57 ± 0.31 -0.32 ± 0.02 106.65 ± 0.25 106.37 ± 0.29 -0.33 ± 0.00 106.29 ± 1.73 104.87 ± 0.39

hammer-human-v1 3.03 ± 3.39 -0.19 ± 0.02 1.02 ± 0.24 1.01 ± 0.51 0.14 ± 0.11 1.79 ± 0.80 0.24 ± 0.24 0.24 ± 0.00 0.28 ± 0.18 1.28 ± 0.15
hammer-cloned-v1 0.55 ± 0.16 0.12 ± 0.08 0.25 ± 0.01 1.27 ± 2.11 0.30 ± 0.01 1.50 ± 0.69 5.00 ± 3.75 0.14 ± 0.09 0.19 ± 0.07 1.82 ± 0.55
hammer-expert-v1 126.78 ± 0.64 121.75 ± 7.67 3.11 ± 0.03 127.08 ± 0.13 0.26 ± 0.01 128.68 ± 0.33 133.62 ± 0.27 25.13 ± 43.25 28.52 ± 49.00 117.45 ± 6.65

relocate-human-v1 0.04 ± 0.03 -0.14 ± 0.08 -0.29 ± 0.01 0.45 ± 0.53 0.06 ± 0.03 0.12 ± 0.04 0.16 ± 0.30 -0.31 ± 0.01 -0.17 ± 0.17 0.05 ± 0.01
relocate-cloned-v1 -0.06 ± 0.01 -0.00 ± 0.02 -0.30 ± 0.01 -0.01 ± 0.03 -0.29 ± 0.01 0.04 ± 0.01 1.66 ± 2.59 -0.01 ± 0.10 0.17 ± 0.35 0.16 ± 0.09
relocate-expert-v1 107.58 ± 1.20 97.90 ± 5.21 -1.73 ± 0.96 109.52 ± 0.47 -0.30 ± 0.02 106.11 ± 4.02 107.52 ± 2.28 -0.36 ± 0.00 71.94 ± 18.37 104.28 ± 0.42

Adroit avg 48.18 42.69 10.40 55.71 1.53 53.43 59.39 12.43 18.78 49.21

Total avg 37.95 43.06 37.16 62.01 37.61 61.92 76.04 44.16 43.65 48.31

choice of hyperparameters, and we had to tune them a lot to make it work on each domain (see
Table 7). For example, AntMaze requires five hidden layers for the critic networks, while other tasks’
performance suffers with this number of layers. The issue of sensitivity9 was already mentioned in
prior works as well (An et al., 2021; Ghasemipour et al., 2022).

Observation 3: CQL is extremely sensitive to the choice of hyperparameters and implementation
details.

Fourth, we also observe that the hyperparameters do not always work the same way when transferring
between Deep Learning frameworks 10. Our implementations of IQL and CQL use PyTorch, but the
parameters from reference JAX implementations sometimes strongly underperform (e.g., IQL on
Hopper tasks and CQL on Adroit).

9See also https://github.com/aviralkumar2907/CQL/issues/9, https://github.com/
tinkoff-ai/CORL/issues/14 and https://github.com/young-geng/CQL/issues/5

10https://github.com/tinkoff-ai/CORL/issues/33
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Table 2: Normalized performance of the best trained policy on D4RL averaged over 4 random seeds.
Task Name BC BC-10% TD3+BC AWAC CQL IQL ReBRAC SAC-N EDAC DT

halfcheetah-medium-v2 43.60 ± 0.14 43.90 ± 0.13 48.93 ± 0.11 50.81 ± 0.15 47.62 ± 0.03 48.84 ± 0.07 65.62 ± 0.46 72.21 ± 0.31 69.72 ± 0.92 42.73 ± 0.10
halfcheetah-medium-replay-v2 40.52 ± 0.19 42.27 ± 0.46 45.84 ± 0.26 46.47 ± 0.26 46.43 ± 0.19 45.35 ± 0.08 52.22 ± 0.31 67.29 ± 0.34 66.55 ± 1.05 40.31 ± 0.28
halfcheetah-medium-expert-v2 79.69 ± 3.10 94.11 ± 0.22 96.59 ± 0.87 96.83 ± 0.23 97.04 ± 0.17 95.38 ± 0.17 108.89 ± 1.20 111.73 ± 0.47 110.62 ± 1.04 93.40 ± 0.21

hopper-medium-v2 69.04 ± 2.90 73.84 ± 0.37 70.44 ± 1.18 95.42 ± 3.67 70.80 ± 1.98 80.46 ± 3.09 103.19 ± 0.16 101.79 ± 0.20 103.26 ± 0.14 69.42 ± 3.64
hopper-medium-replay-v2 68.88 ± 10.33 90.57 ± 2.07 98.12 ± 1.16 101.47 ± 0.23 101.63 ± 0.55 102.69 ± 0.96 102.57 ± 0.45 103.83 ± 0.53 103.28 ± 0.49 88.74 ± 3.02
hopper-medium-expert-v2 90.63 ± 10.98 113.13 ± 0.16 113.22 ± 0.43 113.26 ± 0.49 112.84 ± 0.66 113.18 ± 0.38 113.16 ± 0.43 111.24 ± 0.15 111.80 ± 0.11 111.18 ± 0.21

walker2d-medium-v2 80.64 ± 0.91 82.05 ± 0.93 86.91 ± 0.28 85.86 ± 3.76 84.77 ± 0.20 87.58 ± 0.48 87.79 ± 0.19 90.17 ± 0.54 95.78 ± 1.07 74.70 ± 0.56
walker2d-medium-replay-v2 48.41 ± 7.61 76.09 ± 0.40 91.17 ± 0.72 86.70 ± 0.94 89.39 ± 0.88 89.94 ± 0.93 91.11 ± 0.63 85.18 ± 1.63 89.69 ± 1.39 68.22 ± 1.20
walker2d-medium-expert-v2 109.95 ± 0.62 109.90 ± 0.09 112.21 ± 0.06 113.40 ± 2.22 111.63 ± 0.38 113.06 ± 0.53 112.49 ± 0.18 116.93 ± 0.42 116.52 ± 0.75 108.71 ± 0.34

Gym-MuJoCo avg 70.15 80.65 84.83 87.80 84.68 86.28 93.00 95.60 96.36 77.49

maze2d-umaze-v1 16.09 ± 0.87 22.49 ± 1.52 99.33 ± 16.16 136.96 ± 10.89 92.05 ± 13.66 50.92 ± 4.23 162.28 ± 1.79 153.12 ± 6.49 149.88 ± 1.97 63.83 ± 17.35
maze2d-medium-v1 19.16 ± 1.24 27.64 ± 1.87 150.93 ± 3.89 152.73 ± 20.78 128.66 ± 5.44 122.69 ± 30.00 150.12 ± 4.48 93.80 ± 14.66 154.41 ± 1.58 68.14 ± 12.25
maze2d-large-v1 20.75 ± 6.66 41.83 ± 3.64 197.64 ± 5.26 227.31 ± 1.47 157.51 ± 7.32 162.25 ± 44.18 197.55 ± 5.82 207.51 ± 0.96 182.52 ± 2.68 50.25 ± 19.34

Maze2d avg 18.67 30.65 149.30 172.33 126.07 111.95 169.98 151.48 162.27 60.74

antmaze-umaze-v2 68.50 ± 2.29 77.50 ± 1.50 98.50 ± 0.87 70.75 ± 8.84 94.75 ± 0.83 84.00 ± 4.06 100.00 ± 0.00 0.00 ± 0.00 42.50 ± 28.61 64.50 ± 2.06
antmaze-umaze-diverse-v2 64.75 ± 4.32 63.50 ± 2.18 71.25 ± 5.76 81.50 ± 4.27 53.75 ± 2.05 79.50 ± 3.35 96.75 ± 2.28 0.00 ± 0.00 0.00 ± 0.00 60.50 ± 2.29
antmaze-medium-play-v2 4.50 ± 1.12 6.25 ± 2.38 3.75 ± 1.30 25.00 ± 10.70 80.50 ± 3.35 78.50 ± 3.84 93.50 ± 2.60 0.00 ± 0.00 0.00 ± 0.00 0.75 ± 0.43
antmaze-medium-diverse-v2 4.75 ± 1.09 16.50 ± 5.59 5.50 ± 1.50 10.75 ± 5.31 71.00 ± 4.53 83.50 ± 1.80 91.75 ± 2.05 0.00 ± 0.00 0.00 ± 0.00 0.50 ± 0.50
antmaze-large-play-v2 0.50 ± 0.50 13.50 ± 9.76 1.25 ± 0.43 0.50 ± 0.50 34.75 ± 5.85 53.50 ± 2.50 68.75 ± 13.90 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
antmaze-large-diverse-v2 0.75 ± 0.43 6.25 ± 1.79 0.25 ± 0.43 0.00 ± 0.00 36.25 ± 3.34 53.00 ± 3.00 69.50 ± 7.26 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

AntMaze avg 23.96 30.58 30.08 31.42 61.83 72.00 86.71 0.00 7.08 21.04

pen-human-v1 99.69 ± 7.45 59.89 ± 8.03 9.95 ± 8.19 119.03 ± 6.55 58.91 ± 1.81 106.15 ± 10.28 127.28 ± 3.22 56.48 ± 7.17 35.84 ± 10.57 77.83 ± 2.30
pen-cloned-v1 99.14 ± 12.27 83.62 ± 11.75 52.66 ± 6.33 125.78 ± 3.28 14.74 ± 2.31 114.05 ± 4.78 128.64 ± 7.15 52.69 ± 5.30 26.90 ± 7.85 71.17 ± 2.70
pen-expert-v1 128.77 ± 5.88 134.36 ± 3.16 142.83 ± 7.72 162.53 ± 0.30 14.86 ± 4.07 140.01 ± 6.36 157.62 ± 0.26 116.43 ± 40.26 36.04 ± 4.60 119.49 ± 2.31

door-human-v1 9.41 ± 4.55 7.00 ± 6.77 -0.11 ± 0.06 17.70 ± 2.55 13.28 ± 2.77 13.52 ± 1.22 0.27 ± 0.43 -0.10 ± 0.06 2.51 ± 2.26 7.36 ± 1.24
door-cloned-v1 3.40 ± 0.95 10.37 ± 4.09 -0.20 ± 0.11 10.53 ± 2.82 -0.08 ± 0.13 9.02 ± 1.47 7.73 ± 6.80 -0.21 ± 0.10 20.36 ± 1.11 11.18 ± 0.96
door-expert-v1 105.84 ± 0.23 105.92 ± 0.24 4.49 ± 7.39 106.60 ± 0.27 59.47 ± 25.04 107.29 ± 0.37 106.78 ± 0.04 0.05 ± 0.02 109.22 ± 0.24 105.49 ± 0.09

hammer-human-v1 12.61 ± 4.87 6.23 ± 4.79 2.38 ± 0.14 16.95 ± 3.61 0.30 ± 0.05 6.86 ± 2.38 1.18 ± 0.15 0.25 ± 0.00 3.49 ± 2.17 1.68 ± 0.11
hammer-cloned-v1 8.90 ± 4.04 8.72 ± 3.28 0.96 ± 0.30 10.74 ± 5.54 0.32 ± 0.03 11.63 ± 1.70 48.16 ± 6.20 12.67 ± 15.02 0.27 ± 0.01 2.74 ± 0.22
hammer-expert-v1 127.89 ± 0.57 128.15 ± 0.66 33.31 ± 47.65 129.08 ± 0.26 0.93 ± 1.12 129.76 ± 0.37 134.74 ± 0.30 91.74 ± 47.77 69.44 ± 47.00 127.39 ± 0.10

relocate-human-v1 0.59 ± 0.27 0.16 ± 0.14 -0.29 ± 0.01 1.77 ± 0.84 1.03 ± 0.20 1.22 ± 0.28 3.70 ± 2.34 -0.18 ± 0.14 0.05 ± 0.02 0.08 ± 0.02
relocate-cloned-v1 0.45 ± 0.31 0.74 ± 0.45 -0.02 ± 0.04 0.39 ± 0.13 -0.07 ± 0.02 1.78 ± 0.70 9.25 ± 2.56 0.10 ± 0.04 4.11 ± 1.39 0.34 ± 0.09
relocate-expert-v1 110.31 ± 0.36 109.77 ± 0.60 0.23 ± 0.27 111.21 ± 0.32 0.03 ± 0.10 110.12 ± 0.82 111.14 ± 0.23 -0.07 ± 0.08 98.32 ± 3.75 106.49 ± 0.30

Adroit avg 58.92 54.58 20.51 67.69 13.65 62.62 69.71 27.49 33.88 52.60

Total avg 51.27 55.21 54.60 76.93 55.84 76.53 90.12 54.82 60.10 54.57

Observation 4: Hyperparameters are not always transferable between Deep Learning frame-
works.

4.2 Offline-to-Online

We also implement the following algorithms in offline-to-online setup: CQL (Kumar et al., 2020),
IQL (Kostrikov et al., 2021), AWAC (Nair et al., 2020), SPOT (Wu et al., 2022) Cal-QL (Nakamoto
et al., 2023), ReBRAC (Tarasov et al., 2023). Inspired by Nakamoto et al. (2023), we evaluate
algorithms on AntMaze and Adroit Cloned datasets11. Each algorithm is trained offline over 1 million
steps and tuned using online transitions over another 1 million steps. The AntMaze tasks are evaluated
using 100 episodes, while the Adroit tasks are tested with ten episodes.

Table 3: Normalized performance of algorithms after offline pretraining and online finetuning on
D4RL averaged over 4 random seeds.

Task Name AWAC CQL IQL SPOT Cal-QL ReBRAC

antmaze-umaze-v2 52.75 ± 8.67 → 98.75 ± 1.09 94.00 ± 1.58 → 99.50 ± 0.87 77.00 ± 0.71 → 96.50 ± 1.12 91.00 ± 2.55 → 99.50 ± 0.50 76.75 ± 7.53 → 99.75 ± 0.43 98.00 ± 1.82 → 74.75 ± 49.17
antmaze-umaze-diverse-v2 56.00 ± 2.74 → 0.00 ± 0.00 9.50 ± 9.91 → 99.00 ± 1.22 59.50 ± 9.55 → 63.75 ± 25.02 36.25 ± 2.17 → 95.00 ± 3.67 32.00 ± 27.79 → 98.50 ± 1.12 73.75 ± 15.32 → 98.0 ± 3.36
antmaze-medium-play-v2 0.00 ± 0.00 → 0.00 ± 0.00 59.00 ± 11.18 → 97.75 ± 1.30 71.75 ± 2.95 → 89.75 ± 1.09 67.25 ± 10.47 → 97.25 ± 1.30 71.75 ± 3.27 → 98.75 ± 1.64 87.5 ± 4.35 → 98.0 ± 1.82
antmaze-medium-diverse-v2 0.00 ± 0.00 → 0.00 ± 0.00 63.50 ± 6.84 → 97.25 ± 1.92 64.25 ± 1.92 → 92.25 ± 2.86 73.75 ± 7.29 → 94.50 ± 1.66 62.00 ± 4.30 → 98.25 ± 1.48 85.25 ± 2.5 → 98.75 ± 0.5
antmaze-large-play-v2 0.00 ± 0.00 → 0.00 ± 0.00 28.75 ± 7.76 → 88.25 ± 2.28 38.50 ± 8.73 → 64.50 ± 17.04 31.50 ± 12.58 → 87.00 ± 3.24 31.75 ± 8.87 → 97.25 ± 1.79 68.5 ± 7.1 → 31.5 ± 38.75
antmaze-large-diverse-v2 0.00 ± 0.00 → 0.00 ± 0.00 35.50 ± 3.64 → 91.75 ± 3.96 26.75 ± 3.77 → 64.25 ± 4.15 17.50 ± 7.26 → 81.00 ± 14.14 44.00 ± 8.69 → 91.50 ± 3.91 67.0 ± 12.24 → 72.25 ± 48.18

AntMaze avg 18.12 → 16.46 (-1.66) 48.38 → 95.58 (+47.20) 56.29 → 78.50 (+22.21) 52.88 → 92.38 (+39.50) 53.04 → 97.33 (+24.29) 79.99 → 78.87(-1.11)

pen-cloned-v1 88.66 ± 15.10 → 86.82 ± 11.12 -2.76 ± 0.08 → -1.28 ± 2.16 84.19 ± 3.96 → 102.02 ± 20.75 6.19 ± 5.21 → 43.63 ± 20.09 -2.66 ± 0.04 → -2.68 ± 0.12 74.04 ± 13.82 → 138.15 ± 3.71
door-cloned-v1 0.93 ± 1.66 → 0.01 ± 0.00 -0.33 ± 0.01 → -0.33 ± 0.01 1.19 ± 0.93 → 20.34 ± 9.32 -0.21 ± 0.14 → 0.02 ± 0.31 -0.33 ± 0.01 → -0.33 ± 0.01 0.06 ± 0.04 → 102.38 ± 9.54
hammer-cloned-v1 1.80 ± 3.01 → 0.24 ± 0.04 0.56 ± 0.55 → 2.85 ± 4.81 1.35 ± 0.32 → 57.27 ± 28.49 3.97 ± 6.39 → 3.73 ± 4.99 0.25 ± 0.04 → 0.17 ± 0.17 6.53 ± 3.86 → 124.65 ± 8.51
relocate-cloned-v1 -0.04 ± 0.04 → -0.04 ± 0.01 -0.33 ± 0.01 → -0.33 ± 0.01 0.04 ± 0.04 → 0.32 ± 0.38 -0.24 ± 0.01 → -0.15 ± 0.05 -0.31 ± 0.05 → -0.31 ± 0.04 0.69 ± 0.71 → 6.96 ± 5.3

Adroit Avg 22.84 → 21.76 (-1.08) -0.72 → 0.22 (+0.94) 21.69 → 44.99 (+23.3) 2.43 → 11.81 (+9.38) -0.76 → -0.79 (-0.03) 20.33 → 93.03 (+72.7)

Total avg 20.01 → 18.58 (-1.43) 28.74 → 57.44 (+28.7) 42.45 → 65.10 (+22.65) 32.70 → 60.15 (+27.45) 31.52 → 58.08 (+26.56) 56.12 → 84.53 (+28.41)

The scores, normalized after the offline stage and online tuning, are reported in Table 3. We also
provide finetuning cumulative regret proposed by Nakamoto et al. (2023) in Table 4. Cumulative
regret is calculated as (1 − average success rate)12. It is bounded between 0 and 1, indicating the
range of possible values. Lower values of cumulative regret indicate better algorithm efficiency. The
performance profiles and probability of improvement of ReBRAC over other algorithms after online
finetuning are presented in Figure 3.

11Note, Nakamoto et al. (2023) used modified Cloned datasets while we employ original data from D4RL
because these datasets are more common to for benchmarking.

12As specified by the authors: https://github.com/nakamotoo/Cal-QL/issues/1
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Table 4: Cumulative regret of online finetuning calculated as 1− average success rate averaged over
4 random seeds.

Task Name AWAC CQL IQL SPOT Cal-QL ReBRAC

antmaze-umaze-v2 0.04 ± 0.01 0.02 ± 0.00 0.07 ± 0.00 0.02 ± 0.00 0.01 ± 0.00 0.10 ± 0.20
antmaze-umaze-diverse-v2 0.88 ± 0.01 0.09 ± 0.01 0.43 ± 0.11 0.22 ± 0.07 0.05 ± 0.01 0.04 ± 0.02
antmaze-medium-play-v2 1.00 ± 0.00 0.08 ± 0.01 0.09 ± 0.01 0.06 ± 0.00 0.04 ± 0.01 0.02 ± 0.00
antmaze-medium-diverse-v2 1.00 ± 0.00 0.08 ± 0.00 0.10 ± 0.01 0.05 ± 0.01 0.04 ± 0.01 0.03 ± 0.00
antmaze-large-play-v2 1.00 ± 0.00 0.21 ± 0.02 0.34 ± 0.05 0.29 ± 0.07 0.13 ± 0.02 0.14 ± 0.05
antmaze-large-diverse-v2 1.00 ± 0.00 0.21 ± 0.03 0.41 ± 0.03 0.23 ± 0.08 0.13 ± 0.02 0.29 ± 0.45

AntMaze avg 0.82 0.11 0.24 0.15 0.07 0.10

pen-cloned-v1 0.46 ± 0.02 0.97 ± 0.00 0.37 ± 0.01 0.58 ± 0.02 0.98 ± 0.01 0.08 ± 0.01
door-cloned-v1 1.00 ± 0.00 1.00 ± 0.00 0.83 ± 0.03 0.99 ± 0.01 1.00 ± 0.00 0.18 ± 0.06
hammer-cloned-v1 1.00 ± 0.00 1.00 ± 0.00 0.65 ± 0.10 0.98 ± 0.01 1.00 ± 0.00 0.12 ± 0.03
relocate-cloned-v1 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.9 ± 0.06

Adroit avg 0.86 0.99 0.71 0.89 0.99 0.32

Total avg 0.84 0.47 0.43 0.44 0.44 0.19
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Figure 3: (a) Performance profiles after online tuning (b) Probability of improvement of ReBRAC to
other algorithms after online tuning. The curves (Agarwal et al., 2021) are for D4RL benchmark

spanning AntMaze and Adroit cloned datasets.

AWAC, initially proposed for finetuning purposes, appeared to be the worst of the considered
algorithms, where the score is improved only on the most straightforward antmaze-umaze-v2 dataset.
At the same time, on other datasets, performances either stay the same or even drop.

Observation 5: AWAC does not benefit from online tuning on the considered tasks.

Cal-QL was proposed as a modification of CQL, which is expected to work better in offline-to-online
setting. However, in our experiments, after finetuning CQL obtained scores which are not very
different from Cal-QL. At the same time, we could not make both algorithms solve Adroit tasks13.

Observation 6: There is no big difference between CQL and Cal-QL. On AntMaze, these
algorithms perform the best but work poorly on Adroit.

IQL starts with good offline scores on AntMaze, but it is less efficient in finetuning than other
algorithms except for AWAC. At the same time, IQL and ReBRAC are the only algorithms that
notably improve its scores after tuning on Adroit tasks, making them the most competitive offline-to-
online baselines considering the average score.

13The issues are Observations 3 and 4. Additional hyperparameters search is needed.
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Observation 7: Considering offline and offline-to-online results, IQL and ReBRAC appear to
be the strongest baselines on average.

5 Conclusion

This paper introduced CORL, a single-file implementation library for offline and offline-to-online rein-
forcement learning algorithms with configuration files and advanced metrics tracking support. In total,
we provided implementations of ten offline and six offline-to-online algorithms. All implemented
approaches were benchmarked on D4RL datasets, closely matching (sometimes overperforming) the
reference results, if available. Focusing on implementation clarity and reproducibility, we hope that
CORL will help RL practitioners in their research and applications.

This study’s benchmarking results and observations are intended to serve as references for future
offline reinforcement learning research and its practical applications. By sharing comprehensive logs,
researchers can readily access and utilize our results without having to re-run any of our experiments,
ensuring that the results are replicable.
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A Additional Benchmark Information
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Figure 4: Graphical representation of the normalized performance of the last trained policy on D4RL
averaged over 4 random seeds. (a) Gym-MuJoCo datasets. (b) Maze2d datasets (c) AntMaze datasets

(d) Adroit datasets
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Figure 5: Graphical representation of the normalized performance of the best trained policy on D4RL
averaged over 4 random seeds. (a) Gym-MuJoCo datasets. (b) Maze2d datasets (c) AntMaze datasets

(d) Adroit datasets
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Figure 6: Training curves for HalfCheetah task.
(a) Medium dataset, (b) Medium-expert dataset, (c) Medium-replay dataset
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Figure 7: Training curves for Hopper task.
(a) Medium dataset, (b) Medium-expert dataset, (c) Medium-replay dataset
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Figure 8: Training curves for Walker2d task.
(a) Medium dataset, (b) Medium-expert dataset, (c) Medium-replay dataset
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Figure 9: Training curves for Maze2d task.
(a) Medium dataset, (b) Medium-expert dataset, (c) Medium-replay dataset
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Figure 10: Training curves for AntMaze task.
(a) Umaze dataset, (b) Medium-play dataset, (c) Large-play dataset, (d) Umaze-diverse dataset, (e)

Medium-diverse dataset, (f) Large-diverse dataset
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Figure 11: Training curves for Pen task.
(a) Human dataset, (b) Colned dataset, (c) Expert dataset
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Figure 12: Training curves for Door task.
(a) Human dataset, (b) Colned dataset, (c) Expert dataset
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Figure 13: Training curves for Hammer task.
(a) Human dataset, (b) Colned dataset, (c) Expert dataset

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of total steps

3

2

1

0

1

2

3

4

No
rm

al
ize

d 
sc

or
e

relocate-human-v1

BC
10% BC
TD3+BC
AWAC
CQL
IQL
ReBRAC
SAC-N
EDAC
DT

(a)

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of total steps

2

0

2

4

6

No
rm

al
ize

d 
sc

or
e

relocate-cloned-v1

BC
10% BC
TD3+BC
AWAC
CQL
IQL
ReBRAC
SAC-N
EDAC
DT

(b)

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of total steps

0

20

40

60

80

100

No
rm

al
ize

d 
sc

or
e

relocate-expert-v1

BC
10% BC
TD3+BC
AWAC
CQL
IQL
ReBRAC
SAC-N
EDAC
DT

(c)

Figure 14: Training curves for Relocate task.
(a) Human dataset, (b) Colned dataset, (c) Expert dataset
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A.2 Offline-to-online
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Figure 15: Graphical representation of the normalized performance of the last trained policy on
D4RL after online tuning averaged over 4 random seeds.

(a) AntMaze datasets (b) Adroit datasets
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Figure 16: Training curves for AntMaze task during online tuning.
(a) Umaze dataset, (b) Medium-play dataset, (c) Large-play dataset, (d) Umaze-diverse dataset, (e)

Medium-diverse dataset, (f) Large-diverse dataset
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Figure 17: Training curves for Adroit Cloned task during online tuning.
(a) Pen, (b) Door, (c) Hammer, (d) Relocate
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Figure 18: Screenshots of Weights&Biases experiment tracking interface.

C License

Our codebase is released under Apache License 2.0. The D4RL datasets (Fu et al., 2020) are released
under Apache License 2.0.

18



D Experimental Details

We modify reward on AntMaze task by subtracting 1 from reward as it is done in previous works
except CQL and Cal-QL, where (0, 1) are mapped into (-5, 5).

We used original implementation of TD3 + BC14, SAC-N /EDAC15, SPOT16, ReBRAC17 and custom
implementations of IQL18 and CQL/Cal-QL19 as the basis for ours.

For most of the algorithms and datasets, we use default hyperparameters if available. Configuration
files for every algorithm and environment are presented in our GitHub repository. Hyperparameters
are also provided in subsection D.2.

All the experiments ran using V100 and A100 GPUs, which took approximately 5000 hours of
compute in total.

D.1 Number of update steps and evaluation rate

Following original work, SAC-N and EDAC are trained for 3 million steps (except AntMaze, which
is trained for 1 million steps) in order to obtain state-of-the-art performance and tested every 10000
steps. Decision Transformer (DT) training is splitted into datasets pass epochs. We train DT for 50
epochs on each dataset and evaluate every 5 epochs. All other algorithms are trained for 1 million
steps and evaluated every 5000 steps (50000 for AntMaze). We evaluate every policy for 10 episodes
on Gym-MuJoCo and Adroit tasks and for 100 for Maze2d and AntMaze tasks.

D.2 Hyperparameters

Table 5: BC and BC-N% hyperparameters. † used for the best trajectories choice.
Hyperparameter Value

BC hyperparameters
Optimizer Adam (Kingma & Ba, 2014)
Learning Rate 3e-4
Mini-batch size 256

Architecture
Policy hidden dim 256
Policy hidden layers 2
Policy activation function ReLU

BC-N% hyperparameters
Ratio of best trajectories used 0.1
Discount factor† 1.0
Max trajectory length† 1000

14https://github.com/sfujim/TD3_BC
15https://github.com/snu-mllab/EDAC
16https://github.com/thuml/SPOT
17https://github.com/tinkoff-ai/ReBRAC
18https://github.com/gwthomas/IQL-PyTorch
19https://github.com/young-geng/CQL

19

https://github.com/sfujim/TD3_BC
https://github.com/snu-mllab/EDAC
https://github.com/thuml/SPOT
https://github.com/tinkoff-ai/ReBRAC
https://github.com/gwthomas/IQL-PyTorch
https://github.com/young-geng/CQL


Table 6: TD3+BC hyperparameters.
Hyperparameter Value

TD3 hyperparameters

Optimizer Adam (Kingma & Ba, 2014)
Critic learning rate 3e-4
Actor learning rate 3e-4
Mini-batch size 256
Discount factor 0.99
Target update rate 5e-3
Policy noise 0.2
Policy noise clipping (-0.5, 0.5)
Policy update frequency 2

Architecture

Critic hidden dim 256
Critic hidden layers 2
Critic activation function ReLU
Actor hidden dim 256
Actor hidden layers 2
Actor activation function ReLU

TD3+BC hyperparameters α 2.5

Table 7: CQL and Cal-QL hyperparameters. Note: used hyperparameters are suboptimal on Adroit
for the implementation we provide.

Hyperparameter Value

SAC hyperparameters

Optimizer Adam (Kingma & Ba, 2014)
Critic learning rate 3e-4
Actor learning rate 1e-4
Mini-batch size 256
Discount factor 0.99
Target update rate 5e-3
Target entropy -1 · Action Dim
Entropy in Q target False

Architecture

Critic hidden dim 256
Critic hidden layers 5, AntMaze

3, otherwise
Critic activation function ReLU
Actor hidden dim 256
Actor hidden layers 3
Actor activation function ReLU

CQL hyperparameters

Lagrange True, Maze2d and AntMaze
False, otherwise

Offline α 1.0, Adroit
5.0, AntMaze
10.0, otherwise

Lagrange gap 5, Maze2d
0.8, AntMaze

Pre-training steps 0
Num sampled actions (during eval) 10
Num sampled actions (logsumexp) 10

Cal-QL hyperparameters
Mixing ratio 0.5
Online α 1.0, Adroit

5.0, AntMaze
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Table 8: IQL hyperparameters.
Hyperparameter Value

IQL hyperparameters

Optimizer Adam (Kingma & Ba, 2014)
Critic learning rate 3e-4
Actor learning rate 3e-4
Value learning rate 3e-4
Mini-batch size 256
Discount factor 0.99
Target update rate 5e-3
Learning rate decay Cosine
Deterministic policy True, Hopper Medium and Medium-replay

False, otherwise
β 6.0, Hopper Medium-expert

10.0, AntMaze
3.0, otherwise

τ 0.9, AntMaze
0.5, Hopper Medium-expert
0.7, otherwise

Architecture

Critic hidden dim 256
Critic hidden layers 2
Critic activation function ReLU
Actor hidden dim 256
Actor hidden layers 2
Actor activation function ReLU
Value hidden dim 256
Value hidden layers 2
Value activation function ReLU

Table 9: AWAC hyperparameters.
Hyperparameter Value

AWAC hyperparameters

Optimizer Adam (Kingma & Ba, 2014)
Critic learning rate 3e-4
Actor learning rate 3e-4
Mini-batch size 256
Discount factor 0.99
Target update rate 5e-3
λ 0.1, Maze2d, AntMaze

0.3333, otherwise

Architecture

Critic hidden dim 256
Critic hidden layers 2
Critic activation function ReLU
Actor hidden dim 256
Actor hidden layers 2
Actor activation function ReLU
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Table 10: SAC-N and EDAC hyperparameters.
Hyperparameter Value

SAC hyperparameters

Optimizer Adam (Kingma & Ba, 2014)
Critic learning rate 3e-4
Actor learning rate 3e-4
α learning rate 3e-4
Mini-batch size 256
Discount factor 0.99
Target update rate 5e-3
Target entropy -1 · Action Dim

Architecture

Critic hidden dim 256
Critic hidden layers 3
Critic activation function ReLU
Actor hidden dim 256
Actor hidden layers 3
Actor activation function ReLU

SAC-N hyperparameters

Number of critics 10, HalfCheetah
20, Walker2d
25, AntMaze
200, Hopper Medium-expert, Medium-replay
500, Hopper Medium

EDAC hyperparameters

Number of critics 10, HalfCheetah
10, Walker2d, AntMaze
50, Hopper

µ 5.0, HalfCheetah Medium-expert, Walker2d Medium-expert
1.0, otherwise
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Table 11: DT hyperparameters.
Hyperparameter Value

DT hyperparameters

Optimizer AdamW (Loshchilov & Hutter, 2017)
Batch size 256, AntMaze

4096, otherwise
Return-to-go conditioning (12000, 6000), HalfCheetah

(3600, 1800), Hopper
(5000, 2500), Walker2d
(160, 80), Maze2d umaze
(280, 140), Maze2d medium and large
(1, 0.5), AntMaze
(3100, 1550), Pen
(2900, 1450), Door
(12800, 6400), Hammer
(4300, 2150), Relocate

Reward scale 1.0, AntMaze
0.001, otherwise

Dropout 0.1
Learning rate 0.0008
Adam betas (0.9, 0.999)
Clip grad norm 0.25
Weight decay 0.0003
Total gradient steps 100000
Linear warmup steps 10000

Architecture

Number of layers 3
Number of attention heads 1
Embedding dimension 128
Activation function GELU
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Table 12: SPOT hyperparameters.
Hyperparameter Value

VAE hyperparameters

Optimizer Adam (Kingma & Ba, 2014)
Learning rate 1e-3
Mini-batch size 256
Number of iterations 105

KL term weight 0.5

VAE architecture

Encoder hidden dim 750
Encoder layers 3
Latent dim 2 × action dim
Decoder hidden dim 750
Decoder layers 3

TD3 hyperparameters

Optimizer Adam (Kingma & Ba, 2014)
Critic learning rate 3e-4
Actor learning rate 1e-4
Mini-batch size 256
Discount factor 0.99
Target update rate 5e-3
Policy noise 0.2
Policy noise clipping (-0.5, 0.5)
Policy update frequency 2

Architecture

Critic hidden dim 256
Critic hidden layers 2
Critic activation function ReLU
Actor hidden dim 256
Actor hidden layers 2
Actor activation function ReLU

SPOT hyperparameters λ 0.05, 0.1, 0.2, 0.5, 1.0, 2.0, AntMaze
1.0, Adroit
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