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ABSTRACT

Recent advances in large language models (LLMs) have significantly improved text-to-
speech (TTS) systems, enhancing control over speech style, naturalness, and emotional
expression, which brings TTS Systems closer to human-level performance. Yet evaluation
still relies largely on the Mean Opinion Score (MOS), whose subjectivity, environmental
variability, and limited interpretability prevent it from faithfully capturing how human-like
the synthesized audio is. Existing evaluation datasets also lack a multi-dimensional design,
often neglecting factors such as speaking styles, context diversity, and trap utterances,
which is particularly evident in Chinese TTS evaluation. To address these challenges, we
introduce the Audio Turing Test (ATT), a multi-dimensional Chinese corpus dataset ATT-
Corpus paired with a simple, Turing-Test-inspired evaluation protocol. Instead of relying on
complex MOS scales or direct model comparisons, ATT asks evaluators to judge whether
a voice sounds human. This simplification reduces rating bias and improves evaluation
robustness. To further support rapid model development, we also finetune Qwen2.5-Omni-
7B with human judgment data as Auto-ATT for automatic evaluation. Experimental results
show that ATT effectively differentiates models across specific capability dimensions using
its multi-dimensional design. Auto-ATT also demonstrates strong alignment with human
evaluations, confirming its value as a fast and reliable assessment tool.

1 INTRODUCTION

Achieving human-likeness in speech is now a central objective for modern Text-to-Speech (TTS) systems
since the widespread need for human-likeness in applications raises the bar for natural, expressive, and
contextually appropriate output (Jain et al., 2025} |Wang et al., [2024; Yang et al.| [2024bj; |Yeh et al.| 2024)).
Recent LLM-driven advances have accelerated this pursuit: LLM architectures enrich controllability over
style and intonation (Anastassiou et al.,|2024; Li et al.,2024) and substantially improve speech naturalness and
emotional expressivity (Wang et al., 2025), pushing systems from near-human toward truly human-rivaling
performance. To further elevate human-likeness, accurate evaluation is indispensable. As realism improves,
the perceptual gaps among state-of-the-art LLM-based TTS systems narrow, making it increasingly difficult
to distinguish their performance with coarse metrics or underspecified protocols (Le Maguer et al., [2024).
This intensifies the need for reliable, sensitive, and well-calibrated evaluation frameworks that can measure
human-likeness, diagnose residual deficiencies, and guide continued model development.

Current TTS evaluation still lacks methods and datasets specifically designed for human-likeness evaluation.
Listener-based 5-point Mean Opinion Score (MOS) (International Telecommunication Union, 2018) and
variants such as CMOS are broad, aggregate judgments for TTS quality evaluation. These MOS-based
methods collapse multiple perceptual dimensions into a single scalar and thus offers limited diagnostic value.
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Figure 1: Audio Turing Test Evaluation Framework: (1) Corpus Generation: a semi-automatic corpus
generation pipeline for generating the challenge TTS synthesis corpus for ATT evaluation; (2) Human
Evaluation: a human-evaluation protocol that enables precise, comparable assessments and lowers evaluation
costs through a simple yet effective Turing-test-style design, (3) Automatic Evaluation: Auto-ATT, an
automatic tool to predict the Human-likeness Score for rapid iterations.

In practice, this makes MOS ill-suited for pinpointing concrete defects and not suitable for assessing the
nuanced question of human-likeness. Beyond MOS’s known limits, most TTS evaluation corpora remain
general-purpose rather than purpose-built to probe multidimensional capabilities (Anastassiou et al.| 2024}
Wang et al.| 2025). Listening tests seldom include hidden human references or crafted trap utterances
to diagnose rater bias and attention allocation (Chiang et al.} [2023). These gaps are acute for Chinese,
where prosodic pauses, multilingual code-switching, polyphonic characters, and special symbols strongly
shape fluency and naturalness (Lavinl 2002} |Yang et al.| [2024a; Dai et al., 2025)). Consequently, the lack
of multidimensional and trap data in existing datasets compounds MOS-based weaknesses and limits the
discriminative power and completeness of current TTS evaluations (Chiang et al.| 2023).

Inspired by the classic Turing Test (French, [2000), as shown in Figure (1] we propose the Audio Turing Test
(ATT), an evaluation framework combining a multi-dimensional dataset ATT-Corpus with a Turing test-based
evaluation protocol and metrics. To evaluate the human-likeness of Chinese TTS systems, we first built a
targeted evaluation corpus addressing key challenges in Chinese speech synthesis. Based on the ATT-Corpus,
we design a simple and easy-implement human evaluation protocol. By requiring evaluators to provide ternary
judgments on whether each sample is human, along with brief justifications, ATT facilitates both quantitative
and qualitative assessments of speech human-likeness. This approach mitigates the anchoring effects and lack
of cross-context comparability commonly associated with traditional scale-based methods such as MOS. ATT
employs randomized clip assignment, trap items for attention monitoring, and expert-validated justifications
to ensure data quality, supporting reliable, unbiased clip-level analysis. To enable swift automated evaluation
and accelerate TTS model iteration, we fine-tuned Qwen2.5-Omni-7B (Xu et al., |2025) on a rigorously
annotated ATT dataset, producing Auto-ATT.

Using the ATT protocol, we collected ratings from 857 native Chinese listeners through crowdsourcing
platforms. Experimental results demonstrate that ATT is a sharp and reliable evaluation framework. Bench-
marking results further indicate that ATT effectively distinguishes the performance of different TTS models.
Notably, even the top-performing model, Seed-TTS (Anastassiou et al., 2024]), achieves only a human-likeness
score of 0.4 on ATT—considerably lower than that of real human speech, and in stark contrast to previously
reported MOS scores. Analyses across sub-dimensions and voice styles demonstrate that ATT enables
multi-axis evaluation of LLM-based TTS systems and supports direct cross-system comparisons. We assess
the effectiveness of Auto-ATT through trap item tests and by comparing auto-evaluation results with human
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ratings. Auto-ATT significantly outperforms traditional MOS predictors in evaluating trap clips and shows
strong alignment with human scores.

In summary, our contributions are as follows:

* We introduce the Audio Turing Test, an evaluation framework comprising a multi-dimensional
Chinese corpus (ATT-Corpus) and a Turing Test-inspired protocol, designed to effectively assess the
human-likeness of LLM-based TTS systems.

e We further train Auto-ATT on human evaluation data to develop an automatic evaluation tool that
enables fast and effective assessment of TTS systems, demonstrating its effectiveness through strong
consistency with human ratings.

* We benchmark state-of-the-art LLM-based TTS systems using both quantitative and qualitative
analyses, thereby validating the effectiveness and robustness of the ATT framework in Chinese
human-likeness evaluation.

2 RELATED WORKS

The quality of TTS systems is typically assessed with a mix of objective metrics and subjective listening tests.
Among objective metrics, speaker similarity (SIM) is widely used in recent LLM-based TTS work (Wang
et al., 2023} |Anastassiou et al., [2024])), but it requires reference speech, limits cross-system benchmarking to
model trainers, and only reflects voice matching rather than broader quality attributes (Guner et al., [2012).
Learned predictors trained on human labels (e.g., UTMOS, DNSMOS) can estimate perceived quality but
often struggle to generalize to new systems (Saeki et al.| 2022; Reddy et al.| [2022).

Subjective evaluation still relies on Mean Opinion Score (MOS) as the de facto “gold standard,” with deriva-
tives such as CMOS, CCR, and MUSHRA-style tests (Streijl et al.| 2016} [Naderi et al., 2021} International
Telecommunication Union, |[2015). However, MOS collapses multiple perceptual dimensions (naturalness,
intelligibility, prosody, speaker similarity, robustness) into a single coarse rating, hindering diagnostic insight.
Empirical studies highlight cross-study incomparability due to inconsistent scales/instructions (Kirkland et al.}
2023) and sensitivity to listeners’ task assumptions (Edlund et al.,|2024; Nguyen & Le, [2025). Comparative
protocols are also vulnerable: lower-quality systems can depress or inflate scores of better systems (Le
Maguer et al.|[2024), MUSHRA'’s human reference can bias judgments (Varadhan et al.l 2024), and CMOS
may show weak discrimination when items are similarly rated overall. Pairwise and grouping analyses have
shown improved sensitivity for naturalness comparisons (Perrotin et al., [2023).

In practice, reporting of human tests is often under-specified (e.g., screening, compensation, interface
instructions), which undermines reproducibility (Chiang et al., 2023)). As LLM-era TTS approaches human
quality, MOS-based evaluations face ceiling effects (Le Maguer et al.| 2024)) and insufficient resolution for
human-likeness. Since the community has begun to focus on human-centered TTS evaluation (Srinivasa
Varadhan et al.| 2025), there is thus a pressing need for a human-likeness—oriented methodology—with a
clear protocol and multidimensional test sets—to enable precise, reliable, and replicable assessment of TTS
systems.

3 AUDIO TURING TEST

To address the challenges in the current subjective evaluation of TTS systems, we design the Audio Turing Test
(ATT). ATT is an evaluation framework with a standardized human evaluation protocol and an accompanying
dataset ATT-Corpus, aiming to resolve the lack of unified protocols in TTS evaluation and the difficulty in
comparing multiple TTS systems. Moreover, for comprehensive evaluation, ATT-Corpus is designed with
appropriate dimensions to help identify specific capability differences among TTS systems. To further support
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Table 1: Corpus Examples of ATT-Corpus.

Dimension Description Example

Special Characters  Analyze the numbers, special characters, letters, HEMNAG LA LEFELTR. 201046 A 8 A GiHEA

and Numerals and other information types in the text and SRR, WA S E 2R 12 FT EGREER
transcribe them into the most appropriate or ety . T—RBARLTESH .

commonly used pronunciations.

Chinese-English Primarily Chinese, interspersed with a few words ~ X8 2B A X 4 % R R XA K F. s & & bilibili
Code-switching from other languages, used to assess whether the ~ EA T —3#H YL F A ...
pronunciation is accurate.

Paralinguistic Expressive paralinguistic phenomena, such as Gy, AFTTHT o ARGIAERLEAMT, AR

Features and laughter, and the expression of various emotional ~ F—ZAZIFL - BTHT, AXTERLT, &AL

Emotions states. —E Rk BEE, FAWREEDEWRFFHAA—T .

Classical Chinese Each character in classical Chinese poetry and FMET KTt

Poetry/Prose prose is pronounced correctly in terms of its initial % : < M@, WAFFR. LARIAEK. 0 TKRE
consonant, final, tone, and other aspects of FTE&AREHROTZIEARRBRTL . ZR 47
articulation.

Polyphonic Polyphonic Chinese characters are pronounced ZFERL, ZREFRZRAEL, £FEATE . TR

Characters correctly. 84 I 4% B R A AR R?

the training and iteration of TTS systems, we utilized additional private evaluation data to train Auto-ATT
based on Qwen2.5-Omni-7B via LoRA (Hu et al.,2022) finetuning, enabling a model-as-a-judge approach
for rapid evaluation of TTS systems on the ATT-Corpus. In this section, we provide a detailed description of
the construction of the ATT-Corpus, ATT evaluation protocol design along with the Auto-ATT.

3.1 ATT-CORPUS DATASET

Currently, TTS evaluation primarily relies on a subset of samples selected from publicly available speech
datasets. This results in limited coverage and makes assessing a model’s ability to synthesize complex
speech challenging. We construct ATT-Corpus as a comprehensive corpus for TTS evaluation to address this
limitation. Taking Chinese as a representative example, we first identify the key challenges TTS systems face,
which guide the two-stage data production process of ATT-Corpus.

Data Description. We categorize the linguistic capabilities required for Chinese TTS synthesis based on
the linguistic phenomena in the corpus to construct a dataset tailored for ATT evaluation. The corpus covers
five key dimensions of Chinese linguistic competence: (1) Special Characters and Numerals, (2) Chinese-
English Code-switching, (3) Paralinguistic Features and Emotions, (4) Classical Chinese Poetry/Prose, and
(5) Polyphonic Characters. The detailed composition of the corpus is presented in Table [T}

Corpus Generation and Verification. To reduce manual labor costs and ensure the long-term sustainability
of the corpus production process, we adopt a semi-automated approach that combines initial generation and
adaptation using large language models (LLMs), followed by expert revision and validation || We employ
GPT-40 (Hurst et al., |2024) as the primary model for initial corpus generation. We generate base corpora
across various linguistic categories using the prompt and sample text illustrated in the figure. Subsequently, we
utilize DeepSeek-R1 (Guo et al.,|2025)) to perform colloquial adaptation in Chinese, enhancing the naturalness
and human-likeness of the generated text. After the automated generation process, four linguistics experts
conducted standardized revisions of the corpus. The prompts for data generation, along with the specific
revision and review guidelines, are provided in Appendix [AT} Upon completion of the revisions, the experts
conducted cross-checking to ensure the quality of the corpus.

"Experts refer to individuals holding a master’s degree in linguistics or a related field.
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3.2 EVALUATED AUDIO CLIPS GENERATION AND VALIDATION

After completing the corpus collection, we generate audio clips using the TTS models to be evaluated. To
ensure evaluation accuracy, we perform manual spot checks on the synthesized speech with the involvement
of two expert reviewers. This validation stage is primarily intended to confirm that no widespread synthesis
failures occur due to engineering issues or other extraneous factors. Occasional synthesis failures at the level of
a single audio clip are recorded but are not discarded at this stage. To balance the sample’s representativeness
with the efficient use of human review resources, a sampling rate of 25% is adopted. Specifically, we examine
two aspects during this stage: synthesis success and synthesis consistency. The details of the validation
process are in Appendix [A.2] Note that at this stage, we do not evaluate or inspect the human-likeness of the
synthesized speech.

3.3 HUMAN EVALUATION PROTOCOL

In the ATT human evaluation, participants completed a forced-choice speech-authenticity test. As shown in
Figure[T] we propose the following protocol to implement ATT:

Sampling and Assignment. Each participant is randomly assigned seven audio clips sampled without
replacement from a pool containing the synthesized audio clips for evaluation.

Attention Monitoring via Trap Items. To ensure participant attentiveness, we include trap items at regular
intervals. Specifically, three random trap items are assigned to each participant in addition to the seven
assigned audio clips for evaluation: one deliberately flawed synthetic clip and two genuine human recordings.
We also open source these trap items in ATT-Corpus for future evaluation.

Labeling and Justification. For each audio clip, participants select one of three labels: [Human], [Unclear],
or [Machine]. They are also required to provide a short free-text justification to support qualitative analysis.

Attention Check Validation. The response batch of participants is considered valid only if they correctly
identify the deliberately flawed synthetic clip and at least one of the two human recordings within each 10-clip
set. Responses that fail to meet this criterion are excluded from further analysis.

Expert Consistency Review. After data collection, the two expert reviewers assess whether participants’
free-text justifications align with their labels. Experts specifically inspect participants’ justifications for
the seven non-trap synthetic clips, requiring evidence-based and targeted analysis. Responses flagged as
inconsistent by either expert are also excluded.

Each audio clip and its corresponding judgment were treated as an independent sampling unit in our protocol
design. The random assignment of audio clips without the in-group comparison, minimized learning effects
and reduced inter-trial dependence, enabling clip-level modeling of classification accuracy.

To validate the protocol’s effectiveness, we report results from a mixed-effects logistic regression analysis,
with participants modeled as a random effect, using a generalized linear mixed model (GLMM) (Bolker et al.,
2009).

3.4 HUMAN-LIKENESS SCORE

Based on the evaluation protocol, we define a metric to quantify the human-likeness of audio clips synthesized
by TTS systems: the Human-likeness Score (HLS).

The HLS relies on one human label for each audio clip 7 collected in the set £ = {Human, Unclear, Machine}.
In HLS, the individual scores for each audio clip 7 are then expressed using the indicator function 1(-):

s; = 1(Label = Human) + 0.5 - 1(Label = Unclear)
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Given N audio clips produced by one TTS system, represented as the set S = {s1, ..., sy}, the system’s
HLS is defined as the average of the individual scores s;:

HLS = L SN s,

We employ HLS to quantify the human-likeness of a TTS system’s speech synthesis, which can be assessed
both overall and within specific sub-dimensions. The resulting numeric HLS scores can also supervise the
training of automated prediction models.

3.5 AUTO-ATT

To facilitate rapid evaluation iterations and enhance the usability of the assessment process, we fine-tuned
Qwen2.5-Omni-7B (Xu et al.,[2025)) on a subset of human evaluation data to enable a “model-as-a-judge”
approach that allows the model to predict Human-likeness Score (HLS).

Data. For training Auto-ATT, we construct a training-testing split from the full ATT corpus at both the
corpus and audio levels. At the corpus level, we select three capability subsets—Chinese-English code-
switching, character-level pronunciation, and paralinguistics and emotion—as the training corpus, while
reserving the remaining two capability subsets for evaluation. On top of this corpus split, we further partition
audio by voice: for each of the five model families evaluated in our ATT benchmark (Table [)), we hold
out one voice as the test set and use the other three voices for training. To improve the generalization of
Auto-ATT, we additionally synthesize speech on the training corpus using internal TTS systems. Specifically,
we recruit 437 annotators from crowdsourcing platforms to evaluate all training clips following our protocol,
and aggregate labels from three independent annotators per clip into a final label. Details about the corpus and
voice splits are provided in Appendix [E] During training, each mini-batch is drawn from a single capability
subset to maintain subset-level consistency.

Training. We utilized TTS-generated speech segments accompanied by instructional prompts designed to
guide the model in evaluating speech human-likeness. These inputs were employed to adapt Qwen2.5-Omni-
7B for HLS prediction.

Though originally introduced as an auto-regressive audio language model, we adapt Qwen2.5-Omni-7B for
HLS score regression by leveraging the logits from its existing 1m_head. Specifically, we selected three
semantically significant tokens: Human, Unclear, and Machine, whose logits represent the model’s internal
judgments regarding speech quality. A Softmax function was applied to these logits to obtain a normalized
probability distribution across the three quality categories. Subsequently, this distribution was converted into
a weighted average score by associating each category with a predefined discrete HLS score value: 1 for
Human, 0.5 for Unclear, and 0 for Machine. The predicted HLS was calculated as follows:

sPred — Z P(Label) - [1 - 1(Label = Human) + 0.5 - 1(Label = Unclear)] (1)
Label

Logits were specifically extracted from the final token position of the input prompt, denoted by the character
“\n”. The input prompt comprises both audio content and instructional guidance.

During training, we adopted a loss function consisting of a weighted linear combination of Mean Squared
Error (MSE) and Bradley-Terry (BT) (Hunter, [2004) losses:

Lol = 0.4 X Lt + 0.6 X Lyvsk , ()
2
et Lot = =t 1087 (470 <) and e = |5, (o7 )

The model fine-tuning employed Low-Rank Adaptation (LoRA) with hyperparameters configured as follows:
rank (r) of 32, scaling factor («) of 32, and dropout rate of 0.05. LoRA adapters were applied exclusively to
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all linear layers within the LLM component of Qwen2.5-Omni-7B, while other parameters remained fixed
throughout the training process.

4 EXPERIMENTS

The evaluation involves a total of 20 voice styles across 5 TTS model families including CosyVoice2.0 (Du
et al.| 2024)), MiniMax-Speech (MiniMax, [2025), Seed-TTS (Anastassiou et al.|[2024)), Step-Audio (Huang
et al.;|2025) and GPT-40 (Hurst et al., 2024). The voice styles of each model family are detailed in Table E}

4.1 HUMAN EVALUATION

Following the ATT human evaluation protocol outlined in Section[3] we recruited 857 native Chinese speakers
through crowdsourcing to evaluate the TTS systems. The participant pool included 202 males, 247 females,
and 408 who selected ‘Prefer not to say.” As shown in Figure 4] in each evaluation phase, participants will
listen to an audio clip and make a single-choice selection afterward, choosing whether the source of audio
is [Human] - 1, [Unclear] - 0.5, or [Machine] - 0. Participants were further required to provide written
justifications for each of their judgments, which supports a deeper qualitative analysis of the perceptual and
decision-making processes underlying their evaluations. Each audio clip took approximately 45 seconds
to 1 minute to evaluate and annotate. Compensation was provided at a rate of 0.8 RMB per evaluated
clip, equivalent to approximately 48 RMB per hour. To ensure data quality, we applied our predefined
validation protocol to screen and verify the collected responses. In addition, we conducted a qualitative
coding analysis of the textual justifications, assigning attribution codes to each response. The coding themes
and procedural details are described in Appendix All judgments, justifications, and demographic details
were logged anonymously, and the study adhered to the ethical guidelines of the crowdsourcing platform and
the researchers’ institution.

4.1.1 STATISTICAL SIGNIFICANCE TEST FOR ATT’S HUMAN EVALUATION PROTOCOL DESIGN

To ensure statistical robustness, we conducted a statistical significance test using a Generalized Linear Mixed
Model (GLMM) (Bolker et al.|[2009). The model showed excellent convergence on the human evaluation
data: all parameters had Gelman-Rubin diagnostics (R = 1.00 < 1.01) and effective sample sizes (ESS
> 400), indicating precise inference and reliable posterior estimates.

The fixed effects analysis indicates that the mean Table 2: Posterior summary statistics from the
scores of all evaluated models were statistically GLMM. Including posterior means, standard devia-
significantly higher than the zero baseline (with tions (SD), 95% highest density intervals (HDI).
95%HDI entirely above zero). Detailed results are

provided in Table 2] The findings indicate that “pjodels Posterior Mean(SD)  95%HDI
the Seed-TTS and Minimax-Speech models signif-

icantly outperformed the GPT-40 and CosyVoice i/i’,eq;;TS Speech 8;%; (88}}) [8222 8383]
models, while the Step-Audio model showed inter- Lriviax-opeec ’ (0.011) [0.368, 0.407]
mediate performance Step-Aqdlo 0.286 (0.011) [0.266, 0.307]

: Cosy Voice 0.234 (0.010) [0.214, 0.254]
The random effects analysis reveals significant base- ~ GPT-40 0.138 (0.011)  [0.118, 0.158]

line differences across participants, with the esti-

mated standard deviation of random intercepts being 0.234 (95%HDI = [0.222, 0.246]), suggesting sub-
stantial individual variability in overall scoring tendencies. Additionally, there was a moderately positive
correlation in repeated evaluations of the same model by individual raters (random slope standard deviation
= 0.108, 95%HDI = [0.100, 0.116]), indicating stable preferences or biases in participants’ judgments of
specific models. We additionally report MOS-based evaluations in Appendix [C} The results show strong con-
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sistency between HLS and MOS in assessing audio quality. However, the HLS scores exhibit a substantially
higher signal-to-noise ratio (Johnson, 2006) (10.53 vs. 5.79 for MOS), indicating greater separability across
models and, by implication, a lower annotator burden.

4.1.2 BENCHMARKING VIA HUMAN EVALUATION

Effectiveness of ATT. As shown in Figure [2| in ATT’s benchmark results, Seed-TTS heads the first
performance tier with Minimax-Speech. Step-Audio and CosyVoice occupy the second tier with mid-range
scores between 0.22 and 0.27, while GPT-40 falls into a distinct third tier at just 0.13, well below the leaders.
The pronounced StepWise gaps ShOW that the ATT Human-Likeness Score Comparison Across Capability Dimensions
evaluation framework can clearly distinguish capa- _ .

bility differences among TTS systems. The most £ | ] I ] ] ] ] ]
notable result is that the highest model’s HLS is ] ] ] ]

only 0.4 (Seed-TTS), which remains substantially I

below the level of true human-likeness. This result
markedly deviates from the MOS scores widely re-
ported in prior studies, where TTS systems have %0 Character  En-CodeMixing Paralanguage-Emotion  Poem Polyphone
often been rated as nearly indistinguishable from hu- St TS Mm-St Coope e GPTo
man speech. This discrepancy suggests that the HLS

metric in the ATT framework is more sensitive and  Figure 2: The Key Benchmark Results of ATT Hu-
effective in capturing the subtle differences between man Evaluation.

synthetic and human speech, thereby providing a more realistic assessment of TTS human-likeness.

Human-Likeness Score (HLS
o
o
—_—
—
(——
—_—
—
—
]

Performance of Different Dimensions and Different Voice Styles. Leveraging ATT’s capability for cross-
model comparison, we conducted a more fine-grained analysis of the human-likeness exhibited in different
voice timbres generated by each TTS system, as well as their overall performance across multiple dimensions.
Importantly, as shown in Figure 2] all the models’ scores on each sub-dimension mirror their positions in the
overall league table, showing no large fluctuations between individual skills and total capability. Notably,
substantial variations in voice style are also observed within individual models. For example, Seed-TTS’s
top-ranked voice, “Skye,” scores 0.47, whereas the lowest-ranked voice scores only 0.35. This clear gap
shows that ATT can distinguish quality variations between different timbres generated by the same model.
The detailed results can be found in Appendix [B.4]

Attribution Analysis. The qualitative review of the judges’ comments reveals common shortcomings
across all vendors: (1) prosodic naturalness: intonation patterns often appear abrupt or unnatural, with long
sentences delivered in a word-by-word manner and lacking appropriate micro-pauses, making the synthetic
origin readily detectable; and (2) expressive richness: emotional expression is either overly flattened or
semantically incongruent with the content of the sentence. GPT-40’s Chinese voices are additionally hindered
by a noticeable foreign accent, poor rhythm control, and prominent audio artifacts (electronic hiss and noise),
which compound its prosodic issues and place it firmly at the bottom.

4.2 EFFECTIVENESS OF AUTO-ATT EVALUATION

To validate the effectiveness of Auto-ATT, we design experiments from two aspects: (1) comparing Auto-ATT
performance against other MOS-prediction models and (2) measuring Auto-ATT alignment with human
judgments.
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Figure 3: Trap Items predictions of DNSMOS Pro, UTMOSv2, and Auto-ATT. For a human speech clip,
the ideal outcome is a true positive: the red dot should fall within the red zone; for a flawed synthetic speech
clip, the ideal outcome is a true negative: the gray dot should fall within the gray zone.

4.2.1 COMPARISON WITH OTHER AUTO EVALUATION IN TRAP ITEM

To evaluate model reliability, we conduct experiments on the trap items included in the ATT-Corpus. We
compare the state-of-the-art automatic evaluation methods UTMOSv2 (Baba et al., [2024) and DNSMOS
Pro (Cumlin et al., 2024) with our Auto-ATT in predicted HLS on these trap items. Since trap items are
readily distinguishable to human listeners in our data validation process, we scored them with each prediction
model. These trap items have never been seen by any automatic evaluation methods we evaluated here,
so this is a fair comparison. In principle, a reliable model should accurately predict the quality of trap
items. For both MOS prediction and HLS scores, human speech should receive significantly higher ratings
than defective synthetic speech. As shown in Figure[3] Auto-ATT predicts trap items markedly better than
conventional MOS prediction models. Auto-ATT vastly outperformed the baselines, achieving an F1 score of
0.92, while UTMOSV2 reached only 0.14 and DNSMOSPro collapsed to 0.00 at the 0.5 decision threshold.
This result indicates that, in comparison to conventional MOS prediction models, Auto-ATT demonstrates
superior capability in distinguishing the human-likeness of speech audio, making it particularly well-suited
for automated evaluation tasks.

4.2.2 CONSISTENCY OF HUMAN EVALUATION

To validate the alignment between Auto-ATT pre- Tuple 3: SRCC and PLCC of Auto-ATT and Qwen2.5-
dictions and human assessments, we test Auto-ATT  3yni 7B across different capability dimensions.

and the base Qwen2.5-Omni-7B on the same audio

clips used in our ATT human study, and have both ~ Capability Dimension Auto-ATT ~ Qwen2.5 Omni
models predict HLS for each capability dimension.  Metrics SRCC/PLCC SRCC/PLCC
This evaluation adopts a strict held-out setting at the In-Distribution Dimensions

voice-style level: for every TTS model family, one Special Characters and Numerals 1.00/0.949  0.899/0.708
Voice Style iS excluded from AutO_ATT’S training Chinese—English COde—SWitChil’lg 1.00/0.945 0.899/0.811

Paralinguistic Features and Emotions 0.899/0.933  0.700/0.677

data and used only for testing. Moreover, the evalu-
Out-of-Distribution Dimensions

ated capability dimensions span both in-distribution
subsets seen during training and out-of-distribution g{')?;i;ﬁi;ghé'}‘;iz;girylp rose g:ggg;g:g;g 8:288 ; 8:;;;
subsets held out from training. We aggregate clip-

level predicted HLS to obtain voice-level human-likeness scores within each dimension, and measure ranking
agreement with human evaluations using PLCC and SRCC. As shown in Table 3] Auto-ATT produces voice
rankings that closely track human judgments across all dimensions, achieving near-perfect correlations
on in-distribution capabilities and strong alignment on the held-out OOD capabilities, while consistently
outperforming Qwen2.5-Omni-7B. To further assess the robustness of Auto-ATT under distributional shift,
we additionally evaluate its behavior on entirely unseen TTS system families. Specifically, we apply the
ATT courpus to two unseen TTS systems: ElevenLabs Eleven v3 (Staniszewski & Dabkowskil [2025]) and
Qwen3-TTS-Flash (Qwen Team,|2025)), and compare Auto-ATT’s voice-level rankings with human judgments
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on their synthesized audio. The experimental details can be found in Appendix [E2] Despite substantial
differences from the families used in Auto-ATT’s training, the model continues to exhibit strong agreement
with human assessments on the held-out OOD capability dimensions. Auto-ATT attains SRCC / PLCC
scores of 0.714 / 0.886 on Classical Chinese Poetry/Prose and 0.771 / 0.790 on Polyphonic Characters.
These results indicate that Auto-ATT serves as a reliable proxy for human-likeness assessment, with robust
generalization to different voice styles, unseen TTS systems and even unseen capability criteria.

5 CONCLUSION & LIMITATIONS

In this paper, we propose the Audio Turing Test (ATT), an innovative evaluation framework specifically
designed to address critical challenges in evaluating the human-likeness of LLM-based TTS systems in
Chinese. ATT uniquely integrates a comprehensive, multi-dimensional evaluation corpus ATT-Corpus with a
robust Turing-Test-inspired evaluation protocol, thereby providing both qualitative and quantitative insights.
Our rigorous validation demonstrates that ATT reliably differentiates among state-of-the-art LLLM-based
TTS models, pinpointing specific strengths and weaknesses across diverse linguistic dimensions such as
code-switching, emotional expression, polyphony, and classical texts. Additionally, by finetuning Qwen?2.5-
Omni-7B on human annotations, we develop Auto-ATT for accelerating the iteration cycles of TTS systems
through rapid and accurate assessments. Results confirm Auto-ATT’s superior alignment with human
evaluators compared to traditional automatic evaluation methodologies. A current limitation of ATT is its
language-specific nature, as both the protocol and corpus are primarily designed for Chinese speech synthesis.
To address this, we aim to extend the ATT framework to support multiple languages and a broader range of
speech synthesis scenarios, thereby validating its generalizability and cross-linguistic effectiveness. Overall,
ATT represents a significant advancement in the evaluation of LLM-based speech synthesis systems and
paves the way for more natural and human-like TTS technologies.
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The Use of Large Language Models. We used a large language model as a general-purpose assistant solely
for text editing, including grammar correction, wording and tone adjustments, punctuation, and stylistic
consistency. The model did not contribute to research ideation, methodology, experimental design, data
analysis, interpretation of results, or the generation of substantive academic content or references. All
suggestions were reviewed and approved by the authors, who take full responsibility for the final text. Our
use of LLMs for data synthesis/augmentation is described in the main manuscript; this statement pertains
only to editorial assistance.

Ethics Statement. Our method and algorithm do not involve any adversarial attack, and will not endanger
human security. All our experiments does not involve ethical and fair issues.

Reproducibility Statement. The ATT-Corpus is available at supplementary materials, and we will release our
Auto-ATT model and code in huggingface once the paper being accepted. We specify all the implementation
details of our methods in Appendix [B] The experiment additional results are in the Appendix [B.4] and

Appendix
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A ATT-CORPUS DETAILS

A.1 DATA GENERATION

We found that we could not directly synthesize colloquial texts that met our requirements, so we designed a
three-step corpus-creation workflow: 1) use GPT-40 (Hurst et al., [2024)) to batch-generate Chinese sentences
that mix in English, 2) pass these sentences through DeepSeek-R1 (Guo et al.|[2025)) for a colloquial adapt, 3)
have linguistics experts further enrich and diversify the text through rewriting and perform final verification.

Batch Generate. We first employed GPT-40 (Hurst et al.,|2024)) to generate texts tailored to each predefined
capability dimension. For example, for the Chinese-English code-switching dimension, we began by using
the following prompt to produce Chinese sentences that incorporate English words.

R -BAFHRGGPIRIR, F—OEFPEFEAET ARG T RIS LGN E, —aE2
iuzAﬁﬂ BE24EH3EC, &K3FkLfiller words -

T — ARAEMABAEEMARG A, WA —FaceTune®appts B, 2R A6 ZRAE,

FBR, RERRERXK?

Tl = FEBAHuluLA T —3 #7609 E Al (To All the Boys I've Loved Before) > Bl 4% 7

Ei %m(ﬁ’ﬂfjﬁ"b 4 5147 -

T = ARAEZBLET —MHFHECold Brew Coffee, "R 7|85 5, "B 7 &L — & RAMHF

B, I H AR KK, ARIR AR |

T w9 . R K — B A A Estée Lauder 898 K&, €694 2R natural» AE4SARAFIBIE S MUAR . iR

SRR PN XL L/REE, LRGN ARLLARER, GHREMRK —AK.

Tfﬂﬁ /\i«ﬁ.ﬁn’ﬂ]ﬁa‘?—l’—lﬂ&éﬁﬂfﬁ AT —a ATk, o <<Shapeon0u>> - AR
RETHBT, RAALIGE, SHHERETHBE, B %&‘/\/\%ﬁﬁﬁ’wﬁvi‘éﬁa‘%iz’%’ﬂ Ror i X o

11—»g%:?

WATB A QB RAAERENN00F A& - PSTR A2 O T8 &) Ko — LBAB T, £ TFH

oL E, 2R E5K. FEARBTEAGEIR, REARALEZRAZR . HLKRI04

Colloquial Rewrite. To make the text still more conversational, we ran it through DeepSeek-R1 (Guo et al.,
2025)) for an additional colloquial rewrite, using the prompt shown below:

BB BOIRKEA E o, FHRBRYGIR, FFw—2WHFTRANGERE L, HRTUK
AT 6N TP P RFZE, ERAFRBRBY, FFROGX, TATRREEEGF X

T R A4 A Notioni MNappX e, AMECEGKERT . TARTAARCER, LMK
FHERE R, FFEM lﬂﬁi%‘im»’($éﬁﬁ | E% . L&A RRMRHA, KRG AL MANotionX
Aapp, HOREELGRACRHGRZE, FRTARRLER, TRMAKREERA TR, AT
RER, AOPEERAE, RARSAEGEFAEG, FNEFRELA—TAA?

ﬁmz:ﬁ%;%ﬁﬁ%Tﬂﬁ%%Kﬂmmé,MBB,%T%m%mﬁ%éE@ﬁﬁ&ﬁ%,
A AR E <<Dynam1te>> s ARG, RHRGETTA . LA ERRZELARHE A LN
FLAR, M ERIEF T D B RO GKpopa4s, MBTS, THTH, 97 T {16 LG AT E
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TOL, 455 <<Dynamite>> BE, BRI, BIRCIR—E TR @ RRR, B AR A T EAR
FAAZXER, AKT .

THI3: R —Fﬁ‘i T Pocketi& Mapp. M kG Tl AR 694G L F, TR, KA EG
AR T AR A, R IMEMEALE, ROZ R E. kA X, FIILRBRARHE, o
i?&.ﬂ]TﬁTPocketﬁ’l\ap s R bTVXJ}E%HT%@Jéﬁﬁ%iﬁﬁﬁﬁ‘\f&T% LRFTRTR! ARR
TR RA? ZHFAREGHERTARER, RAAZCHEIRE THOA TSR, ERE BT S
®eF, AR

Tl4. B4 RAERXETRTikTok: EOAIF SR EQNEAR, AHRKERTIT, 32 L4
FBHEAM, MAEA— ﬁzlv‘zu%TT%k %HL”‘%“%*EJleTokﬂ%‘P ifi/a v R A, TikTok— Rl k4%
TTFk, BOFSMARBE, LB AFREITIT! AAILQEARGOE I LRAELT
2, SR —FR—ANIREET, %&EJleTokv%? o Jm AF TR .

TS5 B H‘FﬂﬁaﬁHuluL%T—-%l‘%ﬁ@%) W (FER) L BIERBESY &/\ FAA EAFE
e R, EHEAIEF T TR —0AAXRTESRERY, HFHEF. 284 RAFLREKX
K 6 # B # <<?riﬂ?~>> w02 K¥ERAHulub &, BlESHEYST, %’l\‘fﬁ*‘*ﬁéﬁ&%%ﬁ%%ﬂﬂ/\fi
#, #&$ﬁf‘.~?ﬁ§'l%%'l‘%/\iiﬁz\ EERMET T8, AR EMER, T4ABITX, &
BE—uiART, BRGHEMSG—CREE, ARTRAFERIT.

TH6: R¥s . FH4 M Headspace® T4, H R+ 94, BEARRASTHTRES, o2 weyFiR
RBFE, HHEHENZTRRES, BAEENSARERN AR . LA RAEFFEE2THARE
R’E, PTAKRAE — /" Headspace® ¥ B Z M, XL+ o4 AZ AT, % 7 B—AA, B
BLEHNEAMAKRT, BIRR FLEFT, JiA R K LT E ANchannel 7% 69 L 7 F48 FRIE L
BRF TANE FRREHHJBAZRRSES, REFEMAFRAELE . #5) —ﬁc%z

G

)

4m

A.2 AUDIO DATA VALIDATION CRITERIA

Synthesis Success. Synthesis success refers to the correctness of the output audio in terms of overall audio
quality, transcription accuracy, and language appropriateness. Specifically, we check for issues such as:
significant audio quality defects (e.g., excessive robotic noise, jittering), extremely short or incomplete audio
that cannot be properly transcribed (e.g., only a single “ah” sound or complete silence), language mismatch
(e.g., input in Chinese but output in Japanese), inconsistencies in voice timbre within a single clip (e.g.,
mixing multiple voice styles), and other cases where the output is unintelligible in the target language.

Synthesis Consistency. Synthesis consistency refers to the consistency of output when the same text is
synthesized multiple times using the same voice and technology. This assessment focuses on whether the
resulting audio clips are consistent in overall characteristics such as voice timbre (e.g., gender, age), language
(e.g., remaining within the same language such as Chinese or English), and prosody (e.g., intonation, stress,
and tone of voice). The goal is to determine whether the outputs can reliably be attributed to the same voice.

A.3 BLACK-BOX AND WHITE-BOX.

To ensure a fair and reliable evaluation, we divide the generated data into white-box and black-box subsets.
The white-box subset is made publicly available, while the black-box subset is hosted on an evaluation
platform for open and blind testing. Our experiments validate the consistency between white-box and
black-box evaluation results.
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Table 4: The model families and their voice styles we evaluated.

Model Families Voice Styles

CosyVoice2.0 (Du et al.{[2024) longshuo, longxiaocheng, longxiaochun, longxiaoxia

MiniMax-Speech (MiniMax|[2025)  xinyue, yaoyao, siyuan, zixuan

Skye (zh_female_shuangkuaisisi_moon_bigtt), Alvin (zh_male_wennuanahu_moon_bigtts),

Seed-TTS {Anastassiou et al {2024} Brayan (zh_male_shaonianzixin_moon_bigtts), Moon (zh_female_linjianvhai_moon_bigtts)

Step-Audio (Huang et al.|[2025) gingniandaxuesheng, shenchennanyin, linjiajiejie, wenjingxuejie

GPT-40 (Hurst et al.|[2024) Alloy, Shimmer, Echo, Onyx

B ATT BENCHMARK DETAILS

B.1 EVALUATED TTS SYSTEMS

Seed-TTS (Anastassiou et al.,[2024) is ByteDance’s large-scale foundation family for speech generation-its
flagship autoregressive language-model variant scales into the multi-billion-parameter range and is trained
with data and model sizes “orders of magnitude larger” than previous TTS systems, plus an optional diffusion
decoder Seed-TTS-DiT. Seed-TTS offers zero-shot speaker cloning, fine-grained emotion control and in-
context speech editing while matching human naturalness scores in CMOS.

MiniMax-Speech-01 (MiniMax},2025) is an autoregressive Transformer TTS with an integrated learnable
speaker encoder that enables true zero-shot voice cloning across 32 languages. Although its exact size is
undisclosed, the model is built on the same infrastructure as MiniMax-Text-01 (456B total/45.9B active
parameters), so it inherits Mixture-of-Experts efficiency and ultra-long-context techniques from that 456B-
parameter backbone.

CosyVoice2.0 (Du et al.} 2024) delivers sub-150 ms first-packet latency in both streaming and offline modes,
with multilingual zero-shot voice cloning across Chinese, English, Japanese, Korean and many dialects.
Public checkpoints of CosyVoice2.0 range from 300 M to 0.5 B parameters.

Step-Audio (Huang et al., 2025) pairs a 130 B-parameter multimodal generative engine that synthetically
bootstraps training data with a resource-efficient 3 B-parameter Step-Audio-TTS synthesiser. This combi-
nation supports controllable speech with emotions, dialects and styles, and meets real-time requirements
through speculative decoding and a dual-codebook tokenizer architecture.

OpenAl’s GPT-40 (Hurst et al.|, 2024) is an end-to-end multimodal model (parameter count not publicly
disclosed) that handles text, vision and audio in one network and speaks with human-like latency-232 ms
best-case, 320 ms on average. It matches GPT-4-Turbo on text but adds expressive speech synthesis, real-time
translation and paralinguistic cues without the separate ASR and TTS stages used in previous Voice Mode
pipelines.

B.2 INSTRUCTIONS AND USER INTERFACE
We provide instructions for each participant for the evaluation task and design the reward system to encourage
the high-quality evaluation.

Since our benchmark are in Chinese, our instructions are also in Chinese for native speaker participants. Here
we provide a translated English version for review:

Task description

In this task, you must decide whether each audio clip you hear is spoken by a real person or generated
by a machine, and you must state why you reached that conclusion.
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Your written reason is the main evidence used in manual review, so base it on concrete observations of
the recording.

For every 10 clips there are several hidden "test items."

These have an unmistakably correct answer; selecting the wrong answer on a test item will cause your
entire submission to fail review. Do not rely on AI to draft your responses-judgements that fail
review will be discarded and not counted as valid data.

How to write your reason

Examples of poor reasons

(Not convincing; give no specific evidence from the audio)

1. "Pure machine voice."

2 "The imitation of human speech is too forced."

3. "Obviously a machine tone-doesn’t sound like a real person."
4 "Sounds like a late-night radio host."

Examples of good reasons

(Accurate analysis that cites concrete details in the clip)

1. The phrase "Many thins" should end with a falling intonation, but here it rises-it
sounds unnatural.

2. The clip is machine-generated: each word pops out individually with poor flow.

3. The phrase "go away" lacks the angry/impatient tone that should be present.

4. After the word "angry," the breath has a noticeable electronic/robotic artifact.

And the user interface for the task are shown in Figure ] with explanation in English.

GHRBENFATERE AN RETLNBARE, FRb2INDBRGRIIIREH, SATLMT. MEEHE, EIHER B, BEESIEERNAGERAIRE,

1. 8% BESTTRAANRENREROHEN. BFEXODELTER.
2. MRFN: QEGIMMUETINCESAE, 9FBRMEERESE.
3 WA DIERTHRERDMERER. BE, HEARD HINRE, REEH).

XERTH CRERHRES, BELESEERA]: WNNE: BEARBOAALHET: BINEOMN: SERTERA GRLaRBRERE
DERTE [DIER, BESTEEHTTABST]: B IS8R FER ET LR, REGRS AR B TR X VERE Summarized Instructions

P 0:00/ 0:2] — -

FHERIRIRIA, F Notability 8 app iC® EIREIR, HMRHIINE! REAHSRENFENRENE, ANLECARFHES, YEARST. REANB—TH! RUGHHECLLFTHEY, EEE
WARE, NERSTREBOM, BEERHRER.
Corpus of the Audio Clip

BHEHZEARAAR S ERNFER Please justify this audio clips are:
A-BA A. Human recording
B. THE B. Not Sure
¢ i C. Machine-Generated

TS R ERIEReEEE Please write down the reason of your justification

Figure 4: The Screen of One Audio Clip in ATT Evaluation.

B.3 QUALITATIVE ANALYSIS

The coding criteria for qualitative analysis are based on Table [5] which consists of four dimensions: first,
pronunciation accuracy, focusing on the correctness of each Chinese character’s pronunciation (especially
polyphonic characters within words), accuracy of tones, correct pronunciation of embedded English words,
and accurate pronunciation of numerical information such as dates, monetary amounts, and phone numbers;
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second, prosodic appropriateness, examining whether pauses occur at reasonable positions with appropriate
duration, whether the sentence intonation matches semantic intentions (e.g., questions or exclamations), and
whether speech speed is appropriate without being excessively fast or slow; third, audio clarity, assessing
overall audio quality, including the presence of noticeable background noise, jitter, or electronic distortion
in pronunciations; and fourth, naturalness and human-like expressiveness, evaluating whether the overall
speech performance appears human-like and natural by considering factors such as semantic emphasis and
prolongation of words, emotional expressions consistent with sentence meaning, and effective paralinguistic
features including breaths, laughter, crying, coughing, or breathy voice.

Table 5: Criteria for Qualitative Analysis

Dimension Detailed Explanation

Pronunciation Accuracy - Whether each Chinese character is pronounced correctly, espe-
cially polyphonic characters within words. - Whether the tones
of characters/words are accurate. - Whether embedded English
words are pronounced correctly. - Whether numerical informa-
tion such as dates, monetary amounts, and phone numbers is read
accurately.

Prosodic Appropriateness - Whether the position and duration of pauses are reasonable. -
Whether the intonation matches the sentence meaning, such as
questions or exclamations. - Whether speech speed is appropriate,
avoiding overly fast or slow pacing.

Audio Clarity - Whether the overall audio quality is clear, and if noticeable
background noise is present. - Whether pronunciations have jitter,
electronic distortion, or other clarity issues.

Naturalness and Human-like - Whether the overall speech appears natural and comparable to
Expressiveness human speech, considering:

* Appropriate semantic emphasis on words.

* Appropriate prolongation of words matching semantic
context.

* Emotional expressions matching the sentence context.

« Effective use of paralinguistic features such as breathing
sounds, laughter, crying, coughing, or breathy voice.

B.4 DETAIL RESULTS

Soundness of the black-/white-box split. Crucially, the overall performance hierarchy remains consistent
when comparing white-box and black-box evaluation settings: each model retains the same relative ranking
across both conditions (as shown in Figure [2). The small and uniform performance gap between the two
settings indicates that they are of comparable difficulty, confirming that the black-box/white-box split is
well-balanced and does not introduce systematic bias into the evaluation.

18
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Dimensional Performance. Across ATT’s five evaluation dimensions, Seed-TTS consistently ranks first,
demonstrating the strongest overall performance and particularly excelling at Chinese-English Code-switching
and Special Characters and Numerals; its only relative weakness is in Classical Chinese Poetry/Prose, where
it is narrowly outperformed by Minimax-Speech. Step-Audio, CosyVoice, and GPT-40 follow in that order.

Different Voice Styles Performance. We list the performance of each voice style in Table[6]

B.5 HUMAN LABEL STATISTICS

To examine whether our evaluation could be biased by participants overusing the [Unclear] option, we analyze
the annotator-level unclear rate, i.e., the fraction of instances an annotator marked as [Unclear] among all
instances they labeled.

Overall, the use of [Unclear] is low and highly concentrated among a small subset of annotators. Among the
857 annotators in our evaluation set, 565 annotators (65.93%) never selected [Unclear] at all. 655 annotators
(76.43%) have an unclear rate no more than 5%, and 728 annotators (84.95%) have an unclear rate no more
than 10%. Only 93 annotators (10.85%) fall into the 10%—30% range, and merely 36 annotators (4.20%)
exceed 30%. Consistently, the median unclear rate across annotators is 0.00%, with a mean of 4.62% and a
standard deviation of 9.56%, indicating a right-skewed but overall low usage pattern.

These statistics show that [Unclear] was not a dominant choice during labeling; most annotators provided
decisive labels for nearly all evaluation instances. Therefore, our reported evaluation results are not driven by
widespread avoidance via [Unclear], but rather reflect performance on clearly judged samples.

C COMPARISON WITH MEAN OPINION SCORE RESULTS

Table [7)reports the posterior analysis of the MOS benchmark. In the human study, participants rated audio
quality on a 5-point scale. For ease of comparison, the scores in Table [7|are linearly normalized to [0, 1].

D AUTO-ATT EXPERIMENTS ADDITIONAL RESULTS

We used 4 NVIDIA A100 GPUs to train Auto-ATT, which takes about 1 hour. The server’s CPU was an Intel
Xeon Platinum 8358P (2.60 GHz, 128 cores). Table |§| and Table |E| present detailed Auto-ATT evaluation
results for both white-box and black-box scenarios.

E ADDITIONAL AUTO-ATT DETAILS

E.1 DATA SPLIT DETAILS

We detail the voice-level training—testing partition in this appendix. For each of the five model families in
Table[d] we hold out exactly one voice style to form the Auto-ATT test set, and use the remaining three voices
from the same family for training. Concretely, the held-out test voices are: 1ongxiaochun (CosyVoice2.0),
Moon (Seed-TTS), siyuan (MiniMax-Speech), Echo (GPT-40), and shenchennanyin (Step-Audio).
This split ensures that Auto-ATT is evaluated on unseen voices within each family.

E.2 UNSEEN TTS SYSTEMS RESULTS

To test whether our ATT corpus and Auto-ATT pipeline can be directly applied to newly released TTS systems,
we run an additional evaluation on two unseen model families that were not part of the original benchmark or
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Table 7: Posterior summary statistics of Mean Opinion Score from the GLMM. Including posterior
means, standard deviations (SD), 95% highest density intervals (HDI).

Models Posterior Mean(SD) 95%HDI

Seed-TTS 0.680 (0.020) [0.650, 0.710]
MiniMax-Speech 0.620 (0.020) [0.590, 0.650]
Step-Audio 0.560 (0.020) [0.530, 0.590]
CosyVoice 0.470 (0.020) [0.440, 0.490]
GPT-40 0.390 (0.020) [0.360, 0.420]

Auto-ATT training: ElevenLabs Eleven v3 (Staniszewski & Dabkowskil, [2025)) and Qwen3-TTS-Flash
2025). We follow the same procedure as in the main study. Specifically, for each unseen family we
collect audio outputs for the full ATT prompt set using their official voice styles (ElevenLabs: Chris, Matilda,
Sarah, Will; Qwen3-TTS-Flash: Cherry, Ethan). We then conduct human evaluation on these clips using the
same annotation protocol, and aggregate clip-level scores to voice-level HLS. Table[I0]reports the posterior
mean HLS with 95% confidence intervals for each capability dimension.

These human results provide a realistic snapshot of unseen-family performance under the ATT benchmark
and serve as the basis for assessing Auto-ATT’s applicability to newly emerged TTS systems.

21



Under review as a conference paper at ICLR 2026

[880°0 ‘050°0] 690°0
[220°0 “1¥0°0] LSOO
[€20°0 ‘€10°0] 810°0
[021°0 *9L0°0] 860°0

[€€0°0 “810°0] S20°0
[S10°0 “800°0] 110°0
[+10°0 “800°0] 110°0
[1+0°0 ‘120°0] 1€0°0

[261°0 ‘LET'0] #91°0
[821°0 ‘980°0] LOT°0
[+20°0 ‘+10°0] 610°0
[02Z°0 ‘¥91°0] €61°0

[292°0 ‘002°0] €20
[82C°0 “€L1°0] 10T°0
[6%0°0 ‘520701 LEO0
[862°0 ‘T#T0] 69T°0

[€8T°0 ‘¥0T 0] ¥+T0
[622°0 ‘6S1°0] ¥61°0
[SS0°0 ‘¥20°0] 0¥0°0
[L6T°0 ‘L12°019ST°0

Suoysonxepuerusutb
arforferfury
urkueuuayOUYS
arfonx3urfuom

opny-doig

[020°0 ‘110°01 91070
[S80°0 *$S0°01 0L0°0
[1sT°0°€1T°01 T€ET°0
[L£0°0 *020°0] 620°0

[¥10°0 *800°01 T10°0
[0%0°0 “¢20°0] 1€0°0
[£90°0 “¢0°0] #S0°0
[610°0 ‘010°01 S10°0

[1€0°0 ‘s10°01 €20°0
[€8T°0 “6€C°01 19T°0
[06T°0 ‘€¥T°0] 9920
[280°0 ‘150°01 L90°0

[S60°0 650701 LLOO
[82€°0 ‘687°0] 80€°0
[1€€°0°L8T°0] 60€°0
[801°0 °€£0°01 060°0

[6¥0°0 *920°01 LEO'O
[12€°0 °082°01 00€°0
[SzE0 ‘T8T0] £0€0
[620°0 ‘8%0°01 ¥90°0

uenxiz
oekoek
onAurx
uenArs

[yooadg-xewury

[+01°0 ‘890°01 980°0
[001°0 *¥90°01 2800
[990°0 “¢¥0°01 ¥S0°0
[¥11°0 °8,0°01 960°0

[Ss0'0 ‘T€0°01 €400
[690°0 °L€0°0] £50°0
[0€0°0 *610°01 ¥20°0
[650°0 *L€0°0] 8+0°0

[L0T°0 ‘SST°0] 181°0
[L¥T0 ‘961°0] TTTO
[L91°0 ‘cTT 0l SHT°O
[292°0 ‘11201 LET'O

[Ls€0 ‘Log 0l TEEO
[L¥€0 ‘10€°0] ¥2E0
[0¥€°0 *88T°0] ¥1€°0
[SL€0 ‘¥EC0] ¥SEO

[082°0 ‘1€2°0] 950
[062°0 ‘6£2°0] ¥97°0
[€£€7°0 ‘6L1°0]1 9070
[+2€°0 ‘1,201 L6T0

Joururys
xAuo
oydo
Kofre

Op-LdD

[S#+°0 ‘Tov 0] €240
[ovZ0 ‘061°0] S1CT°0
[1L€0°STE0] 8+€°0
[LZT0 ‘vLT°0] T0T0

[ev€'0‘98T°01 STE0
[621°0 “060°0] 60T°0
[661°0 ‘6¥1°0] ¥L1°0
[6€1°0 ‘860°0] 8TT°0

[S€S°0 ‘96%°01 91570
[S0¥°0 ‘L9€°0] 98€°0
[80%°0 ‘89¢°01 88€°0
[8€€°0 °L8T 0l €1€°0

[11S°0 ‘€8¥°0] L6¥°0
[607°0 ‘9L£°0] £6£°0
[¥L¥°0 ‘L¥¥°0] 09%°0
[6S€°0 ‘€1€°0] 9¢€°0

[1€5°0 “v0S°0] 8150
[szy0 ‘16€°0] 80770
[SL¥°0 ‘0¥F°0] LSTO
[6S€°0 ‘60€°0] +£€°0

AKYS
uoowr
uekerg

UIAY

S.LL-P9°S

[0€1°0 “580°0]1 80T°0
[1+0°0 ‘T20°0] 2€0°0
[220°0 “800°0] STO0
[L10°0 ‘600°0] €100

[1%0°0 ‘810°0] 0€0°0
[010°0 ‘90001 8000
[120°0 ‘010701 S10°0
[z10°0 ‘S00°01 6000

[92€°0 ‘19T°0] €62°0
[021°0 ‘6L0°0] 00T°0
[+20°0 ‘800701 910°0
[¥€0°0 ‘L10°01 920°0

[08T°0 ‘STT'0] 2ST°0
[211°0 °SL0°0] £60°0
[620°0 ‘S10°01 2200
[9v0°0 ‘L2001 9€0°0

[2€'0‘6LT01 TT€0
[0S1°0 ‘T01°0] 921°0
[810°0 ‘600°0] +10°0
[250°0 ‘620°0] T+0°0

BIXORIX3UO[
unyooerx3uof
Suoyooerx3uof
onys3uo|

Q010A AS0D)

SI9)
-deaey)) suoydLjog

3soag/Anod
IsouIy)  [BASSBD

SuoOroOwWy pue saIn}
-ed opsmsurereq

SuIYIIMS-3po)
ystdug-osoury)

s[erowInN pue
s19)orIRy) [BAdS

SIINTERIT

PPON

snd107) X0q-AIYAN UT [BAIIUT QOUSPYUOD) % G6 UMM SI[AIS 90T0A JUSISHI(T JO STH :8 998l

22



Under review as a conference paper at ICLR 2026

[SL0°0 ‘#+0°0] 6S0°0
[L90°0 ‘6£0°0] €500
[120°0 “C10°0] L10°0
[zz1°0 ‘080°0] 101°0

[2€0°0 *s10°01 €20°0
[¥10°0 ‘S00°01 0100
[£10°0 ‘600701 £10°0
[9€0°0 81001 LT0O0O

[€E1T°0 ‘¥¥1°0] SLI°O
[002°0 “LET'0] 891°0
[190°0 ‘1£0°0] 9%0°0
[S6T°0 ‘€20l 6520

[L¥€0 °€6T°0] 0TE0
[662°0 ‘S¥C'0] TLT0
[¥80°0 ‘8¥0°0] 990°0
[S9€°0 ‘T1€°0] 6€€°0

[292°0 “s0T°0] ¥€7°0
[122°0 “891°0]1 S61°0
[8+0°0 “520°0] LEO0
[10€°0 ¥¥T°0] 2LTO

Suoysonxepuerusutb
arforferfury
urkueuuayOUYS
arfonx3urfuom

opny-doig

[€20°0 210701 810°0
[201°0 *1£0°01 98070
[691°0 *ST1°0] L¥1°0
[€¥0°0 *S20°0] ¥€0°0

[€10°0 °£00°01 01070
[€€0°0 °L10°0] $20°0
[S50°0 “‘€€0°01 ¥+0°0
[€200 ‘110701 L1070

[€80°0 ‘¥¥0°0] ¥90°0
[SS€°0 ‘L6201 92€0
[92€°0 “0LT°01 86T°0
[€0T°0 ‘er1'0l €L1°0

[601°0 “€L0°0] 16070
(SO0 “TLE0] 88€E°0
[8L€°0 *€v€0] T9€°0
[861°0 ‘6¥1°0] €L1°0

[160°0 ‘150701 2LO0
[95€°0 ‘T1€°0] ¥€€°0
[€2€°0 *8LT°01 00€°0
[961°0 ‘Ly1°0] IL1°0

uenxiz
oekoek
onAurx
uenArs

[yooadg-xewury

[S01°0 ‘890°01 9800
[901°0 *€L0°0] 680°0
[920°0 *9+0°01 090°0
[611°0°080°01 001°0

[L¥0°0 “‘€20°01 S€0°0
[€¥0°0 *¥T0°0] €€0°0
[¥20°0 *€10°01 61070
[9%0°0 *920°01 9€0°0

[6ST°0 ‘S61°0] STTO
[092°0 ‘L61°0] 620
[122°0 *€91°0]1 T61°0
[922°0 ‘¥12°0] S¥T°0

[8L€°0 ‘0g€0l ¥SE0O
[68€°0 “¥re0] L9E0
[65€°0 ‘60€°0] ¥E€0
[S0t°0 ‘€9¢°0] ¥8€°0

[962°0 ‘8%C°0] 1,0
[L0€0‘LST0] 28T0
[867°0 ‘C1T°0]1 S€T°0
[22€0 ‘€LT°0] L6T0

Joururys
xAuo
oydo
Kofre

Op-LdD

[61%°0 “9LE0] L6€°0
[1€2°0 ‘6L1°0] S0T'0
[€6€°0 “L6T°0] STE'O
[6£2°0 981°0] €1T°0

[oLz0 ‘810l ¥+C0
[101°0 “590°0] €800
[1L1°0 ‘921°0] 6¥1°0
[¥Z1°0 ‘$80°0] SOT°0

[L9S°0 ‘02§ 01 ¥¥S°0
[11t°0 “99€°0] 88€°0
[98€°0 “T€€°0] 6S€°0
[0Z€°0 '192°01 06T°0

[#+5°0 12S°0] 2T€S0
[SLY0 ‘9¥F°0] 09%°0
[98%°0 ‘65+°0] €L¥°0
[S0¥°0 °£9€°0] 98€°0

[125°0 ‘16¥°0]1 9050
[#€+°0 ‘10¥°0] 81+°0
[1+°0 ‘LO¥ 0] ¥2+'0
[zs€0 ‘o€ 0] 82€°0

AKYS
uoowr
uekerg

UIAY

S.LL-P9°S

[€€1°0 “€80°0] 80T°0
[6€0°0 ‘020°0] 620°0
[€20°0 ‘600°01 910°0
[S10°0 ‘800701 2100

[620°0 ‘800701 610°0
[010°0 ‘90001 8000
[z10°0 ‘L00°01 010°0
[600°0 ‘S00°01 L0OO

[68€°0 ‘9T€°0] £5€°0
[922°0 ‘991°0] 961°0
[€90°0 ‘1€0°0] L¥0°0
[#+1°0 ‘880701 911°0

[SLE012€0] 8¥E°0
[80T°0 ‘6S1°0] £81°0
[6¥0°0 +20°0] 9€0°0
[€80°0 ‘€50°01 690°0

[29€°0 “0€°0] €€£°0
[S61°0 ‘TF1°0] 891°0
[£50°0 “L20°0] 0%0°0
[901°0 °£90°0] L80"0

BIXORIX3UO[
unyooerx3uof
Suoyooerx3uof
onys3uo|

Q010A AS0D)

SI9)
-deaey)) suoydLjog

3soag/Anod
IsouIy)  [BASSBD

SuoOroOwWy pue saIn}
-ed opsmsurereq

SuIYIIMS-3po)
ystdug-osoury)

s[erowInN pue
s19)orIRy) [BAdS

SIINTERIT

PPON

snd1o)) X0q-Yor[g UI [BAIOJU] 90USPYUO)) %G6 YIM SI[AIS 90T0A JUSISHI(T JO STTH :6 9IqeL

23



Under review as a conference paper at ICLR 2026

[65T°0 ‘¥ST°0] LOTO
[0T€0°S61°0]1 €5T°0

[91€°0 20T 01 6ST°0
[92€°0°L0T°0] L9T0

[S¥€°0 ‘T 0] €8T°0
[981°0 “960°0] T¥1°0

[98T°0 “€L1°0] 62T°0
[99T°0 ‘8S1°01 21T°0

[TLT0 29101 L1T0
[16T°0°SLT°0] €€T°0

uepy
K11y

Yse[]-SLL-€usmO

g
g
[6€+°0 ‘LO€°0] €L£°0
[vee0 L1T°019LT°0
[62T°0*821°01 6L1°0
[¥2S0 *68¢°01 LSH'0

[TSs0“L1¥°0]1 S8%°0
[1+$°0 “0¥°0] TLY0
[1S€°0 “622°0] 0620
[L6S°0 “09¥°0] 82S0

[S1Z0°L11°0]199T°0
[992°0 ‘8ST1°01 T1T°0
[SLT°0 ‘680701 OET1°0
[08€°0 ‘95701 81€°0

[€9Z°0 SS1°01 6020
[0¥€°0 ‘12’01 08T'0
[0L1°0 ‘280701 921°0
[19€°0 “¢T’01 20E0

[€ST°0 ‘¥¥1°01 861°0
[+¥20 °8€1°01 161°0
[612°0°611°01691°0
[19€°0 “8€2°01 66T°0

A
yeres
epInEIN
SLyD

€A UIAJ[T

S19)
-deaey)) sruoydLjog

3soag/A1390g
IsuIy)  [BIISSe])

SUONOWy pue saInj
-ed] onsmsurereq

SunyIMs-apo)
ysiSug-asaury)

s[erowny pue
s19joeaey) [eads

J141S MI0A

PPOIN

[BAIIUT QOUIPYUO)) 9% GG YIM SUIISAS SIT Uadsu() Jo STH 0T [9eL

24



	Introduction
	Related Works
	Audio Turing Test
	ATT-Corpus Dataset
	Evaluated Audio Clips Generation and Validation
	Human Evaluation Protocol
	Human-likeness Score
	Auto-ATT

	Experiments
	Human Evaluation
	Statistical Significance Test for ATT's Human Evaluation Protocol Design
	Benchmarking via Human Evaluation

	Effectiveness of Auto-ATT Evaluation
	Comparison with Other Auto Evaluation in Trap Item
	Consistency of Human Evaluation


	Conclusion & Limitations
	ATT-Corpus Details
	Data Generation
	Audio Data Validation Criteria
	Black-box and White-box.

	ATT Benchmark Details
	Evaluated TTS Systems
	Instructions and User Interface
	Qualitative Analysis
	Detail Results
	Human Label Statistics

	Comparison with Mean Opinion Score Results
	Auto-ATT Experiments Additional Results
	Additional Auto-ATT Details
	Data Split Details
	Unseen TTS Systems Results


