
Published as a conference paper at ICLR 2024

LEARNING MULTI-FACETED PROTOTYPICAL
USER INTERESTS

Nhu-Thuat Tran
Singapore Management University
Singapore
nttran.2020@phdcs.smu.edu.sg

Hady W. Lauw
Singapore Management University
Singapore
hadywlauw@smu.edu.sg

ABSTRACT

We seek to uncover the latent interest units from behavioral data to better learn user
preferences under the VAE framework. Existing practices tend to ignore the multi-
ple facets of item characteristics, which may not capture it at appropriate granularity.
Moreover, current studies equate the granularity of item space to that of user inter-
ests, which we postulate is not ideal as user interests would likely map to a small
subset of item space. In addition, the compositionality of user interests has received
inadequate attention, preventing the modeling of interactions between explanatory
factors driving a user’s decision. To resolve this, we propose to align user interests
with multi-faceted item characteristics. First, we involve prototype-based represen-
tation learning to discover item characteristics along multiple facets. Second, we
compose user interests from uncovered item characteristics via binding mechanism,
separating the granularity of user preferences from that of item space. Third, we
design a dedicated bi-directional binding block, aiding the derivation of compo-
sitional user interests. On real-world datasets, the experimental results demonstrate
the strong performance of our proposed method compared to a series of baselines.

1 INTRODUCTION

Preference learning lies at the heart of Collaborative Filtering (CF). A common thread among many
CF models Sedhain et al. (2015); Liang et al. (2018); Wang et al. (2019a); He et al. (2020) is rendering
a single vector for preference representation, ignoring the fact that user preferences are complex
and diverse. Thus, discovering hidden factors behind user preferences could provide insights into
what governs consumption patterns of users and thereby boosting the recommendation performance.

Nonetheless, preference learning is considerably challenging because of its unstructured nature. In
natural language, one can consider a word or a token as a modular unit. However, in CF, we first need
to obtain such ‘units‘, i.e., by deriving multiple vectors, each is a unit, of user’s preferences. Yet it is
quite elusive what structure and level of granularity these preference units should appropriately be, and
more importantly, how to obtain them in unsupervised setting based only on observed behavior data.

One means to derive a preference ‘unit’ is by grouping related items into a cluster that represents
a meaningful interest, then aggregating item representations to produce interest representation and
finally, jointly learning item grouping and recommendation under Variational AutoEncoder (VAE)
framework Ma et al. (2019); Tran & Lauw (2022); Wang et al. (2023a). Marrying item grouping-based
interest derivation with VAE inherits the best of both worlds. For one, multiple item groups increase
representation capacity of VAE to capture multiple intentions of users behind consumption behaviors
Ma et al. (2019). For another, interest derivation process inherits VAE’s strengths, including non-linear
probabilistic modeling, multinomial likelihood as a proxy of ranking loss, and information-theoretic
regularization term, which are shown to boost the recommendation accuracy Liang et al. (2018).

Despite showing improvement to a degree, existing VAE-based recommendation models involving
item grouping for interest derivation has several shortcomings. First, these studies ignore that items
may be grouped by arbitrary characteristics, owing to their many facets. For example, as depicted
in Figure 1, shoes can be grouped by multiple facets, e.g., brand, color or top height. Thus, a more
fine-grained structure that focuses on each facet would better reflect item space structure. Second, the
assumption that the number of interests per user equals the number of item groups is sub-optimal as a
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Figure 1: Discovering item space structure under multiple facets. In Figure (a), shoe space is a combi-
nation of facets, which requires as many as 12 clusters. Figures (b), (c), (d), each divides shoe space by
a single facet. The total number of clusters is 7, which is slightly more than half of that in Figure (a).

user only interacts with small subset of items among the whole item space. Third, the compositionality
of user interests has received less attention, which may not capture the complexity of user’s interest.

Towards addressing these shortcomings, we introduce FACETVAE, which stands for FACETed
Variational AutoEncoder, distinguishing itself by three key innovations. Firstly, to fully reveal
the structure of item space so as to better align with user interests, we discover multiple groups
underlying item space along multiple dimensions via prototype-based representation. For example,
three dimensions to group items in Figure 1 are brand, color or top height. Secondly, under each
dimension, we aggregate representations of user-adopted items belonging to a specific group, e.g.,
shoes assigned to Nike group under band dimension. The output is an array of low-level user
interests towards multiple item characteristics. These low-level interests are ingredients to construct
compositional (high-level) user interests. By this design, we separate the number of user interests
from that of item space granularity. Thirdly, we introduce a novel bi-directional binding block to
better derive compositional user interests, which includes prototype competition to explain low-level
interests and low-level interests competition to attend high-level interests.

Contributions. The primary contributions of this paper are three-fold. First, we propose to discover
item space structure under a multiple-facet lens to better derive compositional user interests from
uncovered item characteristics. Second, we introduce FACETVAE to improve VAE-based preference
learning. Our novelties include identifying multi-faceted item structure, binding compositional user
interests and bi-directional user interest binding. Third, we extensively conduct experiments on
real-world datasets to demonstrate the state-of-the-art recommendation accuracy of FACETVAE. In
addition, we provide a qualitative analysis to ease the understanding of FACETVAE’s inner working.

2 RELATED WORK

Multi-interest user modeling. The most popular method is item grouping, which has been explored
for Collaborative Filtering (CF) Ma et al. (2019), CF with side information Tran & Lauw (2022);
Wang et al. (2023a) and sequential recommendation Li et al. (2019); Cen et al. (2020); Xiao et al.
(2020); Tan et al. (2021a); Zhang et al. (2022); Wang & Shen (2022); Wang et al. (2022a). The second
method relies on representation learning on graph, i.e., DGCF Wang et al. (2020) divides user (item)
representation into K factors then uses routing mechanism to aggregate information from neighbors
to obtain multiple interests of user (item), DCCF Ren et al. (2023) leverages intent prototypes to
aggregate global context information at a graph embedding layer. The third method projects user
embedding vector into multiple spaces, each captures one aspect of their preferences Weston et al.
(2013); Tan et al. (2021b); Bao et al. (2022). Our work falls into item grouping-based approach yet is
more generalized by multi-faceted disentangling and binding compositional user interests.

Disentangled representation learning. The idea is to discover the factors of variation underlying
data Bengio et al. (2013). This principle has been applied in CF Ma et al. (2019); Wang et al. (2020);
Ren et al. (2023), sequential recommendation Ma et al. (2020); Zheng et al. (2021; 2022), side
information-aware recommendation Zhang et al. (2020); Tran & Lauw (2022); Wang et al. (2023a;b),
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citation recommendation Wang et al. (2022c), bundle recommendation Zhao et al. (2022). Our work is
close to MacridVAE Ma et al. (2019), DGCF Wang et al. (2020) and DCCF Ren et al. (2023). The pro-
posed FACETVAE and MacridVAE have in common micro-disentanglement, which does not appear
in DGCF and DCCF. FACETVAE generalizes MacridVAE by disentangling item space under multi-
faceted lens. Furthermore, FACETVAE binds low-level user’s interests into compositional ones, which
is another novelty. FACETVAE also relates to disentangling representation’s dimensions Higgins et al.
(2017); Kim & Mnih (2018); Chen et al. (2018); Locatello et al. (2019). Not only do we disentangle
single vector representation, but we also discover multiple clusters of item space under multiple facets.

Multiple clusters discovery. Prior arts on discovering multiple clusters under data Jain et al. (2008);
Zhao et al. (2017); Wang et al. (2018; 2019b); Yao et al. (2019) optimize a clustering objective,
merely aiming at grouping data points and therefore, they are widely different from ours. For one,
our clustering process is guided by a recommendation objective. For another, prior works assume
each data point is from a concept while we assume that each item interacts with different concepts
(prototypes of facets) to derive representation for a data point (a user).

Binding problem in neural network. The idea is to group relevant low-level features into
semantically meaningful high-level ones Greff et al. (2020), which has some commonality with ours.
A related problem is object-centric learning, aiming to derive representations for multiple objects in
the input image Locatello et al. (2020); Singh et al. (2022); Chang et al. (2022); Singh et al. (2023);
Jia et al. (2023). Our motivation differs from those of these mentioned works as we aim to derive
user’s interests from their adoptions for collaborative filtering task.

3 PRELIMINARIES

Our problem follows the typical settings of collaborative filtering, including M users and N items.
Let yui = 1 be an observed interaction between user u and item i and yui = 0 means no interaction has
been recorded between the two. Let xu = {i : yui = 1} be the set of interacted items of u. The target
is to predict the probability that a user u will interact with an item i based on u’s past interactions.

Problem Formulation. There exist complex patterns driving user’s item adoption behaviors.
Thus, uncovering these hidden explanatory factors would not only enhance interpretability of user
preferences but also provides pathway to improve recommendation task. As such, we seek for a set
of K vectors zu = {zuk ∈ Rd}Kk=1 representing K interests of user and K is a pre-defined number.

Multi-interest modeling under VAE framework. We briefly describe a representative work
MacridVAE Ma et al. (2019) for illustration. MacridVAE involves three main steps, item grouping,
user interest aggregating, and decoding and learning. First, a set of K prototypes m ∈ RK×d is
employed to group N items T ∈ RN×K into K groups, generating assignment matrix C ∈ RN×K .
Prototypes are randomly initialized and learned in data-driven manner. Second, given C and context
matrix E ∈ RN×denc

, MacridVAE aggregates a user’s adopted items belonging to a specific cluster
to produce a set of vectors {hu

k}Kk=1
1. Then an interest vector is sampled from Gaussian distribution

with parameters estimated via a neural network φ, i.e., (auk ,bu
k) = φ(hu

k) ∀k = 1, 2, ...,K.

C = ϕ( T·mT

τ ·||T||2·||m||2 ) =⇒ (auk ,bu
k) = φ(

∑
i∈xu Cik·Ei√∑
i∈xu (Cik)2

) =⇒ zuk ∼ N (
auk

||auk ||2
, [diag(σ0 · exp(− 1

2bu
k))]

2)

ϕ is Gumbel-Softmax Jang et al. (2017); Maddison et al. (2017) to approximate one-hot vector, i.e.,
if item i belongs to cluster k then Cik ≈ 1 and Cij ≈ 0 ∀j ̸= k. τ is a temperature hyper-parameter
to obtain more skewed distribution. σ0 is a hyper-parameter with value around 0.1. Thirdly, decoder
predicts score r(zuk) then normalize to obtain probability of user-item interaction.

r(zuk) = exp(
zuk · (Ti)

T

τdec · ||zuk ||2 · ||Ti||2
) =⇒ p(yui |xu,C) =

∑K
k=1 Cikr(zuk)∑N

i=1

∑K
k=1 Cikr(zuk)

Assignment matrix C is used to weight the prediction, i.e., if item i probably belongs to kth cluster, the
predicted score of item i by kth interest will be given the corresponding weight. The final prediction
score is summed over predictions of K user interests. Finally, MacridVAE’s learning objective
includes two terms: cross-entropy loss to reconstruct observed user-item interactions and Kullback-
Leibler divergence to regularize variational distribution of user interests with prior distribution.

1We skip bias vector when calculating hu
k to ease understanding.
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Figure 2: Architecture of FACETVAE. Input includes item IDs with shaded circles are adopted items
and dashed ones are not adopted items. FACETVAE groups items into multiple clusters under multiple
facets to derive low-level interests (dashed items are not considered), then composes them into high-
level one by binding block. KL divergence regularization is to disentangle representation dimensions.

Limitations. Existing VAE methods that seek to discover user interests via prototype-based item
grouping have three main shortcomings. First, multiple facets underlying item space are inadequately
uncovered. As in Figure 1, it requires to uncover three facets (color, brand, top height) as well as
facet-wise item groups, e.g., Nike vs. Adidas under brand facet, to fully model item space. Second,
the assumption that the granularity of item space equals to that of user interests, causes a dilemma.
On the one hand, a large number of item groups is required to model item space structure yet it is
exaggerated to model user interests as a user often only consumes a small subset of item space. On
the other hand, while a small number of item groups is reasonable for modeling user interests, it
is insufficient to capture item space structure, which might be multi-faceted as in Figure 1. Third, the
complexity of user interests has received inadequate attention. As multiple factors may influence a
user’s decision, the compositionality of user interests is crucial when deriving interest representations.

4 MULTI-FACETED PROTOTYPICAL USER INTERESTS LEARNING

Figure 2 illustrates FACETVAE, a solution for the mentioned shortcomings. The key innovations
are i) discovering item space structure along multiple facets; ii) binding compositional user interests
from discovered item characteristics; iii) composing user interests via a bi-directional binding block.

4.1 MULTI-FACETED ITEM SPACE STRUCTURE DISCOVERING

We aim at capturing the granularity of item space to better infer user preferences, e.g., uncovering three
facets (color, brand, top height) and their corresponding granularity, e.g., Adidas vs. Nike shoes under
brand facet in Figure 1. These facets are assumed to be latent and to be uncovered unsupervisedly.

To realize, we infer a set of F matrices C = {Cf}Ff=1, assuming F facets underlying item space.
Each Cf ∈ RN×J represents clustering of N items to J clusters under facet f . Here, we assume
J item groups under each facet. It is straightforward to apply our method when the number of
item groups under each facet differs. Moreover, due to the inaccessibility to the prior information
about facets behind data, we have assumed uniform facet distribution. This naturally holds as facets
underlying item space simultaneously exists. Multi-faceted item grouping brings two salient benefits.

Efficiently modeling item space. As illustrated in Figure 1 (a), one can use single facets to group items.
However, it requires the exaggerated number of groups, which scales exponentially with the number of
facets and the number of clusters per facet, i.e., J1×J2× ...×JF assuming Jf groups under f th facet.
Contrarily, multi-faceted item grouping only requires J1+J2+...+JF groups, a linear function of Jf .
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Composition of multiple facets. As being driven by many factors, user interests might include multi-
ple item characteristics, e.g., white low top Nike shoes or green high top Adidas shoes. Multi-faceted
item grouping enables composing such complicated interests from discovered items characteristics.

Concretely, we involve P ∈ RF×J×d as the prototype collection of F facets, Pf ∈ RJ×d be the
prototypes under f th facet. Prototypes are expected to convey a specific characteristic of item
space. For example, under brand facet, there are two prototypes Adidas and Nike. We assume
these prototypes are latent. They are updated in a data-driven manner and then used to aggregate
items having the same characteristic. In real-world scenarios where item category knowledge is
available, one could embed semantic information into these prototypes by classifying them into the
corresponding category labels. We perform facet-wise item grouping by estimating the assignment
score of item i to cluster j under f as

Cfij = ϕ([sfi1, sfi2, ..., sfiJ ]); sfij = TT
i Pfj/(τ · ||Ti||2 · ||Pfj ||2) (1)

Following Ma et al. (2019), ϕ is Gumbel-Softmax Maddison et al. (2017); Jang et al. (2017) to
approximate one-hot vector of the cluster distribution Cfi ∈ RJ of item i under facet f . sfij is
based on cosine similarity between item embedding vector Ti ∈ Rd and prototype Pfj ∈ Rd and
|| · ||2 is L2 norm. Using cosine similarity prevents all items are associated to a cluster with highest
magnitude ||Pfj ||2. τ is the temperature to concentrate the weight to the most similar cluster. By
calculating Equation 1 for F facets and N items, we obtain assignment score matrix C ∈ RF×N×J .

The output of Equation 1 satisfies
∑J

j=1 Cfij = 1 and Cfij ≥ 0. This naturally creates a competition
between J clusters, i.e., they compete to other J − 1 clusters for attending to an item i. For example,
under color facet in Figure 1, if green shoes are tied to cluster J , i.e., the assignment score of green
shoes to cluster J is high, which results in lower assignment scores of green shoes to other clusters.
Therefore, the nature of this competition enables grouping related items into meaningful clusters.

4.2 BINDING COMPOSITIONAL USER INTEREST REPRESENTATIONS

This section presents the derivation of user interests from the uncovered item space structure.

Low-level user interest representation. Intuitively, if a user adopts an item belonging to a specific
group, it is likely that they are interested in item characteristic captured by that group, motivating us
to derive user interest representation based on item group clues. The output is called low-level as it is
supposed to capture a single item characteristic, e.g., Nike shoes under brand facet.

Let hu
fj ∈ Rdenc

be low-level interest of user u towards characteristic j under facet f . hu
fj is derived

from user u’s interacted items given cluster distribution Cf , bias benc ∈ Rdenc

, activation function γ0

hu
fj = γ0(

∑
i∈xu

Cfij · Ei/
√
Z + benc) with Z =

∑
i∈xu

(Cfij)
2 (2)

Ei ∈ Rdenc

is the context vector used to derive interests. For simplicity, a default setting is denc = d.
Hu = {hu

fj}
F,J
f=1,j=1 ∈ RF×J×denc

captures J low-level user’s interests underlying F facets.

High-level user interest representation. A user’s decision is driven by multiple factors, e.g., brand
and/or color when they buy a new pair of shoes. Thus, modeling the composition of factors having
influence on a user’s decision is essential. We regard Hu as the ingredients to compose high-level
user’s interests. Formally, we employ a set of K prototypes denoted by Q ∈ RK×d. Q will retrieve
low-level user interests from Hu and then compose them into K high-level user interests.

Nevertheless, this is non-trivial task for a couple of reasons. For one, it demands a dedicated
mechanism that wisely binds low-level user interests. For example, low top and high top shoes should
be assigned to two different high-level interests as a pair of shoes do not simultaneously contain these
two characteristics. For another, high-level interests are required to be distinct to capture the diversity
of user preferences and alleviate the negative effect of noisy and redundant interests.

Bi-directional binding block. We present bi-directional binding mechanism as a solution. Not only
does it bind high-level user interests over low-level ones, but also it enables competition between
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low-level interests to attend to high-level counterparts. Given Q and Hu, our binding block works as

Au
fjk =

1

2
[softmax

1,2,...,K
(sim(hu

fj , w(Qk))/τ0) + softmax
1,2,...,J

(sim(hu
fj , w(Qk))/τ)]

vuk = γ(

F∑
f

1√
F × J

J∑
j

Au
fjkhu

fj) ∀k = 1, 2, ...,K

(3)

w is a linear projection. sim(·, ·) is cosine similarity. τ0, τ are hyper-parameters. γ is activation func-
tion. Each facet has the same weight 1/

√
F × J , modeling prior belief of uniform facet distribution.

Au
fjk is the binding score of low-level interest j under facet f to high-level interest k, consisting of the

softmax over K prototypes and the softmax over J clusters. Firstly, as output of softmax over K pro-
totypes are non-negative and sums to 1, this requires K prototypes to compete to attend low-level inter-
ests from Hu. Thus, it encourages high-level interests to be different from others to capture the diver-
sity of user’s preferences. Secondly, softmax over J clusters under each facet f creates another com-
petition between J clusters, which constraints each prototype to mainly bind to one item characteristic.
This constraint enables wisely binding for more interpretable interests, e.g., low top and high top shoes
are tied to different high-level interests as it is unnatural to combine these two features into one interest.

After obtaining high-level interest representation of u, we calculate an item-interest score matrix as

Bu
ik = softmax

1,2,...,K
(

∑
f,j Cfij × Au

fjk√
F × J

),Bu = {Bu
ik}

N,K
i=1,k=1 ∈ RN×K (4)

Until now we have C showing us the relations between items and clusters and Au capturing the
relations between clusters and user u’s interests. Therefore, Bu in Equation 4 describes the relations
between items and user u’s interests, which is used in prediction step in Equation 6.

4.3 MODEL LEARNING

Micro disentanglement. We follow the common practice in VAE literature Higgins et al. (2017);
Ma et al. (2019) to derive micro-disentanglement, i.e., disentangling dimensions of an interest
representation. Firstly, vuk in Equation 3 is processed by encoder g0 : Rdenc → R2d to estimate the
parameters of variational distribution µu

k ∈ Rd and σu
k ∈ Rd as following

(auk ,bu
k) = g0(vuk) =⇒ µu

k = auk/||auk ||2; σu
k = σ0 · exp(−

1

2
bu
k) (5)

σ0’s value is around 0.1 Ma et al. (2019). The final representation of kth interest of user
u, i.e., zuk ∈ Rd, is sampled from Gaussian distribution with estimated parameters, i.e.,
zuk ∼ N (µu

k , [diag(σ
u
k )]

2) ∀k = 1, 2, ...,K. A regularization term based on Kullback-
Leibler (KL) divergence is added to match the estimated variational distribution with prior
distribution, i.e., DKL(q(zu|xu,C)||p(zu)). In which, q(zu|xu,C) =

∏K
k=1 q(z

u
k |xu,C) =∏K

k=1 N (µu
k , [diag(σ

u
k )]

2) is variational distribution and p(zu) = N (0, (σ0)
2I) is factorized prior

distribution to achieve micro-disentanglement. DKL(q||p) → 0 when q and p matches.

Decoder. Given {zuk}Kk=1, decoder predicts the probability that user u interacts with item i as

p(yui ) =

∑K
k=1 Bu

ikr(zuk)∑N
i=1

∑K
k=1 Bu

ikr(zuk)
with r(zuk) = exp(sim(zuk ,Ti)/τdec) (6)

Ti is item i’s vector. sim(·, ·) is cosine similarity. τdec is the temperature hyper-parameter. p(yui )
is normalized over N items. Bu

ik from Equation 4 is used to weight the prediction of an item, i.e.,
higher weight is given to an item provided its higher level of similarity with current interest.

Learning objective. FACETVAE minimizes an objective summing over a batch of user Buser

L =
∑

u∈Buser

[Lu
recon + Lu

reg] =
∑

u∈Buser

[

N∑
i=1

−yui ln(p(y
u
i )) + βDKL(q(zu|xu,C)||p(zu))] (7)

For each user, Lu
recon is to reconstruct the observed interactions of user u via cross-entropy loss

as p(yui ) follows categorical distribution. Lu
reg is a regularization term as described in Section 4.3.

A hyper-parameter β is introduced to control the influence of regularization objective versus the
recommendation objective, similar to Multi-VAE Liang et al. (2018) and MacridVAE Ma et al. (2019).
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5 EXPERIMENTS

Datasets. We consider three real-world datasets: i) MovieLens-1M (ML-1M)2 (6,035 users, 3,126
movies, 574,376 ratings); ii) CiteULike-a3 (5,551 users, 16,945 ariticles, 204,929 interactions); iii)
Yelp4 (29,111 users, 22,121 businesses, 1,052,627 reviews). We regard movies/articles/businesses
as items and ratings/reviews as interactions. The implementation can be found in the link
https://github.com/PreferredAI/FacetVAE.

Competitors. We compare FACETVAE against closely related baselines, i.e., disentangled represen-
tation MacridVAE Ma et al. (2019), DGCF Wang et al. (2020), DCCF Ren et al. (2023); multi-vector
user representation DPCML Bao et al. (2022); VAE-based RecVAE Shenbin et al. (2020). We also
include recently developed Collaborative Filtering models, i.e., contrastive learning NCL Lin et al.
(2022), SimGCL Yu et al. (2022), representation theory-based DirectAU Wang et al. (2022b), graph-
based UltraGCN Mao et al. (2021b), cosine-contrastive loss-based SimpleX Mao et al. (2021a).

Hyper-parameter settings. To ensure fair comparison, we tune the hyper-parameters of baselines fol-
lowing original papers. Dimension d = 64 and the number of user interests K = 4, where applicable,
are fixed for all models. The details of hyper-parameter tuning is presented in supplementary materials.

Metrics. We report full ranking evaluation Zhao et al. (2020) of Recall and Normalized Discounted
Cumulative Gain (NDCG) Tamm et al. (2021) as recommendation metrics. Both metrics are truncated
at top 20 and top 50. Recall and NDCG are abbreviated as R and N in tables, respectively.

5.1 RECOMMENDATION PERFORMANCE COMPARISON

Table 1: Recommendation performance comparison. Boldfaced numbers are the highest while the
runners-up are underlined. ⋄ denotes statistical significance between the boldfaced and the underlined
on a paired t-test with p-value < 0.01. R and N stand for Recall and NDCG, respectively.

Model CiteULike-a Yelp ML-1M
R@20 R@50 N@20 N@50 R@20 R@50 N@20 N@50 R@20 R@50 N@20 N@50

SimpleX 0.2607 0.3857 0.1534 0.1865 0.1163 0.2116 0.0611 0.0857 0.2706 0.4262 0.1988 0.2486
NCL 0.2378 0.3654 0.1353 0.1688 0.1551 0.2624 0.0851 0.1130 0.2766 0.4409 0.2026 0.2557

DirectAU 0.2534 0.3842 0.1412 0.1751 0.1677 0.2763 0.0994 0.1274 0.2695 0.4209 0.1947 0.2428
SimGCL 0.2444 0.3706 0.1375 0.1703 0.1634 0.2711 0.0929 0.1207 0.2870 0.4537 0.2082 0.2623

UltraGCN 0.2575 0.3839 0.1497 0.1835 0.1114 0.2065 0.0576 0.0820 0.2836 0.4467 0.2079 0.2603
DGCF 0.2066 0.3348 0.1165 0.1499 0.1337 0.2375 0.0713 0.0981 0.2598 0.4228 0.1890 0.2414
DCCF 0.2210 0.3536 0.1245 0.1589 0.1537 0.2573 0.0881 0.1150 0.2694 0.4360 0.1990 0.2523

DPCML 0.2498 0.3770 0.1429 0.1759 0.1125 0.2094 0.0576 0.0824 0.2754 0.4319 0.2050 0.2553
RecVAE 0.2398 0.3481 0.1435 0.1725 0.1137 0.2104 0.0596 0.0844 0.2952 0.4607 0.2146 0.2678

MacridVAE 0.2744 0.3974 0.1632 0.1958 0.1794 0.2835 0.1134 0.1405 0.2925 0.4553 0.2138 0.2669

FACETVAE 0.2837⋄ 0.4100⋄ 0.1695⋄ 0.2029⋄ 0.1859⋄ 0.2901⋄ 0.1192⋄ 0.1463⋄ 0.2968 0.4586 0.2178⋄ 0.2707⋄

Table 1 reports the recommendation accuracy of FACETVAE and baselines. The results show that
FACETVAE achieves significantly higher accuracy than those of baselines on CiteULike-a and Yelp.
On ML-1M, FACETVAE demonstrates better performance than RecVAE, the best baseline, w.r.t. 3
out of 4 metrics. Notably, FACETVAE only requires roughly 1/3 of RecVAE’s number of parameters
(∼1.2M vs. ∼3.6M) to get the reported results, demonstrating the efficiency of FACETVAE.

There are two key takeaways. First, VAE-based models are top performing on all chosen datasets,
demonstrating the strength of VAE framework that FACETVAE inherits. For example, on CiteULike-a
and Yelp, MacridVAE achieves much better performance than both disentangled/multi-interest model-
ing models (DGCF, DPCML, DCCF) and single representation models (SimpleX, DirectAU, SimGCL,
inter alia). On ML-1M, despite modeling user interest as a single vector, RecVAE outperforms DGCF,
DCCF and DPCML which disentangle multiple factors of user interests. Second, prototype-based rep-
resentation learning plays the key role in modeling multiple user interests under VAE framework. This
is evidenced by the markedly performance gap between MacridVAE (using prototype-based represen-
tation) and RecVAE (without prototype-based representation) on CiteULike-a and Yelp. FACETVAE

2https://grouplens.org/datasets/movielens/
3http://wanghao.in/CDL.htm
4https://www.yelp.com/dataset
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Figure 3: Item space structures produced by FACETVAE on ML-1M. Each plot shows multiple
clusters of a facet. Items are colored according to argmaxj Cfij in Equation 1. It can be seen that
green and purple groups of the first facet (the first plot) are grouped into one cluster (genoa lemon) in
the second facet (the second plot). Contrarily, the brown group of the first facet is divided into black
and blue groups in the second facet. In the third facet, these two are clustered into orange group.

generalizes MacridVAE via disentangling prototype-based representation under multi-faceted lens,
achieving higher accuracy than both MacridVAE and RecVAE on three datasets.

5.2 MODEL STUDIES

Efficiency Analysis. FACETVAE and the closest baseline MacridVAE are bounded by the computa-
tional cost of grouping N items into clusters. While it is O(KN) complexity in MacridVAE given K
clusters, that of FACETVAE is O(FJN + FJK). In which O(FJN) is the complexity of grouping
items under F facets each has J clusters and O(FJK) is the complexity of binding block. Despite
requiring higher computational demand, i.e., F × J is larger than K, FACETVAE’s complexity is
still a linear function of number of items N as binding block’s complexity does not depend on N .
More importantly, FACETVAE achieves significantly higher accuracy than MacridVAE thanks to
multi-faceted item grouping. To verify, we report the running time of FACETVAE and MacridVAE
on Yelp dataset. On the other datasets, the running time of two models are roughly the same. For
MacridVAE, K is 16 as it produces the best results. For FACETVAE, K is 8 achieving higher Recall
and comparable NDCG compared to MacridVAE (as presented in supplementary materials). Then,
the training time (second/epoch) and inference time (second) of FACETVAE are 10.068s and 2.311s,
respectively. Those of MacridVAE are 9.736s and 1.963s, respectively. Clearly, FACETVAE only
requires slightly higher running time than MacridVAE yet achieves better overall performance.

Table 2: Multi-faceted item space disentangling. Given F × J = 12 prototypes, the total number of
item characteristics is JF . Boldfaced number is the best while runner-up is underlined per column.

Setting ML-1M CiteULike-a Yelp
F J R@20 R@50 N@20 N@50 R@20 R@50 N@20 N@50 R@20 R@50 N@20 N@50

1 12 0.2936 0.4577 0.2110 0.2646 0.2824 0.4069 0.1692 0.2022 0.1804 0.2857 0.1146 0.1419
2 6 0.2951 0.4579 0.2131 0.2663 0.2819 0.4077 0.1688 0.2021 0.1848 0.2912 0.1180 0.1456
3 4 0.2968 0.4575 0.2168 0.2693 0.2820 0.4076 0.1690 0.2023 0.1856 0.2912 0.1189 0.1463
4 3 0.2964 0.4570 0.2173 0.2697 0.2806 0.4086 0.1688 0.2026 0.1850 0.2885 0.1200 0.1470
6 2 0.2934 0.4546 0.2152 0.2676 0.2778 0.4040 0.1661 0.1997 0.1820 0.2831 0.1191 0.1455

Multi-faceted item space disentangling. We fix the total number of prototypes used to group
items is 12 then we vary F and J satisfying F × J = 12. When F = 1, it reduces to single-faceted
item grouping. Table 2 presents the results. The key takeaways are first, grouping item space under
multiple facets, i.e., F > 1, results in overall higher recommendation accuracy, demonstrating its
ability to discover fine-grained structure of item space. Second, setting F and J of which JF is
large, e.g., F = 3, J = 4 or F = 4, J = 3, generally results in better performance. These results are
consistent with our hypothesis in Section 4.1 that the number of item characteristics FACETVAE can
discover is up to JF . The more item characteristics are discovered, the better modeling user interest is.

Item space disentangling visualization. We visualize the item groups produced by FACETVAE
in Figure 3 to qualitatively examine whether FACETVAE can discover multi-faceted item space
structure. We use t-SNE van der Maaten & Hinton (2008) to visualize item representations on

8



Published as a conference paper at ICLR 2024

2D space. Evidently, the neighbors of items, i.e., those with the same color, across facets vary,
demonstrating that FACETVAE is capable of disentangling multi-faceted item space.

Table 3: Analysis of low-level and high-level user’s interests. F = J = 3 for CiteULike-a and ML-1M
while F = J = 4 for Yelp. Boldfaced number is the highest in each column. (*) refers to Equation 3.

User
Interest

Binding block
setting

Number of
user interests

ML-1M CiteULike-a Yelp
R@20 N@20 R@20 N@20 R@20 N@20

low level removed F × J 0.2826 0.2091 0.2710 0.1628 0.1835 0.1242

high level

softmax over K prototypes only (*) 4 0.2962 0.2148 0.2685 0.1590 0.1818 0.1159
softmax over J clusters only (*) 4 0.2908 0.2133 0.2820 0.1692 0.1794 0.1249

bi-directional 4 0.2968 0.2178 0.2837 0.1695 0.1859 0.1192
bi-directional 8 0.2948 0.2171 0.2837 0.1696 0.1846 0.1214

Low-level vs. high-level user interests. Table 3 presents results when using low-level and high-level
user interests (Section 4.2) for recommendation. Clearly, leveraging high-level user interests results
in higher accuracy as they are more expressive than low-level ones. For instance, using 4 high-level
user interests leads to much better accuracy than using 9 low-level user interests on CiteULike-a
and ML-1M. On Yelp, we observe the same trend yet it depends on the setting of binding block.

Analysis of binding block. We also study binding block via reported results in Table 3. Firstly,
bi-directional binding obviously achieves larger performance than uni-directional counterpart, i.e., per-
forming softmax over K prototypes or J clusters only. Secondly, bi-directional binding’s effect is data-
dependent. While softmax over K prototypes has stronger influence on ML-1M than softmax over
J clusters, we observe the opposite trend on CiteULike-a. On Yelp, this effect is metric-dependent.

Interpretability of user’s interests. We study the interpretability of user’s interests produced by
FACETVAE. After training, we retrieve three items with highest score predicted by each interest
of a user (see Equation 6) in Table 4. These examples suggest that FACETVAE has the potential
to discover the multiple interpretable interests of users. However, we note that user’s interests are
derived in an unsupervised manner, which may result in one interest with many items dominates
the less popular ones or ambiguous interests.

Due to limited space, we present more experimental results to understand FACETVAE, including
analysis of number of user interests K, values of F and J versus recommendation performance and
the influence of micro-disentanglement on recommendation accuracy, in supplementary materials.

6 CONCLUSION

We introduce FACETVAE to resolve shortcomings of VAE-based disentangled recommendation
models, including inadequately item space discovering, same level of granularity between user
interests and item space assumption, which causes a dilemma and improperly user interest complexity
handling. FACETVAE is characterized by three main innovations 1) disentangling item space
under multi-faceted manner, 2) binding compositional user interests from low-level ones discovered
from item space and 3) effectively binding user interests via bi-directional binding block. Future
work extending FACETVAE includes improving the efficiency of multi-faceted item grouping and
discovering the number of facets and the number of clusters per facet in a data-driven manner.

Table 4: Top three items (movies) with highest score predicted by multiple interests of a user on
ML-1M. We present movie’s title and tags (inside parentheses). Three interests have their own
semantics, i.e., Star Wars series, comedy movies, and drama movies, respectively.

Interest 1 Interest 2 Interest 3

1. Star Wars: Episode V - The Empire Strikes Back
(Action | Adventure | Drama | Sci-Fi | War)
2. Star Wars: Episode VI - Return of the Jedi
(Action | Adventure | Drama | Sci-Fi | War)
3. Star Wars: Episode IV - A New Hope
(Action | Adventure | Drama | Sci-Fi | War)

1. High Fidelity
(Comedy)
2. Wonder Boys
(Comedy | Drama)
3. American Beauty
(Comedy | Drama)

1. American Beauty
(Comedy | Drama)
2. Braveheart
(Action | Drama | War)
3. The Shawshank Redemption
(Drama)
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A SUPPLEMENTARY MATERIALS

A.1 DATASETS

We conduct experiments on three real-world datasets. MovieLens-1M (ML-1M)5 (6,035 users,
3,126 items, 574,376 interactions) contains user’s ratings for movies. A review that a user wrote
for an item is considered an interaction between the two. CiteULike-a6 (5,551 users, 16,945 items,
204,929 interactions) contains academic articles and users’ log history. An interaction between a
user and an item (article) is a user saving an article to their collection. Yelp7 (29,111 users, 22,121
items, 1,052,627 interactions) contains reviews (interactions) written by users for businesses (items).
Due to its huge volume, we only consider interactions from 2016 onwards. We pre-process ML-1M
following Ma et al. (2019) and Yelp following Lin et al. (2022) and keep CiteULike-a dataset as
the original. We construct training, validation and test sets by randomly dividing users’ interactions
with ratio 8:1:1, respectively. All cold-starts users and items in validation and test sets are discarded.

A.2 IMPLEMENTATION DETAILS

Algorithm 1 presents detailed training procedure of FACETVAE.

The code, data and related materials can be found in the link https://github.com/
PreferredAI/FacetVAE

A.3 EXPERIMENTS

A.3.1 DETAILS ON COMPARATIVE METHODS

• MacridVAE Ma et al. (2019) disentangles macro and micro levels of user’s interests based on
β-VAE.

• DGCF Wang et al. (2020) iteratively refines multiple factor representations of users and items
to disentangle their multiple interests from interaction graph.

• DPCML Bao et al. (2022) improves Collaborative Metric Learning by using multiple
representations for users.

• RecVAE Shenbin et al. (2020) improves VAE-based CF model by presenting novel composite
prior distribution, a new method to set β in β-VAE and an alternative training algorithm.

• DirectAU Wang et al. (2022b) improves representation learning in CF by optimizing uniformity
and alignment.

• NCL Lin et al. (2022) enhances graph-based CF by incorporating structural and semantic neighbors
via contrastive learning.

• SimpleX Mao et al. (2021a) improves collaborative filtering by designing novel cosine contrastive
loss and incorporating large negative sampling.

• SimGCL Yu et al. (2022) proposes a novel contrastive learning approach for CF by augmenting
random noise to representations and regulating their uniformity.

• UltraGCN Mao et al. (2021b) approximates message passing limit of message passing layer and
leverage item-item relation information to improves graph-based CF.

• DCCF Ren et al. (2023) leverages an adaptive approach for self-supervised augmentation to
disentangles intents behind user-item interactions.

A.3.2 HYPER-PARAMETER SETTINGS

For FACETVAE, we tune the hyper-parameters in the same range as MacridVAE. Dropout rate is 0.5.
σ0 ∈ {0.05, 0.075, 0.1}. β = min(β0,

update
T ), with β0 ∈ {0.01, 0.05, 0.1, 0.2, 0.5, 1} and update

is the number of model’s parameters updates, T ∈ {0.1k, 0.5k, 1k, 5k, 10k, 20k}. τ ∈ [0.1, 0.2],
τdec ∈ {0.1, 0.15, 0.2}, τ0 ∈ {0.1, 0.2, 0.5, 1, 5, 8}. γ is tanh while γ0 is LeakyReLU(0.3) for

5https://grouplens.org/datasets/movielens/
6http://wanghao.in/CDL.htm
7https://www.yelp.com/dataset
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Algorithm 1: Training procedure of FACETVAE
Input:
• User interacted items xu = {i : yu

i = 1}
• Model parameters Θ

– item matrix in decoder T ∈ RN×d, context matrix E ∈ RN×denc

and bias vector benc

– clustering prototype representations P ∈ RF×J×d and binding prototype representations Q ∈ RK×d

– parameters of linear projection layer w : Rd → Rdenc

and neural network g0 : Rdenc

→ R2d

• Number of facets F , number of clusters per facet J , number of interests K

Output:
• Updated Θ

1 Function Multi-faceted item grouping (T, P)
2 for f = 1 to F do
3 for i = 1 to N do
4 Cfij = Gumbel − Softmax([sfi1, sfi2, ..., sfiJ ]) with sfij =

(Ti)
T Pfj/(τ · ||Ti||2 · ||Pfj ||2) ∀j = 1, 2, ..., J

5 return C ∈ RF×N×J

6 Function Low-level interest aggregation(xu,C)
7 for f = 1 to F do
8 for j = 1 to J do
9 hu

fj = γ0(
∑

i∈xu Cfij ·Ei√
Z

+ benc) with Z =
∑

i∈xu (Cfij)
2 // γ0 - non-linear

activation function

10 return Hu = {hu
fj} ∀f = 1, 2, ..., F ;∀j = 1, 2, ..., J , Hu ∈ RB×F×J×denc

// B - batch
size

11 Function Binding block(Hu = {hu
fj}F,J

f=1,j=1)
12 for k = 1 to K do
13 for f = 1 to F do
14 for j = 1 to J do
15 Au

fjk = 1
2
[softmaxK(sim(hu

fj , w(Qk))/τ0) + softmaxJ(sim(hu
fj , w(Qk))/τ)]

// sim(·, ·) is cosine similarity

16 vu
k = γ(

∑F
f

1√
F×J

∑J
j Au

fjkhu
fj) // γ - non-linear activation function

17 Bu
ik = softmaxK(

∑
f,j Cfij×Au

fjk√
F×J

) ∀i = 1, 2, ..., N

18 return Vu = {vuk}Kk=1 ∈ RB×K×denc

; Bu ∈ RB×N×K // B - batch size

19 Function Encoder(Vu = {vuk}Kk=1)
20 for k = 1 to K do
21 (au

k , bu
k) = g0(vu

k)
22 µu

k = au
k/||au

k ||2
23 σu

k = σ0 · exp(− 1
2

bu
k)

24 zuk ∼ N (µu
k , [diag(σ

u
k )]

2)

25 return {zuk}Kk=1 ∈ RB×K×d

26 Function Decoder ({zuk}Kk=1, Bu)
27 for k = 1 to K do
28 r(zuk) = exp(sim(zuk ,Ti)/τdec) // sim(·, ·) is cosine similarity

29 p(yu
i ) =

∑K
k=1 Bu

ikr(zuk )∑N
i=1

∑K
k=1

Bu
ik

r(zu
k
)
∀i = 1, 2, ..., N

30 return {p(yu
i )}Ni=1

31 C←Multi− faceted item grouping (T,P)
32 Hu ← Low − level interest aggregation(xu,C)
33 Vu,Bu ← Binding block(Hu)

34 {zuk}Kk=1 ← Encoder(Vu)

35 {p(yu
i )}Ni=1 ← Decoder({zuk}Kk=1,Bu)

36 Calculate loss L =
∑

u∈Buser [
∑N

i=1−y
u
i ln(p(y

u
i )) + βDKL(q(zu|xu,C)||p(zu))]

37 Update Θ to minimize L
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Figure 4: Performance of FACETVAE (red line) w.r.t. number of interests K. We include results of
MacridVAE (blue line) for contrasting. Small circles are Recall@20 while triangles are NDCG@20.

ML-1M and tanh for other datasets. denc = d = 64 for CiteULike-a and Yelp and denc = 300 for
ML-1M. F = J = 3 for CiteULike-a and ML-1M and F = J = 4 for Yelp. All models are trained
on NVIDIA RTX 2080 Ti GPU machine ten times with different random seeds. For FACETVAE, we
set maximal number of epochs is 200 and stop training after 15 epochs without improving Recall@20
on validation set. Averaged results over ten runs on test set are reported.

A.3.3 ADDITIONAL RESULTS

Number of user’s interests K. We analyze performance of FACETVAE and MacridVAE w.r.t.
various numbers of user’s interests K in Figure 4. There are three key takeaways. First, FACETVAE
achieves higher recommendation accuracy than MacridVAE across various values of K w.r.t. most of
the metrics, except NDCG@20 with K = 16. These evidences ascertain that multi-faceted item space
disentangling adopted in FACETVAE can discover more useful item characteristics for modeling user
interests. Second, FACETVAE is robust to the number of user interests, which is evidenced in Figure
4 (a) and (b), i.e., FACETVAE’s performance does not get hurted when increasing the number of user
interests. Contrarily, MacridVAE assumes the number of user’s interests equals to the number of item
groups, which causes representation dilemma, i.e., a small number of item groups might be sufficient
to capture user’s interests yet insufficient to model item space structure, while a large number of
item groups might be sufficient to describe item space but might cause redundant and noisy user
interests. This dilemma negatively affects model performance, which is shown in Figure 4 (a) and
(b) on CiteULike-a and ML-1M, respectively. Third, FACETVAE demonstrates its efficiency when
dealing with large dataset. It is clear in Figure 4 (c) that FACETVAE with K = 4 achieves higher
Recall@20 than MacridVAE with K = 10, K = 12 or K = 16 on the largest dataset Yelp. A similar
trend is also observed on NDCG@20 when setting K = 6 or K = 8 for MacridVAE and K = 4 for
FACETVAE. It is note that setting a large value of K is prohibitively expensive for huge datasets
when predicting interactions between users and million of items as the complexity scales with K.

Analysis of F and J . We investigate model performance w.r.t. various values of the number of facets
F and the number of item groups under each facet J in Figure 5. The key observations are first, the
values of F and J are data-dependent, e.g., on CiteULike-a and ML-1M, setting F = 3 and J = 3
achieves highest results while on Yelp Recall favors F = 3 and J = 4 or J = 5 and NDCG prefers
F = 5 and J = 4. Second, small datasets prefer small values of F and J while large dataset favors
large values of these two. This observation is expected as large data is usually more complicated in
terms of item space structure. Last but not least, large values of F and J might result in redundant
and noisy discovered item characteristics, which negatively affecting model performance.

Micro-disentanglement vs. Recommendation Accuracy. As described in the main text, β controls
the level of disentanglement between dimensions of representation vector. The value of β follows
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(a) Recall@20 on CiteULike-a (b) Recall@20 on ML-1M (c) Recall@20 on Yelp

(d) NDCG@20 on CiteULike-a (e) NDCG@20 on ML-1M (f) NDCG@20 on Yelp

Figure 5: FACETVAE’s performance w.r.t. F and J .
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Figure 6: Performance w.r.t. number of annealing steps T . The higher T is, the lower level of
disentanglement is. Circle symbols are Recall@20 while triangle symbols are NDCG@20.

an annealing procedure, i.e., min(β0,
update

T ) as in Ma et al. (2019). β0 is the maximal value of β,
update is the number of model’s parameters update by gradient descent and T is the total of annealing
steps. We fix β0 as default choice and vary the values of T . Clearly, increasing T results in lower level
of disentanglement. We present model performance w.r.t. T in Figure 6. There are two key takeaways.
For one, we observe that on CiteULike-a, increasing T to lower disentanglement level leads to
improvement in both Recall and NDCG. Contrarily, ML-1M and Yelp are not sensitive to micro-
disentanglement. For another, there is a trade-off between Recall and NDCG w.r.t. disentanglement
level on these datasets. In general, three chosen datasets prefer low level of disentanglement, T > 1k,
to achieve good performance w.r.t. Recall and NDCG. In conclusion, these evidences imply that
the strong performance of FACETVAE mainly comes from the multi-faceted item disentangling and
binding compositional user interests, verifying the effectiveness of our approach in this paper.
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