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Abstract

Large language models (LLMs) have demon-
strated an impressive ability to role-play hu-
mans and replicate complex social dynamics.
While large-scale social simulations are gain-
ing increasing attention, they still face signif-
icant challenges, particularly regarding high
time and computation costs. Existing solutions,
such as distributed mechanisms or hybrid agent-
based model (ABM) integrations, either fail to
address inference costs or compromise accu-
racy and generalizability. To this end, we pro-
pose EcoLANG: Efficient and Effective Agent
Communication Language Induction for Social
Simulation. ECOLANG operates in two stages:
(1) language evolution, where we filter synony-
mous words and optimize sentence-level rules
through natural selection, and (2) language uti-
lization, where agents in social simulations
communicate using the evolved language. Ex-
perimental results demonstrate that ECOLANG
reduces token consumption by over 20%, en-
hancing efficiency without sacrificing accuracy.

1 Introduction

Social simulation has emerged as a powerful
methodology for understanding the complex so-
cietal systems (Squazzoni et al., 2014). It explores
the dynamics and emergent behaviors of societal
systems by modeling the interactions between in-
dividuals, which is previously implemented by
agent-based models (ABMs) (Bianchi and Squaz-
zoni, 2015). However, traditional ABMs often
rely on oversimplified agent behaviors, overlooking
the context-dependent nature of human decision-
making. Recent advancements in large language
models (LLMs) have opened new possibilities for
social simulation by enabling agents to exhibit
more human-like behaviors (Mou et al., 2024a).
The LLM-driven agents can vividly role-play spe-
cific persons (Argyle et al., 2023; Park et al., 2024),
collaborate to complete tasks (Hong et al., 2023;
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Figure 1: Responses generated by LLM-driven agents
(top) and those generated by the same agents using more
efficient expression (bottom) when discussing the Metoo
movement. There is information redundancy in the
vanilla setting, such as long but unnecessary sentences
(in blue) and advanced but uncommon words (in red).

Qian et al., 2024) and interact to replicate real-
world phenomenas (Mou et al., 2024b; Li et al.,
2024; Zhang et al., 2024a).

Due to the vast number of individuals in society,
large-scale social simulations are becoming increas-
ingly important in practical applications. Although
LLMs have demonstrated potential to replicate hu-
man behaviors, conducting large-scale simulations
remains challenging. The sheer number of agents
and their interactions result in excessively high time
and computational costs for the simulations (Gao
et al., 2024). Currently, efforts to address this is-
sue primarily fall into two categories: (1) Some
works have improved simulation efficiency through
distributed mechanisms (Pan et al., 2024; Yang
et al., 2024), but they have not fundamentally ad-
dressed the issue of inference costs. (2) Other
efforts have attempted to propose efficient simu-
lation frameworks, such as integrating with ABM
models (Chopra et al., 2024; Mou et al., 2024b) or
reusing certain strategies (Yu et al., 2024), which
simplify modeling for some agents but may com-
promise simulation accuracy and lack gener-



alizability across different scenarios. To better
understand the inefficiencies in current simulations,
we analyze the communication patterns of LLM-
driven agents. From Figure 1, we observe that there
is communication redundancy in current LLM-
driven multi-agent social interactions. Agents tend
to use fancy vocabulary and longer, complex sen-
tence structures, leading to token wastage. In con-
trast, the principle of least effort (Zipf, 2016) show
that humans tend to achieve effective communi-
cation with minimal effort, which includes using
simple, common, and easy-to-understand words to
reduce cognitive load, as well as employing con-
cise sentences to shorten communication length
and save time. Similarly, for LLM-driven agents,
adopting common words and reducing vocabulary
size can decrease GPU memory usage during simu-
lation, and reducing the number of inference tokens
can lower computational costs.

Inspired by this, we aim to develop an agent
language designed for large-scale social simula-
tions, enabling agents to communicate efficiently.
We introduce EcoLANG: Efficient and Effective
Agent Communication Language Induction for So-
cial Simulation. EcoOLANG operates in two stages:
language evolution and language utilization. First,
inspired by the principle of least effort (Zipf, 2016),
we filter synonymous words based on word fre-
quency and length to create a new vocabulary,
thereby reducing the size of the vocabulary of ex-
isting LLMs. Then, through a natural selection
paradigm, we prompt agents to use different rules
for communication in dialogue-intensive scenarios,
iteratively optimizing the rules. This ultimately
evolves efficient sentence-level rules, i.e., “gram-
mar” for the new language. In the language utiliza-
tion stage, we urge the agents in large-scale social
simulations to communicate using the acquired lan-
guage by modifying the inference model’s vocabu-
lary and incorporating rule-based prompts. Since
this language is induced through communication
and does not rely on any task-specific architecture,
it is framework-agnostic, allowing it to adapt seam-
lessly to various scenarios.

We conduct extensive experiments on the
open-sourced Llama-3.1-8B-Instruct (Dubey et al.,
2024). We evolve the language on twitter corpus
and the synthetic-persona-chat dataset (Jandaghi
et al., 2023), and we validate the effectiveness of
this language in social simulations on PHEME (Zu-
biaga et al., 2016) and Metoo and Roe datasets
of HiSim (Mou et al., 2024b). The experiment

results show that ECoOLANG can significantly re-
duce token consumption and improve the efficiency
of social simulations without compromising sim-
ulation accuracy, demonstrating advantages over
baseline methods such as structured languages and
traditional agent communication languages like
KQML (Finin et al., 1994). Overall, the contribu-
tions of this paper can be summarized as follows:

* We introduce EcoLANG, a two-stage
paradigm consisting of language evolution
and language utilization. EcoLANG can
induce efficient and effective language for
LLM-driven social simulations.

* We derive an agent language using ECOLANG
on twitter corpus and synthetic-persona-chat
dataset, that can directly generalize to differ-
ent downstream social simulation scenarios.

* We conduct extensive experiments on differ-
ent scenarios. The results demonstrate that
EcoLANG can reduce inference costs while
keeping the simulation accuracy.

2 Related Work

2.1 LLM-driven Social Simulation

Recently, LLMs have been used to construct agents
to empower social simulations, aiming to reveal
and explain emergent behaviors and the outcomes
of interactions among numerous agents (Mou et al.,
2024a). In such simulations, each agent role-plays
a person in society and participates in social inter-
actions, with the goal of modeling complex phe-
nomena such as opinion dynamics (Chuang et al.,
2024), epidemic modeling (Williams et al., 2023),
and macroeconomic activities (Li et al., 2024). Ini-
tial researches construct virtual spaces supporting
such simulations (Park et al., 2022, 2023). Further
studies focus on alignment on specific scenarios,
validating whether real-world behaviors and phe-
nomena can be replicated by such simulations (Gao
et al., 2023; Liu et al., 2024). Although LLMs
show potential in mimicking human, their integra-
tion into large-scale simulation remains challeng-
ing. Some work has improved simulation efficiency
by deploying open-source models-driven agents
through distributed mechanisms (Pan et al., 2024;
Yang et al., 2024), but it has not addressed the fun-
damental issue of computational costs and commu-
nication efficiency. Other work seeks to combine
with agent-based models (ABMs), simplifying the
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Figure 2: Overview of the ECOLANG framework. We get the language through vocabulary compression and rule
evolution in dialogue-intensive scenarios. Then, we enable agents to use this language in social simulations.

modeling of certain agents, which may sacrifice
some simulation effectiveness (Mou et al., 2024b;
Chopra et al., 2024).

2.2 Multi-Agent Communication

Before the rise of LLMs, some studies focused
on how multi-agent systems could use language
to cooperate in completing tasks or solving prob-
lems (Havrylov and Titov, 2017; Lazaridou and Ba-
roni, 2020; Lazaridou et al., 2020), typically devel-
oping effective communication protocols with task
success as a training signal. In current LLM-driven
multi-agent systems, communication is mainly con-
ducted through natural language. Some research
has highlighted the redundancy in communication,
leading to suggestions that agents autonomously
choose structured languages like JSON for commu-
nication (Chen et al., 2024a; Marro et al., 2024) or
further fine-tune models to improve this commu-
nication (Chen et al., 2024b). Meanwhile, other
studies have approached communication optimiza-
tion from the perspective of its structure, aiming to
enhance efficiency by pruning the spatial-temporal
message graph (Zhang et al., 2024b). However,
most existing work focuses on task-solving rather
than social simulation, which more urgently needs
to address the challenges of large-scale simulation.

3 Methodology

3.1 Overview

To address the issues of cost and efficiency in social
simulation and to reduce the generation of unnec-
essary content, we propose a two-stage paradigm
EcoLANG. First, we reconstruct the vocabulary
based on the principle of least effort (Sec 3.2)

and evolve a set of rules through natural selection
(Sec 3.3). After obtaining this new language, we
apply it to social simulation, encouraging agents
to use this language for communication (Sec 3.4).
The overall process is shown in Figure 2.

3.2 Vocabulary Compression

The development of a new language begins with
defining its basic elements, i.e., the vocabulary.
Since LLMs are primarily trained on natural lan-
guages, our goal is not to introduce an entirely
novel symbolic language or completely replace the
existing vocabulary. Instead, we focus on com-
pressing the current vocabulary while preserving its
foundational structure. In natural languages, many
words share similar meanings, such as synonyms,
which allows for potential optimization. This idea
aligns with the principle of least effort, also known
as Zipf’s Law (Zipf, 2016), which suggests that
people naturally tend to use the minimal effort re-
quired to communicate effectively. This principle
is evident in the frequency of word usage, where
low-frequency words are often replaced by more
common synonyms (Mohammad, 2020). Drawing
inspiration from this phenomenon, we propose a
method to compress the vocabulary of LLMs, as
outlined in the following steps and illustrated in
part I-A of Figure 2.

Semantic Clustering To ensure that the language
can still support the expression of various seman-
tics, the new vocabulary should encompass words
covering a wide range of meanings. To achieve this,
we begin by clustering all words in a given corpus
according to their semantic similarities, followed
by further filtering within each semantic cluster.



Specifically, instead of performing clustering from
scratch, we leverage existing synsets from Word-
Net (Miller, 1995) and assign each word in the
corpus to the most relevant synset based on embed-
ding similarity. For each word w, we compute the
similarity between the word embedding e,, and the
center embedding of each synset eg;, and assign
w; to the synset with the highest similarity:

S(w;) = arg max (sim (ewi,egj)) , (D
j

This approach not only enhances controllability but
also minimizes noise in the clustering process.

Intra-Cluster Selection Within each cluster, we
further filter words by assigning a score to each
word based on two key factors: word frequency
and word length. On the one hand, as previously
mentioned, more frequently used words tend to
efficiently convey the speaker’s intent and are likely
to be better trained due to their higher occurrence.
On the other hand, we prioritize retaining shorter
words to minimize the length of generated content.
With these considerations, we define the following
scoring function:

R(wi) = ApreqF(wi) + Moken(1 — L(w;)), (2)
where F'(w;) and L(w;) represent the percentile
scores of the word’s frequency and token lengths
respectively. Ay .eq and Agorer, are hyperparameters.
Based on these scores, we retain the top words
within each cluster according to a predefined reten-
tion ratio 7.

Tokenization While people use words as the ba-
sic units of communication, LLMs process text in
units of tokens. Therefore, after identifying the
words to retain, we tokenize them to determine
which tokens should be kept. Although these to-
kens may form additional words beyond our initial
selection, the overall vocabulary size of the LLMs
is still effectively reduced through our method. Fur-
thermore, we ensure that special tokens, which are
essential for the model’s correct generation, are
preserved throughout this process.

3.3 Language Rule Evolution

Once vocabulary, the fundamental elements of a
language are identified, another core aspect is how
these elements are organized, i.e., grammar, or
the rule system. Previous research in linguistics
(Pinker and Bloom, 1990; Nowak and Krakauer,

1999) has suggested that grammar is a simplified
system of rules that has evolved through natural
selection, with the purpose of reducing errors in
communication. Inspired by this, we design the
language using the principles of evolutionary algo-
rithms (EAs). The task is formulated as identifying
a rule or prompt to enable agents to communicate
both effectively and efficiently. The process pri-
marily involves the following steps, which are also
shown in part I-B of Figure 2.

Initialization Evolution typically begins with an
initial population of IV solutions, i.e., rule prompts
P = {p1,p2,-..,pnN}, which are then iteratively
refined to generate new solutions. To initialize the
rule system, we employ a combination of manually
crafted prompts and those generated by LLMs, to
leverage the wisdom of humans and LLMs (Guo
et al.). These prompts are designed to instruct
agents to express concisely, where the details can
be found in Appendix A.2.1.

Communication Language is used and evolves
through communication in social interactions. To
observe how individuals using specific rules com-
municate, we simulate dialogues between LLM-
driven agents. Given a set of dialogue scenarios D
between two agents, for each scenario d; € D, we
M
generate M dialogue trajectories {TZJ } , each
j=1
with a randomly selected rule from P appended to
the original prompt to the agents.

Selection To select high-quality rules, we eval-
uate the dialogue trajectories using a fitness func-
tion. First, the language should be both effective
and efficient. Efficiency can be measured by token
count. For effectiveness, previous work in multi-
agent task-solving often uses task success rate as a
metric (Lazaridou et al., 2020). However, in social
simulation, there is no specific task. Instead, we
believe that alignment—how well the agent embod-
ies the persona it is role-playing, is the cornerstone
of social simulation. Thus, we include an align-
ment score to indicate effectiveness. Additionally,
expressiveness (Galke et al., 2022) is crucial to pre-
vent the language from becoming overly abstract
and to maintain fluency. Taking these factors into
account, we define the following fitness function:

F(77) = Aatign Align(r?) + Aes s Ef £(77)

A 3)
+ )\e;rpE‘pr(Ti7 )7

where the alignment score Align(7]) and the



expressiveness score Exp(7]) are given by exter-

nal judge LLMs, and Ef f(77) is the normalized

# Tokens(Tf )
maxy, ({# Tokens(ﬂ-ik)}k) ’
and \.;, are hyperparameters. After calculating
the fitness score for each dialogue trajectory, we
aggregate and average these scores based on the
rules used, which allows us to derive the overall
fitness score for each rule.

token count Aaligns Aeff

Crossover and Mutation To diversify the rules,
we perform crossover and mutation operations on
the high-quality rules following the selection pro-
cess. Specifically, we select parent rules from the
population based on their fitness values, which de-
termine the probability of selection. Then, we
prompt LLMs to generate new rules using the
prompts from (Guo et al.).

Update and Iteration In each iteration, we use
the elitism strategy of genetic algorithm to update
the population. We retain the top N /2 rules from
the current population based on fitness values, and
generate another N /2 rules through crossover and
mutation, ensuring the population size remains con-
stant at V. In applications, the best rule is used as
the rule for the new language. The overall process
can be described as Algorithm 1.

3.4 Language Utilization in Social Simulation

Once we acquire the vocabulary and rule system of
a new language, we enable agents to communicate
in that language by modifying the decoding range
of the LLMs that drive them and incorporating rules
into their original contextual prompts. While the
evolution and use of a language could intuitively
occur within the same scenario, we adopt a trans-
fer setting for two key reasons: (1) the sparsity of
large-scale social simulation data, and (2) the nat-
ural emergence of new languages from everyday
communication. Specifically, we evolve the lan-
guage on general multi-turn dialogue data, where
communication is more intensive, to enhance the
efficiency of language evolution. We then apply
the evolved language to specific social interaction
scenarios. Moreover, since the language is evolved
on general communication data, this design is in-
herently task-agnostic.

4 Experiment Settings

As mentioned before, we evolve and utilize lan-
guage in different scenarios. We filter vocabulary

in Twitter corpus and acquire the rule in dialogue-
intensive scenarios and apply the evolved language
in social simulation scenarios, i.e., PHEME (Zubi-
agaetal., 2016) and Metoo and Roe of HiSim (Mou
et al., 2024b). PHEME aims to simulate the prop-
agation and discussion of potential rumors, while
HiSim focuses on modeling the evolution of opin-
ion dynamics following the release of triggering
news related to specific social movements.

4.1 Language Evolution Settings

Twitter Corpus for Vocabulary Compression
Since we partly rely on word frequency to filter
words in Sec 3.2, we need a corpus to count words.
While it would be ideal to include all tweets, this is
not feasible. Therefore, we have chosen to analyze
and gather statistics from existing tweets relevant
to the topics of our social simulation scenarios.
Specifically, for the PHEME, which aims to model
rumor, we use tweets from Twitterl5 (Liu et al.,
2015) and Twitter16 (Ma et al., 2016), resulting
in 35,211 words from 41,736 tweets. For HiSim,
we use tweets related to the corresponding move-
ments (Maiorana et al., 2020; Chang et al., 2023;
Mou et al., 2024b), resulting in 1,662,657 words
from 52,967,084 tweets.

Scenarios for Communication in Rule Evolu-
tion During the rule evolution process, we use
the synthetic-persona-chat dataset (Jandaghi et al.,
2023) to generate conversations between agents
following specific rules. This dataset provides a
collection of dialogues between two users with di-
verse personalities, along with their corresponding
personality descriptions. We provide these pro-
files to LLMs, instructing them to role-play these
individuals communicating, and obtain dialogue
trajectories for further selection.

Implementation Details The agents are pow-
ered by Llama-3.1-8B-Instruct (Dubey et al., 2024).
For vocabulary compression, we set the hyperpa-
rameters Afreq = 1, Ajoken = 1. The reserva-
tion ratio 7, for each semantic cluster is 0.6 for
PHEME and 0.2 for HiSim, yielding vocabulary
sizes of 32.6K (25.4% of Llama-3.1’s vocabulary)
and 48.2K (37.5% of Llama-3.1’s vocabulary), re-
spectively. For rule evolution, we set the number of
initial rules NV = 10. We use the development set
of the synthetic-persona-chat dataset, which con-
tains 1,000 chatting scenarios for communication
simulation during the evolution process. For se-
lection, GPT-40 (Achiam et al., 2023) serves as



Method PHEME HiSim
stance? belief{ belief_JS| token,| token,| token.| | stancet contentt Abias| Adiv] token,| tokeny| token.l
Base 66.21 4244 0.137 261K 8443K  8.44K 70.30 30.23 0.093 0.027 13.02K  1.92M 283.79K
Summary 66.07 41.55 0.133 241K 84.27K 8.01K 70.95 32.31 0.089 0.023 10.62K 1.90M  269.73K
AutoForm | 63.72  40.50 0.136 2.00K  85.02K  7.69K 69.92 32.04 0.082 0.029 10.66K  1.89M  252.09K
KQML 57.66 42.09 0.130 3.01K 91.10K 9.18K 70.16 32.47 0.093 0.032 12.06K 1.96M  279.17K
AgentTorch - - - - - - 67.87 31.81 0.098 0.024 2.5K 0.48M  94.34K
Vocab 65.73  44.65 0.131 2.67K  84.78K  8.70K 70.34 30.48 0.086 0.023 11.37K  191IM 286.41K
Rule 66.86 45.14 0.128 1.98K 82.08K 7.52K 70.63 32.25 0.091 0.027 9.07K 1.84M  242.43K
EcoLANG | 66.34  45.50 0.128 2.08K  82.26K  7.70K 70.60 32.57 0.083 0.020 9.80K 1.83M  236.83K

Table 1: Experimental results of different methods. The average results of 3 runs are reported. We report the best
performance in bold format and the second best in underlined format.

the judge to evaluate alignment and expressiveness
based on reference dialogues. The weight hyper-
parameters are set to Agign = 1, Aegr = 0.6 and
Aezp = 0.6. In each iteration, We retain the top-
5 parent rules and generate 5 new rules through
crossover and mutation, with parents randomly se-
lected according to their scores. The number of
iterations is set to 5. Please refer to Appendix A
for more details.

4.2 Language Utilization Settings

Datasets We collect 196 real-world instances
from PHEME (Zubiaga et al., 2016), each involv-
ing 2 to 31 users discussing a source tweet, to ex-
amine whether agents can mimic user responses to-
wards rumors. We use the second events of #Metoo
and #Roeoverturned movements from HiSim (Mou
et al., 2024a), each with 1,000 users discussing the
topic-related news over time, to study the opinion
dynamics following social interactions.

Metrics For PHEME, we focus on content-
related metrics. We measure consistency between
each agent’s initial stance on the source tweet and
real users’ stances, categorized into four types as
in (Derczynski et al., 2017) and annotated by GPT-
40-mini. Following (Liu et al., 2024), we also la-
bel each agent’s final belief as belief, disbelief, or
unknown using GPT-40-mini, and compute belief
consistency and JS divergence (Lin, 1991) of belief
distribution with real-world data.

For HiSim, we follow (Mou et al., 2024b) to
report stance and content consistency between ini-
tial agent responses and real users’ initial posts,
labeled by GPT-40-mini. We also report Abias
and Adiv. to measure the difference in average
opinion bias and diversity between simulated and
real user groups over time.

For both datasets, we evaluate communication
efficiency by reporting the average number of to-
kens in generated tweet responses per scenario (#

tokens,), as well as the total token consumption
per scenario, which includes both prompt tokens (#
tokens,) and completion tokens (# tokens.).

Baselines We have the following baselines for
comparison, including different means of commu-
nication: (1) Base: conduct simulations without
adding any additional rule prompt; (2) Summary:
prompt agents to summarize their opinions when
responding, as concise expression resembles a sum-
marization task; (3) AutoForm (Chen et al., 2024a):
prompt agents to automatically choose a structured
format to respond, such as JSON and logical ex-
pression; (4) KOML (Finin et al., 1994): prompt
agents to use a traditional agent communication lan-
guage KQML; (5) Vocab: a variant of our method
that only compresses the vocabulary of the LLMs;
(6) Rule: a variant of our method that only applies
the evolved communication rules. We also include
an efficient hybrid simulation method that does not
focus on communication optimization: (7) Agent-
Torch (Chopra et al., 2024): uses LLM archetypes
to represent all the agents, simulate the actions of
archetypes and map their response to other agents.

Implementation Details Agents are driven by
Llama-3.1-8B-Instruct (Dubey et al., 2024). All
the simulations are conducted in OASIS frame-
work (Yang et al., 2024). We run each simulation 3
times and report the averaged results. We use GPT-
4o-mini to label the stance, belief and content of
responses and apply Textblob to calculate the opin-
ion score. Details can be found in Appendix B.

S Experiment Results

5.1 Opverall Performance

The overall results are presented in Table 1. We
have the following observations.

(1) Can reducing communication redundancy
improve simulation efficiency? Compared to
Base, all methods of simplified communication
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Figure 3: (a) Average fitness score change and (b) lan-
guage drift change on synthetic-persona-chat simulated
dialogues across iterations; (c) Performance and token
consumption in HiSim using the best language rules
acquired across iterations.

have significantly reduced token generation. This
improvement in efficiency is not only reflected in
token, but also cumulatively transmitted to token,,
and token, due to the generated content serving as
context for other agents, agents’ memory mecha-
nisms, and so on. Among these, our proposed Rule
and EcoLANG are the most prominent, capable
of reducing generated tokens by over 20%. How-
ever, we have also observed that approaches like
AgentTorch, which modify the simulation paradigm
rather than simplifying communication, can more
significantly reduce token consumption, albeit of-
ten at the cost of reduced simulation accuracy.

(2) Will simplifying communication compromise
the effectiveness of the simulation? Some base-
lines such as AutoForm and KQML, despite enhanc-
ing efficiency, reduced the accuracy of the simula-
tion. This may suggest that while these structured
languages can improve the efficiency and effective-
ness of task-solving, they might not be suitable
for social simulation, as humans generally commu-
nicate using natural language. By contrast, ben-
efiting from the considerations of both efficiency
and alignment during the process of language evo-
lution, our method is able to enhance efficiency
while maintaining leading simulation accuracy.

(3) Does vocabulary compression enhance per-
formance or efficiency? We observed that simu-
lations can still achieve comparable, or even bet-
ter, results after vocabulary compression, e.g., in
HiSim, indicating that the vocabulary in LLMs may
be redundant for these simulations. Theoretically,
removing these tokens in LLM’s vocabulary could
enhance the model’s inference efficiency, using less
GPU memory. However, vocabulary compression
does not have a significant impact on token con-
sumption. This is not surprising since the change in
the length of individual words has a minimal effect
on the overall sentence length.

day dark women

reproductive heard = let’s I'm metoo

d tati i i everyone
evasta ‘,ngbreaking rights sexual #timesup Survivors
overturning roe supreme protect = healthcare
guaranteed standing life

ederally. access fight abortion

importance keep violence safe win contact

Figure 4: Top words in responses generated by agents
in HiSim simulation without (left) and with (right) vo-
cabulary compression. The center part presents their
intersection.

PHEME HiSim
Ratio # Vocab  stanceT belieft Ratio # Vocab stanceT content]
0.2 31.5K 63.80 44.16 0.2 48.2K 70.34 30.48
0.4 31.8K  63.13 4357 0.4 493K 7041 30.09
0.6 326K 6410 4425 0.6 509K  69.64 29.11
0.8 340K 6573  44.65 0.8 528K  69.26 29.55
Llama-3.1 128.3K  66.21 4244 | Llama-3.1 128.3K  70.30 30.23

Table 2: Performance of the simulations when using
different vocabularies. Ratio represents the reserving
ratio for each semantic cluster when filtering words. We
at least keep one word for each synonym set.

5.2 Analysis of Rule Evolution

To explore the evolution process of language rules,
we analyze the changes in dialogue scores and lan-
guage shifts during the iterations, as well as the
impact of the acquired rules on downstream so-
cial simulations. Figure 3(a) and (b) illustrate the
changes in metrics on the synthetic-person-chat di-
alogues during the evolution. In addition to the
fitness scores defined in Sec 3.3, we have also cal-
culated the dialogues’ structural drift and semantic
drift (Lazaridou et al., 2020), where structural drift
measures the fluency and grammaticality in relation
to natural language, while semantic drift measures
the adequacy in relation to the literal semantics
of the target. The results indicate that as iterative
evolution progresses, the fitness of the language ini-
tially shows an upward trend, with alignment and
expressiveness increasing while token consumption
decreases. The decline in language drift further
corroborates the improvement in language qual-
ity, even though we did not directly optimize these
metrics during the evolution process. This improve-
ment is also reflected in the impact of the acquired
rules on downstream social simulations, where sim-
ulation accuracy improves and token consumption
is reduced, as shown in Figure 3(c). However, after
a certain number of iterations, the fitness score no
longer improves, potentially indicating some form
of overfitting, and the optimal rules provided for
the simulation tasks no longer change.



Method o o PHEME HiSim
stanceT belieft belief_JS| token,| token,|l token.| | stancet contentt Abias| Adiv| token,| token,l token.|
Qwen 63.35  49.25 0.1426 193K 782IK  7.36K 71.63 26.06 0.1025 0.0246 17.68K  1.81M  214.11K
Qwen w/Rule | 6295  51.65 0.1475 1.81K  78.36K  7.09K 72.04 26.77 0.0978 0.0255 14.71K  1.77M  188.96K
Mistral 6298  52.39 0.1529 310K 96.94K 11.60K | 72.02 31.78 0.1220  0.0536 2691K  2.36M  416.15K
Mistral w/ Rule | 63.84  60.00 0.1484 228K  94.76K  10.39K | 72.39 32.57 0.0963  0.0352 22.76K  229M  358.23K

Table 3: Results of simulations driven by Qwen2.5 and Mistral with and without the evolved rule of Llama3.1.

~ | completely agree with this post! As an
@ activist, | believe that intersectionality is

crucial in understanding the
complexities of oppression. Let's keep
the conversation going and work
towards a more inclusive and equitable
society! #MeToo #TimesUp #LGBTQ
#Raciallustice

- I'm so glad @user557 is speaking out
against this decision! We must keep
fighting for our reproductive rights and

g stand together against this attack on

women's bodies. #RoeVsWade
#AbortionlsHealthcare #WomenRights

Base

- | completely agree with @user248 that
we must continue to support the MeToo
and Time's Up movement and hold our

leaders accountable. Let's not forget
about President Trump's past
endorsement of Roy Moore, who was
accused of sexual misconduct. We must
keep pushing for change!

= I'm with you, let's not just stand together,
but also take action! We need to contact
our representatives and demand they

= protect our rights. #RoeVsWade
#AbortionlsHealthcare #WomenRights

Best Language Rule at Iter 1

P I'm with you! We must stand together
against sexual violence and demand
— accountability for those who abuse their

power. #MeToo #TimesUp #JusticeForAll

- 1'm with you! We must take action to
ﬁ protect our rights and the rights of
future generations. Let's contact our

representatives, donate to organizations
fighting for reproductive rights, and
spread awareness about this critical
issue. #AbortionRights #WomenRights
#TakeAction

Best Language Rule at Iter 5

Figure 5: Case study: responses of agents without any communication optimization and with the best evolved rule
at iteration 1 and 5. In most cases, agents express more concisely while sometimes fail to follow instructions.

5.3 Analysis of Vocab Size

We further explore the impact of the vocabulary on
the simulation. As shown in Table 2, since it is nec-
essary to ensure that at least one word is retained
for each semantic cluster, changing the retention
ratio has subtle impact on the size of the vocabulary.
Nevertheless, it can be observed that the influence
of vocabulary size on performance exhibits differ-
ent trends across simulations. For PHEME, a larger
vocabulary is better, possibly because it covers a
more diverse range of topics and discussions, re-
quiring more words for support. In contrast, for
HiSim, due to the more focused discussion topics
Metoo and Roe, using fewer but more commonly
used words can achieve ideal results.

We also compare the top 50 frequent words gen-
erated by the agents with and without vocabulary
compression. Figure 4 shows that after vocabulary
compression, agents have indeed reduced the use
of cumbersome words like “devastating”, opting
instead for simpler and more commonly used terms
such as “dark” and “day”, while still retaining the
usage of other common words.

5.4 Transferability of Language Rule Across
Different LL.Ms

Can the evolved language be used on other mod-
els, or do we need to reacquire the language for
each model? To answer this question, we applied

the acquired language rules to other models, i.e.,
Qwen2.5-7b-Chat (Team, 2024) and Mistral-7b-
Instruct-v0.3 (Jiang et al., 2023). Table 3 show
that the rules evolved on Llama-3.1 can also en-
able other models to communicate efficiently, again
demonstrating the transferability of ECOLANG.

5.5 Case Study and Error Analysis

Figure 5 showcases some exemplary instances of
efficient communication and bad cases. Benefiting
from the evolved rule, agents can speak more con-
cisely using words like “I’m with you” to replace “I
completely agree with you”. However, sometimes
the agents may fail to simplify their expression
and disclose excessive details. This may be the
result of the model’s insufficient ability to follow
instructions. A potential solution is to further fine-
tune the models using the efficient communication
dialogues from the language evolution process.

6 Conclusion

We introduced EcoLANG, a novel two-stage
paradigm comprising language evolution and uti-
lization, designed to acquire efficient and effective
language for large-scale social simulations. We
derive the language by vocabulary compression
and rule evolution and demonstrate its applicability
across social simulation scenarios. Experiment re-
sults highlight ECOLANG’s ability to reduce infer-
ence costs while maintaining simulation accuracy.



Limitations

EcoLANG induces an efficient agent communica-
tion language that improves simulation efficiency
and reduces inference costs while maintaining sim-
ulation accuracy. Despite our careful design, some
limitations still exist.

* Although EcoLANG improves efficiency, the
extent of this improvement is not yet transfor-
mative. This is because we focus on reduc-
ing token generation but do not address the
reduction of the number of inference times.
In the future, we plan to integrate it with hy-
brid frameworks that optimize the number of
inference steps, thereby further enhancing ef-
ficiency and reducing costs to a greater extent.

* Due to the limited available large-scale social
simulation datasets for validation, we have
currently only tested ECOLANG in PHEME
and HiSim, which may raise concerns about
its generalizability. In the future, it will be nec-
essary to advance the construction of bench-
marks for diverse social simulation scenarios.

* Due to the lack of objective and unified eval-
uation frameworks and metrics for existing
LLM-driven social simulations, as compared
to task-solving scenarios, we currently partly
rely on LLMs to get the fitness value during
the selection process, which may introduce
potential bias. We will continue to explore
more reliable evaluation frameworks for so-
cial simulation.

Ethics Statement

This paper aims to evolve an efficient communi-
cation language for social simulation. Like most
work in social simulation, it may raise potential
considerations and we urge the readers to approach
it with caution.

* When employing LLMs for social simulation,
concerns arise regarding the fidelity and in-
terpretability of the results. If not carefully
managed, the risk of bias could exacerbate
real-world problems. However, our experi-
ments demonstrate that ECOLANG does not
amplify incorrect predictions related to misin-
formation (PHEME) or opinion polarization
(HiSim).

* Ensuring the ethical handling of any real-
world datasets, including anonymization and
consent, is crucial. During our social simu-
lations, all user content was anonymized to
minimize privacy risks.

* Although EcoLANG is designed to evolve ef-
ficient language, misuse, such as promoting
uncivil language, could pose risks. There-
fore, strict governance and ethical guidelines
should be implemented.
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A Implementation Details of Language
Evolution

A.1 Vocabulary Compression

Twitter Corpus for Word Frequency Counting
Since it’s infeasible to get a corpus of all tweets to
count words, we have chosen to analyze and gather
statistics from existing tweets relevant to the topics
of social simulation. Since some tweet links are no
longer accessible, we crawled 41,736 tweets from
the Twitter 15 and 16 datasets (Liu et al., 2015; Ma
et al., 2016) and 52,967,084 tweets from the HiSim
dataset (Mou et al., 2024b), resulting in 35,211 and
1,662,657 words, respectively.

Semantic Clustering We experimented with
both top-down clustering, which involves assign-
ing words from the corpus to synsets in Word-
Net (Miller, 1995), and bottom-up clustering,
which encodes each word and groups them into
clusters using methods like KMeans or spectral
clustering. We found that the top-down approach
is more controllable and less likely to group unre-
lated words into the same cluster, so we adopted
the former method. Specifically, we first remove
non-English words, and we compute the center
embedding eg; of each synset S; in WordNet and
calculate the cosine similarity between each candi-
date word w; and the center of every synset. The
word is then assigned to the synset whose center
has the highest similarity, as shown in Eq. 1.

Due to the fine-grained division of synonym sets
in WordNet, many sets contain only one or two
words. Therefore, we further merge similar sets us-
ing a similarity threshold of 0.8, resulting in 16,545
clusters for PHEME and 47,339 clusters for HiSim.

Intra-Cluster Selection Within each semantic
cluster, we reserve words with the highest scores
calculated by the score function in Eq. 2. With
different reservation ratio r,, for each cluster, we
can get vocabularies of different sizes, as shown in
Table 2.

Tokenization To ensure normal generation by
LLMs, in addition to retaining tokens correspond-
ing to the selected words, we also preserve tokens
for the LLM’s special tokens, punctuation, abbrevi-
ations, and emojis.
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A.2 Rule Evolution
A.2.1 [Initialization

We initialize the language rules by human crafting
and LLM generation. We calculate the information
density of each tweet in the Twitter corpus, and
summarize rules that can reflect the characteristics
of these tweets. For LLMs, we ask GPT-40 how to
issue rule instructions to enable efficient communi-
cation. Specifically, we obtained the following rule
prompts:

Initial Rules for Evolution

1. Please respond concisely.

2. Provide a brief summary of your re-
sponse.

3. Feel free to replace lengthy words or
phrases with hashtags and symbols, like
€mojis.

4. Please use simple sentence structures.

5. Please omit unnecessary components
such as subjects or predicate verbs.

6. Try using abbreviations or slang to
shorten your sentences.

7. Identify your main point and communi-
cate it directly without unnecessary details.
8. Avoid repeating ideas and removing un-
necessary filler words.

9. Get to the point quickly and clearly, with-
out over-explaining.

10. Remove words like "very" or "really"
that don’t add value.

A.2.2 Communication

We user the synthetic-persona-chat dataset for com-
munication simulation. We append the sampled
language rule behind the profile of agents in their
system prompts. In practice, we use AutoGen (Wu
et al., 2023) to generate dialogues between agents,
and the system prompt used is as follows.

Prompt of Agents for Communication

You are {agent_name}. {agent_profile}
{few-shot chat history for initialization}
What will you, {agent_name}, speak next?
{rule}

A.2.3 Selection

For the fitness function in selection value, we set
the hyperparameters Ayign, = 1, Acpy = 0.6 and
Aezp = 0.6, learning from previous work (Chen
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Figure 6: Alignment and expressiveness score distribu-
tion in the first iteration.

et al., 2024b). We use the following prompts to
instruct GPT-40 to give the alignment score and
expressiveness score to the dialogues.

Prompt for Alignment Evaluation

Please evaluate whether the agents’ re-
sponses align with the persona reflected in
the reference response.

Please focus on the aspects of content, emo-
tion and atttude, and ignore differences in
language structure, e.g., word choice, sen-
tence length, emoji usage and syntax.
Agent’s response: {simulated_dialog}
Reference response: {reference_dialog}
Please rate on a scale of 1 to 5, with 1 being
most inconsistent and 5 being most like the
persona.

Please write a short reason and strictly fol-
low the JSON format for your response:
{{"reason": <str>, "score": <int>}}

L

Prompt for Expressiveness Evaluation

Please evaluate whether the agents’ lan-
guage is clear and easy to understand.
Agents’ language: {simulated_dialog}
Please rate on a scale of 1 to 5, with 1 being
most unclear and 5 being most clear.
Please write a short reason and strictly fol-
low the JSON format for your response:
{{"reason": <str>, "score": <int>}}

Figure 6 shows the score distribution of dia-
logues in iteration 1, indicating that the judge
model GPT-4o is capable of assigning differenti-
ated scores. In addition, we sampled 50 dialogues
for human annotation and found that GPT-4o is
more consistent (Cohen’s Kappa: 0.48) with hu-
man judgments than GPT-40-mini. Therefore, we
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chose GPT-40 as the judge model.

A.2.4 Crossover & Mutation

We use the following prompts to conduct crossover
and mutation on parent rules.

Prompt for Crossover

Please cross over the following prompts
and generate a new prompt bracketed with
<prompt> and </prompt>.
Prompt 1: {rule_promptl }
Prompt 2: {rule_prompt2}

Prompt for Mutation

Mutate the prompt and generate a new
prompt bracketed with <prompt> and
</prompt>

Prompt: {rule_prompt}

A.2.5 Update and Iteration

In each iteration, we adopt the elitism strategy of
genetic algorithm to reserve the top-5 rules in cur-
rent population and generate 5 new rules through
crossover and mutation. The overall process for the
evolution can be described in Algorithm 1.

A.2.6 Evolved Rules

Based on the vocabularies of PHEME and HiSim,
we perform rule evolution using the synthetic-
persona-chat dataset. In each iteration, we obtain
the following best rules:

Best Rules for PHEME

iter 1: Please use simple sentence struc-
tures.

iter 2: Respond briefly, removing unneces-
sary words.

iter 3: Eliminate repetitive ideas, unneces-
sary fillers, and respond concisely.

iter 4: Eliminate repetitive ideas, unneces-
sary fillers, and respond concisely.

iter 5: Remove redundancy, filler words,
and respond briefly.




Algorithm 1 Evolution of the language rules

Require: Initial rules P; = {p1,p2,...,PN},
size of rule population NV, a set of scenarios
for dialogue simulation D = {d;}, number
of sampled rules for each scenario M, a pre-
defined number of iterations 7', fitness function
for each dialogue F', crossover and mutation
operation Opr(-), update strategy Upd(-)

1: fortin1lto 1 do
2:  Communication: sample and assign rules
to each scenario d; and use LLM-driven

M
Ti } j=1

these scenarios
Selection: use the fitness function to evalu-
ate the dialogues s} < F(7/), and average
the scores of the dialogues based on rules
used to get fitness of each rule
Crossover and Mutation: select a cer-
tain number of rules as parent rules
Dris- - Pry ~ Pt, and generate new rules
based on the parent rules by leveraging
LLMs to perform crossover and mutation
{pi} < Opr(prys- -, pry)
Update: update the set of rules Py <
Upd(Pr, {p;})
6: end for
7: return the best rule p; at each iteration ¢

agents to generate dialogues { in

14

Hyperparameter Value
model Llama-3.1-8B-Instruct
temperature 0
max_tokens 512
num_steps max depth of each (non)rumor

Table 4: Hyperparameters of PHEME Simulation.

Best Rules for HiSim

iter 1: Avoid repeating ideas and removing
unnecessary filler words.

iter 2: Please use simple sentence struc-
tures.

iter 3: Eliminate redundancy, cut filler, and
be concise.

iter 4: Eliminate redundancy, cut filler, and
be concise.

iter 5: Eliminate redundancy, cut filler, and
be concise.

B Implementation Details of Language
Utilization (Simulation)

B.1 Implementation Details

All the simulations are conducted in OASIS frame-
work (Yang et al., 2024). We run the simulator on
a Linux server with 8 NVIDIA GeForce RTX 4090
24GB GPU and an Intel(R) Xeon(R) Gold 6226R
CPU. We run each simulation three times and re-
port the average results to reduce randomness.

B.2 PHEME Simulation

We initialize the agents with user profiles and
network information acquired from the PHEME
dataset. We prompt GPT-40-mini to write a short
description given each user’s biography on Twit-
ter. For each instance in PHEME, we only retain
replies with content for simulation and validation.
The action space prompt for PHEME in OASIS
simulation is as follows and the hyperparameters
are shown in Table 4. Other parameters and mech-
anisms, such as the memory mechanism, are set to
the defaults in the OASIS framework.



Action Space Prompt for PHEME in OASIS

You’re a Twitter user, and I’ll present you
with some posts. After you see the posts,
choose some actions from the following
functions.

Suppose you are a real Twitter user. Please
simulate real behavior.

- do_nothing: Most of the time, you just
don’t feel like reposting or liking a post, and
you just want to look at it. In such cases,
choose this action "do_nothing"
- quote_post: Quote a specified post with
given content.

Arguments:

- "post_id" (integer) - The ID of the post
to be quoted.

- "quote_content" (string) - The content
of the quote. You can ‘quote_post’ when
you want to share a post while adding your
own thoughts or context to it.
{rule_prompt}

\

B.3 PHEME Evaluation

For simulation results on PHEME, we include the
following metrics to evaluate simulation effective-
ness:

» Stance Consistency: we label the stance of
each agent’s and real user’s initial response
towards the source tweet given the tree-like
threads, with the label space being support,
deny, query and comment from (Derczynski
etal., 2017).

* Belief Consistency: Following (Liu et al.,
2024), we label the belief of agents and real
users at the end of simulation. Since we ob-
served that some agents or users did not ex-
plicitly express belief or disbelief, we added
an additional category, unknown, alongside
the existing belief and disbelief labels.

* Belief JS Divergence: To measure the belief
distribution of the user group regarding fake
news, we additionally incorporated the JS di-
vergence of the belief distribution to assess the
effectiveness of the simulation at the group
level.

The prompts for stance and belief annotation are
as follows.
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Prompt for PHEME Stance Labeling

Given threads discussing a news, please
label the stance of the question tweet on the
source news tweet.

Treads: {threads}
Question tweet: {tweet}

Please choose from the following options:
1. support: the author of the response sup-
ports the veracity of the news.

2. deny: the author of the response denies
the veracity of the news.

3. query: the author of the response asks
for additional evidence in relation to the
veracity of the news.

4. comment: the author of the response
makes their own comment without a clear
contribution to assessing the veracity of the
news.

Please strictly follow the JSON format for
your response:
{{"stance": <str>}}

Prompt for PHEME Belief Labeling

Please determine whether the author of the
final tweet believes the source news.

Source News:{source_tweet}
Final Tweet:{final_tweet}

If the author does not believe the source
news, questions the AUTHENTICITY of
the source news or queries for more infor-
mation about the AUTHENTICITY of the
news, please label it as disbelief.

If the author expresses opinions or call for
actions under the assumption that the news
is true, please label it as belief.

If the author discusses something unrelated
to the source news, please label it as
unknown. Please label O for disbelief, 1 for
belief and 2 for unknown.

Please write a short reason and strictly fol-
low the JSON format for your response:
{{"reason": <str>, "label": <int>}}




B.4 HiSim Simulation

Metoo and Roe datasets in HiSim provide profiles
and historical tweets of 1,000 users respectively, as
well as their social networks in Twitter. We use this
information to initialize the agents in the OASIS
platform. To reduce the randomness introduced by
the OASIS platform, we ban the recommendation
systems and only enable agents to get information
from external news and who they are following.
The action space prompt for PHEME in OASIS
simulation is as follows. The hyperparameters are
shown in Table 5. Other parameters and mecha-
nisms, such as the memory mechanism, are set to
the defaults in the OASIS framework.

Action Space Prompt for HiSim in OASIS

You’re a Twitter user, and I’ll present you
with some posts. After you see the posts,
choose some actions from the following
functions.

Suppose you are a real Twitter user. Please
simulate real behavior.

- do_nothing: Most of the time, you just
don’t feel like reposting or liking a post, and
you just want to look at it. In such cases,
choose this action "do_nothing"

- create_post: Create a new post with the
given content.

- Arguments: "content" (str): The content
of the post to be created.

- repost: Repost a post.

- Arguments: "post_id" (integer) - The ID
of the post to be reposted. You can ‘repost*
when you want to spread it.

- quote_post: Quote a specified post with
given content.

- Arguments:

- "post_id" (integer) - The ID of the post
to be quoted.

- "quote_content" (string) - The content
of the quote. You can ‘quote_post* when
you want to share a post while adding your
own thoughts or context to it.
{rule_prompt}

B.5 HiSim Evaluation

For simulation results on HiSim, we follow (Mou
et al., 2024b) to include the following metrics to
evaluate simulation effectiveness:

Hyperparameter Value
model Llama-3.1-8B-Instruct
temperature 0
max_tokens 512
num_steps 14

Table 5: Hyperparameters of HiSim Simulation.

Dim. Consistency
stance 0.94
belief 0.78

Table 6: Consistency of GPT-40-mini judging the stance
and belief when taking human evaluations as the ground-
truth reference.

» Stance Consistency: we classify the initial
response or agents and real users into three
categories: support, neutral and oppose, to-
wards the given target #Metoo movement and
the protection of abortion rights, and compute
the consistency between agents and users.

* Content Consistency: we classify the initial
response or agents and real users into 5 types,
i.e., call for action, sharing of opinion, refer-
ence to a third party, testimony and other.

* Abias and Adiv: bias is measured as the de-
viation of the mean attitude from the neutral
attitude, while diversity is quantified as the
standard deviation of attitudes. These metrics
are calculated at each time step and averaged
over time. The differences between the sim-
ulated and real-world measures, denoted as
Abias and Adiv are reported.

The prompts for stance and content labeling are
borrowed from (Mou et al., 2024b).

B.6 Evaluation Bias

Since we partially rely on LLMs for evaluation, this
approach may introduce some evaluation bias. To
address this, we sample 100 simulation instances
and instruct two human annotators to label the
stance and belief of the responses, providing them
with the same information as given to GPT. Table 6
shows the consistency between the annotations of
GPT-40-mini and those of the human annotators.
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