

000
001
002
003
004
005
006
007
008
009
010
011
012

AUDIO TURING TEST: BENCHMARKING THE HUMAN-LIKENESS OF LARGE LANGUAGE MODEL-BASED TEXT-TO-SPEECH SYSTEMS IN CHINESE

013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent advances in large language models (LLMs) have significantly improved text-to-speech (TTS) systems, enhancing control over speech style, naturalness, and emotional expression, which brings TTS Systems closer to human-level performance. Yet evaluation still relies largely on the Mean Opinion Score (MOS), whose subjectivity, environmental variability, and limited interpretability prevent it from faithfully capturing how human-like the synthesized audio is. Existing evaluation datasets also lack a multi-dimensional design, often neglecting factors such as speaking styles, context diversity, and trap utterances, which is particularly evident in Chinese TTS evaluation. To address these challenges, we introduce the Audio Turing Test (ATT), a multi-dimensional Chinese corpus dataset ATT-Corpus paired with a simple, Turing-Test-inspired evaluation protocol. Instead of relying on complex MOS scales or direct model comparisons, ATT asks evaluators to judge whether a voice sounds human. This simplification reduces rating bias and improves evaluation robustness. To further support rapid model development, we also finetune Qwen2.5-Omni-7B with human judgment data as Auto-ATT for automatic evaluation. Experimental results show that ATT effectively differentiates models across specific capability dimensions using its multi-dimensional design. Auto-ATT also demonstrates strong alignment with human evaluations, confirming its value as a fast and reliable assessment tool.

1 INTRODUCTION

Achieving human-likeness in speech is now a central objective for modern Text-to-Speech (TTS) systems since the widespread need for human-likeness in applications raises the bar for natural, expressive, and contextually appropriate output (Jain et al., 2025; Wang et al., 2024; Yang et al., 2024b; Yeh et al., 2024). Recent LLM-driven advances have accelerated this pursuit: LLM architectures enrich controllability over style and intonation (Anastassiou et al., 2024; Li et al., 2024) and substantially improve speech naturalness and emotional expressivity (Wang et al., 2025), pushing systems from near-human toward truly human-rivaling performance. To further elevate human-likeness, accurate evaluation is indispensable. As realism improves, the perceptual gaps among state-of-the-art LLM-based TTS systems narrow, making it increasingly difficult to distinguish their performance with coarse metrics or underspecified protocols (Le Maguer et al., 2024). This intensifies the need for reliable, sensitive, and well-calibrated evaluation frameworks that can measure human-likeness, diagnose residual deficiencies, and guide continued model development.

Current TTS evaluation still lacks methods and datasets specifically designed for human-likeness evaluation. Listener-based 5-point Mean Opinion Score (MOS) (International Telecommunication Union, 2018) and variants such as CMOS are broad, aggregate judgments for TTS quality evaluation. These MOS-based methods collapse multiple perceptual dimensions into a single scalar and thus offers limited diagnostic value.

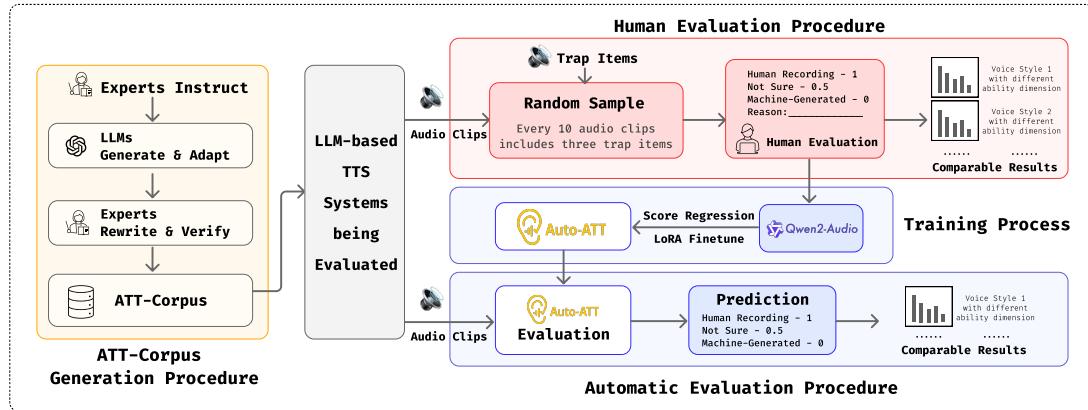


Figure 1: **Audio Turing Test Evaluation Framework:** (1) Corpus Generation: a semi-automatic corpus generation pipeline for generating the challenge TTS synthesis corpus for ATT evaluation; (2) Human Evaluation: a human-evaluation protocol that enables precise, comparable assessments and lowers evaluation costs through a simple yet effective Turing-test-style design, (3) Automatic Evaluation: Auto-ATT, an automatic tool to predict the Human-likeness Score for rapid iterations.

In practice, this makes MOS ill-suited for pinpointing concrete defects and not suitable for assessing the nuanced question of human-likeness. Beyond MOS’s known limits, most TTS evaluation corpora remain general-purpose rather than purpose-built to probe multidimensional capabilities (Anastassiou et al., 2024; Wang et al., 2025). Listening tests seldom include hidden human references or crafted trap utterances to diagnose rater bias and attention allocation (Chiang et al., 2023). These gaps are acute for Chinese, where prosodic pauses, multilingual code-switching, polyphonic characters, and special symbols strongly shape fluency and naturalness (Lavin, 2002; Yang et al., 2024a; Dai et al., 2025). Consequently, the lack of multidimensional and trap data in existing datasets compounds MOS-based weaknesses and limits the discriminative power and completeness of current TTS evaluations (Chiang et al., 2023).

Inspired by the classic Turing Test (French, 2000), as shown in Figure 1, we propose the Audio Turing Test (ATT), an evaluation framework combining a multi-dimensional dataset ATT-Corpus with a Turing test-based evaluation protocol and metrics. To evaluate the human-likeness of Chinese TTS systems, we first built a targeted evaluation corpus addressing key challenges in Chinese speech synthesis. Based on the ATT-Corpus, we design a simple and easy-implement human evaluation protocol. By requiring evaluators to provide ternary judgments on whether each sample is human, along with brief justifications, ATT facilitates both quantitative and qualitative assessments of speech human-likeness. This approach mitigates the anchoring effects and lack of cross-context comparability commonly associated with traditional scale-based methods such as MOS. ATT employs randomized clip assignment, trap items for attention monitoring, and expert-validated justifications to ensure data quality, supporting reliable, unbiased clip-level analysis. To enable swift automated evaluation and accelerate TTS model iteration, we fine-tuned Qwen2.5-Omni-7B (Xu et al., 2025) on a rigorously annotated ATT dataset, producing Auto-ATT.

Using the ATT protocol, we collected ratings from 857 native Chinese listeners through crowdsourcing platforms. Experimental results demonstrate that ATT is a sharp and reliable evaluation framework. Benchmarking results further indicate that ATT effectively distinguishes the performance of different TTS models. Notably, even the top-performing model, Seed-TTS (Anastassiou et al., 2024), achieves only a human-likeness score of 0.4 on ATT—considerably lower than that of real human speech, and in stark contrast to previously reported MOS scores. Analyses across sub-dimensions and voice styles demonstrate that ATT enables multi-axis evaluation of LLM-based TTS systems and supports direct cross-system comparisons. We assess the effectiveness of Auto-ATT through trap item tests and by comparing auto-evaluation results with human

094 ratings. Auto-ATT significantly outperforms traditional MOS predictors in evaluating trap clips and shows
 095 strong alignment with human scores.
 096

097 In summary, our contributions are as follows:

098

- 099 • We introduce the Audio Turing Test, an evaluation framework comprising a multi-dimensional
 100 Chinese corpus (ATT-Corpus) and a Turing Test-inspired protocol, designed to effectively assess the
 101 human-likeness of LLM-based TTS systems.
- 102 • We further train Auto-ATT on human evaluation data to develop an automatic evaluation tool that
 103 enables fast and effective assessment of TTS systems, demonstrating its effectiveness through strong
 104 consistency with human ratings.
- 105 • We benchmark state-of-the-art LLM-based TTS systems using both quantitative and qualitative
 106 analyses, thereby validating the effectiveness and robustness of the ATT framework in Chinese
 107 human-likeness evaluation.

108 2 RELATED WORKS

110 The quality of TTS systems is typically assessed with a mix of objective metrics and subjective listening tests.
 111 Among objective metrics, speaker similarity (SIM) is widely used in recent LLM-based TTS work (Wang
 112 et al., 2023; Anastassiou et al., 2024), but it requires reference speech, limits cross-system benchmarking to
 113 model trainers, and only reflects voice matching rather than broader quality attributes (Guner et al., 2012).
 114 Learned predictors trained on human labels (e.g., UTMOS, DNSMOS) can estimate perceived quality but
 115 often struggle to generalize to new systems (Saeki et al., 2022; Reddy et al., 2022).

116 Subjective evaluation still relies on Mean Opinion Score (MOS) as the de facto “gold standard,” with derivatives
 117 such as CMOS, CCR, and MUSHRA-style tests (Streijl et al., 2016; Naderi et al., 2021; International
 118 Telecommunication Union, 2015). However, MOS collapses multiple perceptual dimensions (naturalness,
 119 intelligibility, prosody, speaker similarity, robustness) into a single coarse rating, hindering diagnostic insight.
 120 Empirical studies highlight cross-study incomparability due to inconsistent scales/instructions (Kirkland et al.,
 121 2023) and [sensitivity to listeners’ task assumptions \(Edlund et al., 2024; Nguyen & Le, 2025\)](#). Comparative
 122 protocols are also vulnerable: lower-quality systems can depress or inflate scores of better systems (Le
 123 Maguer et al., 2024), MUSHRA’s human reference can bias judgments (Varadhan et al., 2024), and CMOS
 124 may show weak discrimination when items are similarly rated overall. Pairwise and grouping analyses have
 125 shown improved sensitivity for naturalness comparisons (Perrotin et al., 2023).

126 In practice, reporting of human tests is often under-specified (e.g., screening, compensation, interface
 127 instructions), which undermines reproducibility (Chiang et al., 2023). As LLM-era TTS approaches human
 128 quality, MOS-based evaluations face ceiling effects (Le Maguer et al., 2024) and insufficient resolution for
 129 human-likeness. [Since the community has begun to focus on human-centered TTS evaluation \(Srinivasa](#)
 130 [Varadhan et al., 2025\)](#), there is thus a pressing need for a human-likeness-oriented methodology—with a
 131 clear protocol and multidimensional test sets—to enable precise, reliable, and replicable assessment of TTS
 132 systems.

133 3 AUDIO TURING TEST

134 To address the challenges in the current subjective evaluation of TTS systems, we design the Audio Turing Test
 135 (ATT). ATT is an evaluation framework with a standardized human evaluation protocol and an accompanying
 136 dataset ATT-Corpus, aiming to resolve the lack of unified protocols in TTS evaluation and the difficulty in
 137 comparing multiple TTS systems. Moreover, for comprehensive evaluation, ATT-Corpus is designed with
 138 appropriate dimensions to help identify specific capability differences among TTS systems. To further support
 139

Table 1: **Corpus Examples of ATT-Corpus.**

Dimension	Description	Example
Special Characters and Numerals	Analyze the numbers, special characters, letters, and other information types in the text and transcribe them into the most appropriate or commonly used pronunciations.	我们公司也有些年头了呢。 <u>2010年6月8日</u> 的时候公司刚成立，现在算算已经快满 <u>12年</u> 了，真的是时间过得挺快的。这一路走来也不容易啊。
Chinese-English Code-switching	Primarily Chinese, interspersed with a few words from other languages, used to assess whether the pronunciation is accurate.	没想到 <u>B</u> 站有这么多不同类型的片子，昨晚我在 <u>bilibili</u> 上看了一部新的纪录片.....
Paralinguistic Features and Emotions	Expressive paralinguistic phenomena, such as laughter, and the expression of various emotional states.	呜呼，终于下班了。今天的工作简直让人崩溃，真是忙得一刻都没停过。溜了溜了，赶紧回家休息了，我感觉一回家就要睡着，等会晚点去个洗脚城好好放松一下。
Classical Chinese Poetry/Prose	Each character in classical Chinese poetry and prose is pronounced correctly in terms of its initial consonant, final, tone, and other aspects of articulation.	苏轼笔下长江的描绘：“出西陵，始得平地，其流奔放肆大。”江水奔腾不息、气势磅礴的景象让人震撼不已。三峡之行.....
Polyphonic Characters	Polyphonic Chinese characters are pronounced correctly.	老中医说，这病症得慢慢调理，着急不得。可这病的症结到底在哪呢？

the training and iteration of TTS systems, we utilized additional private evaluation data to train Auto-ATT based on Qwen2.5-Omni-7B via LoRA (Hu et al., 2022) finetuning, enabling a model-as-a-judge approach for rapid evaluation of TTS systems on the ATT-Corpus. In this section, we provide a detailed description of the construction of the ATT-Corpus, ATT evaluation protocol design along with the Auto-ATT.

3.1 ATT-CORPUS DATASET

Currently, TTS evaluation primarily relies on a subset of samples selected from publicly available speech datasets. This results in limited coverage and makes assessing a model’s ability to synthesize complex speech challenging. We construct ATT-Corpus as a comprehensive corpus for TTS evaluation to address this limitation. Taking Chinese as a representative example, we first identify the key challenges TTS systems face, which guide the two-stage data production process of ATT-Corpus.

Data Description. We categorize the linguistic capabilities required for Chinese TTS synthesis based on the linguistic phenomena in the corpus to construct a dataset tailored for ATT evaluation. The corpus covers five key dimensions of Chinese linguistic competence: (1) Special Characters and Numerals, (2) Chinese-English Code-switching, (3) Paralinguistic Features and Emotions, (4) Classical Chinese Poetry/Prose, and (5) Polyphonic Characters. The detailed composition of the corpus is presented in Table 1.

Corpus Generation and Verification. To reduce manual labor costs and ensure the long-term sustainability of the corpus production process, we adopt a semi-automated approach that combines initial generation and adaptation using large language models (LLMs), followed by expert revision and validation¹. We employ GPT-4o (Hurst et al., 2024) as the primary model for initial corpus generation. We generate base corpora across various linguistic categories using the prompt and sample text illustrated in the figure. Subsequently, we utilize DeepSeek-R1 (Guo et al., 2025) to perform colloquial adaptation in Chinese, enhancing the naturalness and human-likeness of the generated text. After the automated generation process, four linguistics experts conducted standardized revisions of the corpus. The prompts for data generation, along with the specific revision and review guidelines, are provided in Appendix A.1. Upon completion of the revisions, the experts conducted cross-checking to ensure the quality of the corpus.

¹Experts refer to individuals holding a master’s degree in linguistics or a related field.

188 3.2 EVALUED AUDIO CLIPS GENERATION AND VALIDATION
189190 After completing the corpus collection, we generate audio clips using the TTS models to be evaluated. To
191 ensure evaluation accuracy, we perform manual spot checks on the synthesized speech with the involvement
192 of two expert reviewers. **This validation stage is primarily intended to confirm that no widespread synthesis**
193 **failures occur due to engineering issues or other extraneous factors. Occasional synthesis failures at the level of**
194 **a single audio clip are recorded but are not discarded at this stage.** To balance the sample's representativeness
195 with the efficient use of human review resources, a sampling rate of 25% is adopted. Specifically, we examine
196 two aspects during this stage: synthesis success and synthesis consistency. The details of the validation
197 process are in Appendix A.2. Note that at this stage, we do not evaluate or inspect the human-likeness of the
198 synthesized speech.199 3.3 HUMAN EVALUATION PROTOCOL
200201 In the ATT human evaluation, participants completed a forced-choice speech-authenticity test. As shown in
202 Figure 1, we propose the following protocol to implement ATT:203 **Sampling and Assignment.** Each participant is randomly assigned **seven** audio clips sampled without
204 replacement from a pool containing **the synthesized audio clips for evaluation.**205 **Attention Monitoring via Trap Items.** To ensure participant attentiveness, we include trap items at regular
206 intervals. Specifically, three **random** trap items **are assigned to each participant in addition to the seven**
207 **assigned audio clips for evaluation:** one deliberately flawed synthetic clip and two genuine human recordings.
208 We also open source these trap items in ATT-Corpus for future evaluation.209 **Labeling and Justification.** For each audio clip, participants select one of three labels: [Human], [Unclear],
210 or [Machine]. They are also required to provide a short free-text justification to support qualitative analysis.211 **Attention Check Validation.** The response batch of participants is considered valid only if they correctly
212 identify the deliberately flawed synthetic clip and at least one of the two human recordings within each 10-clip
213 set. Responses that fail to meet this criterion are excluded from further analysis.214 **Expert Consistency Review.** After data collection, the **two** expert reviewers assess whether participants'
215 free-text justifications align with their labels. **Experts specifically inspect participants' justifications for**
216 **the seven non-trap synthetic clips, requiring evidence-based and targeted analysis.** Responses **flagged as**
217 **inconsistent by either expert are also excluded.**218 Each **audio clip** and its corresponding judgment were treated as an independent sampling unit in our protocol
219 design. The random assignment of **audio clips without the in-group comparison**, minimized learning effects
220 and reduced inter-trial dependence, enabling clip-level modeling of classification accuracy.221 To validate the protocol's effectiveness, we report results from a mixed-effects logistic regression analysis,
222 with participants modeled as a random effect, using a generalized linear mixed model (GLMM) (Bolker et al.,
223 2009).224 3.4 HUMAN-LIKENESS SCORE
225226 Based on the evaluation protocol, we define a metric to quantify the human-likeness of audio clips synthesized
227 by TTS systems: the Human-likeness Score (HLS).228 The HLS relies on one human label for each audio clip i collected in the set $\mathcal{L} = \{\text{Human}, \text{Unclear}, \text{Machine}\}$.
229 In HLS, the individual scores for each audio clip i are then expressed using the indicator function $\mathbb{1}(\cdot)$:

230
$$s_i = \mathbb{1}(\text{Label} = \text{Human}) + 0.5 \cdot \mathbb{1}(\text{Label} = \text{Unclear})$$

Given N audio clips produced by one TTS system, represented as the set $\mathcal{S} = \{s_1, \dots, s_N\}$, the system’s HLS is defined as the average of the individual scores s_i :

$$\text{HLS} = \frac{1}{N} \sum_{i=1}^N s_i.$$

We employ HLS to quantify the human-likeness of a TTS system’s speech synthesis, which can be assessed both overall and within specific sub-dimensions. The resulting numeric HLS scores can also supervise the training of automated prediction models.

3.5 AUTO-ATT

To facilitate rapid evaluation iterations and enhance the usability of the assessment process, we fine-tuned Qwen2.5-Omni-7B (Xu et al., 2025) on a subset of human evaluation data to enable a “model-as-a-judge” approach that allows the model to predict Human-likeness Score (HLS).

Data. For training Auto-ATT, we construct a training-testing split from the full ATT corpus at both the corpus and audio levels. At the corpus level, we select three capability subsets—Chinese-English code-switching, character-level pronunciation, and paralinguistics and emotion—as the training corpus, while reserving the remaining two capability subsets for evaluation. On top of this corpus split, we further partition audio by voice: for each of the five model families evaluated in our ATT benchmark (Table 4), we hold out one voice as the test set and use the other three voices for training. To improve the generalization of Auto-ATT, we additionally synthesize speech on the training corpus using internal TTS systems. Specifically, we recruit 437 annotators from crowdsourcing platforms to evaluate all training clips following our protocol, and aggregate labels from three independent annotators per clip into a final label. Details about the corpus and voice splits are provided in Appendix E. During training, each mini-batch is drawn from a single capability subset to maintain subset-level consistency.

Training. We utilized TTS-generated speech segments accompanied by instructional prompts designed to guide the model in evaluating speech human-likeness. These inputs were employed to adapt Qwen2.5-Omni-7B for HLS prediction.

Though originally introduced as an auto-regressive audio language model, we adapt Qwen2.5-Omni-7B for HLS score regression by leveraging the logits from its existing `lm_head`. Specifically, we selected three semantically significant tokens: Human, Unclear, and Machine, whose logits represent the model’s internal judgments regarding speech quality. A Softmax function was applied to these logits to obtain a normalized probability distribution across the three quality categories. Subsequently, this distribution was converted into a weighted average score by associating each category with a predefined discrete HLS score value: 1 for Human, 0.5 for Unclear, and 0 for Machine. The predicted HLS was calculated as follows:

$$s_i^{\text{pred}} = \sum_{\text{Label}} P(\text{Label}) \cdot [1 \cdot \mathbb{1}(\text{Label} = \text{Human}) + 0.5 \cdot \mathbb{1}(\text{Label} = \text{Unclear})] \quad (1)$$

Logits were specifically extracted from the final token position of the input prompt, denoted by the character “\n”. The input prompt comprises both audio content and instructional guidance.

During training, we adopted a loss function consisting of a weighted linear combination of Mean Squared Error (MSE) and Bradley-Terry (BT) (Hunter, 2004) losses:

$$\mathcal{L}_{\text{Total}} = 0.4 \times \mathcal{L}_{\text{BT}} + 0.6 \times \mathcal{L}_{\text{MSE}}, \quad (2)$$

where $\mathcal{L}_{\text{BT}} = - \sum_{(i,j), s.t., s_i^{\text{gt}} > s_j^{\text{gt}}} \log \sigma(s_i^{\text{pred}} - s_j^{\text{pred}})$ and $\mathcal{L}_{\text{MSE}} = \frac{1}{2} \sum_i (s_i^{\text{pred}} - s_i^{\text{gt}})^2$.

The model fine-tuning employed Low-Rank Adaptation (LoRA) with hyperparameters configured as follows: rank (r) of 32, scaling factor (α) of 32, and dropout rate of 0.05. LoRA adapters were applied exclusively to

282 all linear layers within the LLM component of Qwen2.5-Omni-7B, while other parameters remained fixed
 283 throughout the training process.
 284

285 **4 EXPERIMENTS**
 286

288 The evaluation involves a total of 20 voice styles across 5 TTS model families including CosyVoice2.0 (Du
 289 et al., 2024), MiniMax-Speech (MiniMax, 2025), Seed-TTS (Anastassiou et al., 2024), Step-Audio (Huang
 290 et al., 2025) and GPT-4o (Hurst et al., 2024). The voice styles of each model family are detailed in Table 4.
 291

292 **4.1 HUMAN EVALUATION**
 293

294 Following the ATT human evaluation protocol outlined in Section 3, we recruited 857 native Chinese speakers
 295 through crowdsourcing to evaluate the TTS systems. The participant pool included 202 males, 247 females,
 296 and 408 who selected ‘Prefer not to say.’ As shown in Figure 4, in each evaluation phase, participants will
 297 listen to an audio clip and make a single-choice selection afterward, choosing whether the source of audio
 298 is [Human] - 1, [Unclear] - 0.5, or [Machine] - 0. Participants were further required to provide written
 299 justifications for each of their judgments, which supports a deeper qualitative analysis of the perceptual and
 300 decision-making processes underlying their evaluations. Each audio clip took approximately 45 seconds
 301 to 1 minute to evaluate and annotate. Compensation was provided at a rate of 0.8 RMB per evaluated
 302 clip, equivalent to approximately 48 RMB per hour. To ensure data quality, we applied our predefined
 303 validation protocol to screen and verify the collected responses. In addition, we conducted a qualitative
 304 coding analysis of the textual justifications, assigning attribution codes to each response. The coding themes
 305 and procedural details are described in Appendix B.3. All judgments, justifications, and demographic details
 306 were logged anonymously, and the study adhered to the ethical guidelines of the crowdsourcing platform and
 307 the researchers’ institution.
 308

309 **4.1.1 STATISTICAL SIGNIFICANCE TEST FOR ATT’S HUMAN EVALUATION PROTOCOL DESIGN**
 310

311 To ensure statistical robustness, we conducted a statistical significance test using a Generalized Linear Mixed
 312 Model (GLMM) (Bolker et al., 2009). The model showed excellent convergence on the human evaluation
 313 data: all parameters had Gelman-Rubin diagnostics ($\hat{R} = 1.00 < 1.01$) and effective sample sizes (ESS
 314 > 400), indicating precise inference and reliable posterior estimates.
 315

316 The fixed effects analysis indicates that the mean
 317 scores of all evaluated models were statistically
 318 significantly higher than the zero baseline (with
 319 95%HDI entirely above zero). Detailed results are
 320 provided in Table 2. The findings indicate that
 321 the Seed-TTS and Minimax-Speech models signifi-
 322 cantly outperformed the GPT-4o and CosyVoice
 323 models, while the Step-Audio model showed inter-
 324 mediate performance.
 325

326 The random effects analysis reveals significant base-
 327 line differences across participants, with the esti-
 328 mated standard deviation of random intercepts being 0.234 (95%HDI = [0.222, 0.246]), suggesting sub-
 329 stantial individual variability in overall scoring tendencies. Additionally, there was a moderately positive
 330 correlation in repeated evaluations of the same model by individual raters (random slope standard deviation
 331 = 0.108, 95%HDI = [0.100, 0.116]), indicating stable preferences or biases in participants’ judgments of
 332 specific models. We additionally report MOS-based evaluations in Appendix C. The results show strong con-
 333

334 **Table 2: Posterior summary statistics from the**
 335 **GLMM.** Including posterior means, standard devia-
 336 tions (SD), 95% highest density intervals (HDI).
 337

Models	Posterior Mean(SD)	95%HDI
Seed-TTS	0.417 (0.011)	[0.398, 0.438]
MiniMax-Speech	0.387 (0.011)	[0.368, 0.407]
Step-Audio	0.286 (0.011)	[0.266, 0.307]
CosyVoice	0.234 (0.010)	[0.214, 0.254]
GPT-4o	0.138 (0.011)	[0.118, 0.158]

sistency between HLS and MOS in assessing audio quality. However, the HLS scores exhibit a substantially higher signal-to-noise ratio (Johnson, 2006) (10.53 vs. 5.79 for MOS), indicating greater separability across models and, by implication, a lower annotator burden.

4.1.2 BENCHMARKING VIA HUMAN EVALUATION

Effectiveness of ATT. As shown in Figure 2, in ATT’s benchmark results, Seed-TTS heads the first performance tier with Minimax-Speech. Step-Audio and CosyVoice occupy the second tier with mid-range scores between 0.22 and 0.27, while GPT-4o falls into a distinct third tier at just 0.13, well below the leaders. The pronounced stepwise gaps show that the ATT evaluation framework can clearly distinguish capability differences among TTS systems. The most notable result is that the highest model’s HLS is only 0.4 (Seed-TTS), which remains substantially below the level of true human-likeness. This result markedly deviates from the MOS scores widely reported in prior studies, where TTS systems have often been rated as nearly indistinguishable from human speech. This discrepancy suggests that the HLS metric in the ATT framework is more sensitive and effective in capturing the subtle differences between synthetic and human speech, thereby providing a more realistic assessment of TTS human-likeness.

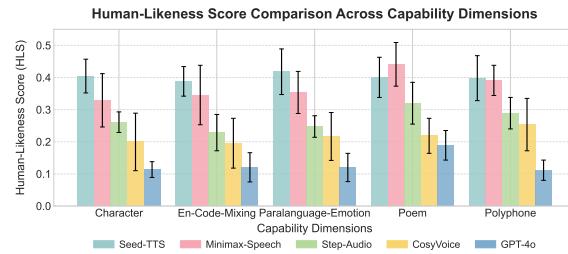


Figure 2: The Key Benchmark Results of ATT Human Evaluation.

Performance of Different Dimensions and Different Voice Styles. Leveraging ATT’s capability for cross-model comparison, we conducted a more fine-grained analysis of the human-likeness exhibited in different voice timbres generated by each TTS system, as well as their overall performance across multiple dimensions. Importantly, as shown in Figure 2 all the models’ scores on each sub-dimension mirror their positions in the overall league table, showing no large fluctuations between individual skills and total capability. Notably, substantial variations in voice style are also observed within individual models. For example, Seed-TTS’s top-ranked voice, “Skye,” scores 0.47, whereas the lowest-ranked voice scores only 0.35. This clear gap shows that ATT can distinguish quality variations between different timbres generated by the same model. The detailed results can be found in Appendix B.4.

Attribution Analysis. The qualitative review of the judges’ comments reveals common shortcomings across all vendors: (1) prosodic naturalness: intonation patterns often appear abrupt or unnatural, with long sentences delivered in a word-by-word manner and lacking appropriate micro-pauses, making the synthetic origin readily detectable; and (2) expressive richness: emotional expression is either overly flattened or semantically incongruent with the content of the sentence. GPT-4o’s Chinese voices are additionally hindered by a noticeable foreign accent, poor rhythm control, and prominent audio artifacts (electronic hiss and noise), which compound its prosodic issues and place it firmly at the bottom.

4.2 EFFECTIVENESS OF AUTO-ATT EVALUATION

To validate the effectiveness of Auto-ATT, we design experiments from two aspects: (1) comparing Auto-ATT performance against other MOS-prediction models and (2) measuring Auto-ATT alignment with human judgments.

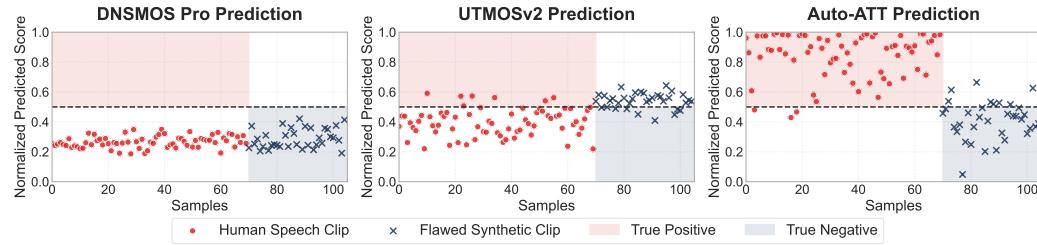


Figure 3: **Trap Items predictions of DNSMOS Pro, UTMOSv2, and Auto-ATT.** For a human speech clip, the ideal outcome is a true positive: the red dot should fall within the red zone; for a flawed synthetic speech clip, the ideal outcome is a true negative: the gray dot should fall within the gray zone.

4.2.1 COMPARISON WITH OTHER AUTO EVALUATION IN TRAP ITEM

To evaluate model reliability, we conduct experiments on the trap items included in the ATT-Corpus. We compare the state-of-the-art automatic evaluation methods UTMOSv2 (Baba et al., 2024) and DNSMOS Pro (Cumlin et al., 2024) with our Auto-ATT in predicted HLS on these trap items. Since trap items are readily distinguishable to human listeners in our data validation process, we scored them with each prediction model. These trap items have never been seen by any automatic evaluation methods we evaluated here, so this is a fair comparison. In principle, a reliable model should accurately predict the quality of trap items. For both MOS prediction and HLS scores, human speech should receive significantly higher ratings than defective synthetic speech. As shown in Figure 3, Auto-ATT predicts trap items markedly better than conventional MOS prediction models. Auto-ATT vastly outperformed the baselines, achieving an F1 score of 0.92, while UTMOSv2 reached only 0.14 and DNSMOSPro collapsed to 0.00 at the 0.5 decision threshold. This result indicates that, in comparison to conventional MOS prediction models, Auto-ATT demonstrates superior capability in distinguishing the human-likeness of speech audio, making it particularly well-suited for automated evaluation tasks.

4.2.2 CONSISTENCY OF HUMAN EVALUATION

To validate the alignment between Auto-ATT predictions and human assessments, we test Auto-ATT and the base Qwen2.5-Omni-7B on the same audio clips used in our ATT human study, and have both models predict HLS for each capability dimension. This evaluation adopts a strict held-out setting at the voice-style level: for every TTS model family, one voice style is excluded from Auto-ATT’s training data and used only for testing. Moreover, the evaluated capability dimensions span both in-distribution subsets seen during training and out-of-distribution subsets held out from training. We aggregate clip-level predicted HLS to obtain voice-level human-likeness scores within each dimension, and measure ranking agreement with human evaluations using PLCC and SRCC. As shown in Table 3, Auto-ATT produces voice rankings that closely track human judgments across all dimensions, achieving near-perfect correlations on in-distribution capabilities and strong alignment on the held-out OOD capabilities, while consistently outperforming Qwen2.5-Omni-7B. To further assess the robustness of Auto-ATT under distributional shift, we additionally evaluate its behavior on entirely unseen TTS system families. Specifically, we apply the ATT corpus to two unseen TTS systems: ElevenLabs Eleven v3 (Staniszewski & Dabkowski, 2025) and Qwen3-TTS-Flash (Qwen Team, 2025), and compare Auto-ATT’s voice-level rankings with human judgments

Table 3: SRCC and PLCC of Auto-ATT and Qwen2.5-Omni-7B across different capability dimensions.

Capability Dimension	Auto-ATT	Qwen2.5 Omni
Metrics	SRCC / PLCC	SRCC / PLCC
<i>In-Distribution Dimensions</i>		
Special Characters and Numerals	1.00 / 0.949	0.899 / 0.708
Chinese-English Code-switching	1.00 / 0.945	0.899 / 0.811
Paralinguistic Features and Emotions	0.899 / 0.933	0.700 / 0.677
<i>Out-of-Distribution Dimensions</i>		
Classical Chinese Poetry/Prose	0.899 / 0.916	0.600 / 0.571
Polyphonic Characters	0.899 / 0.889	0.499 / 0.725

9

423 on their synthesized audio. The experimental details can be found in Appendix E.2. Despite substantial
424 differences from the families used in Auto-ATT’s training, the model continues to exhibit strong agreement
425 with human assessments on the held-out OOD capability dimensions. Auto-ATT attains SRCC / PLCC
426 scores of 0.714 / 0.886 on *Classical Chinese Poetry/Prose* and 0.771 / 0.790 on *Polyphonic Characters*.
427 These results indicate that Auto-ATT serves as a reliable proxy for human-likeness assessment, with robust
428 generalization to different voice styles, unseen TTS systems and even unseen capability criteria.
429

430 5 CONCLUSION & LIMITATIONS

431 In this paper, we propose the Audio Turing Test (ATT), an innovative evaluation framework specifically
432 designed to address critical challenges in evaluating the human-likeness of LLM-based TTS systems in
433 Chinese. ATT uniquely integrates a comprehensive, multi-dimensional evaluation corpus ATT-Corpus with a
434 robust Turing-Test-inspired evaluation protocol, thereby providing both qualitative and quantitative insights.
435 Our rigorous validation demonstrates that ATT reliably differentiates among state-of-the-art LLM-based
436 TTS models, pinpointing specific strengths and weaknesses across diverse linguistic dimensions such as
437 code-switching, emotional expression, polyphony, and classical texts. Additionally, by finetuning Qwen2.5-
438 Omni-7B on human annotations, we develop Auto-ATT for accelerating the iteration cycles of TTS systems
439 through rapid and accurate assessments. Results confirm Auto-ATT’s superior alignment with human
440 evaluators compared to traditional automatic evaluation methodologies. A current limitation of ATT is its
441 language-specific nature, as both the protocol and corpus are primarily designed for Chinese speech synthesis.
442 To address this, we aim to extend the ATT framework to support multiple languages and a broader range of
443 speech synthesis scenarios, thereby validating its generalizability and cross-linguistic effectiveness. Overall,
444 ATT represents a significant advancement in the evaluation of LLM-based speech synthesis systems and
445 paves the way for more natural and human-like TTS technologies.
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469

470 The Use of Large Language Models. We used a large language model as a general-purpose assistant solely
 471 for text editing, including grammar correction, wording and tone adjustments, punctuation, and stylistic
 472 consistency. The model did not contribute to research ideation, methodology, experimental design, data
 473 analysis, interpretation of results, or the generation of substantive academic content or references. All
 474 suggestions were reviewed and approved by the authors, who take full responsibility for the final text. Our
 475 use of LLMs for data synthesis/augmentation is described in the main manuscript; this statement pertains
 476 only to editorial assistance.

477 Ethics Statement. Our method and algorithm do not involve any adversarial attack, and will not endanger
 478 human security. All our experiments does not involve ethical and fair issues.

479 Reproducibility Statement. The ATT-Corpus is available at supplementary materials, and we will release our
 480 Auto-ATT model and code in huggingface once the paper being accepted. We specify all the implementation
 481 details of our methods in Appendix B. The experiment additional results are in the Appendix B.4 and
 482 Appendix D.

483 REFERENCES

484 Philip Anastassiou, Jiawei Chen, Jitong Chen, Yuanzhe Chen, Zhuo Chen, Ziyi Chen, Jian Cong, Lelai Deng,
 485 Chuang Ding, Lu Gao, et al. Seed-tts: A family of high-quality versatile speech generation models. [arXiv preprint arXiv:2406.02430](https://arxiv.org/abs/2406.02430), 2024.

486 Kaito Baba, Wataru Nakata, Yuki Saito, and Hiroshi Saruwatari. The t05 system for the voicemos challenge
 487 2024: Transfer learning from deep image classifier to naturalness mos prediction of high-quality synthetic
 488 speech. In [Proc. IEEE Spoken Language Technology Workshop \(SLT\)](https://ieeexplore.ieee.org/abstract/document/9650003), 2024. [arXiv:2409.09305](https://arxiv.org/abs/2409.09305).

489 Benjamin M Bolker, Mollie E Brooks, Connie J Clark, Shane W Geange, John R Poulsen, M Henry H
 490 Stevens, and Jada-Simone S White. Generalized linear mixed models: a practical guide for ecology and
 491 evolution. [Trends in ecology & evolution](https://doi.org/10.1007/s10651-009-9403-4), 24(3):127–135, 2009.

492 Cheng-Han Chiang, Wei-Ping Huang, and Hung yi Lee. Why we should report the details in subjective
 493 evaluation of tts more rigorously. In [Interspeech 2023](https://doi.org/10.21437/Interspeech.2023-416), pp. 5551–5555, 2023. doi: 10.21437/Interspeech.2023-416.

494 Fredrik Cumlin, Xinyu Liang, Victor Ungureanu, Chandan K. A. Reddy, Christian Schüldt, and Saikat
 495 Chatterjee. Dnsmos pro: A reduced-size dnn for probabilistic mos of speech. In [Interspeech 2024](https://doi.org/10.21437/Interspeech.2024-478), pp.
 496 4818–4822, 2024. doi: 10.21437/Interspeech.2024-478.

497 Dongyang Dai, Zhiyong Wu, Shiyin Kang, Xixin Wu, Jia Jia, Dan Su, Dong Yu, and Helen Meng. Dis-
 498 ambiguation of chinese polyphones in an end-to-end framework with semantic features extracted by
 499 pre-trained bert. [arXiv preprint arXiv:2501.01102](https://arxiv.org/abs/2501.01102), 2025.

500 Zhihao Du, Qian Chen, Shiliang Zhang, Kai Hu, Heng Lu, Yixin Yang, Hangrui Hu, Siqi Zheng, Yue
 501 Gu, Ziyang Ma, et al. Cosyvoice: A scalable multilingual zero-shot text-to-speech synthesizer based on
 502 supervised semantic tokens. [arXiv preprint arXiv:2407.05407](https://arxiv.org/abs/2407.05407), 2024.

503 Jens Edlund, Christina Tånnander, Sébastien Le Maguer, and Petra Wagner. Assessing the impact of contextual
 504 framing on subjective tts quality. In [25th Interspeech Conference 2024, Kos Island, Greece, Sep 1 2024-Sep 5 2024](https://doi.org/10.21437/Interspeech.2024-1205), pp. 1205–1209. International Speech Communication Association, 2024.

505 Robert M French. The turing test: the first 50 years. [Trends in cognitive sciences](https://doi.org/10.1016/j.tics.2000.00001), 4(3):115–122, 2000.

506 Ekrem Guner, Amir Mohammadi, and Cenk Demiroglu. Analysis of speaker similarity in the statistical speech
 507 synthesis systems using a hybrid approach. In [2012 Proceedings of the 20th European Signal Processing Conference \(EUSIPCO\)](https://doi.org/10.1109/EUSIPCO52012.2012.6288059), pp. 2055–2059. IEEE, 2012.

517 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,
 518 Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement
 519 learning. [arXiv preprint arXiv:2501.12948](#), 2025.

520 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu
 521 Chen, et al. Lora: Low-rank adaptation of large language models. [ICLR](#), 1(2):3, 2022.

523 Ailin Huang, Boyong Wu, Bruce Wang, Chao Yan, Chen Hu, Chengli Feng, Fei Tian, Feiyu Shen, Jingbei Li,
 524 Mingrui Chen, et al. Step-audio: Unified understanding and generation in intelligent speech interaction.
 525 [arXiv preprint arXiv:2502.11946](#), 2025.

526 David R Hunter. Mm algorithms for generalized bradley-terry models. [The annals of statistics](#), 32(1):
 527 384–406, 2004.

529 Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Ostrow,
 530 Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. [arXiv preprint arXiv:2410.21276](#),
 531 2024.

532 International Telecommunication Union. Method for the Subjective Assessment of Intermediate Quality
 533 Level of Audio Systems, 2015. MULTiple Stimulus with Hidden Reference and Anchor (MUSHRA).

535 International Telecommunication Union. Subjective evaluation of speech quality with a crowdsourcing
 536 approach, 2018.

537 Kunal Jain, Eoin Murphy, Deepanshu Gupta, Jonathan Dyke, Saumya Shah, Vasilios Tsiaras, Petko Petkov,
 538 and Alistair Conkie. Compact neural tts voices for accessibility. [arXiv preprint arXiv:2501.17332](#), 2025.

540 Don H Johnson. Signal-to-noise ratio. [Scholarpedia](#), 1(12):2088, 2006.

541 Ambika Kirkland, Shivam Mehta, Harm Lameris, Gustav Eje Henter, Eva Székely, and Joakim Gustafson.
 542 Stuck in the mos pit: A critical analysis of mos test methodology in tts evaluation. In [12th Speech Synthesis](#)
 543 [Workshop \(SSW\) 2023](#), 2023.

544 Richard S Lavin. Issues in chinese prosody: conceptual foundations of a linguistically-motivated text-
 545 to-speech system for mandarin. In [Language, Information, and Computation: Proceedings of The 16th](#)
 546 [Pacific Asia Conference: January 31–February 2 2002, Jeju, Korea](#), pp. 259–270. Waseda University, 2002.

548 Sébastien Le Maguer, Simon King, and Naomi Harte. The limits of the mean opinion score for speech
 549 synthesis evaluation. [Computer Speech & Language](#), 84:101577, 2024. ISSN 0885-2308. doi:
 550 <https://doi.org/10.1016/j.csl.2023.101577>. URL <https://www.sciencedirect.com/science/article/pii/S0885230823000967>.

552 Yinghao Aaron Li, Xilin Jiang, Cong Han, and Nima Mesgarani. Styletts-zs: Efficient high-quality zero-shot
 553 text-to-speech synthesis with distilled time-varying style diffusion. [arXiv preprint arXiv:2409.10058](#), 2024.

555 MiniMax. Hyper-realistic, multi-emotion generative speech model speech-01. <https://www.minimax.io/news/speech-01>, 2025.

557 Babak Naderi, Sebastian Möller, and Ross Cutler. Speech quality assessment in crowdsourcing: Comparison
 558 category rating method. [arXiv preprint arXiv:2104.04371](#), 2021.

559 Binh Nguyen and Thai Le. Turing’s echo: Investigating linguistic sensitivity of deepfake voice detection via
 560 gamification. In [Proc. Interspeech 2025](#), pp. 2145–2146, 2025.

562 Olivier Perrotin, Brooke Stephenson, Silvain Gerber, and Gérard Bailly. The blizzard challenge 2023. In [18th](#)
 563 [Blizzard Challenge Workshop](#), pp. 1–27, 2023. doi: 10.21437/Blizzard.2023-1.

564 Qwen Team. Qwen3-tts-flash: Multi-timbre and multi-lingual and multi-dialect speech
 565 synthesis. Qwen Blog, September 2025. URL <https://qwen.ai/blog?id=b4264e11fb80b5e37350790121baf0a0f10daf82>.

566

568 Chandan KA Reddy, Vishak Gopal, and Ross Cutler. Dnsmos p. 835: A non-intrusive perceptual objective
 569 speech quality metric to evaluate noise suppressors. In ICASSP 2022-2022 IEEE international conference
 570 on acoustics, speech and signal processing (ICASSP), pp. 886–890. IEEE, 2022.

571 Takaaki Saeki, Detai Xin, Wataru Nakata, Tomoki Koriyama, Shinnosuke Takamichi, and Hiroshi Saruwatari.
 572 Utmos: Utokyo-sarulab system for voicemos challenge 2022. arXiv preprint arXiv:2204.02152, 2022.

573

574 Praveen Srinivasa Varadhan, Sherry Thomas, Sai Teja M S, Suvrat Bhooshan, and Mitesh M. Khapra. The
 575 State Of TTS: A Case Study with Human Fooling Rates. In Interspeech 2025, pp. 2285–2289, 2025. doi:
 576 10.21437/Interspeech.2025-2765.

577 Mati Staniszewski and Piotr Dabkowski. Eleven v3. ElevenLabs, 2025. URL <https://elevenlabs.io/v3>.

578

579 Robert C Streijl, Stefan Winkler, and David S Hands. Mean opinion score (mos) revisited: methods and
 580 applications, limitations and alternatives. Multimedia Systems, 22(2):213–227, 2016.

581

582 Praveen Srinivasa Varadhan, Amogh Gulati, Ashwin Sankar, Srija Anand, Anirudh Gupta, Anirudh Mukherjee,
 583 Shiva Kumar Marepally, Ankur Bhatia, Saloni Jaju, Suvrat Bhooshan, et al. Rethinking mushra: Addressing
 584 modern challenges in text-to-speech evaluation. arXiv preprint arXiv:2411.12719, 2024.

585

586 Chengyi Wang, Sanyuan Chen, Yu Wu, Ziqiang Zhang, Long Zhou, Shujie Liu, Zhuo Chen, Yanqing Liu,
 587 Huaming Wang, Jinyu Li, et al. Neural codec language models are zero-shot text to speech synthesizers.
 588 arXiv preprint arXiv:2301.02111, 2023.

589

590 Siyang Wang, Eva Székely, and Joakim Gustafson. Contextual interactive evaluation of tts models in dialogue
 591 systems. In 25th Interspeech Conferece 2024, Kos Island, Greece, Sep 1 2024-Sep 5 2024, pp. 2965–2969.
 592 International Speech Communication Association, 2024.

593

594 Xinsheng Wang, Mingqi Jiang, Ziyang Ma, Ziyu Zhang, Songxiang Liu, Linqin Li, Zheng Liang, Qixi Zheng,
 595 Rui Wang, Xiaoqin Feng, et al. Spark-tts: An efficient llm-based text-to-speech model with single-stream
 596 decoupled speech tokens. arXiv preprint arXiv:2503.01710, 2025.

597

598 Jin Xu, Zhifang Guo, Jinzheng He, Hangrui Hu, Ting He, Shuai Bai, Keqin Chen, Jialin Wang, Yang Fan,
 599 Kai Dang, Bin Zhang, Xiong Wang, Yunfei Chu, and Junyang Lin. Qwen2.5-omni technical report. arXiv
 600 preprint arXiv:2503.20215, 2025.

601

602 Huai-Zhe Yang, Chia-Ping Chen, Shan-Yun He, and Cheng-Ruei Li. Bilingual and code-switching tts
 603 enhanced with denoising diffusion model and gan. In Proc. Interspeech 2024, pp. 4938–4942, 2024a.

604

605 Ziqi Yang, Xuhai Xu, Bingsheng Yao, Ethan Rogers, Shao Zhang, Stephen Intille, Nawar Shara, Guodong Gordon Gao, and Dakuo Wang. Talk2care: An llm-based voice assistant for communication between healthcare providers and older adults. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., 8(2), May 2024b. doi: 10.1145/3659625. URL <https://doi.org/10.1145/3659625>.

606

607 Cheng-Chieh Yeh, Amirreza Shirani, Weicheng Zhang, Tuomo Raitio, Ramya Rasipuram, Ladan Golipour,
 608 and David Winarsky. Dialog modeling in audiobook synthesis. In ICASSP 2024-2024 IEEE International
 609 Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 13341–13345. IEEE, 2024.

610

611 **A ATT-CORPUS DETAILS**
612613 **A.1 DATA GENERATION**
614615 We found that we could not directly synthesize colloquial texts that met our requirements, so we designed a
616 three-step corpus-creation workflow: 1) use GPT-4o (Hurst et al., 2024) to batch-generate Chinese sentences
617 that mix in English, 2) pass these sentences through DeepSeek-R1 (Guo et al., 2025) for a colloquial adapt, 3)
618 have linguistics experts further enrich and diversify the text through rewriting and perform final verification.
619620 **Batch Generate.** We first employed GPT-4o (Hurst et al., 2024) to generate texts tailored to each predefined
621 capability dimension. For example, for the Chinese-English code-switching dimension, we began by using
622 the following prompt to produce Chinese sentences that incorporate English words.
623624
625 给我一些日常沟通的的中文长文本，每一句话中需要有非常自然的中英文掺杂的现象，一句话只出现1-2个单词，且主要为专有词汇，或英文的filler words。
626627 示例一：今天在朋友圈看到朋友发的自拍，她在用一个叫FaceTune的app修图，效果真的是很棒，
628 很自然，你要不要也试试？
629630 示例二：昨晚在Hulu上看了一部新的浪漫喜剧，叫《To All the Boys I've Loved Before》，剧情特别
631 甜，看完之后觉得心情特别好。
632633 示例三：今天在星巴克点了一杯新的Cold Brew Coffee，味道特别醇厚，喝完感觉一整天都特别清
634 醒，推荐你也试试，很提神哦！
635636 示例四：最近我一直在用 Estée Lauder 的粉底液，它的妆效很 natural，能够很好地贴合肌肤，遮
637 盖瑕疵的同时又不会显得很厚重，让我的肌肤看起来自然无瑕，仿佛天生丽质一般。
638639 示例五：今天我在网易云音乐上闲逛的时候，发现了一首超好听的新歌，叫《Shape of You》。那
640 旋律可动感了，我听完之后，心情瞬间变得超好，感觉整个人都跟着节奏摇摆起来了，你听过这首
641 歌吗？
642643 执行后将每句话的长度拓展到100字左右。执行后将部分句子的句末加一些语气助词，丰富句子的
644 口语化程度，但不要夸张。需要熟悉中国人的口语习惯，然后生成以上要求内容。请给我40句
645646 **Colloquial Rewrite.** To make the text still more conversational, we ran it through DeepSeek-R1 (Guo et al.,
647 2025) for an additional colloquial rewrite, using the prompt shown below:
648649 将给出的文本改写为更加口语化，有沟通感的文本，并添加一定的背景及前后连贯信息，你可以从
650 以下的6个示例中获得灵感，但不允许照搬照抄，或者仿照句式，不允许用同样重复的开头
651652 示例1：原始：开始用Notion这个app之后，发现它真的太强大了，不仅可以用来记笔记，还能用来
653 管理项目和计划，非常实用，简直是提高效率的利器呢。更改为：我跟你讲，我最近在用Notion这
654 个app，我的天我真的发现它真的很强，不仅可以用来记笔记，还能用来管理项目和计划，而且还
655 很美观，真的挺实用的，是个提高效率的好东西，你们要不要也用一下看看？
656657 示例2：原始：朋友推荐了一个新的K-pop组合，叫BTS，听了他们的几首歌后真的觉得很好听，
658 特别是那首《Dynamite》，旋律超级洗脑，推荐你也去听听看。更改为：昨天跟家里那帮朋友出
659 去吃饭，他们给我推荐了一个新出来的的K-pop组合，叫BTS，还挺不错，听了他们的几首歌都还
660

658 可以，特别《Dynamite》这首，旋律超级洗脑，我从吃饭一直哼到回家洗澡，睡觉的时候脑子里都
 659 还在放这首歌，没救了。

660
 661 示例3：原始：下载了Pocket这个app，用来保存平时看到的好文章，觉得特别方便，这样有时间的
 662 时候就可以慢慢看，不会错过任何好内容，真的是读书神器。更改为：天，哥们儿我跟你说，昨
 663 天我刚下载了Pocket这个app，发现它可以把平时看到的好文章都保存下来，也太方便了吧！你要
 664 不也用用看？这样有时间的时候就可以慢慢看，就不用担心错过很多不错的內容啦，真是读书神器
 665 绝绝子，安利你！

666 示例4：原始：最近迷上了刷TikTok，真的有好多搞笑的短视频，看得我笑到不行，特别是那些创
 667 意短视频，简直让人一刷就停不下来，你也常常刷TikTok吗？更改为：哇塞真的，TikTok一刷就停
 668 不下来，真的好多视频贼搞笑，短小精悍，看得我笑到不行！发明这些创意视频的博主也太有才了
 669 吧，好多时间一看就一两个小时过去了，你也刷TikTok吗？咱加个好友不。

670 示例5：原始：昨晚在Hulu上看了一部新电影，叫《寄生虫》，剧情超精彩，每个情节都有出人意
 671 料的反转，看得我完全停不下来，一口气看完了整部电影，特别推荐。更改为：你有看过最近大火的
 672 新电影《寄生虫》吗？我昨天在Hulu上看的，剧情好精彩啊，每个情节的反转都特别出人意
 673 料，根本想不到接下来会发生什么。其实我随手点开的，没想到会越看越上瘾，完全停不下来，最
 674 后一口气看完了，我跟你说你一定要去看，看完了记得和我分享。

675 示例6：原始：开始用Headspace做冥想，每天花十分钟，整体状态变好了很多，特别是它的音指导
 676 很温柔，特别容易进入冥想状态，感觉整个人都特别放松。更改为：最近不知道怎么了精神状态
 677 很差，所以我跟着一个叫Headspace的节目做冥想，每天花十分钟放空自己，练了快一个月，感觉
 678 自己压力没那么大了，睡眠质量也更好了，说起来我觉得这个channel最棒的是声音指导很温柔，
 679 你听了那个声音就很容易进入冥想状态，就觉得整个人好像在泡澡一样，特别安稳。

680 681 A.2 AUDIO DATA VALIDATION CRITERIA 682 683

684
 685 **Synthesis Success.** Synthesis success refers to the correctness of the output audio in terms of overall audio
 686 quality, transcription accuracy, and language appropriateness. Specifically, we check for issues such as:
 687 significant audio quality defects (e.g., excessive robotic noise, jittering), extremely short or incomplete audio
 688 that cannot be properly transcribed (e.g., only a single “ah” sound or complete silence), language mismatch
 689 (e.g., input in Chinese but output in Japanese), inconsistencies in voice timbre within a single clip (e.g.,
 690 mixing multiple voice styles), and other cases where the output is unintelligible in the target language.

691
 692 **Synthesis Consistency.** Synthesis consistency refers to the consistency of output when the same text is
 693 synthesized multiple times using the same voice and technology. This assessment focuses on whether the
 694 resulting audio clips are consistent in overall characteristics such as voice timbre (e.g., gender, age), language
 695 (e.g., remaining within the same language such as Chinese or English), and prosody (e.g., intonation, stress,
 696 and tone of voice). The goal is to determine whether the outputs can reliably be attributed to the same voice.

697 A.3 BLACK-BOX AND WHITE-BOX. 698

699
 700 To ensure a fair and reliable evaluation, we divide the generated data into white-box and black-box subsets.
 701 The white-box subset is made publicly available, while the black-box subset is hosted on an evaluation
 702 platform for open and blind testing. Our experiments validate the consistency between white-box and
 703 black-box evaluation results.

705
706
707 Table 4: **The model families and their voice styles we evaluated.**
708
709
710
711
712
713
714

Model Families	Voice Styles
CosyVoice2.0 (Du et al., 2024)	longshuo, longxiaocheng, longxiaochun, longxiaoxia
MiniMax-Speech (MiniMax, 2025)	xinyue, yaoyao, siyuan, zixuan
Seed-TTS (Anastassiou et al., 2024)	Skye (zh_female_shuangkuaisisi_moon_bigtt), Alvin (zh_male_wennuanahu_moon_bigtt), Brayan (zh_male_shaomianzixin_moon_bigtt), Moon (zh_female_linjianvhai_moon_bigtt)
Step-Audio (Huang et al., 2025)	qingniandaxuesheng, shenchennanyin, linjajiejie, wenjingxuejie
GPT-4o (Hurst et al., 2024)	Alloy, Shimmer, Echo, Onyx

715 **B ATT BENCHMARK DETAILS**
716717 **B.1 EVALUATED TTS SYSTEMS**
718719 Seed-TTS (Anastassiou et al., 2024) is ByteDance’s large-scale foundation family for speech generation-its
720 flagship autoregressive language-model variant scales into the multi-billion-parameter range and is trained
721 with data and model sizes “orders of magnitude larger” than previous TTS systems, plus an optional diffusion
722 decoder Seed-TTS-DiT. Seed-TTS offers zero-shot speaker cloning, fine-grained emotion control and in-
723 context speech editing while matching human naturalness scores in CMOS.724 MiniMax-Speech-01 (MiniMax, 2025) is an autoregressive Transformer TTS with an integrated learnable
725 speaker encoder that enables true zero-shot voice cloning across 32 languages. Although its exact size is
726 undisclosed, the model is built on the same infrastructure as MiniMax-Text-01 (456B total/45.9B active
727 parameters), so it inherits Mixture-of-Experts efficiency and ultra-long-context techniques from that 456B-
728 parameter backbone.729 CosyVoice2.0 (Du et al., 2024) delivers sub-150 ms first-packet latency in both streaming and offline modes,
730 with multilingual zero-shot voice cloning across Chinese, English, Japanese, Korean and many dialects.
731 Public checkpoints of CosyVoice2.0 range from 300 M to 0.5 B parameters.732 Step-Audio (Huang et al., 2025) pairs a 130 B-parameter multimodal generative engine that synthetically
733 bootstraps training data with a resource-efficient 3 B-parameter Step-Audio-TTS synthesiser. This combi-
734 nation supports controllable speech with emotions, dialects and styles, and meets real-time requirements
735 through speculative decoding and a dual-codebook tokenizer architecture.736 OpenAI’s GPT-4o (Hurst et al., 2024) is an end-to-end multimodal model (parameter count not publicly
737 disclosed) that handles text, vision and audio in one network and speaks with human-like latency-232 ms
738 best-case, 320 ms on average. It matches GPT-4-Turbo on text but adds expressive speech synthesis, real-time
739 translation and paralinguistic cues without the separate ASR and TTS stages used in previous Voice Mode
740 pipelines.742 **B.2 INSTRUCTIONS AND USER INTERFACE**
743744 We provide instructions for each participant for the evaluation task and design the reward system to encourage
745 the high-quality evaluation.747 Since our benchmark are in Chinese, our instructions are also in Chinese for native speaker participants. Here
748 we provide a translated English version for review:749 Task description
750751 In this task, you must decide whether each audio clip you hear is spoken by a real person or generated
by a machine, and you must state why you reached that conclusion.

752 Your written reason is the main evidence used in manual review, so base it on concrete observations of
 753 the recording.

754 For every 10 clips there are several hidden "test items."
 755 These have an unmistakably correct answer; selecting the wrong answer on a test item will cause your
 756 entire submission to fail review. Do not rely on AI to draft your responses-judgements that fail
 757 review will be discarded and not counted as valid data.

758 How to write your reason

759 Examples of poor reasons

760 (Not convincing; give no specific evidence from the audio)

761 1. "Pure machine voice."
 762 2. "The imitation of human speech is too forced."
 763 3. "Obviously a machine tone-doesn't sound like a real person."
 764 4. "Sounds like a late-night radio host."

765 Examples of good reasons

766 (Accurate analysis that cites concrete details in the clip)

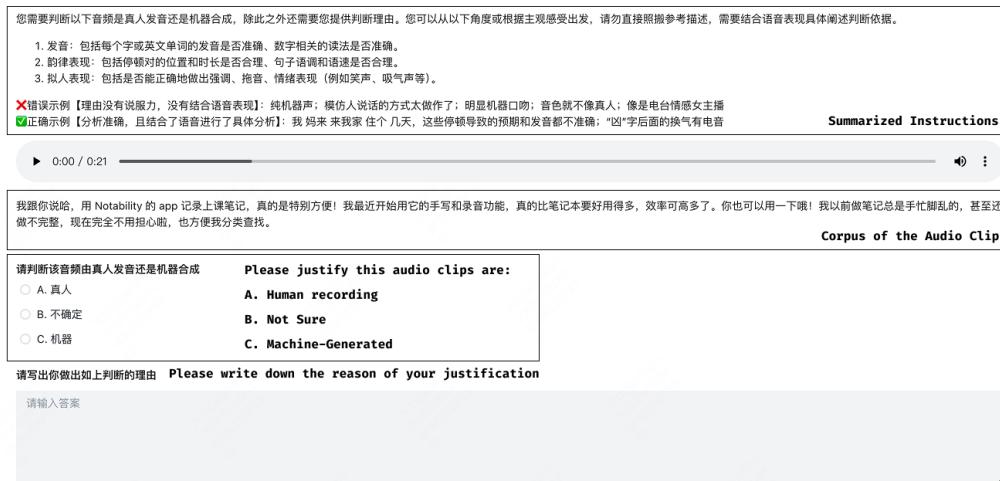
767 1. The phrase "Many thins" should end with a falling intonation, but here it rises-it
 768 sounds unnatural.

769 2. The clip is machine-generated: each word pops out individually with poor flow.

770 3. The phrase "go away" lacks the angry/impatient tone that should be present.

771 4. After the word "angry," the breath has a noticeable electronic/robotic artifact.

772 And the user interface for the task are shown in Figure 4 with explanation in English.



773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798

Figure 4: The Screen of One Audio Clip in ATT Evaluation.

B.3 QUALITATIVE ANALYSIS

The coding criteria for qualitative analysis are based on Table 5, which consists of four dimensions: first, pronunciation accuracy, focusing on the correctness of each Chinese character's pronunciation (especially polyphonic characters within words), accuracy of tones, correct pronunciation of embedded English words, and accurate pronunciation of numerical information such as dates, monetary amounts, and phone numbers;

second, prosodic appropriateness, examining whether pauses occur at reasonable positions with appropriate duration, whether the sentence intonation matches semantic intentions (e.g., questions or exclamations), and whether speech speed is appropriate without being excessively fast or slow; third, audio clarity, assessing overall audio quality, including the presence of noticeable background noise, jitter, or electronic distortion in pronunciations; and fourth, naturalness and human-like expressiveness, evaluating whether the overall speech performance appears human-like and natural by considering factors such as semantic emphasis and prolongation of words, emotional expressions consistent with sentence meaning, and effective paralinguistic features including breaths, laughter, crying, coughing, or breathy voice.

Table 5: Criteria for Qualitative Analysis

Dimension	Detailed Explanation
Pronunciation Accuracy	<ul style="list-style-type: none"> - Whether each Chinese character is pronounced correctly, especially polyphonic characters within words. - Whether the tones of characters/words are accurate. - Whether embedded English words are pronounced correctly. - Whether numerical information such as dates, monetary amounts, and phone numbers is read accurately.
Prosodic Appropriateness	<ul style="list-style-type: none"> - Whether the position and duration of pauses are reasonable. - Whether the intonation matches the sentence meaning, such as questions or exclamations. - Whether speech speed is appropriate, avoiding overly fast or slow pacing.
Audio Clarity	<ul style="list-style-type: none"> - Whether the overall audio quality is clear, and if noticeable background noise is present. - Whether pronunciations have jitter, electronic distortion, or other clarity issues.
Naturalness and Human-like Expressiveness	<ul style="list-style-type: none"> - Whether the overall speech appears natural and comparable to human speech, considering: <ul style="list-style-type: none"> • Appropriate semantic emphasis on words. • Appropriate prolongation of words matching semantic context. • Emotional expressions matching the sentence context. • Effective use of paralinguistic features such as breathing sounds, laughter, crying, coughing, or breathy voice.

B.4 DETAIL RESULTS

Soundness of the black-/white-box split. Crucially, the overall performance hierarchy remains consistent when comparing white-box and black-box evaluation settings: each model retains the same relative ranking across both conditions (as shown in Figure 2). The small and uniform performance gap between the two settings indicates that they are of comparable difficulty, confirming that the black-box/white-box split is well-balanced and does not introduce systematic bias into the evaluation.

846 **Dimensional Performance.** Across ATT’s five evaluation dimensions, Seed-TTS consistently ranks first,
 847 demonstrating the strongest overall performance and particularly excelling at Chinese-English Code-switching
 848 and Special Characters and Numerals; its only relative weakness is in Classical Chinese Poetry/Prose, where
 849 it is narrowly outperformed by Minimax-Speech. Step-Audio, CosyVoice, and GPT-4o follow in that order.
 850

851 **Different Voice Styles Performance.** We list the performance of each voice style in Table 6.
 852

853 B.5 HUMAN LABEL STATISTICS

855 To examine whether our evaluation could be biased by participants overusing the [Unclear] option, we analyze
 856 the annotator-level unclear rate, i.e., the fraction of instances an annotator marked as [Unclear] among all
 857 instances they labeled.

858 Overall, the use of [Unclear] is low and highly concentrated among a small subset of annotators. Among the
 859 857 annotators in our evaluation set, 565 annotators (65.93%) never selected [Unclear] at all. 655 annotators
 860 (76.43%) have an unclear rate no more than 5%, and 728 annotators (84.95%) have an unclear rate no more
 861 than 10%. Only 93 annotators (10.85%) fall into the 10%–30% range, and merely 36 annotators (4.20%)
 862 exceed 30%. Consistently, the median unclear rate across annotators is 0.00%, with a mean of 4.62% and a
 863 standard deviation of 9.56%, indicating a right-skewed but overall low usage pattern.

864 These statistics show that [Unclear] was not a dominant choice during labeling; most annotators provided
 865 decisive labels for nearly all evaluation instances. Therefore, our reported evaluation results are not driven by
 866 widespread avoidance via [Unclear], but rather reflect performance on clearly judged samples.
 867

868 C COMPARISON WITH MEAN OPINION SCORE RESULTS

870 Table 7 reports the posterior analysis of the MOS benchmark. In the human study, participants rated audio
 871 quality on a 5-point scale. For ease of comparison, the scores in Table 7 are linearly normalized to [0, 1].
 872

873 D AUTO-ATT EXPERIMENTS ADDITIONAL RESULTS

875 We used 4 NVIDIA A100 GPUs to train Auto-ATT, which takes about 1 hour. The server’s CPU was an Intel
 876 Xeon Platinum 8358P (2.60 GHz, 128 cores). Table 8 and Table 9 present detailed Auto-ATT evaluation
 877 results for both white-box and black-box scenarios.
 878

879 E ADDITIONAL AUTO-ATT DETAILS

880 E.1 DATA SPLIT DETAILS

883 We detail the voice-level training–testing partition in this appendix. For each of the five model families in
 884 Table 4, we hold out exactly one voice style to form the Auto-ATT test set, and use the remaining three voices
 885 from the same family for training. Concretely, the held-out test voices are: `longxiaochun` (CosyVoice2.0),
 886 `Moon` (Seed-TTS), `siyuan` (MiniMax-Speech), `Echo` (GPT-4o), and `shenchennanyin` (Step-Audio).
 887 This split ensures that Auto-ATT is evaluated on unseen voices within each family.
 888

889 E.2 UNSEEN TTS SYSTEMS RESULTS

891 To test whether our ATT corpus and Auto-ATT pipeline can be directly applied to newly released TTS systems,
 892 we run an additional evaluation on two unseen model families that were not part of the original benchmark or

893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939

Table 6: HLS of Different Voice Styles with 95% Confidence Interval

Model	Voice Style	Special Characters and Numerals	Chinese-English Code-switching	Paralinguistic Features and Emotions	Classical Poetry/Prose	Chinese Poetry	Polyphonic Characters
CosyVoice	longshuo	0.108 [0.035, 0.190]	0.118 [0.066, 0.194]	0.135 [0.058, 0.221]	0.180 [0.052, 0.324]	0.170 [0.100, 0.249]	
	longxiaocheng	0.211 [0.106, 0.325]	0.128 [0.028, 0.247]	0.140 [0.066, 0.220]	0.188 [0.110, 0.260]	0.198 [0.087, 0.313]	
	longxiaochun	0.125 [0.054, 0.199]	0.233 [0.126, 0.345]	0.262 [0.170, 0.356]	0.222 [0.093, 0.359]	0.263 [0.123, 0.411]	
	longxiaoxia	0.355 [0.248, 0.464]	0.305 [0.165, 0.453]	0.330 [0.237, 0.423]	0.285 [0.185, 0.394]	0.385 [0.274, 0.502]	
MiniMax-Speech	siyuan	0.278 [0.203, 0.351]	0.313 [0.156, 0.479]	0.308 [0.160, 0.462]	0.365 [0.179, 0.560]	0.329 [0.224, 0.435]	
	xinyue	0.458 [0.348, 0.568]	0.417 [0.264, 0.573]	0.450 [0.328, 0.569]	0.515 [0.394, 0.636]	0.433 [0.318, 0.547]	
	yaoyao	0.363 [0.299, 0.491]	0.428 [0.265, 0.592]	0.350 [0.234, 0.468]	0.455 [0.331, 0.583]	0.428 [0.295, 0.563]	
	zixuan	0.218 [0.119, 0.323]	0.225 [0.101, 0.360]	0.308 [0.170, 0.453]	0.430 [0.324, 0.516]	0.375 [0.238, 0.422]	
Seed-TTS	Alvin	0.400 [0.286, 0.516]	0.360 [0.210, 0.514]	0.395 [0.237, 0.555]	0.400 [0.256, 0.546]	0.363 [0.242, 0.485]	
	Brayan	0.413 [0.351, 0.476]	0.393 [0.262, 0.526]	0.360 [0.224, 0.500]	0.405 [0.265, 0.545]	0.430 [0.329, 0.532]	
	moon	0.365 [0.238, 0.497]	0.360 [0.257, 0.463]	0.400 [0.244, 0.561]	0.323 [0.207, 0.383]	0.300 [0.179, 0.426]	
	sky	0.440 [0.256, 0.629]	0.440 [0.399, 0.572]	0.518 [0.392, 0.643]	0.475 [0.328, 0.622]	0.500 [0.386, 0.612]	
GPT-4o	alloy	0.153 [0.074, 0.237]	0.095 [0.021, 0.183]	0.155 [0.083, 0.232]	0.171 [0.097, 0.250]	0.101 [0.019, 0.204]	
	echo	0.085 [0.028, 0.143]	0.098 [0.023, 0.182]	0.056 [0.004, 0.120]	0.143 [0.023, 0.289]	0.075 [0.009, 0.158]	
	onyx	0.100 [0.044, 0.158]	0.135 [0.037, 0.246]	0.095 [0.025, 0.175]	0.196 [0.101, 0.293]	0.120 [0.052, 0.178]	
	shimmer	0.118 [0.069, 0.201]	0.155 [0.032, 0.306]	0.175 [0.096, 0.255]	0.246 [0.163, 0.332]	0.150 [0.082, 0.218]	
Step-Audio	wenjingxuejie	0.233 [0.135, 0.341]	0.252 [0.106, 0.422]	0.238 [0.116, 0.372]	0.363 [0.251, 0.429]	0.329 [0.230, 0.425]	
	shenchennanyin	0.243 [0.170, 0.386]	0.214 [0.101, 0.345]	0.258 [0.166, 0.352]	0.243 [0.151, 0.309]	0.283 [0.184, 0.386]	
	linjiajiejie	0.266 [0.181, 0.406]	0.181 [0.103, 0.262]	0.210 [0.117, 0.305]	0.270 [0.139, 0.410]	0.213 [0.106, 0.329]	
	qingniandaxuesheng	0.304 [0.195, 0.424]	0.268 [0.124, 0.434]	0.285 [0.190, 0.360]	0.405 [0.331, 0.519]	0.332 [0.202, 0.379]	

940
941 Table 7: **Posterior summary statistics of Mean Opinion Score from the GLMM.** Including posterior
942 means, standard deviations (SD), 95% highest density intervals (HDI).

943 Models	944 Posterior Mean(SD)	945 95%HDI
944 Seed-TTS	945 0.680 (0.020)	946 [0.650, 0.710]
945 MiniMax-Speech	946 0.620 (0.020)	947 [0.590, 0.650]
946 Step-Audio	947 0.560 (0.020)	948 [0.530, 0.590]
947 CosyVoice	948 0.470 (0.020)	949 [0.440, 0.490]
948 GPT-4o	949 0.390 (0.020)	950 [0.360, 0.420]

950
951 Auto-ATT training: ElevenLabs Eleven v3 (Staniszewski & Dabkowski, 2025) and Qwen3-TTS-Flash (Qwen
952 Team, 2025). We follow the same procedure as in the main study. Specifically, for each unseen family we
953 collect audio outputs for the full ATT prompt set using their official voice styles (ElevenLabs: Chris, Matilda,
954 Sarah, Will; Qwen3-TTS-Flash: Cherry, Ethan). We then conduct human evaluation on these clips using the
955 same annotation protocol, and aggregate clip-level scores to voice-level HLS. Table 10 reports the posterior
956 mean HLS with 95% confidence intervals for each capability dimension.

957 These human results provide a realistic snapshot of unseen-family performance under the ATT benchmark
958 and serve as the basis for assessing Auto-ATT’s applicability to newly emerged TTS systems.

987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033

Table 8: HLS of Different Voice Styles with 95% Confidence Interval in White-box Corpus

Model	Voice Style	Special Characters and Numerals	Chinese-English Code-switching	Paralinguistic Features and Emotions	Classical Poetry/Prose	Chinese Poetry	Polyphonic Characters
CosyVoice	longshuo	0.041 [0.029, 0.052]	0.036 [0.027, 0.046]	0.026 [0.017, 0.034]	0.009 [0.005, 0.012]	0.013 [0.009, 0.017]	
	longxiaocheng	0.014 [0.009, 0.018]	0.022 [0.015, 0.029]	0.016 [0.008, 0.024]	0.015 [0.010, 0.021]	0.015 [0.008, 0.022]	
	longxiaochun	0.126 [0.102, 0.150]	0.093 [0.075, 0.112]	0.100 [0.079, 0.120]	0.008 [0.006, 0.010]	0.032 [0.022, 0.041]	
	longxiaoxia	0.311 [0.279, 0.342]	0.252 [0.225, 0.280]	0.293 [0.261, 0.326]	0.030 [0.018, 0.041]	0.108 [0.085, 0.130]	
Seed-TTS	Alvin	0.334 [0.309, 0.359]	0.336 [0.313, 0.359]	0.313 [0.287, 0.338]	0.118 [0.098, 0.139]	0.201 [0.174, 0.227]	
	Brayan	0.457 [0.440, 0.475]	0.460 [0.447, 0.474]	0.388 [0.368, 0.408]	0.174 [0.149, 0.199]	0.348 [0.325, 0.371]	
	moon	0.408 [0.391, 0.425]	0.393 [0.376, 0.409]	0.386 [0.367, 0.405]	0.109 [0.090, 0.129]	0.215 [0.190, 0.240]	
	skye	0.518 [0.504, 0.531]	0.497 [0.483, 0.511]	0.516 [0.496, 0.535]	0.315 [0.286, 0.343]	0.423 [0.402, 0.445]	
GPT-4o	alloy	0.297 [0.271, 0.324]	0.354 [0.334, 0.375]	0.237 [0.211, 0.262]	0.048 [0.037, 0.059]	0.096 [0.078, 0.114]	
	echo	0.206 [0.179, 0.233]	0.314 [0.288, 0.340]	0.145 [0.123, 0.167]	0.024 [0.019, 0.030]	0.054 [0.042, 0.066]	
	onyx	0.264 [0.239, 0.290]	0.324 [0.301, 0.347]	0.222 [0.196, 0.247]	0.053 [0.037, 0.069]	0.082 [0.064, 0.100]	
	shimmer	0.256 [0.231, 0.280]	0.332 [0.307, 0.357]	0.181 [0.155, 0.207]	0.043 [0.031, 0.055]	0.086 [0.068, 0.104]	
Minimax-Speech	siyuan	0.064 [0.048, 0.079]	0.090 [0.073, 0.108]	0.067 [0.051, 0.082]	0.015 [0.010, 0.019]	0.029 [0.020, 0.037]	
	xinyue	0.303 [0.282, 0.325]	0.309 [0.287, 0.331]	0.266 [0.243, 0.290]	0.054 [0.042, 0.067]	0.132 [0.113, 0.151]	
	yao Yao	0.300 [0.280, 0.321]	0.308 [0.289, 0.328]	0.261 [0.239, 0.283]	0.031 [0.022, 0.040]	0.070 [0.055, 0.085]	
	zixuan	0.037 [0.026, 0.049]	0.077 [0.059, 0.095]	0.023 [0.015, 0.031]	0.011 [0.008, 0.014]	0.016 [0.011, 0.020]	
Step-Audio	wenjingxuejie	0.256 [0.217, 0.297]	0.269 [0.242, 0.298]	0.193 [0.164, 0.220]	0.031 [0.021, 0.041]	0.098 [0.076, 0.120]	
	shenchennanyin	0.040 [0.024, 0.055]	0.037 [0.025, 0.049]	0.019 [0.014, 0.024]	0.011 [0.008, 0.014]	0.018 [0.013, 0.023]	
	linjiajiejie	0.194 [0.159, 0.229]	0.201 [0.173, 0.228]	0.107 [0.086, 0.128]	0.011 [0.008, 0.015]	0.057 [0.041, 0.072]	
	qingniandaxuesheng	0.244 [0.204, 0.283]	0.231 [0.200, 0.262]	0.164 [0.137, 0.192]	0.025 [0.018, 0.033]	0.069 [0.050, 0.088]	

1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080

Table 9: HLS of Different Voice Styles with 95% Confidence Interval in Black-box Corpus

Model	Voice Style	Special Characters and Numerals	Chinese-English Code-switching	Paralinguistic Features and Emotions	Classical Poetry/Prose	Chinese Poetry	Polyphonic Characters
CosyVoice	longshuo	0.087 [0.067, 0.106]	0.069 [0.053, 0.083]	0.116 [0.088, 0.144]	0.007 [0.005, 0.009]	0.012 [0.008, 0.015]	
	longxiaocheng	0.040 [0.027, 0.053]	0.036 [0.024, 0.049]	0.047 [0.031, 0.063]	0.010 [0.007, 0.012]	0.016 [0.009, 0.023]	
	longxiaochun	0.168 [0.142, 0.195]	0.183 [0.159, 0.208]	0.196 [0.166, 0.226]	0.008 [0.006, 0.010]	0.029 [0.020, 0.039]	
Seed-TTS	longxiaoxia	0.333 [0.302, 0.362]	0.348 [0.321, 0.375]	0.353 [0.316, 0.389]	0.019 [0.008, 0.029]	0.108 [0.083, 0.133]	
	Alvin	0.328 [0.302, 0.352]	0.386 [0.367, 0.405]	0.290 [0.261, 0.320]	0.105 [0.085, 0.124]	0.213 [0.186, 0.239]	
	Brayan	0.424 [0.407, 0.441]	0.473 [0.459, 0.486]	0.359 [0.332, 0.386]	0.149 [0.126, 0.171]	0.325 [0.297, 0.353]	
GPT-4o	moon	0.418 [0.401, 0.434]	0.460 [0.446, 0.475]	0.388 [0.366, 0.411]	0.083 [0.065, 0.101]	0.205 [0.179, 0.231]	
	skye	0.506 [0.491, 0.521]	0.532 [0.521, 0.544]	0.544 [0.520, 0.567]	0.244 [0.218, 0.270]	0.397 [0.376, 0.419]	
	alloy	0.297 [0.273, 0.322]	0.384 [0.363, 0.405]	0.245 [0.214, 0.276]	0.036 [0.026, 0.046]	0.100 [0.080, 0.119]	
Minimax-Speech	echo	0.235 [0.212, 0.258]	0.334 [0.309, 0.359]	0.192 [0.163, 0.221]	0.019 [0.013, 0.024]	0.060 [0.046, 0.076]	
	onyx	0.282 [0.257, 0.307]	0.367 [0.344, 0.389]	0.229 [0.197, 0.260]	0.033 [0.024, 0.043]	0.089 [0.073, 0.106]	
	shimmer	0.271 [0.248, 0.296]	0.354 [0.330, 0.378]	0.225 [0.195, 0.255]	0.035 [0.023, 0.047]	0.086 [0.068, 0.105]	
Step-Audio	siyuan	0.171 [0.147, 0.196]	0.173 [0.149, 0.198]	0.173 [0.143, 0.203]	0.017 [0.011, 0.023]	0.034 [0.025, 0.043]	
	xinyue	0.300 [0.278, 0.323]	0.361 [0.343, 0.378]	0.298 [0.270, 0.326]	0.044 [0.033, 0.055]	0.147 [0.125, 0.169]	
	yao Yao	0.334 [0.311, 0.356]	0.388 [0.372, 0.405]	0.326 [0.297, 0.355]	0.025 [0.017, 0.033]	0.086 [0.071, 0.102]	
	zixuan	0.072 [0.051, 0.091]	0.091 [0.073, 0.109]	0.064 [0.044, 0.083]	0.010 [0.007, 0.013]	0.018 [0.012, 0.023]	
	wenjingxuejie	0.272 [0.244, 0.301]	0.339 [0.312, 0.365]	0.259 [0.223, 0.295]	0.027 [0.018, 0.036]	0.101 [0.080, 0.122]	
	shenchennanyin	0.037 [0.025, 0.048]	0.066 [0.048, 0.084]	0.046 [0.031, 0.061]	0.013 [0.009, 0.017]	0.017 [0.012, 0.021]	
	linjiajiejie	0.195 [0.168, 0.221]	0.272 [0.245, 0.299]	0.168 [0.137, 0.200]	0.010 [0.005, 0.014]	0.053 [0.039, 0.067]	
	qingniandaxuesheng	0.234 [0.205, 0.262]	0.320 [0.293, 0.347]	0.178 [0.144, 0.213]	0.023 [0.015, 0.032]	0.059 [0.044, 0.075]	

1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127

Table 10: HLS of Unseen TTS Systems with 95% Confidence Interval

Model	Voice Style	Special Characters and Numerals	Chinese-English Code-switching	Paralinguistic Features and Emotions	Classical Poetry/Prose	Chinese Poetry	Polyphonic Characters
Eleven v3	Chris	0.299 [0.238, 0.361]	0.302 [0.242, 0.361]	0.318 [0.256, 0.380]	0.528 [0.460, 0.597]	0.457 [0.389, 0.524]	
	Matilda	0.169 [0.119, 0.219]	0.126 [0.082, 0.170]	0.130 [0.085, 0.175]	0.290 [0.229, 0.351]	0.179 [0.128, 0.229]	
	Sarah	0.191 [0.138, 0.244]	0.280 [0.221, 0.340]	0.212 [0.158, 0.266]	0.472 [0.404, 0.541]	0.276 [0.217, 0.334]	
	Will	0.198 [0.144, 0.253]	0.209 [0.155, 0.263]	0.166 [0.117, 0.215]	0.485 [0.417, 0.552]	0.373 [0.307, 0.439]	
Qwen3-TTS-Flash	Cherry	0.233 [0.175, 0.291]	0.212 [0.158, 0.266]	0.141 [0.096, 0.186]	0.267 [0.207, 0.326]	0.253 [0.195, 0.310]	
	Ethan	0.217 [0.162, 0.272]	0.229 [0.173, 0.286]	0.283 [0.222, 0.345]	0.259 [0.202, 0.316]	0.207 [0.154, 0.259]	