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ABSTRACT

Modern recordings of neural activity provide diverse observations of neurons across
brain areas, behavioral conditions, and subjects; presenting an exciting opportunity
to reveal the fundamentals of brain-wide dynamics. Current analysis methods,
however, often fail to fully harness the richness of such data, as they provide either
uninterpretable representations (e.g., via deep networks) or oversimplify models
(e.g., by assuming stationary dynamics or analyzing each session independently).
Here, instead of regarding asynchronous neural recordings that lack alignment in
neural identity or brain areas as a limitation, we leverage these diverse views into
the brain to learn a unified model of neural dynamics. Specifically, we assume that
brain activity is driven by multiple hidden global sub-circuits. These sub-circuits
represent global basis interactions between neural ensembles—functional groups
of neurons—such that the time-varying decomposition of these sub-circuits defines
how the ensembles’ interactions evolve over time non-stationarily and non-linearly.
We discover the neural ensembles underlying non-simultaneous observations, along
with their non-stationary evolving interactions, with our new model, CREIMBO
(Cross-Regional Ensemble Interactions in Multi-view Brain Observations). CRE-
IMBO identifies the hidden composition of per-session neural ensembles through
novel graph-driven dictionary learning and models the ensemble dynamics on a low-
dimensional manifold spanned by a sparse time-varying composition of the global
sub-circuits. Thus, CREIMBO disentangles overlapping temporal neural processes
while preserving interpretability due to the use of a shared underlying sub-circuit
basis. Moreover, CREIMBO distinguishes session-specific computations from
global (session-invariant) ones by identifying session covariates and variations
in sub-circuit activations. We demonstrate CREIMBO’s ability to recover true
components in synthetic data, and uncover meaningful brain dynamics in human
high-density electrode recordings—capturing cross-subject neural mechanisms as
well as inter- vs. intra-region dynamical motifs.

1 INTRODUCTION

Identifying the interactions between and within brain areas is fundamental to advancing our under-
standing of how the brain gives rise to behavior. Recent advances in neural recording present an
exciting opportunity to study brain-wide interactions by enabling simultaneous recording of neural
activity across many brain areas through multiple high-density electrodes. Such experiments, repeated
over many sessions with different implantation patterns, offer multiple asynchronous recordings of
the brain system, with each session encompassing hundreds of distinct neurons across regions.

Individual recording sessions provide a singular perspective of the brain dynamics, as the reinsertion
of recording devices results in the capture of different subsets of neurons in each session. Thus, fitting
population-level models often reverts to per-session analysis (i.e., fitting each session independently),
which is inherently constrained by the inability to incorporate the full set of recorded activity across
all recorded brain areas across all sessions. Moreover, analyzing the data session-by-session, may
hinder our ability to distinguish between computations that are session or subject specific from task
related or global session-invariant neural processes. Compounding the difficulty of merging different
sessions’ data are the non-linear and non-stationary nature of neural activity, as well as the presence
of noise and variability across trials—both of which require additional model complexity to account
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Figure 1: CREIMBO’s Illustration. A: Real-world multi-regional neural datasets consist of multiple
(D) non-simultaneous recording sessions ({Yd} 5:1) that cannot be matched in terms of individual
neurons’ identities, quantity, or cross-region distribution, resulting in neurons appearing only in
certain sessions (4-pointed stars) or not at all (gray circles). This variability hinder our ability to
draw unified conclusions of whole-brain neural computation, while analyzing sessions individually
could lead to session-specific biased results. This challenge is further complicated by variability in
session (or trial) duration, the non-stationarity of brain dynamics (even within a session), and the
presence of multiple trials within each session. B — A: Instead of considering these asynchronous
sessions as a challenge, we frame them as an opportunity to obtain distinct, potentially complementary
“views” onto the shared underlying brain system, thereby facilitating the learning of a unified brain
dynamics model. We assume that brain computations are mediated by multiple neural ensembles—%
groups of same-region neurons with shared functionalities—whose interactions yield meaningful
neural representations. However, the specific neurons and their membership degrees within each
ensemble are unknown, and a neuron may belong to multiple ensembles with varying membership
levels based on its diverse functionalities. C: CREIMBO leverages partial brain views to co-learn
ensemble compositions per session ({ A?}2 ), their temporal activity ({z¢}_,), and cross-regional
interactions ¢, | = Ffz{. It posits that these non-stationary interactions stem from a session-shared
dictionary prior of up to K global interactions { f; }&_,, whose sparse time-changing decomposition

Fl = Zle Frc, shapes the overall ensemble dynamics at each time point ¢ and session d. The
interactions’ coefficients can help distinguish session-specific interactions from session-invariant
interactions in different time periods (pink right, solid vs. dotted in subplot C right). With the
session-shared ensemble-interactions dictionary and certain assumptions (Sec. D), the model auto-
sorts ensembles across sessions by functionality, aligning the j-th ensemble of session d with the j-th
ensemble of session d’, despite differences in observed neurons.

for. Moreover, to extract scientifically meaningful insights, the models must be interpretable, with
model parameters directly related to task variables or connections between recorded units. This
gap between the opportunities offered by modern neural data and the limited capabilities of current
methods necessitates new approaches to leverage the richness in modern brain data and discover the
fundamental neural sub-circuits governing brain activity.

One current approach used to combine multi-session data into unified model is deep learning. By
training to predict all sessions’ data, deep networks implicitly merge the datasets into the fit network
weights. While these powerful models can combine information across sessions, their uninterpretable
nature and complexity typically hinders their ability to reveal the fundamental building blocks of
neural computation. Other approaches, including tensor factorization and its variations (e.g.,|Chen
et al.| (2015); |[Harshman| (1970)) may be limited in their ability to merge sessions of varying durations
or model the interactions between the identified neural components.

Here, we re-frame cross-session variability in neurons recorded and experimental settings, not as
a drawback, but as a valuable advantage, viewing this data as providing multiple, complementary
“views” into a single, shared brain system (Fig.[IB — A). This approach enables a more thorough
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and holistic discovery of the underlying system designed to extract joint information from the entire
dataset. In particular, we hypothesize that the population dynamics at each session is driven by
a common set of global time-invariant sub-circuits shared across sessions. To effectively capture
the non-linear and non-stationary dynamics of the brain, we enable these sub-circuits to adjust
their activity levels over time and across sessions. This approach allows us to identify evolving
neural patterns through the collective activity of the sub-circuits, modeled via their time-varying
decomposition. We assume that the latent dynamics governed by functional neural groups are shared
across sessions, even though the specific individual neurons observed may vary. To address this, we
propose a per-session transformation from the joint low-dimensional circuit space to each session’s
observation space, ensuring cross-session alignment of the neural groups’ functionalities.

In this work, we lay out this new model, which we term Cross-Regional Ensemble Interactions in
Multi-view Brain Observations (CREIMBO), and demonstrate its ability to capture latent dynamics
in multi-view neural data. Specifically, our contributions include:

* We discover multi-regional brain dynamics through leveraging the richness of modern neural
datasets while ensuring interpretability.

* We distinguish between intra- and inter-region interactions by identifying sparse, same-area
neural ensembles, deploying a specialized structured prior over per-session projections from
the circuit latent space to the observed neural space.

* We accurately recover ground truth components in synthetic data and discover meaningful
cross-regional brain interactions underlying human and mouse brain data.

2 RELATED WORK

Over the past decade, remarkable advances in neural data acquisition technologies have enabled the
measurement of numerous neurons across brain regions, subjects, and experimental settings. This has
spurred follow-up work to leverage this extensive data for novel neural discoveries, including merging
non-simultaneous sessions and examining cross-regional brain interactions, all while accounting for
the complex, non-linear, and non-stationary nature of neural activity.

Merging non-simultaneous neural recording sessions. Existing work for combining non-
simultaneous neuronal population recordings, here termed “sessions”, include Turaga et al.|(2013))
who introduced the term “stitching” for this problem and modeled neural activity with a shared latent
dynamical systems model and Soudry et al.|(2013) who proposed to stitch asynchronous recordings
for inferring functional connectivity by assuming shared cross-session latent input and demonstrated
the advantage in observing more neurons for inferring connectivity. However, these methods are not
designed to capture more than two simultaneously interacting neural sub-circuits across multiple
populations, nor do they distinguish between within- and between-area interactions or specifically
address temporal non-stationarity. Bishop| (2015) and |Bishop & Yu| (2014) proposed integrating
the neural activity structure into inference and expanding stitching to study the communication
between two neuronal populations from potentially different brain areas. In|[Nonnenmacher et al.
(2017), the authors proposed extracting low-dimensional dynamics from multiple sessions by learning
temporal co-variations across neurons and time. Both of these methods, through, assume at least a
small overlap in the identity of cross-session observed neurons. LFADS (Keshtkaran et al., 2021}
Pandarinath et al., [2018)) enables stitching while addressing the need for limited neural overlap by
finding a shared non-linear latent dynamical model. However, its latent dynamics may be difficult
to interpret regarding the specific neural sub-circuits that compose it, and due to its foundation on a
variational auto-encoder, it may be challenging to tune.

Maintaining Interpretability in Non-Stationary Neural Dynamics Models. Real-world neural
activity follows non-stationary nature due to changing environmental settings. Classical dynamical
models often simplified neural dynamics to linear (e.g., jPCA |Churchland et al.| (2012)) or non-
linear but stationary (e.g.,|Gallego et al.|(2020)). Models that capture non-stationarity often derive
from “black box™ deep learning models (e.g., Schneider et al.| (2023)); [Pandarinath et al.| (2018));
Zhu et al. (2022), which are powerful but often present limited interpretability with respect to
neural interactions. Other models are built on switching piece-wise linear models |Linderman et al.
(2016;2017); Murphy| (1998)), which do not enable the identification of multiple co-active dynamic
processes. dLDS (decomposed Linear Dynamical Systems, Mudrik et al.|(2024a))) and its multi-step
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extension (Mudrik et al |2024c))), addresses this gap by generalizing the switching assumption to
sparse time-changing decomposition of linear dynamical systems, thus enabling capturing co-active
sub-circuits. However, while dLDS can be extended to co-process multi-session recordings with
cross-session variability in neuron identity, this modification may not yield interpretable latent-to-
observed projections and lacks the structured multi-regional prior over the emission matrix necessary
to partition multi-area recordings and study between- vs. within-area interactions.

Identification of Functional Neural Ensembles. A potential way to find interpretable loading
matrix that links low to high dimensional space is through the identification of functional neural
ensembles—here referred to as groups of neurons with similar functionalities—that determine the
axes in the latent space. For instance, the mDLAG model used Automatic Relevance Determination
(ARD) to promote population-wise sparsity patterns of each latent variable. In|Mudrik et al.| (2024b),
the authors presented an approach to address sparsity in loading matrices while accounting for
multi-trial and task-conditions variability. They proposed a graph-driven regularization technique that
facilitates the grouping of co-active neurons into the same ensembles and pushing apart neurons that
present different functionality, while allowing for structural adjustments in ensemble configurations
across different task conditions. They further enable per-trial variability in temporal activity of the
ensembles. However, their model does not model the dynamic interactions between ensembles or
give a closed form prior for the evolution of the ensembles’ temporal traces. While other methods,
e.g., clustering approaches like (Grossberger et al.l 2018])) or Sparse Principal Component Analysis
(SPCA) Zou et al.| (2006)), enable the recognition of underlying sparse groups, they either do not
allow a neuron to belong to multiple groups with varying degrees of membership or do not support
controlled adaptations of structural membership across conditions.

Multi-regional brain interactions. With the ability to record from multiple brain areas and the
recognition of the importance of considering multi-area communication (Pesaran et al.l 2021), recent
works have delved into understanding the communication between or within brain areas. In|Gokcen
et al.[(2022; |2024)), the authors proposed models to identify time delays between cross-regional
brain interactions, overcoming the challenge of distinguishing indirect, concurrent, and bi-directional
interactions in two or more populations. However, their model focuses on analyzing sessions
individually and is not intended to uncover the full underlying set of transition matrices, but rather to
recognize meaningful time delays that can imply interactions. Other models addressed multi-regional
interactions through a communication subspace [Semedo et al.|(2019) using dimensionality reduction,
or by Generalized Linear Models (GLMs), with either Poisson (Yates et al., 2017) or Gaussian (Yates
et al.| 2017) statistics to identify functional coupling between areas. These approaches, though, are
not tailored to capture non-simultaneous cross-sessions variability in neuron identity and subject
processing. Other recent methods (Karniol-Tambour et al.| (2024); Glaser et al.| (2020); L1 et al.
(2024)) discussed the potential usage of their model to multi-regional interactions, have proposed
studying multi-regional interactions using switching dynamical systems approaches, where the model
switches between different states over time to capture distinct periods. However, this approach
cannot disentangle interactions among multiple sub-circuits active simultaneously, nor can it identify
interactions at multiple temporal resolutions that occur concurrently and distinguish between these or
multiple co-processed processes whose encoding occurs gradually rather than via sharp transitions.

3 PROBLEM INTRODUCTION AND APPROACH

Problem Intuition: Let {Y‘i}g’:1 be a set of estimated neural firing rates (e.g. from neuropixels
data) over D asynchronous sessions, indexed by d = 1... D. The neural recordings of each d session,

Yd e RV'*T" capture T¢ time observations of the activity of N neurons from up to J distinct
brain areas, thus offering a partial view of the brain system. Note that sessions may refer to the same
or different subjects, can vary in duration or number of neurons, i.e. N and 7% need not be equal to
N and T for different sessions d,d’, and can differ in the subset of brain areas (out of .J) they
capture. Hence, these cross-session data matrices cannot be aligned into a single data array, e.g., via
a tensor—hindering the direct application of existing analyses as tensor factorization.

We assume that these brain observations reflect the hidden activity X € RP*T" of p << N4
functional neural groups that evolve and interact over time. Each of these groups encompasses a
sparse set of same-area neurons, while each neuron can belong to more than one group with varying
degrees of cross-group membership, encoded in the values of X . The low-dimensional latent space
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in which the groups interact is shared across sessions and projected to each session’s observed neurons

via an unknown per-session projection g¢ : R? — RV * that captures the groups’ compositions in
the visible neurons, such that Y¢ = ¢g?(X?). The interactions between these functional groups
follow a per-session non-linear and non-statioary dynamics Fy : RP — RP, where X¢ = Fd(z{ ;).
As in general non-stationary systems cannot be fit without constraints, we follow the dLDS model
and assume that these dynamics can be described by a set { fk}le of K global time- and session-
invariant “sub-circuits”. Here each sub-circuit fi, € RP*P represents a basis interaction between
these groups that is reused by the system at different time-points throughout its trajectory. Each
of these latent sub-circuits may capture either “global” session-invariant brain interactions and/or
session- and subject-specific interactions. Moreover, these sub-circuits may be active simultaneously
or intermittently, yielding a model that can flexibly fit neural trajectories that differ between sessions
with a single underlying mechanism. The problem CREIMBO addresses is thus identifying the set of
K latent multi-regional sub-circuits { fk}le, capturing interactions between unknown functional
sparse neural ensembles A, along with their non-stationary activation levels {{cg,} X 12 by
leveraging the joint information from asynchronously collected observations {Y4}2_,.

CREIMBO: A naive approach to identifying the unknown sub-circuits involves first projecting
each session’s data into a low-dimensional space and subsequently fitting the dynamics model in the
low-dimensional space. However, this two-step approach can be sub-optimal as the dimensionality
reduction projections may not prioritize the same dimensions needed to preserve dynamic fidelity. An
additional advantage of simultaneously identifying the ensembles and dynamics is that in the cross-
session model it automatically aligns the cross-session components based on the shared dynamics
prior. Such alignment is unlikely given the sensitivity of the subspace ordering in dimensionality
reduction methods to each session’s distinct statistics.

We therefore present CREIMBO, an algorithm that simultaneously fits the global sub-circuits that
underlie the inter-ensemble interactions across multiple sessions. Our model is predicated on three
key assumptions that 1) ensembles of neurons, rather than individual neurons, form the basic units
that interact in brain dynamics, 2) it is feasible to identify functionally analogous neuronal ensembles
across sessions, and 3) the full repertoire of interactions between these ensembles are governed by a
global set of dynamical primitives in the form of a basis of linear dynamical systems.

Let A? be a sparse matrix where each column, A“[:, j], encodes the neuronal composition of the
7-th ensemble in the d-th session, such that non-zero values within these columns represent the
membership of neurons in the ensemble and their magnitudes reflecting the degree of membership.
Since we aim to capture multi-regional interactions, we design the ensemble matrix a := A% as
a block diagonal matrix where the j-th block, a’ € R"%*Pi_ contains the neural ensembles for

the j-th area. We denote p; as the number of ensembles within that area (note that p = ijl D;)
and n; := N Jd as the number of neurons in that area (i.e., the total number of neurons observed

in session d is N¢ = Z;’:l n;). Furthermore, let 7 := Tfn indicate the number of time-points
recorded in each m-th trial of session d (m = 1... My), such that the observations in that trial are

captured by Y,¢ € RY *XT7. In each trial m, the temporal activity for the p ensembles are denoted
as x ;= X ¢ € RP*7 leading to a model where the observations y := Y, in trial m are assumed to
arise from the joint activity of all these ensembles, up do a normally-distributed error € ~ N(0, o),
i.e., y = ax + e. Please refer to Section [G]for Poisson statistics inference in low spiking rate regimes.
The evolution of the ensembles’ activities (a) reflect the latent interactions between ensembles,
which we model with a non-stationary linear dynamical system x; = Fix;_; fort =1...7. The
time-changing transition matrix F; € RP*P captures both non-linear and non-stationary brain activity.
A key desired property of our model is to capture the overlapping activity of multiple sub-circuits of
interacting ensembles. We thus follow dLDS and model the interactions (F}) through a time-varying

sparse decomposition F; = Zszl ¢kt fi, where { fk}szl are the K global ensemble interactions,
and cg; are their time-varying coefficients that capture the modulation of each interaction.

Fitting this model requires identifying the global operators { f; }X_, and ensembles { A?}Z_,. For
this, we employ an alternating approach and iterate between updating { fz } 2, and inferring, for
each session d, 1) the ensemble compositions a := A? 2) their dynamics @, and 3) the sub-circuits’
temporal coefficients ¢;. These steps are iterated until convergance.
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Ensemble update: We update a per-row (neuron) n (a,). Following the work of Mudrik et al.
(2024b), we infer the sparse ensemble structures with graph-driven re-weighted ¢; regularization that
groups together neurons with shared activity patterns, while pushing apart neurons who do not behave
similarly. The graph for each area j, h/ € R™ X" is calculated based on a data-driven Gaussian
. j i o2
kernel that measures the temporal similarity between neurons, such that b}, .., = ewp(%)
where o, is a hyperparameter. Specifically, for each row a,, . and considering only the ensembles in
region j,, that neuron n is part of,

p
G, = argMin |yn: — @@y, [I3 + D AL jlan,;| where A, ; =
j=1

s g
B2 + |an, ;| + B3lhn.a.;l

Here, x;, . is the activity of the ensembles of the j,-th region and 31, 32, and 33 are scalars that
control the effect of the graph on the regularization. The graph adjacency h,.a.; weights the sparse
membership in the j-th ensemble based on temporal similarity. Specifically, if h,.a.; is high (i.e.,
the neighbors neuron n on the graph are in the current estimate of the j-th ensemble), A,, ; is small,
resulting in lower sparsity regularization on neuron n for that ensemble, promoting it to be included.
Alternatively, if this correlation is small, the regularization weight A,, ; is large, and neuron n will be
more likely not to be included in ensemble j.

Latent state and dynamics coefficient update: The ensemble activities  and coefficients c are
updated iterative for each time-point ¢ via the LASSO optimization

K
Ty — (Z fkck,(t—1)> Ti-1
k=1

where \. € R is sparsity-regularization weights on the basis interactions’ activations.

2

+ Aclleellr 2
2

Ty, €, = arg min ||y, — azy[|3 +
t,Ct

Dynamical system update: The global ensembles interactions, { f }kK:1 are assumed to be sparse
(i.e. ensembles interactions are not all to all) and are identified directly by:

P = axgmin 2t — Fea) [ AN 43, Y plfuf) )
k1,ka,(k1#k2)

where FA' ¢ RP*PK ig an horizontal concatenation of all fs, and x+ € R? X Laewarrd is the

. . d . .
horizontal concatenation of all {{z{,,}/"; }acbach, Where “batch” means that this operation is
in practice taken on a random subset of sessions for computational complexity considerations.

Above, ca?h ¢ REPX! = [(ef @ [1]1xp) o (1]1xx ® £)T]T, such that cx € REP*Xacwuen T

is the horizontal concatenation of all {{(cw)f}?zl}debmh. The operator vec(-) flattens a matrix
to a vector and \r is ¢; sparsity-promoting weight on F@ll. p(.) represents correlation, such that
Dok ko p(fxy, fr,) is a de-correlation term with weight A, used to ensure that distinct fs are not too
similar. See Algorithm|[I]for a method summary and Section [E]for complexity analysis.

4 EXPERIMENTS

CREIMBO recovers Ground Truth Components in Synthetic Data: We first assess CREIMBO’s
ability to recover ground-truth components from synthetic data. We generated K = 3 sub-circuits
represented by a set of 3 rotational matrices (Fig. [5B). These sub-circuits capture interactions
among p = 3 ensembles from J = 3 regions (p; = 1 forall j = 1,...,J). Each region consists
of a random number of neurons drawn from a uniform distribution between 4 to 9. We finally
generated the data by simulating 5 sessions with different neuron identities and varying numbers of
neurons per region(Fig. 5]A and D). CREIMBO was able to recover the ground truth components
with high accuracy, as measured by correlation with the ground truth, across 312 random noisy
initialization repeats with random parameters from a range described in|l} Accurate recover included
all parameters: the reconstructed observations y (Fig.[2A), ensemble composition A (Fig.[2B) and
activity a (Fig.[2IC), sub-circuits F* (Fig.[2D), and coefficients ¢ (Fig.[2E). Comparing CREIMBO’s
results to components identified under diverse ablations (details in D)), we found that approaches that
either separate the ensembles and dynamics identifications steps, analyze each session separately, or do
not consider the localized structure of the ensembles, fail to recover the ground-truth components, i.e.,
the resulting fit model parameters are less correlated with the ground-truth observations (Fig. 2F-J, [7).
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Figure 2: A-E: Testing CREIMBO over 312 repeats with varying random initializations and random
seeds (Sec.[B) reveals high correlations between ground truth and fit components for all unknowns,
Y, A, , F, c (subplots A-E respectively). F-G:Ablation Experiment: Comparison of the
ensemble trajectory (x?, subplot F) and the ensemble compositions (A, subplot G) for the 1-st
session as identified by CREIMBO vs. various ablations (details in Sec. [D} see Figure[7] for more
sessions). H-J: Comparing CREIMBO to ablation variants in terms of — log(MSE) between the
ground truth and identified latent dynamics, ensemble composition, and sub-circuits entries. K:
Baseline Comparisons: the latent dynamics identified by the baselines (SDLS, rSLDS
2016), multi-population rSLDS (Glaser et al.l 2020), details in Sec.|[D) for the first two sessions
(merged sessions baselines provide a single trajectory). L-O: Comparison of the latent dynamics and
identified ensemble matrices compared to the ground truth across the baselines.

We further evaluated CREIMBO’s ability to recover hidden components compared to other methods,
(Fig. ] K-O, Fig[8] baselines details in Sec. [D). While the latter shows improved performance,
CREIMBO more accurately recovers the ground truth hidden dynamics and ensembles. Importantly,
these models are not designed to identify multiple co-occurring processes or sparse ensembles, in
contrast to CREIMBO, and they are not suitable for multi-sessions with varying neural identities,
which limits the comparison from the outset.

Next, we tested CREIMBO on a richer synthetic example with D = 15 sessions. Each session
had a varying number of neurons (a random integer between 14 and 19 per region from a uniform
distribution) and distinct sub-circuit coefficients (see Fig. [T1] for the generated ground truth
components and ] for regional distributions and masking). The sub-circuits were set as rotational
matrices, similar to the previous experiment. Over 204 random initializations with different
parameters (see Sec. [B) we again found that CREIMBO robustly identifies the ground truth latent
dynamics, ensemble compositions, and sub-circuits. Moreover, CREIMBO accurately reconstructed
the observations with high correlation to the ground truth across all initializations (Fig.[TTE) with low
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Figure 3: CREIMBO identifies cross-regional neural sub-circuits underlying multi-session human
brain recordings. A: Two exemplary observations (Y, right) compared to their reconstruction by

CREIMBO (?, left). B: Reconstruction performance in terms of R? and relative error across all
sessions. C: The sub-circuit coefficients for 3 exemplary subjects. D: The standard deviation (std)
of the coefficients over time across the two exemplary sessions. E: Exemplary identified sparse
ensemble matrices ({A%}2_,) for the observations from A. F: Relative std of the coefficients across
four subjects reveals usage of similar sub-circuits. G: The identified ensembles’ activity (X ¢) for the
two exemplary sessions. H: The identified sub-circuits. Width indicates effect magnitude. Each circle
corresponds to an ensemble with its color indicating the ensemble’s area. Black arrows near fg and
f11 highlight within-region interactions. I: Pairwise correlations between within-session sub-circuit
coefficients (left, middle) and average within-session correlations across all sessions. STD marked by
“+” marker size. J: Mean and STD of connections fs. K: Number of non-zero connections per fy.

relative error (Fig.[TTF). We further tested CREIMBO on more advanced data that included D = 40
sessions with a maximum of 4 regions and p; = 3 ensembles per region (Fig. @) We found that
CREIMBO manages to recover the components with high correlation with the ground-truth (Fig[T3).

CREIMBO Discovers Multi-Regional Dynamics in Electrophysiology Data: We then
tested CREIMBO on human neural recordings from a high-density electrode array provided by
(2024). The data consists of neural activity from overall p = 10 brain areas with limited
cross-session regional overlap (Fig. [T4] [I3), recorded while subjects performed a screening task
(details in [Kyzar et al.|(2024)). The data encompasses 21 subjects across D = 41 non-simultaneous
sessions. For each subject (except Subject 19), the data offers 1) a “Screening” session, and 2) a
“Sternberg test” session (details in Kyzar et al.| (2024)). We first converted the spike-sorted units
to firing rate matrices by convolving the spike trains with a 30ms Gaussian kernel (Fig. [T0), and
then tested CREIMBO on all sessions together with a maximum of K = 12 sub-circuits and as
most p; = 7 ensembles per region (full parameter list in Tab. E[) First we note that CREIMBO can
accurately reconstruct the data with high accuracy across all sessions (Fig.[3]A, B). Interestingly, the
ensemble compositions identified by CREIMBO (Fig. [BE) present sparse patterns with one dense
ensemble for most regions that we hypothesize capture the “background” mean field activity of that
region (right-most column of diagonal blocks in Fig. BE). The sparse ensembles we hypothesize
capture the more specialized, nuanced functionality. The ensembles activity (X ¢, Fig.[3G) reveal
some constantly-active ensembles, implying these neuron groups are important for neural processing.

The universal sub-circuits ({ fk}szl) exhibit distinct localized motifs (Fig. ), i.e., most sub-
circuits present clear trends of either sourcing or targeting the same area. This is in contrast to other
approaches (Sec. [D), that yield overlapping uninterpretable sub-circuits (Fig.[22) that emphasize
only limited circuitry (Fig.[24). Interestingly, sub-circuits 10, 12 ended up almost empty (mainly
zero-ish values, Fig. [3H, [T9). This highlights CREIMBO’s ability to automatically nullify redundant
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sub-circuits—i.e., a form of model selection—via the sparsity regularization. The number of active
connections and average connection strength (Fig. [I0J, K) show modest variability between sub-
circuits, highlighting the model’s ability to identify distinct sub-circuits with varying interaction
resolutions, including those of varying strengths rather than being limited to just k-sparse sub-circuits.
From a neuroscience perspective, this suggests that underlying neural sub-circuits can vary in density
and the number of participating areas and ensembles. Interestingly, most identified interactions
occur between distinct areas (i.e., inter-regional interactions) with either multiple ensembles from
the same area affecting together ensembles from a different area (e.g., f3), or multiple ensembles
from diverse areas converging to the same target area (e.g., f5). However, these source or target
groups of ensembles vary across sub-circuits, hence the full repertoire of activity cannot be captured
by a single one, highlighting the importance of CREIMBO’s capacity to disentangle the combined
activity of multiple circuits. We also observe, but to a lesser degree, within-area interactions (e.g.,
black arrows in fg, f11). These dynamics emphasize that within-area amplification or regulation
do exist in addition to global cross-region computations. When exploring the activation patterns of
these identified sub-circuits (Fig. 3D, Fig.[20), CREIMBO reveals cross-subject and cross-session
variability. Notably, some sub-circuits are consistently used with high variability over time (e.g.,
fs light-green), while others, such as fi, are not utilized at all in any exemplary session (Fig. BC,
F, e.g., fi2). Moreover, when exploring sub-circuits with high activity variability across sessions
(Fig.BD,F), we observe that some are used within-subjects but across both tasks (e.g., f2 in subject
14, Fig. @D), while others are shared across both subjects and tasks (e.g., f11, used by subjects 10
and 14 in both task phases). The analysis of within-session pairwise correlations between sub-circuit
coefficients (Fig.[TO[) reveals low correlations (<0.1) for most pairs. This indicates that the activities
of distinct sub-circuits differ and reflect different cognitive processes.

Using these real-world recordings, we further tested CREIMBQ’s robustness to increasing noise
levels (now with K = 8 sub-circuits, p; = 6 max ensembles per area) by adding random Gaussian
noise pre-training and then training CREIMBO on the noisy data (Fig[23). While CREIMBO remains
robust under increasing noise (% ~ 0.2, depending on the parameter of interest), it experiences a
phase transition at a specific noise level (Fig[23] A,B, E, EH,]), aligning with the dictionary-learning
literature (Studer & Baraniuk, 2012). In this noise experiment, CREIMBO further identifies that
within-area ensemble composition correlations (Fig 23|C,D) remain stable until a noise level of around
Onoise ~ 10, after which these correlations weaken as noise increases, which may imply that high
noise in data can obscure meaningful relationships between ensembles. Additionally, it identified that
the dynamics’ coefficients remain robust until o5 =~ 1.8, while exhibiting an increasing internal
frequency as the noise increases, potentially to account for noise that does not follow dynamical rules
(Fig.23G, [25). This suggests that frequency of fast transitions in CREIMBO’s ¢y, ; could indicate
noise in the system that does not adhere to the underlying dynamics.

CREIMBO Discovers Regional Interactions Predictive of Task Variables: We tested CREIMBO’s
ability to infer task-related variables from mice whole-brain Neuropixels multi-session data during a
memory-guided movement (data from|Chen et al.| (2024), Fig. . CREIMBO identifies intra-
and inter-area brain interactions via the sub-circuits (Sec. [F} Fi%D), including cross-regional
flows into or from key areas responsible for memory (from f5 and to fs the hippocampus), planning
(from frontal cortex, e.g. f3), and movement (from primary motor cortex, f,), which are needed for
the task. Within-area sub-circuits (Fig.29D) further showed within-area ensemble interactions (e.g.,
the basal ganglia in f; and the secondary motor cortex in f5, f7, along with self-activation/inhibition
of ensembles in other sub-circuits (e.g. f;). Moreover, CREIMBO’s dynamic coefficients (cy;)
captured task-related patterns across trials and sessions (Fig. @A,B). When training a regularized
logistic-regression model, we found that we could predict from CREIMBO'’s circuits activations (cj)
various task variables including outcome, early lick, and lick side far above chance levels (Fig. EP-J s
p-values < 1 x 10719). Furthermore, CREIMBO’s sub-circuit activations across different task periods
highlight how specific multi-regional interactions capture different aspects of the task. For instance,
towards the trial end (t3 window), which includes the lick movement, ¢; shows increased importance
(Fig. dE). Notably, ¢7 corresponds to the activity of the f7 sub-circuit that captures flows to the
secondary motor cortex (Fig. @p). Another example is cg (activity of sub-circuit fg that includes
flows into hippocampus 29C), which shows increased feature importance in the first time window .
This aligns with the potential involvement of memory-related processes required with the stimulus
appearance. Thus CREIMBO demonstrates the ability to capture interpretable neural dynamics and
predict task variables that reveal complex regional interactions. (see Sec. [F]for more detailed results).
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Figure 4: Results of task-variable prediction using CREIMBO’s dynamic coefficients as input.
Prediction was done based on coefficients from all used trials and sessions (19 sessions, 40-60 trials
each, see Sec.@. A: Dynamic coefficients from example traces, shade marks within trial, bordered
by starting and ending point. B: Dynamic coefficients for correct (“hit”) vs. wrong (“miss”) trials. C:
Accuracy score of predicting task variables based on coefficients vs. chance. D, F,G,H,I: Confusion
matrices of predicting varying task variables based on dynamic coefficients. E: importance of the
different coefficients and time points for prediction.

5 DISCUSSION, LIMITATIONS, AND FUTURE WORK

Here, we introduced CREIMBO—a novel approach for uncovering multi-regional dynamics in neural
data collected across multiple sessions. CREIMBO addresses the challenge of integrating non-
simultaneous neural recordings by joint dynamical inference and sparsity regularization to capture
the underlying neural sub-circuits governing brain activity. We further demonstrated the efficacy of
CREIMBO through multiple synthetic and neural data, and found that CREIMBO recovered ground
truth components and is robust to noise in identifying cross-regional motifs that span cross-session
interactions. CREIMBO offers several advantages over existing methods. Chiefly, it identifies a
cross-session shared latent space where non-stationary ensemble interactions are governed by a
time-varying decomposition of universal basis dynamics. By structuring these dynamics in terms of
global sub-circuits, CREIMBO allows the discovery of sub-circuits meaningful for various cognitive
processes, enabling the identification of variability in neural activity across subjects and sessions.

Limitations & Future Directions: An important feature of CREIMBO is its ability to unify sessions
with different neuron subsets through the universal dictionary of dynamical interactions prior that
aligns ensembles in terms of functionality. This can enable the inference of their activity even if they
are not observed in some sessions. This ability, however, depends on the overlap between the used
basis interactions across sessions, the distinctiveness of different fis, and the premise that the basis
interactions capturing interactions with ensembles missing from a session include dynamic values
for ensembles observed in that same session (Sec. D). Another limitation is CREIMBO’s reliance
on linear projections from ensemble to session observation space, restricting flexibility. Extending
to non-linear projections offers potential for development, though it introduces computational and
interpretability challenges. Finally, CREIMBO uses dictionary learning, which is computationally
demanding, and future iterations will include parallel processing. Extending CREIMBO to additional
data types and applications, including non-neural data (e.g., immune-cell counts), or for identifying
pathological states is an exciting future direction.
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and session. B: Ensemble masks (A . ) across sessions. C: Ground truth sub-circuits.

Algorithm 1 CREIMBO training

1: Input: b, K7 Oh, 517 /827 ﬁ37 )‘wa )‘Cv )‘f7 )\p7 )\ObSa Batch Size
2: Imitialize: {f;}5_,, {ca} 2, {za}2_,
3: Pre-calculate: {h;}7_,
4: repeat
5: for each session d in a random batch of D do
Update ensembles
Update hidden dynamics and coefficients
Select a random batch of sessions from D
Update networks { fx }
10: if stuck in local minimum then
11: Perturb {fk, Cd}

12: until convergence

Bl A
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Figure 10: Rate estimation example for a specific session using a 30 ms Gaussian kernel.

A NOTATIONS

Symbol | Description
D Number of sessions (encompassing both same and different subjects)
My Number of trials for each session d
Y4? Neural recordings firing rate estimation for trial m and session d
N¢ Number of neurons observed in trial m of session d
T Number of time points observed in trial m of session d
{Y,2},, 4 | Overall set of observations
Al The neuronal composition of each sparse ensemble in trial m and session d
Abpjock Block of A representing neural dynamics in a specific brain area
n; Total neurons in area j
Dj Maximum number of ensembles discernible within area j
P Total number of ensembles across all areas
J Total number of distinct brain areas
n Total neurons involved across all trials or sessions
Ty State vector at time ¢
F} Transition matrix at time ¢, representing ensemble interactions
K Number of global interacting units
CLt Influence of the k-th global interaction at time ¢
T Basic linear system representing the k-th global interaction
7=T4 | Duration of the trial or session

B PARAMETERS RANGE FOR SYNTHETIC DATA EXPERIMENT

The full set of parameters for the synthetic experiments are available in Table [T}

C PARAMETERS FOR HUMAN MULTI-REGIONAL EXPERIMENT

The full set of parameters for the human data experiment are available in Table[2]

D INFORMATION ABOUT THE BASELINES:

We distinguish between two types of baselines: (1) ablation experiments and (2) comparison to the
performance of entirely different methods. It is important to note that the latter cannot fully capture
the unique capabilities of CREIMBO, particularly in identifying basis ensemble interactions shared
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Figure 11: Data and results for the second synthetic experiment (overall D = 15 sessions, J = 3
regions and p; = 1 ensembles for each region j = 1....J). A: Ground truth synthetic observations.
B: Ground truth latent dynamics ({ X ¢} 2=!%). C: Ground truth ensemble compositions ({ A4} 2=15).
D: Ground truth sub-circuits coefficients (c) vary between sessions. E: Correlation between ground
truth and identified components for A (left), x (middle left), F (middle right), Y (right). F: ¢5 distance
between the components learned by CREIMBO and the ground-truth components for A (left), x
(middle left), F (middle right), Y (right).

across sessions through sparse decomposition. Therefore, we only compare certain aspects that can
be extracted from other methods (e.g., multi-regional SLDS, which requires the same number of
neurons per session). However, these comparisons do not imply that other models outperform or
underperform CREIMBO; they simply offer different insights, with varying strengths and limitations
depending on the application.

Importantly, since the sub-circuits { f } is invariant to its ordering, we used SciPy’s implementation
of the ‘linear_sum_assignment* problem (2016) to re-order the identified sub-circuits before
comparing them with the ground truth, matching the fs values by minimizing the /2 error. Ablation
Experiments:

1. “Without Dynamic Prior”: Running CREIMBO while removing the prior over the dy-
namics from the inference. Instead, inferring the temporal traces of the ensembles using

18



Under review as a conference paper at ICLR 2025

1004 l
-+t
. i
> —a
(o)
© —
T 0 1.00
- f
t ¢ o ¢ 0.75
i T St & H 050
[e) ! ¢ H
- § H i 5 & o
oo e o e v WAL R B L o L ves ] 0.00
6 6 6 6 6 6 6 6 6
D D, D3 Dy Ds De Dy Dg Dy Dio

Neuron #
_—

a [ a [ a [ a [ a [ a [ a C a C a C a C
Area Area Area Area Area Area Area Area Area Area

Figure 12: Multi-ensemble synthetic data. Top: Distribution of areas across sessions. Middle: Ground
truth sub-circuits. Bottom: Masks for ensembles identification.

regularized least-squares with the addition of smoothness, de-correlation, and Frobenius
norm regularization terms on the dynamics.

2. “All Regions (sparse)”: Running CREIMBO without applying the multi-regional diagonal
mask over the ensemble compositions (A), thus supporting the finding of non-localized
ensembles.

3. “All Regions (non-sparse)”: Similar to the previous one but without applying sparsity on
the ensemble matrix.

4. “PCA All Regions”: Running CREIMBO while replacing the dimensionality reduction step
with PCA.

5. “Single Session #”: Running CREIMBO on a single session (view) of the data rather than
leveraging cross-session information.

Other methods:

1. “SLDS”: We used the SSM Python package described by Linderman et al. at
derman et al.| (2020). For the (non-recurrent) SLDS option, we used the “gaus-
sian_orthog** emission parameter, the “bbvi” as the fitting method, “variational_posterior”
was set to “mf”, and the number of iterations (“num_iters”) was set to 500.
The rest of the fitting parameters were left as default. We were inspired by
this notebook https://github.com/lindermanlab/ssm/blob/master/
notebooks/3-Switching-Linear-Dynamical-System.ipynb| by
for our comparison. This includes:

1) “SLDS (trials)” which captures the training of SLDS with “bbvi” fitting method from
across all trials (by stacking trials information vertically),
2) “SLDS (per-trial)” which refers to training SLDS individually per-trial.

2. “rSLDS”: Similarly to SLDS, for the recurrent version (rSLDS, (Linderman et al.} 2016)), we
used the same SSM package provided by [Linderman et al.| (2020). Here, we used the recur-
rent option for the transitions (i.e., the “transitions” parameter was set to“recurrent_only”),
using “diagonal_gaussian” dynamics and “gaussian_orthog” emissions. This includes:
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Figure 13: Multi-ensemble synthetic data results. Top: Recovering the observations Y (five exemplary
sessions). Middle: Identified Ensembles (five exemplary sessions). Bottom: Identified latent dynamics
(five exemplary sessions).

3) “rSLDS (trials)” which captures training rSLDS with the “bbvi” fitting method from
across all trials (by stacking trials information vertically),
4) “rSLDS (per-trial)” which refers to training rSLDS individually per-trial.

. “mp_rSLDS”: Multi-Regional rSLDS, as described in |Glaser et al| (2020).
To run our comparison, we were inspired by the colab-notebook for this
“mp_rslds” method, provided by the SSM Python Package |[Linderman et al.| (2020)
(at https://colab.research.google.com/github/lindermanlab/ssm/
blob/master/notebooks/Multi-Population-rSLDS. ipynb). This in-
cludes:

5) “mp_rSLDS-Gauss (trials)” which captures training “mp_rSLDS” from across all trials
(by stacking trials information vertically) under Gaussian statistics.

6) “mp_rSLDS-Gauss (per-trial)” which refers to training “mp_rSLDS” individually per-
trial under Gaussian statistics.

7) “mp_rSLDS-Poisson (trials)” which captures training “mp_rSLDS” with the “bbvi”
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fitting method from across all trials (by stacking trials information vertically) under Poisson
statistics.

8) “mp_rSLDS-Poisson (per trial)” which refers to training “mp_rSLDS” individually
per-trial under Poisson statistics.
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Figure 17: Five Exemplary Ensemble Matrices of the Real World Data, as Identified by CREIMBO

ASSUMPTIONS

The CREIMBO model is based on a core set of assumptions over the nature of the data. These
assumptions draw on both known properties of neural processes and general well-known statistical
models used widely in data science. We categorize these assumptions into two types:

1. Priors over the underlying neural processes.

2. Priors over Observational Constraints in order for CREIMBO to properly infer the underlying
system by leveraging multi-session information.

D.1 PRIORS OVER THE UNDERLYING NEURAL PROCESSES

1. The neural dynamics in each session d are assumed to lie on a low-dimensional manifold,
embedded in a P << N? low-dimensional space that is defined by P functional groups of
neurons (referred to as “ensembles”).

2. We assume that these functional ensembles consist of neurons with co-activation patterns,
where neurons can belong to more than one, but only a few (a sparse number) of ensembles,
with varying degrees of membership.

3. We further propose that the interactions between these ensembles drive the evolution of the
latent manifold over time and are key to encoding changes in conditions and behavior.

4. For CREIMBO to be effective, we assume these interactions arise from the joint synchronous
activity of multiple co-occurring processes, captured by a limited-size set of “basis-ensemble-
interactions”. The time-varying, sparse decomposition of these basis-ensemble-interactions,
weighted by their time-local contributions in every time point, can adequately describe the
manifold’s evolution over time.
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Figure 18: Observations vs. CREIMBO'’s reconstructions for the real-world human data experiment.

5. We assume that different dynamics basis elements capture distinct processes or behaviors.
Some processes are required to be globally related to the cognitive task, while others capture
session- or subject-specific processes (see Sec.|[D.2)).
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Figure 19: The sub-circuits underlying human data as identified by CREIMBO. A: The identified 12

6 6 19) pifi )

sub-circuits. B: Pairwise correlations between the identified sub-circuits.

Table 1: Parameter values for synthetic experiments

Parameter Value (range) | Explanation

same_cC False Indicates if to use shared sub-circuits coefficients
across sessions.

step_f 0.1-0.5 Gradient descent step size for updating f

GD_decay 0.99 - 0.999 Decay over iterations of gradient-descent step size.

max_error le-09 The error threshold to stop training the model.

max_iter 500 Threshold on the maximum number of iterations.

include_D True Indicates the inclusion of a projection to a latent
space.

step_D 1075 —10~% | Range of Gradient Descent Step size for A.

seed 0 - 4000 Random seed to choose from

normalize_eig True , False Indicates if to normalize the sub-circuits by

start_sparse_c False , True Whether to initialize c to be sparse.

sparse_f True Whether to apply sparsity on the sub-circuits

num_gradient_steps 1-3 Number of gradient steps in an iteration.

add_avg True , False Whether to add a moving average to an iteration.

sparsity_on_f_max 40-60 Percentile of sparsity applied on each f

take_multiple_gd False, True Indicates if to take multiple steps of gradient
descent.

D_graph_driven True Indicates that D is inferred with graph-driven way.

infer_x_c_together False , True Indicates if the inference of 2 and ¢ occurred
simultaneously.

include_mask True Indicates the inclusion of a mask on A

norm_D_cols True Indicates the normalization of columns of A

lambda_D 0.1-03 Regularization weight on updating A

step_D_decay 0.99-0.9999 | Decay rate for updating A parameters

num_regions 3 Number of brain regions.

lambda_x 0-0.1 Sparsity term on the latent dynamics.

latent_dim 3 Latent dimension.

noise_level 0.2-0.6 Standard deviation of noise added to the data.

num_subdyns 3 Number of sub-circuits.

lasso_solver “spgll’ Pylops solver used for ¢; regularization.

6. Each of these ensemble interactions may capture between-area interactions, within-area
interactions, or both.

D.2 PRIORS OVER OBSERVATIONAL CONSTRAINTS

To effectively learn a unified representation by leveraging information across sessions, we make the
following assumptions on the statistics of the data.
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Figure 20: Sub-circuits Coefficients separated by task type (“Screening” vs “Sternberg”) and subject.

1. Our ability to infer the underlying latent state (see Fig.[IB) is contingent upon the overall
observability of the dynamical system. In traditional linear systems, the observability matrix
can guarantee that any state is visible in a finite time horizon output. Non-stationary systems,
as in CREIMBO, do not have succinct guarantees, the closest of which come in the form of
observability conditions on switched linear systems (Tanwani et al.,[2012).
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Figure 22: Correlations between the brain sub-circuits identified by CREIMBO compared to the
other methods. These results highlight the CREIMBO discovers more distinct sub-circuits than these
idetified by the other methods.

As the heart of the observability condition is that the dynamics “well mixes” the state such
that any state element in the null space of the readout matrix will eventually be rotated into
the its span, and thus visible. We thus assume that the spectral radius of each dynamical
system (a measure of mixing in linear systems (Simchowitz et al,, [2018))) in the basis
is close to one. This assumption is loose, due to the lack of theoretical guarantees on
general nonstationary systems, and further analysis should identify tighter, and less stringent,
assumptions.

. Another prior we want to consider is which fs capture ensembles unobserved in certain

sessions, allowing us to assert that CREIMBO can recover the activity of these unobserved
ensembles during those sessions. To achieve this, we must ensure that in the sessions where
these ensembles are unobserved, at least some f's representing them also capture the activity
of observed ensembles. For example, if certain missing ensembles are represented solely
by fs that do not capture any observed ensembles, we will not be able to infer the activity
of these unobserved ensembles in the sessions where they are absent, because there are no
observed ensembles linked through the dynamic prior.

3. To ensure uniqueness of the sparse decomposition of the dynamical systems model at

each session and time point, we assume that the effective spark of the dynamics basis
is large (S* > 2S). Essentially, there is no fj that can be linearly composed of 25*
other dynamical systems. This ensures that there cannot exist two (or more) equivalent
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Figure 23: CREIMBO’s Robustness to Increasing Random Normal Noise Levels. A & B: Cor-
relations of identified ensemble compositions (A% under increasing noise, for individual sessions
(A) and all sessions combined (B). Robustness decreases only when % = % C & D: Correlations
of ensemble compositions (from data concatenated across all conditions) displayed in a heatmap,
with areas represented by rows of blocks (vertical) and noise levels by columns (horizontal). Block
(i,7) captures the correlation of ensembles from area ¢ at the j-th noise level. A sharp drop in
within-area correlations (D) occurs at oppje = 1 (200 ~ 2) E & F: Correlations of ensembles’

O data
trajectories ({md}gzl) for each condition (E) or combined (mean/median) (F) show robustness until
% = 0.27. G: Time-varying interaction coefficients for the 1st condition “(sub. 10, Screening)”
under increasing noise reveal similar but more frequent changes, with a sharp frequency change at
Onoise = D (‘;7 = 0.33). H & I: Correlations between corresponding {c;@}kK:1 “(sub. 10, Screening)”

over increasing noise (H), and compared to the coefficients identified from the original data (H).

P(Croisy. Cclean)

decompositions Zszl Sfrcre and Zszl frci, for distinct coefficients that both compose
the same dynamical matrix.

4. Lastly, to ensure accurate cross-session alignment, we propose that each dynamical system
projects uniquely onto the obseverved subset of ensembles in each session. This assumption
prevents two dynamical systems (e.g., “ensemble 1 — ensemble 2 — ensemble 3” and
“ensemble 1 — ensemble 4 — ensemble 3”) from being indistinguishable from the data
available in that session (e.g., a session with only ensembles 1 and 3 recorded).

E COMPUTATIONAL COMPLEXITY

CREIMBO'’s learning process involves learning both the ensemble compositions per session
({A?}D_)), the ensembles’ temporal activity ({z{}%_,), and its underlying temporal evolution,
which requires identifying the global (session-invariant) dynamic operators ({ f; }3’:1) and their

per-session temporal coefficients ({c; } X ;).
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Table 2: Parameter values for real-world human experiment

Parameter Value Explanation

same_c False Indicates if sub-circuit coefficients are shared
across sessions.

step_f 0.2 Step size for gradient descent in updating f.

GD_decay 0.992 Gradient descent step-size decay rate over
iterations.

max_error 1x 1077 Maximum allowable error.

max_iter 100 Maximum number of iterations.

seed 0 Random seed.

normalize_eig True Normalize eigenvalues.

start_sparse_c False Start with sparse c.

include_D True Whether to include A.

step_D 0.0001 Step size for updating A.

num_gradient_steps | 4 Number of gradient steps.

add_avg True Add average.

sparsity_on_f_max 45 Maximum sparsity on f.

take_multiple_gd False Take multiple gradient descents.

D_graph_driven True Graph-driven A.

infer_x_c_together False Infer = and c together.

include_mask True Include mask.

norm_D cols False Normalize columns of A.

lambda_D 0.3 Regularization parameter for A.

step_D_decay 0.9999 Decay rate for step size of A.

11._D 2.74 {1 regularization for A.

E.1 COMPLEXITY OF ENSEMBLE-MATRIX UPDATE

The loading matrix update relies on 4 main computational steps:

1) Channel Graph Construction: This operation, performed once for all N channels of every state
d = 1...D, generates a channel graph H? € RY*¥ for each state d € [1, D] by concatenating

within-state trials 1... M horizontally, resulting in a NV X Z?gil T,‘fl matrix. For simplicity, let

T = Zf\fil T<. The computational complexity of calculating the pairwise similarities of this

concatenated matrix for all D states is thus O (DT2N (N — 1))

2) The k-threshold step: involves keeping only the %k largest values in each row while setting

the other values to zero—the complexity will be O Tlog k) per row for a total computational
complexity of O (DN T log k) for N rows and D states.

3) State Graph Construction: This is a one-time operation that involves calculating the pairwise
similarities between each pair of states. For simplicity, if we assume the case of user-defined scalar
labels, and as in this case there are D states (and accordingly D labels), the computation includes
D(D — 1))/2 pairwise distances for O (D?).

4) Ensemble Inference (Eq. equation[I): This iterative step involves per-channel re-weighted ¢;
optimization. If the computational complexity of a weighted ¢; is denoted as C, then the computational
complexity of the re-Weighted ¢; Graph Filtering is N LC+ LNk, where N is the number of channels,
L is the number of iterations for the RWLF procedure, and k is the number of nearest neighbors
in the graph. For the last term in Eq. equation [1} there are p?> multiplicative operations involving
the vector v and the difference in ensembles, arising from the £2 norm. Additionally, there is an
additional multiplication step involving P, . For each state d, this calculation repeats itself D — 1
times (for all d’ # d). This process is carried out for every d = 1... D. In total, these multiplicative
operations sum up to (p® + 1) D(D — 1), resulting in a computational complexity of O (D?p?).
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E.2 COMPLEXITY OF INFERRING THE ENSEMBLES ACTIVITY AND INTERACTIONS
COEFFICIENTS (EQ. EQUATIONIZD

The inference of cgl for each ¢t = 1...7 amd each condition d = 1...D, involves: Ef =

arg mine, o, |y — az||% + ||a/c;_/1d — FX4%cd|% + Ae|let]|ls where FX € RP*E is the hor-
izontal concatenation of { frz: }5_,.

This simplifies to a Lasso problem of the form
1 2
min o [l¢ = MO|* st [l6] <,

with dimensions £ : (N +p) x 1, M : (N +p) x (p+ K),and 6 : (p + K) x 1, where

€= Yt ER(N+p)X1, 0 — Tt GR(p—O—K)xl’
0 Ct

px1

and

_|A Onxx (N+p) % (p+K)
M[Ip FX}ER P)XApTR)

This can be solved with SPGL1 with up to num_iters iterations, resulting in a computational com-
plexity of

O(num_iters - (N + p)(p + K)).

per session and time point and overall (across all sessions and time points):

O(num_iters - (N 4+ p)(p + K) > T%).

L

E.3 COMPLEXITY OF INFERRING THE DYNAMICS’ DICTIONARY
The inference of the basis-interactions dictionary { f; }5_, (via Eq. equation involves solving

ﬁa” = argrlrwlin ||£B+ - Fall(CX)”%’
all

where 2T € RP*Zaecward and cx € REP*Zaewa T, For simplicity, assuming that A\, = 0,
The problem simplifies to a LASSO formulation, which is solved using SPGL1 for F!!, with an
overall computational complexity per iteration of O(num_iter - Kp?7), where num_iter represents
the number of iterations required for convergence.

F APPLICATION TO MULTI-REGIONAL CROSS-SESSION MICE NEURAL
ACTIVITY

We further tested CREIMBO’s ability to infer meaningful task variables underlying whole-brain
multi-session data from mice |Chen et al.|(2023;|2024) while performing a memory-guided movement
task. The measurements were obtained using multi-electrode extracellular electrophysiology, with
the overall dataset stored in DANDI Archive under the NWB format|Chen et al.| (2023)).

Particularly, the data include electrophysiology recordings of neural activity from multiple brain areas
per session (Figs. @ @ across overall 175 sessions, with numerous trials in each. The task the
mice performed during the recordings involved selecting one of two “lick ports” based on auditory
cues, with the left or right port leading to a reward depending on whether they heard a high or low
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Table 3: Parameter table for the CREIMBO on Mice Mesoscale.

Parameter Value

max_error 1e-09

seed 0

normalize Fs True

sparse_f True

sparsity_on_f_max 40

increase_in_sparsity_f 1.4318632048860938
norm_D_cols True

D_graph_params {’with_kNN’: True, with_norm’: True, ’k’: 15}
lambda_D 0.4392235894758376
update_type_D spgll
latent_dyns_initialization | random

D_with_lasso True

11_D 2.7440675196366238
params_D {’update_c_type’: ’spgll’}
num_regions 10

reg_type_on_c spgll

lambda_x 1.0291322176748077
latent_dim 30

num ensembles per region | 30

number of sub-dynamics 10

seed_f 0

sigma_mix_f 0.1

sparse_f_params {’axis’: "1, "percent0’: 20}

tone. Neural activity was recorded across several brain regions in each session, with some regions
overlapping between sessions, though no two sessions had identical coverage (refer to Fig. 1., A-B,
in|Chen et al.| (2024)).

We first loaded data from all sessions and selected areas for CREIMBO that featured the highest
number of sessions including them. We identified the parent area of each sub-area labeled in the
dataset and removed neurons with unlocated or NaN areas. Inspired by our exploratory analysis of
parent-area distributions across sessions and neurons (Fig27B,C), we selected the 10 parent areas
with the highest number of neurons across sessionsﬂ We then selected 20 random sessions. One
of these 20 sessions contained only ‘NaN‘-located neurons, leaving 19 sessions for this analysis

(Fig. 27D f}

We pre-processed the data using a 30 ms Gaussian kernel for firing rate estimation across all the
sessions used (see [F). We then selected only the neurons from the 10 parent areas and limited the
analysis to the first 60 trials. Some sessions exhibited no activity or disconnection in certain trials,
meaning some sessions included fewer than 60 trials (but no fewer than 40).

Next, we ran CREIMBO with 10 sub-circuits (X = 10) and p; = 3 ensembles per area. The full list
of parameters is shown in[3] and an example exploration of a random session is shown in (Fig[28|A-C
show the firing rate, trial start-end times, and distribution of trial durations, respectively).

We identified ensembles per region (exemplary in ) with sub-circuits that capture both between-
area (Fig[29)C) and within-area interactions (Fig ), showing diverse motifs with varying degrees

'Used Parent Areas: Thalamus, Orbital Cortex, Secondary Motor Cortex, Basal Ganglia, Olfactory Cortex,
Brain Stem, Somatosensory Cortex, Frontal Cortex, Hippocampus, Primary Motor Cortex

’Sessions DANDI names: ‘78a58614-09e4-4e29-a492-8bbeaf7a8¢cf6¢, ‘ab103954-d99f-46b1-98ac-
e6f91a1e9313¢, ‘32701cfa-8932-4d9b-9f4d-cc05cb22ae89¢, ‘b080c738-17¢9-4e0d-aee4-6d5371518f69°,
‘886c4302-846a-4ef5-996a-6f02d6a81a5f*, ‘baSb1ff3-753e-425¢c-baf0-e7¢dd0c08093¢, ‘€a856208-4240-404a-
9034-d729ad6f4cda’, ‘ed759efa-dceb-4472-a2a3-4f7357d67665°, ‘8a2ce9b2-2¢98-4¢37-8f2a-3b9¢c8b542086°,
22791d80-26dc-4495-b4c0-651fe10e3298°, ‘a007fac1-96e7-4028-ad84-31a1b80db089°, ‘b39eb52a-0774-411b-
b374-6eb08a73562¢°, ‘8dbc25ee-cc17-4504-a1b9-7d43643b9466°, ‘981feb84-f209-4994-8838-02a0048feb87°,
585dc9d4-be9c-4244-8fa7-e64309019afc, ‘aa74e4d7-a79b-4179-adf3-497fb1237edc’, ‘ebfab58b-7¢80-4f31-
9b4e-2b33883bb14a‘, ‘8c724097-3876-48fc-94e0-832779¢4f1be‘, ‘2e9cb8al-457d-49e¢a-97fd-£7023434d231°
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of cross-circuit correlations (Fig. 29B). Some cross-area interactions reveal effects originating from
specific regions involved in the task. For example, f; demonstrates hippocampal effects, which align
with the task’s memory demands, while, e.g., f3 shows interactions involving the frontal cortex,
including follow-up activations, corresponding to the task’s need for planning and execution. Other
sub-circuits reveal inputs converging on specific areas. For instance, fs shows motor cortex inputs,
relevant for moving the tongue during the lick response, and f> reflects inputs into the secondary
motor cortex, which is involved in coordinating motor actions.

When extracting only within-area interactions, we observe unique motifs as well. For example, f;
shows further internal processing between basal ganglia ensembles, which may reflect the internal
coordination and integration of motor planning and execution signals. f7 and f, show strong effects
of one ensemble on another within the secondary motor cortex, which could represent the modulation
and refinement of motor commands for more precise movements. f5 demonstrates brainstem effects,
with two ensembles influencing two other ensembles, potentially supporting basic motor functions
such as muscle activation and coordination. f; shows multiple self-activations of ensembles, which
may capture self-regulatory processes like feedback inhibition or facilitation that modulate motor
output and prevent over-activation.

We further examined CREIMBO’s dynamics coefficients (c;) and identified task-related patterns with
similar coefficient profiles across trials for the same task variable (Fig[JA for an example session,
and B for hit vs. miss outcomes). Similar differences were observed across other task variables.
To quantify the predictive power of the dynamic coefficients, we used them as input for training a
simple one-vs-rest logistic regression classifier. Each trial was split into four equal-duration time
windows, and the 10 dynamic coefficients were averaged within each window, resulting in 40 features
(4 windows x 10 coefficients). These features were then used to predict task variables, including
outcome (hit/miss/ignore), early lick (whether a lick was early), lick side instructed, and lick side
performed in practice. Additionally, we tested the model to predict 2-3 variables simultaneously,
which was more challenging due to the need to distinguish between multiple options. The resulting
accuracy levels (Fig[d|C, black stars) were significantly higher than chance levels (gray bars). We
further analyzed the confusion matrix for each variable’s prediction and applied the x? test to assess
whether the distribution of predictions significantly deviated from the expected distribution under
chance. We found p-values well below 1 x 10710 (see subtitles of FigiD, F, G, H, 1, J), strongly
supporting CREIMBO’s predictive power.

Furthermore, we assessed the importance of subcircuits’ activations across the four time windows
(Fig[29E), with each block of rows representing one subcircuit and the blocks corresponding to
different time windows. CREIMBO revealed patterns where certain time windows and dynamic
coefficients were pivotal for different task variables. For instance, c; at t3 was critical, while other
coefficients, like cg at ¢3, were specific to encoding the lick side. This specificity aligns with the fact
that this time point likely reflects the final stages of processing during the task, including aspects of
learning. When we examined ¢y (Fig[29[C), we observed multiple inputs into the secondary motor
cortex, related to the execution of the lick towards the trial’s end, highlighting CREIMBO’s ability
to pinpoint region-specific interactions. Additionally, cg showed increased importance in the initial
window ¢, contributing across multiple variables and capturing inputs into the hippocampus—an
area integral to memory processing—underscoring its role in early trial stages. These findings further
validate CREIMBO'’s ability to capture and predict task-related neural dynamics, offering insights
into circuit-level brain activity across time.

G INFERENCE ASSUMING POISSON STATISTICS

CREIMBO, as outlined in the main text, assumes Gaussian-distributed i.i.d noise. This assumption
is reflected in the inference procedure, which minimizes the /5 and Frobenius norms (e.g., equa-
tion[I] equation[2). Particularly, these norms arise from minimizing the negative log-likelihood of

. I . . Y, —[AYX Y, .)? .
Gaussian-distributed observations noise (p(Y,{i’t) = \/2;7 exp (—W) , with some

noise standard-deviation o.

Electrophysiology, however, records trains of action potentials (spikes) that are often modeled as
a Poisson processes. Binned spike counts are thus typically approximated as a Poisson random
variable. However, when firing rates (FRs) are high enough, the Gaussian assumption is an adequate
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approximation, and thus the Gaussian assumption remains common in data-driven neuroscience
models (e.g., [Cinderman et al.| (2016); [Aoi & Pillow| (2018))). However, some species (e.g., bats
(Allen et al.| 2021))) exhibit extremely low FRs, which may require Poisson likelihood functions.
Thus we propose an extension to CREIMBO that with a Poisson likelihood function for ensemble
and traces inference, that can replace the Gaussian model in low spiking-rates scenarios.

Our Poisson extension first involves transforming the spike-timing data to binned spike counts for all
sessions d = 1... D ({Y4}2_)). Next, we consider the same goal of finding the ensembles A% and
their traces (X 7)<, under the assumption that the data follows a Poisson distribution.

To simplify, we focus on a single session d, with y = (Y'¥)T (T for transpose), and note that the
extension below applies to all sessions. In the Poisson model, for each neuron n = 1... N, the
likelihood of a certain spike count at time ¢ given a latent rate \; ,, is:

)é“n” e At,n

P(Yt,nlAen) = Ui
where y; ,,! denotes the factorial of y; ,.

Here we model the unknown rate A € R7*¥ as the low-dimensional representation captured via the

ensembles A? € RV*? and their traces z := (X%)T € RT*P (T for transpose), i.e., A = A4 X4,
such that the likelihood becomes

N T
p(y|§7 A) = H Hp(yt,np\t,n)

n=1t=1

This can be trained by iteratively updating  and A to minimize the negative log of the above
likelihood, which can be represented mathematically as:

N T ], p)ene (@A i)
{m A}fargmm [ (HH (@A e T )]

N T
Z Z [[5AT]t,n —Ytn IOg([‘%AT]t,n)] ()
n=1t=1

where the logarithm is taken using the natural exponential base. Notably, in the above arg min, we
chose to omit the constant term that emerge from taking the logarithm (i.e., log(y: »,!)) as it does not
affect the argument minimization.

||
azE

In this Poisson case, in contrast to the Gaussian, we can no longer solve for « using e.g., least squares
or LASSO; instead, we will update & via Gradient Descent. The first step is to compute the gradient
of the cost function in equationEIwith respect to .

To simplify the calculation, we first notate the two components obtained in equationd] by the auxiliary
terms
0(# A) =Y [FA .
t,n

and
92(y,x, A) = Z —Ytn - IOg([iAT}t,n)-

t,n

The cost function from equation [ thus can be written in terms of these functions as:
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(%, A} = argmin [01(, A) + g2(y, 7, A)]. Q)

Hence, for updating @ via Gradient Descent, we need to find the gradients of g; and go.

We first establish two notations to make subsequent steps clearer:

* let [1] () denote a matrix of ones of size m x k.

* let d(s,p),, , denote a matrix of shape M x P whose entries are all zeros except for the
entry at index (m, p), which is set to 1.

991 (%,A) .
Calculate “. 222

To begin, we can rewrite g1 (Z, A) as

g1(z, A) = Z[fAT]t,n = [anZA"[1(n1)

t,n
and follow the identity (taken from [Petersen et al.| (2008) Eq. 20):
TMmb
% = ab” where a, b vectors, and M matrix. (6)

Building on this, let [1](1 7 correspond to the a” vector from equation (6| AT (1] 1) € RP*?
correspond to the b vector of equat10n|§|, and & correspond to the matrix . Then, the gradient of
g1(x, A) with respect to & is:

o912, A) _ 9 (JonZA v 1)
0% 0z

= ]ry[l]a,mA = [1]r,nA

Calculate %’?’A):
First, we will rewrite the term [z AT]; ,, as:
P
CUAT Z Tt = 6(1,T)17t5AT5(N,1)n,1 (7)
7j=1

5(17T)1,t is a row vector of length 7" with a value of 1 at index ¢ and O elsewhere, and 6<N,1)M is a
column vector of length NV with a value of 1 at index n and O elsewhere.
We will use again the identity from Petersen et al.[(2008) presented in equation [6] and now mark
d(1,1), , With the equation|6fs vector a’, x is again M, and b := AT§ (N.1), . When applying the
1dent1ty in equation [6]to equation [7} we thus obtain
3 [QEA }mn
ox

=0, 00N, ,A=01N), A

Given the above, we receive

0g2(y, @, 4) _ 9 (2001 520 —wn log (147)1.0) )
ox B ox

N T
= ZZ :I)ATtn(s(TN)t”A

n=1t=1

Z Vend(T, Ny, A

t,n

—~ (Z wmé(T,N)t,n) A
t,n

=-vA

®)
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where ), = [51}"]: —,and ¥ € RT*N js a matrix whose entry at index (¢, n) is ¥ ,,.

Going back to the expression in equation the full gradient of the Poisson loss with respect to @ is:

8[91 (%7 A) + 92(’% %7 A)]
ox
and the projected gradient step in & at iteration m thus follows:

" I (@™ — 0™ (LN — ) A)

=[], A—-TYA = ([1]rn) — P)A,

where IT can project the columns of & onto some constraint set, with the identity transform used if no
projection is desired, and 1™ is the gradient descent step size at iteration m.

For inferring A, at each iteration m, we can then use the Spiral-Tap package [Harmany et al.| (2012)
to infer the sparse ensembles.

The above ensemble model (including A and x) is the only part that directly connects to the Poisson-
distributed spike-counts (Y'%), while the latent evolution of « via 2y = Fa,_; is independent of
the Poisson assumption on the spike-counts Y< Particularly, as the transition from x; to ¢4 is

dictated by the ensembles’ dynamic interactions (F}y = Zszl ¢kt fr), which we continue to assume
follows a Gaussian distribution in the latent space, the dynamic inference part of CREIMBO remains
unchanged from the main text.
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Figure 24: Comparison of sub-circuits identified by CREIMBO with those identified by other ap-
proaches using the real-world human neural recordings. CREIMBO reveals distinct motifs capturing
multi-regional flows to specific areas, including both cross-regional and multi-regional interactions.
In contrast, other approaches identify sub-circuits with overlapping flows that fail to capture the full
spectrum of multi-regional interactions.

35



Under review as a conference paper at ICLR 2025

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921

- nmmn e 2 oma o -5 aamm e 0 nmmn

A L A b o
y WW% W MW PR Gl Mt by
AR T Tt i DA I
ﬁMl’ﬁﬂgﬂu T e M‘W‘ in ) i e Mo e

T
Time (s) Time (s) Time (s) Time (s) Time (s) Time () Time (s)

Figure 25: Identified dynamics’ coefficients (cszl) for the human data experiment under increasing
1922 noise levels demonstrate robustness, with a rapid increase in internal pattern frequency at higher
1925 noise levels.
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Figure 26: number of neurons per area across all files
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Figure 27: number of neurons per area as a motivation for area-focusing. A: Overall number of
neurons per sub-area (colored by parent area) across all sessions. B: Distribution of areas with
sub-area name across all sessions. C: Distribution of areas with parent-area name across all sessions.
D: Number of neurons per parent-area (across the 10 selected areas) in the 19 used sessions.
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Figure 28: Example Session (2024). A: Data firing rate over time separated by trials in
vertical lines. the color of the vertical line captures the relevant brain area (example random session).

B: Trials start and end times (in seconds) for examples session. C: Trial duration distribution for
example random session.
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Figure 29: Identified components of the Mesoscale data (Chen et al., [2024) using 19 random
sessions with 40-60 trials within each. A: Identified ensemble matrices for three random sessions. B:
Correlations between circuits. C: Between-areas interactions (extracted from { f } 2, via a block
off-diagonal mask) D: Within-areas interactions (extracted from { f; } /-, via a block diagonal mask)
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