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Abstract
Vision-Language-Action (VLA) models have
shown great potential in general robotic decision-
making tasks via imitation learning. However,
the variable quality of training data often con-
strains the performance of these models. On
the other hand, offline Reinforcement Learning
(RL) excels at learning robust policy models from
mixed-quality data. In this paper, we introduce
Reinforced robot GPT (ReinboT), a novel end-
to-end VLA model that integrates the RL prin-
ciple of maximizing cumulative reward. Rein-
boT achieves a deeper understanding of the data
quality distribution by predicting dense returns
that capture the nuances of manipulation tasks.
The dense return prediction capability enables the
robot to generate more robust decision-making
actions, oriented towards maximizing future ben-
efits. Extensive experiments show that Rein-
boT achieves state-of-the-art performance on the
CALVIN mixed-quality dataset and exhibits su-
perior few-shot learning and out-of-distribution
generalization capabilities in real-world tasks.

1. Introduction
Research on vision-language-action (VLA) models for gen-
eral embodied intelligence in robotics has recently flour-
ished (Brohan et al., 2022; 2023). VLA models are usu-
ally based on the imitation learning paradigm, where a
pre-trained vision-language model is post-trained on down-
stream robotic data (Ding et al., 2024; Zhao et al., 2025b).
While semantic generalization has improved in VLA models
through extensive robotic training data, a critical gap persists
in their manipulation accuracy for downstream tasks (Bro-
han et al., 2023; Black et al.; Li et al., a).
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An important reason that limits the performance of VLA
models is that the quality of training data sources is usu-
ally uneven, even if they come from successful demonstra-
tions (Hejna et al.). Although recent imitation learning meth-
ods can effectively replicate the distribution of demonstra-
tions (Vuong et al., 2023; Brohan et al., 2023; Zhang et al.,
2025), they have difficulty distinguishing between uneven
data quality and making full use of mixed-quality data (Bai
et al., 2025). On the other side, offline Reinforcement Learn-
ing (RL) algorithms aim to leverage previously collected
data without the need for online data collection (Levine
et al., 2020). Despite initial attempts to integrate VLA with
RL (Mark et al., 2024; Zhai et al., 2024; Zhao et al., 2025a;
Guo et al., 2025), the design of widely applicable dense
rewards for visual-language manipulation tasks and the in-
corporation of the RL concept of maximizing benefits into
the VLA model remain underexplored.

To this end, we propose Reinforced robot GPT (ReinboT),
a novel end-to-end VLA model to implement the RL con-
cept of maximizing dense returns. Specifically, we effi-
ciently and automatically decompose the long-horizon ma-
nipulation task trajectory into multiple trajectory segments
containing only a single sub-goal, and design a dense re-
ward that captures the characteristics of the manipulation
task. In fact, complex robot manipulation tasks need to
consider many factors, such as tracking targets, reducing
energy consumption, and maintaining flexible and stable be-
havior. Therefore, the design principle of proposed reward
densification method is based on these considerations and
remains widely applicable to various manipulation tasks.

In terms of ReinboT algorithm design, we consider that
accurate estimation of the value function in RL algorithms
has always been a thorny problem, especially in the Trans-
former architecture (Parisotto et al., 2020; Davis et al.,
2021). Therefore, we utilize cumulative rewards (i.e., Re-
turnToGo (Chen et al., 2021)) as a new modality data to
characterize data quality characteristics based on the con-
structed dense reward. Inspired by previous work (Zhuang
et al., 2024), we model the maximum return sequence over
the joint distribution of language commands, image states
(and proprioception), actions, and ReturnToGo. This is a
supervised paradigm that integrates the RL goal of predict-
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ing the maximum return within the distribution given the
current conditions, and thereby considering the likelihood of
maximizing actions. Specifically, we utilize expectile regres-
sion (Aigner et al., 1976; Sobotka & Kneib, 2012) to make
the predicted return as close as possible to the maximum re-
turn that can be achieved under the current goals and states.
With this ability, ReinboT can predict the maximum return
during inference to guide the execution of better actions.
Overall, the core contributions of this paper include:

• We propose ReinboT, a novel end-to-end VLA model
that integrates RL returns maximization to enhance
robotic manipulation capabilities.

• We introduce a reward densification method that en-
ables ReinboT to gain deep insights into data quality
for more robust learning.

• Extensive experiments demonstrate ReinboT’s state-of-
the-art performance, significantly outperforming base-
lines in both simulated and real-world tasks.

2. Related Work
2.1. Offline RL via Sequence Modeling

After the emergence of Transformer (Vaswani et al., 2017)
as an efficient sequence modeling model, a large number
of works (Chen et al., 2021; Yamagata et al., 2022; Janner
et al., 2021; Zhuang et al., 2024; Shafiullah et al., 2022;
Hu et al., 2024) have explored the application of sequence
models as agent policies to RL decision tasks. The Decision
Transformer (Chen et al., 2021) (DT) trains the context-
conditional policy model on offline datasets through a su-
pervised learning paradigm, conditioned on historical ob-
servations and ReturnToGo, and outputs the actions that the
policy model should perform. Reinformer (Zhuang et al.,
2024) further introduces the concept of maximizing returns
on the basis of DT. During training, Reinformer not only
predicts actions conditioned on the ReturnToGo in offline
data, but also predicts the maximized ReturnToGo that the
policy model may subsequently obtain under observation.
Different from these task-specific studies, our work aims to
implement the RL return maximization concept in a general-
purpose VLA model to enhance the robot’s long-horizon
manipulation capabilities.

2.2. VLA Model Integrating with RL

Recent work has initially combined VLA with RL to study
how to further improve the manipulation accuracy and adapt-
ability of VLA models while still retaining their best ad-
vantages in scale and generalization. In these works, the
source of the reward signal is either a sparse form of whether
the goal is reached (Chebotar et al., 2023; Nakamoto et al.;
Mark et al., 2024), or the number of steps to reach the

goal (Yang et al.), or the distance to the goal is calculated
with the help of LLM models and other pre-trained visual
models (Zhang et al., 2024). However, these reward de-
signs face the credit assignment problem that has not been
fully solved in RL (Sutton, 1984), or are limited by the
hallucination problem of LLM (Zhang et al., 2023).

In terms of combining with RL algorithms, these works
mainly fine-tune existing VLA models that have undergone
imitation learning, including introducing Q-functions to cor-
rect action distribution (Nakamoto et al.), screening out
high-value action fine-tuning policies (Mark et al., 2024;
Zhang et al., 2024), and fine-tuning according to human pref-
erences (Chen et al., 2025). Moreover, a recent work (Cheb-
otar et al., 2023) utilizes auto-regressive Q-functions to learn
visual language manipulation, but the sequence length and
inference time of their models increase significantly with the
increase of action dimensions. Different from these studies,
we aim to propose a new end-to-end reinforced VLA model
based on dense rewards that capture the characteristics of
manipulation tasks.

3. Preliminaries
3.1. Imitation Learning of VLA Model

As a typical VLA model for imitation learning, GR-1 (Wu
et al.) demonstrates that visual robot manipulation can
significantly benefit from large-scale video generation pre-
training. Thanks to its flexible design, GR-1 can be seam-
lessly fine-tuned on robotic data after being pre-trained
on large-scale video datasets. GR-1 is a GPT-style model
that takes language instructions l, historical image observa-
tions ot−h:t, and proprioception st−h:t as input. It predicts
robot actions and future images in an end-to-end manner
⟨ôt+1, ât⟩ = π(l, ⟨o, s⟩t−h:t).

3.2. Max-Return Sequence Modeling

The sequence model DT (Chen et al., 2021) maximizes the
likelihood of actions based on historical trajectories and
ReturnToGo, which essentially transforms offline RL into
supervised sequence modeling:

La = Et

[
− log πθ(at|⟨s, g, a⟩t−h:t−1, st, gt)

]
, (1)

where gt=̇
∑T

j=t rj is ground-truth ReturnToGo in offline
data. Reinformer (Zhuang et al., 2024) integrates the goal
of maximizing return into sequence models. Specifically,
Reinformer predicts the maximum returns that the current
state might obtain within the data distribution represented
by the dataset, rather than the ground-truth ReturnToGo of
the current trajectory. Reinformer achieves this implicitly
through the minimizing of expectile regression loss:

Lg = Et

[
|m− 1(∆g < 0)|(∆g)2

]
,

with ∆g = gt − πθ(⟨s, g, a⟩t−h:t−1, st),
(2)
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Figure 1. The proposed ReinboT model. We leverage CLIP (Radford et al., 2021) to encode robot language instructions, utilize
ViT (Dosovitskiy et al., 2020; He et al., 2022) (and perceiver resampler (Jaegle et al., 2021)) to compress and encode the original pixel
space of the image state, and utilize MLP to encode the robot proprioception. Moreover, based on the GPT-style transformer (Radford,
2018), we introduce three prediction token embeddings ([RTG], [ACTION] and [IMAGE]) to predict ReturnToGo, robot action, and
future image state respectively. The last layer of hidden features in ReturnToGo decoder is further utilized to predict robot actions. The
dense reward in ReturnToGo contains four aspects: sub-goal achievement, task progress, behavior smoothness and task completion.

where 1(·) is a binary indicator function, and m ∈ (0, 1)
is the hyperparameter of expectile regression. An exces-
sively large parameter m may cause the model to over-
optimistically estimate the maximum possible ReturnToGo
in the training data distribution. This will cause the pre-
diction of a ReturnToGo outside the distribution during
inference, which will negatively affect action generation.
Reinformer was trained by minimizing the sum of two loss
functions L = La +Lg . Compared with DT, one advantage
of the Reinformer is that it does not need to specify the
initial value of ReturnToGo and the reward returned by the
environment during inference. The Reinformer can autore-
gressively predict the maximum ReturnToGo and action of
the next step through two model inferences:{

ĝt = π(⟨s, g, a⟩t−h:t−1, st),

ât = π(⟨s, g, a⟩t−h:t−1, st, ĝt).
(3)

4. Methodology
In this paper, we aim to build a novel end-to-end VLA model
that incorporates the principle of maximizing dense returns
into robot visuomotor control, as shown in Fig. 1. First, we
consider four main factors when designing dense rewards to
capture the nature of the robot’s long-horizon manipulation
task (Sec. 4.1). Then in Sec. 4.2, we elaborate on how to
build a novel end-to-end reinforced VLA model and test
execution pipeline. Finally, we discuss and analyze how the
proposed ReinboT organically integrates the principle of RL
maximizing return (Sec. 4.3).

4.1. Reward Densification

For long-horizon visual-language manipulation tasks, VLA
models are usually required to maintain robust and stable
behavior at minimal energy cost while following the goal.
Therefore, we mainly design a widely applicable dense
reward around this principle to capture the nature of the
manipulation task. Intuitively, in the robot trajectory, the
reward that minimizes the state distance is a simple and
effective scheme that encourages the robot to move directly
to the target state. However, this reward is limited to the
case when the task contains only one goal. For long-horizon
tasks that require manipulating objects with multiple sub-
goals, this reward will guide the robot to move directly to
the final target state, resulting in failure (Zhao et al., 2024).

Therefore, we first adopt a heuristic method (James & Davi-
son, 2022; Shridhar et al., 2023) to divide the long-horizon
manipulation task into multiple sub-goal sequences and de-
sign a dense reward for each sequence. The heuristic process
iterates over the states in each demonstrated trajectory and
determines whether the state should be considered a criti-
cal state. The judgment is based on two main constraints:
joint velocities close to zero and changes in gripper state.
Intuitively, this occurs when the robot reaches a pre-grasp
pose or transitions to a new task phase, or when grasping or
releasing an object. Therefore, utilizing the critical state as
a sub-goal is a natural and reasonable choice.

Sub-goal achievement. Both the image state ot and propri-
oception st contain rich environmental perception informa-
tion. Therefore, the sub-goal achievement reward r1 covers
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proprioceptive tracking, pixel intensity, image visual quality,
and image feature points:

r1 = efMSE(st,s
∗
t ) + efMSE(ot,o

∗
t )

+ efSSIM(ot,o
∗
t ) + efORB(ot,o

∗
t ).

(4)

We utilize Mean Square Error (MSE) to calculate the direct
difference between the image state ot (and proprioception
st) and the sub-goal image state o∗t (and sub-goal propri-
oception s∗t ), and utilize the Structural Similarity Index
(SSIM) to measure the visual quality of the image. The
Oriented FAST and Rotated BRIEF (ORB) (Rublee et al.,
2011) algorithm utilized to calculate the reward focuses on
the extraction and matching of image feature points. Specif-
ically, we first detect the key points on the current image
state and the sub-goal image state, perform feature match-
ing and matching point screening, and finally calculate the
similarity by the number of matching points.

Task progress. Considering that the impact of being divided
into several sub-goal sequences on the overall trajectory is
different. The later sequences are closer to the final target
state. To reflect this, task progress reward r2 is designed:

r2 =
n(st)

|{s∗}|
, (5)

where n(st) = {1, 2, · · · , |{s∗}|} indicates which sub-goal
sequence the state st is in. The closer the sub-goal sequence
is to the final goal state, the greater the task progress reward.

Behavior smoothness. To promote a smooth and natural
movement trajectory, we mainly consider suppressing the
joint velocity q̇ and acceleration q̈ of the robot arm move-
ment and the rate of change of the action at, thus punishing
the trajectory movement that is too violent and stiff. The
behavior smoothness reward r3 is:

r3 = −|q̇|2−|q̈|2−|at−1−at|2−|at−2−2at−1+at|2. (6)

Task completion. For the visual language manipulation
task, language instruction is regarded as a goal that matches
the robot’s behavior. The task completion reward r4 is:

r4 = 1{τ is successful}. (7)

Here, 1(·) is a binary indicator function used to indicate
whether a trajectory τ completes the instruction.

Based on these four main factors, the general dense reward
captures the nature of the long-horizon visual-language ma-
nipulation tasks is:

r =

4∑
i=1

wiri, (8)

where {wi}4i=1 is the reward weight, which can ensure that
each reward component maintains a comparable order of

magnitude between demonstration trajectories. By utilizing
the designed reward signal, ReinboT can have a broader
and deeper understanding and recognition of the quality
distribution of training data, thereby guiding the robot to
perform more robust and stable robot decision actions.

4.2. End-to-end Reinforced VLA model

Through the proposed dense reward, we can obtain Re-
turnToGo (RTG) gt =

∑T
j=t rj for long-horizon visual-

language manipulation tasks. We further explain how to
build a novel end-to-end reinforced VLA model to imple-
ment the RL principle of maximizing return. The proposed
ReinboT model utilizes GPT-style transformer (Radford,
2018) as the backbone network πθ because it can flexibly
and efficiently use different types of modal data as input and
output. The CLIP (Radford et al., 2021) is utilized to encode
language instructions, ViT (Dosovitskiy et al., 2020; He
et al., 2022) (and perceiver resampler (Jaegle et al., 2021))
is utilized to compress and encode image states, and MLP
is utilized to encode proprioception. We introduce action
and image token embeddings ([ACTION] and [IMAGE])
and predict robot actions and future image states through an
action decoder Pω and an image decoder Pν , respectively.
Most importantly, we treat ReturnToGo as a novel modality
of data and learn ReturnToGo prediction token embedding
[RTG]. We predict the maximized return given the language
instruction l, image state o, and proprioception s through
the ReturnToGo decoder Pφ:

LRTG = Et

[
|m− 1(∆g < 0)|(∆g)2

]
,

with ∆g = gt − Pφ [πθ(⟨s, o⟩t−h+1:t, l)] .
(9)

The loss function L of the ReinboT model comprises the Re-
turnToGo loss LRTG, the arm action loss Larm, the gripper
action loss Lgripper, and the future image loss Limage:

L = λLRTG + Larm + 0.01Lgripper + 0.1Limage, (10)

where λ is the ReturnToGo loss weight, and the loss weights
for other modalities follow previous work (Li et al., 2025).
Larm is a smooth-L1 loss, Lgripper is a cross entropy loss,
and Limage is a pixel-level MSE.

When designing how to predict action a with feature infor-
mation containing ReturnToGo, we make modular designs
in the ReinboT network structure. Specifically, we first
input the language instruction l, image state ot−u+1:t and
proprioception st−u+1:t into the backbone network πϕ, and
obtain the features hRTG

t:t+k−1 and haction
t:t+k−1 corresponding to

[RTG] and [ACTION] token embeddings:

hRTG
t:t+k−1, h

action
t:t+k−1 = πϕ(l, ot−u+1:t, st−u+1:t). (11)

The feature hRTG
t:t+k−1 is then input into the ReturnToGo de-

coder Pφ to obtain the last layer of hidden features ĝhidden
t:t+k−1:

ĝhidden
t:t+k−1 = Pφ(h

RTG
t:t+k−1). (12)

4



ReinboT: Amplifying Robot Visual-Language Manipulation with Reinforcement Learning

The hidden features ĝhidden
t:t+k−1 is concatenated with the ac-

tion features haction
t:t+k−1 and are further input into the action

decoder Pω to predict the action ât:t+k−1:

ât:t+k−1 = Pω(ht:t+k−1, ĝ
hidden
t:t+k−1). (13)

The modular design in ReinboT allows us to obtain robot ac-
tions with only single model inference, thus enjoying higher
inference efficiency than the Reinformer model. The more
benefit of this design is that during the inference phase, we
do not need to manually set the initial value of ReturnToGo
like the DT model. This is crucial for actual deployment
because it greatly alleviates the tediousness of manual pa-
rameter adjustment, and the actual deployment environment
cannot directly obtain rewards to a large extent. The Rein-
boT inference pipeline has been summarized in Alg. 1. The
implementation details are in Appendix Sec. A.1.

Algorithm 1 ReinboT: Test-time Execution
1: ReinboT model πϕ, Pφ, Pω, initial image state o0,test,

initial proprioception s0,test, language instruction ltest,
and environment Env. // ReturnToGo initialization
value is not required.

2: t← 0
3: while t ≤ Ttest do
4: Calculate ReturnToGo and action features by Eq. 11
5: Calculate ReturnToGo last layer of hidden features

by Eq. 12
6: Calculate robot action ât:t+k−1 by Eq. 13
7: Interact with Env ot+1,test, st+1,test ← Env.Step(ât)

// Reward is not required.
8: t← t+ 1
9: end while

4.3. Discussion and Analysis of ReinboT

Compared with common end-to-end VLA models, the most
significant feature of proposed ReinboT is the additional
introduction of ReturnToGo loss (Eq. 9), and the action is
affected by the ReturnToGo token ĝhidden

t:t+k−1 (Eq. 13). We
will subsequently analyze how this framework achieves
RL return maximization, as well as the differences and
advantages compared to return maximization in classic RL.

Take a date point
(
l, ⟨o, s⟩t−h+1 , gt, at

)
for example. The

loss of ReturnToGo is implemented based on expectile re-
gression, with a key parameter m. When m = 0.5, the
expectile regression degenerates into MSE, and the pre-
dicted ReturnToGo token ĝt approaches the ground-truth
gt. At this point, ReinboT degenerates into the paradigm
of imitation learning, also the common end-to-end VLA
models equipped with ReturnToGo token prediction. When
m > 0.5, the expectile regression will predict the ĝt greater
than gt, which is called return maximization. This maxi-
mized return guides the ReinboT to predict a better action.

However, blindly increasing m will lead to the model’s
overly optimistic estimate of the maximum return that can
be achieved in the training data distribution. Related theo-
retical analysis is in Reinformer (Zhuang et al., 2024).

In the classic RL algorithm, maximizing the Q-value is uti-
lized to achieve the best policy model. This implies that
applying RL in VLA necessitates the introduction of an
additional RL loss function. Such an addition may pose
obstacles to the learning process of models like transform-
ers (Mishra et al., 2018; Parisotto et al., 2020; Davis et al.,
2021). In contrast, our return condition maximization cir-
cumvents the need to incorporate the RL-specific loss.

5. Experiments
In this section, we explore how the proposed ReinboT model
can effectively implement the RL principle of maximiz-
ing return to enhance robotic vision-language manipulation
tasks. To this end, our experiments aim to investigate the
following questions: 1) Does ReinboT show better gener-
alization ability and higher success rate when performing
long-horizon tasks compared to baseline algorithms? 2)
How important is the dense reward component to the overall
generalization performance of ReinboT? 3) What are the
characteristics of maximizing return prediction in ReinboT?
4) Can ReinboT complete few-shot learning and out-of-
distribution (OOD) generalization in real-world scenarios?

5.1. Generalization Evaluation on Mixed-quality Data

Setting. We first construct a mixed-quality dataset based on
CALVIN (Mees et al., 2022), which contains long-horizon
manipulation tasks, to examine the performance of the pro-
posed ReinboT and baseline algorithms. This dataset con-
tains a small amount of data with language instructions in
CALVIN ABC (about 50 trajectories per task) and a large
amount of autonomous data without language instructions.
In addition to the original data collected by human teleop-
eration without language instructions in CALVIN (more
than 20,000 trajectories), the autonomous data also contains
failure data generated by the interaction between the trained
VLA behavioral policy RoboFlamingo (Li et al., b) and the
environment CALVIN D (more than 10,000 trajectories).
To promote data diversity, different degrees of Gaussian
noise (0.05, 0.1, and 0.15) are added to the actions of the
RoboFlamingo policy model during the interaction. We
study training on this mixed-quality data, then fine-tune a
small amount of data with language instructions, and finally
test the generalization performance on CALVIN D. The sub-
goal division and dense reward examples of mixed-quality
training data are in Appendix Fig. 8 ∼ 11. Tab. 1 shows the
success rate of each language instruction in the chain and
the Average Length (AL) of the completed tasks.
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Table 1. Generalization performance comparison of models trained on CALVIN mixed-quality data to test environment D.

Algorithms No. of Instructions Chained Avg. Length (↑)
1 2 3 4 5

RoboFlamingo (annotated data) 0.55 0.19 0.07 0.02 0.00 0.83
GR-1 (annotated data) 0.67 0.37 0.20 0.11 0.07 1.41
PIDM (annotated data) 0.60 0.45 0.32 0.23 0.13 1.73

GR-1 0.62 0.31 0.18 0.14 0.10 1.36
GR-MG 0.65 0.35 0.24 0.11 0.05 1.41

RWR (sparse) 0.63 0.36 0.21 0.12 0.07 1.38
RWR (sub-goal, sparse) 0.71 0.46 0.27 0.19 0.11 1.73
RWR (dense, single) 0.75 0.52 0.27 0.18 0.11 1.82

ReinboT (sparse) 0.70 0.44 0.29 0.19 0.12 1.74
ReinboT (sub-goal, sparse) 0.74 0.50 0.28 0.17 0.12 1.80
ReinboT (dense, single) 0.77 0.53 0.32 0.18 0.11 1.90
ReinboT (dense, full) 0.79 0.58 0.40 0.28 0.21 2.26

Table 2. Ablation experiments are conducted to verify the necessity of the designed reward components.
No. of Instructions Chained Avg. Length (↑)

1 2 3 4 5

ReinboT (dense, full) 0.79 0.58 0.40 0.28 0.21 2.26

W/o ReturnToGo 0.65 0.36 0.19 0.11 0.06 1.36 (-39.8%)
W/o sub-goal achievement r1 0.72 0.50 0.32 0.20 0.12 1.87 (-17.2%)
W/o task progress r2 0.75 0.48 0.29 0.17 0.10 1.79 (-20.8%)
W/o behavior smoothness r3 0.73 0.50 0.32 0.21 0.14 1.90 (-15.9%)
W/o task completion r4 0.75 0.50 0.33 0.21 0.14 1.93 (-14.6%)

Baselines. To thoroughly evaluate the effectiveness of the
proposed ReinboT model, we consider some representative
baseline algorithms and reward design methods, including
RoboFlamingo (Li et al., b), GR-1 (Wu et al.), PIDM (Tian
et al., 2024) (three imitation learning types), GR-MG (Li
et al., 2025) (hierarchical imitation learning type), and
RWR (Peters & Schaal, 2007) (offline RL type). “anno-
tated data” means that the model is trained only on a small
amount of data with text annotations (about 50 trajectories
per task). ”sparse” means utilizing sparse rewards, that is,
the reward of the last three steps of a successful trajectory
is 1, and the rest is 0 (Nakamoto et al.). ”sub-goal, sparse”
means utilizing sparse rewards, that is, the reward of the last
three steps of a successful trajectory and the sub-goal state
is 1, and the rest is 0. ”dense, single” means utilizing the
dense reward we proposed, and the final calculated single-
dimensional scalar return is utilized when calculating the
ReturnToGo loss. ”dense, full” means utilizing the dense
reward we proposed, and the predicted ReturnToGo is a
vector containing the calculated single-dimensional scalar
return and each return component. The baseline details are
introduced in Appendix Sec. A.2.

Generalization performance comparison. Tab. 1 shows
that among the models trained only on data with text an-
notations, PIDM integrates vision and action into a closed

loop and achieves better generalization performance than
the baselines RoboFlamingo and GR-1. However, limited
to the imitation learning type, the performance of PIDM
(AL is 1.73) is lower than the offline RL type model RWR
and ReinboT (AL is 1.82 and 2.26, respectively). Moreover,
the performance of GR-1 (AL is 1.36), which can obtain
all the training data information, is slightly lower than the
performance of GR-1 trained only on training data with text
annotations (AL is 1.41). GR-MG is also limited by the
low-level policy based on imitation learning. Therefore,
the VLA model under the imitation learning paradigm only
performs maximum likelihood on the original training data
distribution, which is difficult to capture and fully utilize the
characteristics of the mixed quality distribution, resulting in
unsatisfactory performance.

For ReinboT and RWR, our dense reward improves perfor-
mance better than sparse rewards. Predicting each compo-
nent of ReturnToGo can further improve the generalization
ability of ReinboT (AL increased from 1.90 to 2.26). There-
fore, the proposed reward has a deeper and more detailed
representation of the data quality distribution, thus bring-
ing denser supervision signals to the training of the VLA
model. The ReinboT can effectively implement the idea
of RL to leverage dense return maximization to enhance
long-horizon visual-language manipulation tasks.
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Figure 2. (a) Impact of different values of ReturnToGo LRTG loss
weight λ. (b) Impact of different values of the expectile regression
parameter m in the ReturnToGo LRTG loss function.

5.2. Ablation Study

Ablation of dense reward component. We conduct abla-
tion experiments on ReinboT trained on CALVIN mixed-
quality data and tested on environment D to evaluate the
contribution of each reward component to the model gen-
eralization (Tab. 2). If there is no ReturnToGo modal in-
formation in ReinboT, the metric AL will drop sharply by
39.8%. If there is a lack of reward component in Rein-
boT, its performance will be lost to varying degrees. The
most significant impact is on task progress r2 (reduced by
20.8%), followed by sub-goal achievement r1 (reduced by
17.2%). The reward components behavior smoothness r3
and task completion r4 have similar impacts, decreasing
by 15.9% and 14.6% respectively. Therefore, each reward
component can help the model to deeply identify various
aspects of data quality and has a significant impact on the
robot’s generalization performance.

Performance impact of hyperparameters λ and m. We
further conduct ablation experiments on λ and m intro-
duced in ReinboT, trained on CALVIN mixed-quality data
and tested on environment D, to explore their impact on
model performance (Fig. 2). The hyperparameter λ is uti-
lized to make a trade-off between the model’s prediction of
ReturnToGo and other modalities. The expectile regression
parameter m is utilized to control the model’s sensitivity to
different expectation levels, thereby adjusting the model’s
fitting characteristics for the ReturnToGo distribution. Ex-
perimental results show that when λ = 0.001 and m = 0.9,
ReinboT achieves the best performance, which is the default
setting for our model unless otherwise specified.

Figure 3. (a) Distribution of ground-truth ReturnToGo of CALVIN
mixed-quality training data and distribution of the maximized
ReturnToGo predicted by the ReinboT when interacting with the
test environment D. (b) Comparison of ReturnToGo in the training
data with text annotations in mixed-quality data and the maximized
ReturnToGo predicted by the ReinboT at the interaction time step.
The impact of different values of the Expectile Regression (ER)
parameter m in the LRTG loss function is investigated.

Properties of the predicted maximized RL return. To an-
alyze the underlying reasons for the performance improve-
ment of the proposed RinboGPT model, we explore the
properties of the predicted maximized RL return (Fig. 3).
The sample size of the training data is in Appendix Fig. 7.
The results show that as the expectile regression parameter
m increases, the ReturnToGo distribution shifts towards a
larger value. Therefore, ReinboT can effectively identify
and distinguish the quality distribution of training data and
predict the robot action that maximizes return in the cur-
rent (and historical) state as much as possible. This means
that when the robot performs an action, it will consider
maximizing the long-horizon benefits in the future period,
rather than only considering the current (and historical) state
in the short term. This capability can effectively enhance
the generalization performance of the ReinboT model in
long-horizon manipulation tasks.

Moreover, we can find that the model performance with
parameter m = 0.99 is lower than that with m = 0.9
(Fig. 2(b)), although the former has a higher ReturnToGo
tendency (Fig. 3). This indicates that too large m will cause
ReinboT to overestimate the maximum ReturnToGo that can
be achieved in the training data distribution. The ReinboT
has difficulty responding to the predicted over-estimated
ReturnToGo, resulting in performance degradation.
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Figure 4. Few-shot learning and OOD generalization evaluation scenarios for real-world tasks. Few-shot learning evaluation scenarios
include cup grasping (a), bowl grasping and placing (b), and plush toy grasping and placing (c). OOD generalization evaluation scenarios
include unseen language instructions (d), desktop backgrounds (e), distractors (f), and manipulated objects (g).

Figure 5. Distribution of successful realistic trajectories.

5.3. Evaluation on Real-world Tasks

Settings. We conduct evaluations on real-world tasks to ex-
amine whether the proposed ReinboT can perform effective
few-shot learning and generalization in realistic scenarios.
Specifically, we consider the picking and placing tasks of ob-
jects such as cups, bowls, and stuffed toys on a robotic arm
UR5. The total number of successful trajectories collected
is approximately 530 (data distribution is in Fig. 5), and the
model is first trained on these data. The sub-goal division
and dense reward examples of successful training data on
real-world UR5 are in Appendix Fig. 12 ∼ 15. For few-
shot learning evaluation, we consider three object grasping
and placing tasks (Fig. 4(a-c)). Each task contains only 30
successful trajectories, and the model is fine-tuned on these
three tasks. For OOD generalization evaluation, we consider
scenes with unseen instructions, backgrounds, distractors
and manipulated objects (Fig. 4(d-g)).

ReturnToGo distribution of successful trajectories.
Fig. 5 shows the ReturnToGo distribution of successful tra-
jectories in reality. The result shows that even if the training
data are all successful trajectories, their quality distribution
is still uneven under the dense reward metric we proposed.
Therefore, it is necessary to introduce RL ideas into the VLA
model to deeply identify the data distribution and guide the
prediction of actions that maximize data quality.

Real machine comparison. The quantitative performance
comparison of real-world tasks is in Fig. 6, and the qual-
itative results are in Appendix Fig. 16. The experimental
results show that the proposed ReinboT has excellent few-

Figure 6. (a) Comparison of few-shot learning performance. (b)
Generalization comparison on simple and unseen tasks.

shot learning and OOD generalization performance in real-
istic scenarios, and significantly outperforms the baseline
methods. This is due to ReinboT’s ability to effectively
consider maximizing future returns. RWR performs on par
with the GR-1. This may be due to the overfitting of RWR
to the training data and its reliance on reweighting the data,
which may lead to optimization problems when the data
distribution is uneven or the amount of data is insufficient.

6. Conclusion
This paper internalizes the principle of maximizing return in
RL into the VLA framework, thereby enhancing the robot’s
long-horizon manipulation capabilities. The proposed Rein-
boT can predict the maximum dense return that depicts
important information of the manipulation task, thus hav-
ing a deep and detailed understanding of data quality. This
ability allows the robot to consider not only the current (and
historical) state, but also the future dense benefits when
taking decision actions. Compared with baselines, Rein-
boT achieves excellent performance in both simulated and
real-world visual-language manipulation tasks. Our work
advances robot visual-language manipulation capabilities,
contributing to embodied general intelligence. A promising
work is to consider the scaling of models and data to cope
with the rich and diverse robotic tasks in the real world.
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ments, paving the way for more reliable and versatile robotic
applications across various industries.

References
Aigner, D. J., Amemiya, T., and Poirier, D. J. On the

estimation of production frontiers: maximum likelihood
estimation of the parameters of a discontinuous density
function. International economic review, pp. 377–396,
1976.

Bai, S., Zhou, W., Ding, P., Zhao, W., Wang, D., and Chen,
B. Rethinking latent representations in behavior cloning:
An information bottleneck approach for robot manipula-
tion. arXiv preprint arXiv:2502.02853, 2025.

Black, K., Nakamoto, M., Atreya, P., Walke, H. R., Finn,
C., Kumar, A., and Levine, S. Zero-shot robotic manip-
ulation with pre-trained image-editing diffusion models.
In The Twelfth International Conference on Learning
Representations.

Brohan, A., Brown, N., Carbajal, J., Chebotar, Y., Dabis, J.,
Finn, C., Gopalakrishnan, K., Hausman, K., Herzog, A.,
Hsu, J., et al. Rt-1: Robotics transformer for real-world
control at scale. arXiv preprint arXiv:2212.06817, 2022.

Brohan, A., Brown, N., Carbajal, J., Chebotar, Y., Chen,
X., Choromanski, K., Ding, T., Driess, D., Dubey, A.,
Finn, C., et al. Rt-2: Vision-language-action models
transfer web knowledge to robotic control. arXiv preprint
arXiv:2307.15818, 2023.

Chebotar, Y., Vuong, Q., Hausman, K., Xia, F., Lu, Y., Irpan,
A., Kumar, A., Yu, T., Herzog, A., Pertsch, K., et al.
Q-transformer: Scalable offline reinforcement learning
via autoregressive q-functions. In Conference on Robot
Learning, pp. 3909–3928. PMLR, 2023.

Chen, L., Lu, K., Rajeswaran, A., Lee, K., Grover, A.,
Laskin, M., Abbeel, P., Srinivas, A., and Mordatch, I. De-
cision transformer: Reinforcement learning via sequence
modeling. Advances in neural information processing
systems, 34:15084–15097, 2021.

Chen, Y., Jha, D. K., Tomizuka, M., and Romeres, D. Fdpp:
Fine-tune diffusion policy with human preference. arXiv
preprint arXiv:2501.08259, 2025.

Davis, J. Q., Gu, A., Choromanski, K., Dao, T., Re, C., Finn,
C., and Liang, P. Catformer: Designing stable transform-
ers via sensitivity analysis. In International Conference
on Machine Learning, pp. 2489–2499. PMLR, 2021.

Ding, P., Zhao, H., Zhang, W., Song, W., Zhang, M., Huang,
S., Yang, N., and Wang, D. Quar-vla: Vision-language-
action model for quadruped robots. In European Confer-
ence on Computer Vision, pp. 352–367. Springer, 2024.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M.,
Heigold, G., Gelly, S., et al. An image is worth 16x16
words: Transformers for image recognition at scale. In
International Conference on Learning Representations,
2020.

Grauman, K., Westbury, A., Byrne, E., Chavis, Z., Furnari,
A., Girdhar, R., Hamburger, J., Jiang, H., Liu, M., Liu,
X., et al. Ego4d: Around the world in 3,000 hours of
egocentric video. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pp.
18995–19012, 2022.

Guo, Y., Zhang, J., Chen, X., Ji, X., Wang, Y.-J., Hu,
Y., and Chen, J. Improving vision-language-action
model with online reinforcement learning. arXiv preprint
arXiv:2501.16664, 2025.

He, K., Chen, X., Xie, S., Li, Y., Dollár, P., and Girshick,
R. Masked autoencoders are scalable vision learners. In
Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 16000–16009, 2022.

Hejna, J., Bhateja, C. A., Jiang, Y., Pertsch, K., and Sadigh,
D. Remix: Optimizing data mixtures for large scale
imitation learning. In 8th Annual Conference on Robot
Learning.

Hu, S., Shen, L., Zhang, Y., Chen, Y., and Tao, D. On trans-
forming reinforcement learning with transformers: The
development trajectory. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2024.

9



ReinboT: Amplifying Robot Visual-Language Manipulation with Reinforcement Learning

Jaegle, A., Gimeno, F., Brock, A., Vinyals, O., Zisserman,
A., and Carreira, J. Perceiver: General perception with it-
erative attention. In International conference on machine
learning, pp. 4651–4664. PMLR, 2021.

James, S. and Davison, A. J. Q-attention: Enabling efficient
learning for vision-based robotic manipulation. IEEE
Robotics and Automation Letters, 7(2):1612–1619, 2022.

Janner, M., Li, Q., and Levine, S. Offline reinforcement
learning as one big sequence modeling problem. In Ad-
vances in Neural Information Processing Systems, 2021.

Kingma, D. P. Auto-encoding variational bayes. arXiv
preprint arXiv:1312.6114, 2013.

Kingma, D. P. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

Levine, S., Kumar, A., Tucker, G., and Fu, J. Offline rein-
forcement learning: Tutorial, review, and perspectives on
open problems. arXiv preprint arXiv:2005.01643, 2020.

Li, P., Wu, H., Huang, Y., Cheang, C., Wang, L., and Kong,
T. Gr-mg: Leveraging partially-annotated data via multi-
modal goal-conditioned policy. IEEE Robotics and Au-
tomation Letters, 2025.

Li, X., Hsu, K., Gu, J., Mees, O., Pertsch, K., Walke, H. R.,
Fu, C., Lunawat, I., Sieh, I., Kirmani, S., et al. Evaluating
real-world robot manipulation policies in simulation. In
8th Annual Conference on Robot Learning, a.

Li, X., Liu, M., Zhang, H., Yu, C., Xu, J., Wu, H., Cheang,
C., Jing, Y., Zhang, W., Liu, H., et al. Vision-language
foundation models as effective robot imitators. In The
Twelfth International Conference on Learning Represen-
tations, b.

Mark, M. S., Gao, T., Sampaio, G. G., Srirama, M. K.,
Sharma, A., Finn, C., and Kumar, A. Policy agnostic
rl: Offline rl and online rl fine-tuning of any class and
backbone. arXiv preprint arXiv:2412.06685, 2024.

Mees, O., Hermann, L., Rosete-Beas, E., and Burgard, W.
Calvin: A benchmark for language-conditioned policy
learning for long-horizon robot manipulation tasks. IEEE
Robotics and Automation Letters (RA-L), 7(3):7327–7334,
2022.

Mishra, N., Rohaninejad, M., Chen, X., and Abbeel, P. A
simple neural attentive meta-learner. In International
Conference on Learning Representations, 2018.

Nakamoto, M., Mees, O., Kumar, A., and Levine, S. Steer-
ing your generalists: Improving robotic foundation mod-
els via value guidance. In 8th Annual Conference on
Robot Learning.

Parisotto, E., Song, F., Rae, J., Pascanu, R., Gulcehre, C.,
Jayakumar, S., Jaderberg, M., Kaufman, R. L., Clark, A.,
Noury, S., et al. Stabilizing transformers for reinforce-
ment learning. In International conference on machine
learning, pp. 7487–7498. PMLR, 2020.

Peters, J. and Schaal, S. Reinforcement learning by
reward-weighted regression for operational space con-
trol. In Proceedings of the 24th International Confer-
ence on Machine Learning, ICML ’07, pp. 745–750,
New York, NY, USA, 2007. Association for Comput-
ing Machinery. ISBN 9781595937933. doi: 10.
1145/1273496.1273590. URL https://doi.org/
10.1145/1273496.1273590.

Radford, A. Improving language understanding by genera-
tive pre-training. 2018.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D.,
Sutskever, I., et al. Language models are unsupervised
multitask learners. OpenAI blog, 1(8):9, 2019.

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G.,
Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark, J.,
et al. Learning transferable visual models from natural
language supervision. In International conference on
machine learning, pp. 8748–8763. PMLR, 2021.

Rublee, E., Rabaud, V., Konolige, K., and Bradski, G. Orb:
An efficient alternative to sift or surf. In 2011 Interna-
tional conference on computer vision, pp. 2564–2571.
Ieee, 2011.

Shafiullah, N. M., Cui, Z., Altanzaya, A. A., and Pinto, L.
Behavior transformers: Cloning k modes with one stone.
Advances in neural information processing systems, 35:
22955–22968, 2022.

Shridhar, M., Manuelli, L., and Fox, D. Perceiver-actor:
A multi-task transformer for robotic manipulation. In
Conference on Robot Learning, pp. 785–799. PMLR,
2023.

Sobotka, F. and Kneib, T. Geoadditive expectile regression.
Computational Statistics & Data Analysis, 56(4):755–
767, 2012.

Sohn, K., Lee, H., and Yan, X. Learning structured output
representation using deep conditional generative models.
Advances in neural information processing systems, 28,
2015.

Sutton, R. S. Temporal credit assignment in reinforcement
learning. University of Massachusetts Amherst, 1984.

Tian, Y., Yang, S., Zeng, J., Wang, P., Lin, D., Dong, H.,
and Pang, J. Predictive inverse dynamics models are
scalable learners for robotic manipulation. arXiv preprint
arXiv:2412.15109, 2024.

10

https://doi.org/10.1145/1273496.1273590
https://doi.org/10.1145/1273496.1273590


ReinboT: Amplifying Robot Visual-Language Manipulation with Reinforcement Learning

Vaswani, A., Shazeer, N. M., Parmar, N., Uszkoreit, J.,
Jones, L., Gomez, A. N., Kaiser, L., and Polosukhin,
I. Attention is all you need. In Neural Informa-
tion Processing Systems, 2017. URL https://api.
semanticscholar.org/CorpusID:13756489.

Vuong, Q., Levine, S., Walke, H. R., Pertsch, K., Singh, A.,
Doshi, R., Xu, C., Luo, J., Tan, L., Shah, D., et al. Open
x-embodiment: Robotic learning datasets and rt-x models.
In Towards Generalist Robots: Learning Paradigms for
Scalable Skill Acquisition@ CoRL2023, 2023.

Wu, H., Jing, Y., Cheang, C., Chen, G., Xu, J., Li, X., Liu,
M., Li, H., and Kong, T. Unleashing large-scale video
generative pre-training for visual robot manipulation. In
The Twelfth International Conference on Learning Repre-
sentations.

Yamagata, T., Khalil, A., and Santos-Rodrı́guez, R. Q-
learning decision transformer: Leveraging dynamic pro-
gramming for conditional sequence modelling in offline
rl. In International Conference on Machine Learning,
2022. URL https://api.semanticscholar.
org/CorpusID:252185261.

Yang, S., Du, Y., Ghasemipour, S. K. S., Tompson, J., Kael-
bling, L. P., Schuurmans, D., and Abbeel, P. Learning
interactive real-world simulators. In The Twelfth Interna-
tional Conference on Learning Representations.

Zhai, S., Bai, H., Lin, Z., Pan, J., Tong, P., Zhou, Y., Suhr,
A., Xie, S., LeCun, Y., Ma, Y., et al. Fine-tuning large
vision-language models as decision-making agents via
reinforcement learning. Advances in neural information
processing systems, 37:110935–110971, 2024.

Zhang, H., Ding, P., Lyu, S., Peng, Y., and Wang, D. Gevrm:
Goal-expressive video generation model for robust visual
manipulation. In The Thirteenth International Conference
on Learning Representations, 2025.

Zhang, Y., Li, Y., Cui, L., Cai, D., Liu, L., Fu, T., Huang,
X., Zhao, E., Zhang, Y., Chen, Y., et al. Siren’s song in
the ai ocean: a survey on hallucination in large language
models. arXiv preprint arXiv:2309.01219, 2023.

Zhang, Z., Zheng, K., Chen, Z., Jang, J., Li, Y., Wang, C.,
Ding, M., Fox, D., and Yao, H. Grape: Generalizing
robot policy via preference alignment. arXiv preprint
arXiv:2411.19309, 2024.

Zhao, H., Song, W., Wang, D., Tong, X., Ding, P., Cheng, X.,
and Ge, Z. More: Unlocking scalability in reinforcement
learning for quadruped vision-language-action models.
arXiv preprint arXiv:2503.08007, 2025a.

Zhao, H., Zhang, M., Zhao, W., Ding, P., Huang, S., and
Wang, D. Cobra: Extending mamba to multi-modal large
language model for efficient inference. In Proceedings
of the AAAI Conference on Artificial Intelligence, vol-
ume 39, pp. 10421–10429, 2025b.

Zhao, T. Z., Kumar, V., Levine, S., and Finn, C. Learning
fine-grained bimanual manipulation with low-cost hard-
ware. In ICML Workshop on New Frontiers in Learning,
Control, and Dynamical Systems.

Zhao, W., Chen, J., Meng, Z., Mao, D., Song, R., and Zhang,
W. Vlmpc: Vision-language model predictive control for
robotic manipulation. arXiv preprint arXiv:2407.09829,
2024.

Zhuang, Z., Peng, D., Liu, J., Zhang, Z., and Wang, D.
Reinformer: Max-return sequence modeling for offline
rl. In International Conference on Machine Learning, pp.
62707–62722. PMLR, 2024.

11

https://api.semanticscholar.org/CorpusID:13756489
https://api.semanticscholar.org/CorpusID:13756489
https://api.semanticscholar.org/CorpusID:252185261
https://api.semanticscholar.org/CorpusID:252185261


ReinboT: Amplifying Robot Visual-Language Manipulation with Reinforcement Learning

A. Appendix
A.1. Inplementation Details

Network structure and training process. The network backbone of ReinboT adopts the GPT2 (Radford et al., 2019)
structure, and the ReturnToGo decoder and image decoder adopt the Transformer structure. In terms of the action decoder
of ReinboT, we follow previous work (Zhao et al.) and predict the robot action trajectory through Conditional Variational
AutoEncoder (CVAE) (Sohn et al., 2015; Kingma, 2013). Specifically, the cVAE encoder is utilized to encode the action
trajectory into a style vector embedding. The style vector embedding, the output embedding of the [ACTION] token, and
the k learnable token embeddings are concatenated together. Then we input them into the Transformer to predict the k-step
action trajectory. The network design hyperparameters of ReinboT are shown in Tab. 3.

Table 3. Network hyperparameters configuration.

Parameter Value
Number of action prediction horizon 5 for CALVIN; 64 for UR5

Number of image (proprioception) history stack 10
Latent dimension of action encoder 32

Hidden layer dimension of action encoder/decoder 128
Hidden layer dimension of RTG decoder 128

Visual feature dimension 768
Language feature dimension 768

Embedding dimension 384
Number of layers in backbone 12

Number of attention heads 12
Activation function ReLU

To train the ReinboT model more efficiently, we initialize its weights with the pre-trained model weights, which are derived
from the generated video pre-training on the Ego4d (Grauman et al., 2022) dataset consistent with GR-1. The ReinboT
model allows the use of training data without language instructions. In the specific implementation, we provide an empty
string as the language instruction input of the model. The training hyperparameters are shown in Tab. 4.

Table 4. Training hyperparameters configuration.

Parameter Value
ReturnToGo loss weight λ 0.001

Expectile regression parameter m 0.9
Gradient clip 1.0

Epochs 50
Warm-up epochs 1

Batch size 32
Learning rate 0.001
Weight decay 0.01
Dropout rate 0.1

Reward weight w4
i=1 0.1, 0.1, 0.01, 0.1

Optimizer Adam (β1 = 0.9, β2 = 0.999) (Kingma, 2014)

A.2. Baselines Introduction

To evaluate the effectiveness of the proposed ReinboT model, some representative baseline algorithms and reward design
methods are considered: 1) RoboFlamingo: RoboFlamingo (Li et al., b) is a VLA model that leverages pre-trained VLMs
for single-step visual-language understanding and models sequence history information with an explicit policy head. 2)
GR-1: GR-1 (Wu et al.) is a simple and effective imitation learning method that utilizes a pre-trained video model to
enhance action generation. 3) GR-MG: GR-MG (Li et al., 2025) leverages partially-annotated data by conditioning on text
instructions and goal images, using a diffusion model to generate goal images during inference. 4) PIDM: PIDM (Tian et al.,

12



ReinboT: Amplifying Robot Visual-Language Manipulation with Reinforcement Learning

2024) presents an end-to-end paradigm that utilizes inverse dynamics models conditioned on the robot’s forecasted visual
states to predict actions, integrating vision and action in a closed loop for scalable robotic manipulation. 5) RWR: The
RWR (Peters & Schaal, 2007) we reproduced is an offline RL algorithm that aims to directly optimize the VLA policy model
by maximizing the cumulative reward while bypassing the thorny RL value function estimation problem. The discounting
factor γ used in our experiment is set as 0.9. The update gradient for the VLA tasks we reproduced when calculating the
action loss function La is:

∇πLa =
1

N

∑
τ

∇π log π(a|l, ⟨o, s⟩t−h:t)[

T∑
i=t

γi−t · r(l, ⟨o, s, a⟩t−h:t)]. (14)

Figure 7. Distribution of ground-truth ReturnToGo of CALVIN mixed-quality training data.

Figure 8. The sub-goal division of long-horizon tasks with language instructions of ”slide the door to the left” in CALVIN mixed-quality
training data. The black vertical dashed line represents the sub-goal of the trajectory (the same below).
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Figure 9. The dense reward and reward component of long-horizon tasks with language instructions of ”slide the door to the left” in
CALVIN mixed-quality training data. SGA: Sub-goal Achievement. BS: Behavior Smoothness. Same below.

Figure 10. The sub-goal division of long-horizon tasks with language instructions of ”turn on the yellow lamp” in CALVIN mixed-quality
training data. The black vertical dashed line represents the sub-goal of the trajectory (the same below).

14



ReinboT: Amplifying Robot Visual-Language Manipulation with Reinforcement Learning

Figure 11. The dense reward and reward component of long-horizon tasks with language instructions of ”turn on the yellow lamp” in
CALVIN mixed-quality training data.

Figure 12. The sub-goal division of long-horizon tasks with language instructions of ”Pick up the green cup for me” in the real-world
UR5 successful training data.
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Figure 13. The dense reward and reward component of long-horizon tasks with language instructions of ”Pick up the green cup for me” in
the real-world UR5 successful training data.

Figure 14. The sub-goal division of long-horizon tasks with language instructions of ”Put the smaller blue bowl into the red bowl” in the
real-world UR5 successful training data.
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Figure 15. The dense reward and reward component of long-horizon tasks with language instructions of ”Put the smaller blue bowl into
the red bowl” in the real-world UR5 successful training data.
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Figure 16. Real machine deployment of the proposed ReinboT model. ReinboT can effectively complete real-world pick-and-place tasks
with few-shot learning.
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