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Figure 1: CLoRA is a training-free method that works on test-time, and uses contrastive learning to
compose multiple concept and style LoRAs simultaneously. Using pre-trained LoRA models, such as
L1 for a person, and L2 for a specific type of flower, the goal is to create an image that accurately
represents both concepts described by their respective LoRAs. Observation: directly combining
these LoRA models to compose the image often leads to poor outcomes (see LoRA Merge). This
failure primarily arises because the attention mechanism fails to create coherent attention maps for
subjects and their corresponding attributes. CLoRA revises the attention maps in test-time to clearly
separate the attentions associated with distinct concept LoRAs.

ABSTRACT

Low-Rank Adaptation (LoRA) has emerged as a powerful and popular technique
for personalization, enabling efficient adaptation of pre-trained image generation
models for specific tasks without comprehensive retraining. While employing
individual pre-trained LoRA models excels at representing single concepts, such
as those representing a specific dog or a cat, utilizing multiple LoRA models to
capture a variety of concepts in a single image still poses a significant challenge.
Existing methods often fall short, primarily because the attention mechanisms
within different LoRA models overlap, leading to scenarios where one concept
may be completely ignored (e.g., omitting the dog) or where concepts are incor-
rectly combined (e.g., producing an image of two cats instead of one cat and one
dog). We introduce CLoRA, a training-free approach that addresses these limita-
tions by updating the attention maps of multiple LoRA models at test-time, and
leveraging the attention maps to create semantic masks for fusing latent represen-
tations. This enables the generation of composite images that accurately reflect
the characteristics of each LoRA. Our comprehensive qualitative and quantitative
evaluations demonstrate that CLoRA significantly outperforms existing methods in
multi-concept image generation using LoRAs. Furthermore, we share our source
code and benchmark dataset to promote further research.
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1 INTRODUCTION

Diffusion text-to-image models (Ho et al., 2020) have revolutionized the generation of images from
textual prompts, as evidenced by significant developments in models such as Stable Diffusion (Rom-
bach et al., 2022), Imagen (Saharia et al., 2022), and DALL-E 2 (Ramesh et al., 2022). Their
applications extend beyond image creation, including tasks like image editing (Avrahami et al.,
2022b;a; Couairon et al., 2022; Hertz et al., 2022), inpainting (Lugmayr et al., 2022), and object
detection (Chen et al., 2023). As generative models gaining popularity, personalized image generation
plays a crucial role in creating high-quality, diverse images tailored to user preferences. Low-Rank
Adaptation (Hu et al., 2021), initially introduced for LLMs, has emerged as a powerful technique
for model personalization in image generation. LoRA models can efficiently fine-tune pre-trained
diffusion models without the need for extensive retraining or significant computational resources.
They are designed to optimize low-rank, factorized weight matrices specifically for the attention
layers and are typically used in conjunction with personalization methods like DreamBooth (Ruiz
et al., 2023). Since their introduction, LoRA models have gained significant popularity among
researchers, developers, and artists (Gandikota et al., 2023; Guo et al., 2023). For example, Civit.ai1,
a widely used platform for sharing pre-trained models, hosts more than 100K LoRA models (Luo
et al., 2024) tailored to specific characters, clothing styles, or other visual elements, allowing users to
personalize their image creation experiences.

While existing LoRA models function as plug-and-play adapters for pre-trained models, integrating
multiple LoRAs to facilitate the joint composition of concepts is an increasingly popular task. The
ability to blend a diverse set of elements, such as various artistic styles or the incorporation of unique
objects and people, into a cohesive visual narrative is crucial for leveraging compositionality (Huang
et al., 2023b; Zhang et al., 2023). For example, consider a scenario where a user has two pre-trained
LoRA models, representing a cat and a dog in a specific style (see Fig. 1). The objective might be to
use these models to generate images of this particular cat and dog against various backgrounds or
in different scenarios. However, using multiple LoRA models to create new, composite images has
proven to be challenging, often leading to unsatisfactory results (see Fig. 1).

Prior works on combining LoRA models, such as the application of weighted linear combination of
multiple LoRAs (Ryu, 2023), often lead to unsatisfactory outcomes where one of the LoRA concepts
is often ignored. Other approaches (Shah et al., 2023; Huang et al., 2023a) train coefficient matrices
to merge multiple LoRA models into a new one. However, these methods are limited by the capacity
to merge only a single content and style LoRA (Shah et al., 2023) or by performance issues that
destabilize the merging process as the number of LoRAs increases (Huang et al., 2023a). Other
methods, such as Mix-of-Show (Gu et al., 2023), necessitate training specific LoRA variants such as
Embedding-Decomposed LoRAs (EDLoRAs), diverging from the traditional LoRA models (e.g.,
civit.ai) commonly used within the community. They also depend on controls like regions defined by
ControlNet (Zhang & Agrawala, 2023) conditions, which restrict their capability for condition-free
generation. More recent works, such as OMG (Kong et al., 2024) utilizes off-the-shelf segmentation
methods to isolate subjects during generation, with the overall effectiveness significantly dependent
on the accuracy of the underlying segmentation model.

Contrary to these methods, we propose a solution that composes multiple LoRAs at test-time, without
the need for training new models or specifying controls. Our approach involves adjusting the attention
maps through latent updates during test-time to effectively guide the appropriate LoRA model to
the correct area of the image while keeping LoRA weights intact. Our approach is inspired by the
following novel observation: issues of ‘attention overlap’ and ‘attribute binding’, previously noted in
image generation (Chefer et al., 2023; Agarwal et al., 2023), also exist in LoRA models. Attention
overlap occurs when specialized LoRA models redundantly focus on similar features or areas within
an image. This situation can lead to a dominance issue, where one LoRA model might overpower
the contributions of others, skewing the generation process towards its specific attributes or style
at the expense of a balanced representation (see Fig. 1). Another related issue is attribute binding,
especially occurs in scenarios involving multiple content-specific LoRAs where features intended to
represent different subjects blend indistinctly, failing to maintain the integrity and recognizability
of each concept. For instance, consider the text prompt ‘An L4 cat and an L5 dog in the forest’ in
Fig. 1, which depicts two LoRA models tailored for a specific cat and a dog, respectively. The

1http://civit.ai
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straightforward approach of composing these LoRA models by merging the LoRA weights (see Fig.
1 -LoRA Merge) struggles to produce the intended results. This is because the L4 attention, which
should focus on the cat, blended with the L5 attention, designated for the dog. Therefore, the output
incorrectly features two cats, entirely omitting the dog. In contrast, our approach effectively refines
the attention maps of the LoRA models in test-time to concentrate on the intended attributes, and
produces an image that accurately places both LoRA models in their correct positions (see Fig. 1).
Our framework, CLoRA, effectively composes multiple LoRA models while addressing the critical
challenges of attention overlap and attribute binding. Our key contributions are as follows:

• We present a novel approach based on a contrastive objective to seamlessly integrate multiple
content and style LoRAs simultaneously. Our approach works in test-time and does not
require training.

• To the best of our knowledge, this work represents the first comprehensive attempt to observe
and address attention overlap and attribute binding specifically within LoRA-enhanced
image generation models. To address these issues, our method dynamically updates latents
based on attention maps at test-time and fuses multiple latents using masks derived from
cross-attention maps corresponding to distinct LoRA models.

• Unlike some of the previous methods, our approach does not need specialized LoRA variants
and can directly use community LoRAs on civit.ai in a plug-and-play manner.

• We introduce a collection of LoRA models and prompts for multi-LoRA compositions,
covering various characters, objects, and scenes. This collection establishes a standardized
framework for evaluating the seamless integration of multiple concepts and style adaptations
in LoRA-based image generation.

2 RELATED WORK

Attention-based Methods for Improved Fidelity. Text-to-image diffusion models often struggle
with fidelity to input prompts, particularly when dealing with complex prompts containing multiple
concepts or attributes (Tang et al., 2022). Recent advancements in high-fidelity text-to-image
diffusion models (Chefer et al., 2023; Li et al., 2023; Agarwal et al., 2023) share our approach of
utilizing attention maps to enhance image generation fidelity. A-Star (Agarwal et al., 2023) and
DenseDiffusion (Kim et al., 2023) refine attention during the image generation process. Chefer
et al. (2023) address neglected tokens in prompts, while Li et al. (2023) propose separate objective
functions for missing objects and incorrect attribute binding issues. (Xie et al., 2023) and (Phung
et al., 2024) utilize bounding boxes additional constraint to limit the generation of multiple subjects in
constrained areas. While these methods tackle attention overlap and attribute binding within a single
diffusion model, our approach uniquely addresses these issues across multiple LoRA models. Meral
et al. (2023) use a contrastive approach on a single diffusion model, whereas our technique resolves
these challenges across multiple diffusion models (LoRAs), each fine-tuned for distinct objects or
attributes.

Personalized Image Generation. The field of personalized image generation has evolved signifi-
cantly, building upon a rich history of image-based style transfer (Efros & Freeman, 2023; Hertzmann
et al., 2023). Early advancements came through convolutional neural networks (Gatys et al., 2016;
Huang & Belongie, 2017; Johnson et al., 2016) and GAN-based approaches (Karras et al., 2019;
2020; Chong & Forsyth, 2022; Gal et al., 2022b; Kwon & Ye, 2023). More recently, diffusion
models (Ho et al., 2020; Rombach et al., 2022; Song et al., 2020) have offered superior quality and
text control. In the context of large text-to-image diffusion models, personalization techniques have
taken various forms. Textual Inversion (Gal et al., 2022a) and DreamBooth (Ruiz et al., 2023) focus
on learning specific subject representations. LoRA (Ryu, 2023) and StyleDrop (Sohn et al., 2023)
optimize for style personalization. Custom Diffusion (Kumari et al., 2023) attempts multi-concept
learning but faces challenges in joint training and style disentanglement. (Zhang et al., 2024) uses
attention calibration to disentangle multiple concepts from a single image and utilizes these concepts
to generate personalized images.

Merging Multiple LoRA Models. The combination of LoRAs for simultaneous style and subject
control is an emerging area of research, presenting unique challenges and opportunities. Existing
approaches have explored various methods, each with its own limitations. Weighted summation, as
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proposed by Ryu (2023), often yields suboptimal results due to its simplicity. Gu et al. (2023) suggest
retraining specific EDLoRA models for each concept, which limits the approach’s applicability to
existing community LoRAs. Wu et al. (2023) propose composing LoRAs through a mixture of experts,
but this method requires learnable gating functions that must be trained for each domain. Test-time
LoRA composition methods, such as Multi LoRA Composite and Switch by Zhong et al. (2024),
have also been proposed, but these do not operate on attention maps and may produce unsatisfactory
results. ZipLoRA (Shah et al., 2023) synthesizes a new LoRA model based on a style and a content
LoRA, however their method falls short in handling multiple content LoRAs. OMG by Kong et al.
(2024) utilizes off-the-shelf segmentation methods to isolate subjects during generation, with its
performance heavily dependent on the multi-object generation fidelity of diffusion models and the
accuracy of the underlying segmentation model. (Yang et al., 2024) proposes a training-free ap-
proach tackling concept confusion by introducing additional injection and isolation constraints using
user-provided bounding boxes. Our approach distinguishes itself by directly addressing attention
overlap and attribute binding issues in the context of multiple LoRA models. We incorporate test-time
generated masks, enhancing the disentanglement of LoRA models and effectively resolving attention
map and attribute binding problems. This offers a more comprehensive solution for high-fidelity,
multi-concept image generation, bridging the gap between single-model attention refinement and
effective LoRA model composition.

3 METHODOLOGY

This section outlines the foundational concepts of diffusion models, and Low-Rank Adaptation,
followed by a detailed discussion of our novel approach, CLoRA (see Fig. 2).

3.1 BACKGROUND

Diffusion models. Our method is implemented on the Stable Diffusion 1.5 (SDv1.5) model, a
state-of-the-art text-to-image generation framework for LoRA applications. Stable Diffusion operates
in the latent space of an autoencoder, comprising an encoder E and a decoder D. The encoder maps
an input image x to a lower-dimensional latent code z = E(x), while the decoder reconstructs the
image from this latent representation, such that D(z) ≈ x. The core of Stable Diffusion is a diffusion
model (Ho et al., 2020) trained within this latent space. The diffusion process gradually adds noise
to the original latent code z0, producing zt at timestep t. A UNet-based (Ronneberger et al., 2015)
denoiser ϵθ is trained to predict and remove the noise. The training objective is defined as:

L = Ezt,ϵ∼N(0,I),c(P),t

[
∥ϵ− ϵθ(zt, c(P), t)∥2

]
(1)

where c(P) represents the conditional information derived from the text prompt P . Stable Diffusion
employs CLIP (Radford et al., 2021) to embed the text prompt into a sequence c, then fed into the
UNet through cross-attention mechanisms. In these layers, c is linearly projected into keys (K) and
values (V ), while the UNet’s intermediate representation is projected into queries (Q). The attention
at time t is then calculated as At = Softmax(QK⊺/

√
d). These attention maps At can be reshaped

into Rh×w×l, where h and w are the height and width of the feature map (typically 16× 16, 32× 32,
or 64 × 64), and l is the text embedding sequence length. Our work utilizes the 16 × 16 attention
maps, which capture the most semantically meaningful information (Hertz et al., 2022).

LoRA models. LoRA fine-tunes large models by introducing rank-decomposition matrices while
freezing the base layer. In SD fine-tuning, LoRA is applied to cross-attention layers responsible for
text and image connection. Formally, a LoRA model is represented as a low-rank matrix pair (Wout,
Win). These matrices capture the adjustments introduced to the W weights of a pre-trained model (θ).
The updated weights during image generation are calculated as W ′ = W +WinWout. The low-rank
property ensures that (Wout and Win) have significantly smaller dimensions compared to full-weight
matrices, resulting in a drastically reduced file size for the LoRA model. For example, while a full
SDv1.5 model is about 3.44GB, a LoRA model typically ranges from 15 to 100 MB.

Contrastive learning. Contrastive learning has emerged as a powerful method in representation
learning (Chen et al., 2020; Oord et al., 2018). Its core principle is bringing similar data points
closer together in a latent embedding space while pushing dissimilar ones apart. Let x ∈ X represent
an input data point, with x+ denoting a positive pair (both x and x+ share the same label) and x−
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Figure 2: Overview of CLoRA, a training-free, test-time approach for composing multiple LoRA
models. Our method accepts a user-provided text prompt, such as ‘An L1 cat and an L2 dog,’ along
with their corresponding LoRA models L1 and L2. CLoRA applies test-time optimization to attention
maps to address attention overlap and attribute binding issues using a contrastive objective.

denoting a negative pair (where the data points have different labels). The function f : X → RN is
an encoder that maps an input x to an N-dimensional embedding vector. Various contrastive learning
objectives are proposed such as InfoNCE (also known as NT-Xent) (Oord et al., 2018) which we
utilize in this work.

3.2 CLORA

Given a text prompt such as ‘An L1 cat and an L2 dog,’ and their corresponding LoRA models
L1 and L2, our method aims to create an image that reflects the text prompt while respecting the
corresponding LoRA models (see Fig. 2). Our method refines the attention maps of the LoRA models
at test-time using a contrastive objective. This objective encourages the attention maps to focus on
the intended attributes, thereby resolving issues of attention overlap and attribute binding. Next, we
discuss the key components of our contrastive objective and explain how positive and negative pairs
are formed.

For simplicity, let us assume that we have two LoRA models to compose. Note that for ease of
understanding the positive pairs will be shown in the same color coding such as L1 S1 and L2 S2.
First, we decompose the user-provided prompt into components that align with specific concepts
(S1 and S2), defined by different LoRAs (L1 and L2). For example, given the prompt ‘an L1 S1

and an L2 S2’ (e.g., ‘An L1 cat and an L2 dog,’), where the LoRA models L1 and L2 represent the
personalized concepts for S1 and S2, respectively, we employ three prompt variations. First is the
original prompt, ‘an S1 and an S2’. Second is the L1-applied prompt, ‘an L1 S1 and an S2’. Lastly,
L2-applied prompt, ‘an S1 and an L2 S2’. We then generate corresponding text embeddings using the
CLIP model. If the text encoder was fine-tuned during LoRA training, the embeddings are generated
using the fine-tuned text encoder. Otherwise, we use the embeddings from the base model. These
prompt variations will be used to form positive and negative pairs during the contrastive objective.

During the image generation process, Stable Diffusion utilizes cross-attention maps to guide attention
on specific image regions at each diffusion step. However, as discussed before, these attention maps
suffer from attention overlap and attribute binding issues, leading to unsatisfactory compositions.
We apply a test-time optimization to the attention maps to encourage that each concept (e.g., ‘S1’
for the cat or ‘S2’ for the dog) is represented according to their corresponding LoRA. In order to do
this, we first categorize cross-attention maps based on their corresponding tokens in the prompts,
creating concept groups, C1 and C2. For the first group, C1, we include the cross-attention map for
S1 from the original prompt, cross-attention maps for L1 and S1 from the L1-applied prompt, and
the cross-attention map for S1 from the L2-applied prompt. Similarly, for the second group, C2, we
include the cross-attention map for S2 from the original prompt, the cross-attention map for S2 from
the L1-applied prompt, and cross-attention maps for L2 and S2 from the L2-applied prompt. This
grouping will be utilized in our contrastive objective to ensure that the diffusion process maintains a
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Figure 3: The qualitative results produced by CLoRA showcase a range of compositions, including
animal-animal, object-object, and animal-object pairs. Left columns display sample images gen-
erated by the individual LoRA models. Our approach is successful at composing multiple content
LoRAs—for example, combining a cat and a dog—along with scene LoRAs, such as pairing a cat
with a canal scene. Moreover, it demonstrates the capability to integrate more than two LoRAs,
exemplified by the composition of a panda, shoe, and plant LoRA (see bottom right).

coherent understanding of each concept while integrating the stylistic variations introduced by the
LoRAs. Separating these concepts will also prevent attention overlap between different concepts,
ensuring that each element of the prompt is faithfully represented in the generated image.

CLoRA Contrastive Objective: We design a contrastive objective during inference to maintain
consistency with the input prompt. We used the form of InfoNCE loss due to its fast convergence
(Oord et al., 2018). Our loss function takes pairs of cross-attention maps, processing pairs within
the same group as positive and pairs from different groups as negative. For example, given the
text prompt ‘An L1 cat and an L2 dog,’ and their corresponding concept groups C1 (‘cat’ and L1)
and C2 (‘dog’ and L2), the attention maps of the concept group C1 form positive pairs. In other
words we want the attention map for the cat from the original prompt and the attention map for L1

from the L1-applied prompt get close to each other since we want L1 LoRA to be aligned with its
corresponding subject, cat. In contrast, the attention maps of different concept groups C1 and C2

(e.g., the attention map for cat and dog from the original prompt) form negative pairs since we want
these attention maps to repel each other to avoid attention overlap issue (see Fig. 2 for an illustration).
The loss function for a single positive pair is expressed as:

L = − log
exp(sim(Aj , Aj+)/τ)∑

n∈{j+,j−1 ,···j−N} exp(sim(Aj , An)/τ)
(2)

where cosine similarity sim(u, v) is defined as sim(u, v) = uT ·v/∥u∥∥v∥. Here, τ is the temperature
parameter, and the denominator includes one positive pair and all negative pairs for Aj , N is the
number of negative pairs that include Aj . The overall InfoNCE loss is averaged across all positive
pairs.

Latent Optimization. The loss function guides the latent representation during the diffusion process.
The latent representation is updated iteratively similar to Chefer et al. (2023) and Agarwal et al.
(2023): z′t = zt − αt∇ztL where αt is the learning rate at step t.

Masked Latent Fusion. In our approach, after a backward step in the diffusion process, we combine
the latent representations generated by Stable Diffusion with those derived from additional LoRA
models. While the direct combination of these latents is possible as described by Bar-Tal et al. (2023),
we introduce a masking mechanism to ensure that each LoRA influences only the relevant regions of
the image. This is achieved by leveraging attention maps from the corresponding LoRA outputs to
create binary masks. To create the masks, we first extract attention maps for the relevant tokens from
each LoRA-applied prompt. For L1, we use the attention maps corresponding to the tokens L1 and S1

from the L1-applied prompt, ‘an L1 S1 and an S2’. Similarly, for L2, we extract the attention maps
for the tokens L2 and S2 from the L2-applied prompt, ‘an S1 and an L2 S2’. To create binary masks,
we apply a thresholding operation to these attention maps, following a method akin to semantic
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Figure 4: Qualitative Comparison of CLoRA, Mix of Show, MultiLoRA, LoRA-Merge, ZipLoRA
and Custom Diffusion. Our method can generate compositions that faithfully represent the LoRA
concepts, whereas other methods often overlook one of the LoRAs and generate a single LoRA
concept for both subjects. Please zoom-in for more details. See Appendix for more comparisons.
segmentation described by Tang et al. (2022). For each position (x, y) in the attention map, the binary
mask value M [x, y] is determined using the equation M [x, y] = I (A[x, y] ≥ λmaxi,j A[i, j]) where
M [x, y] represents the binary mask output, A[x, y] is the attention map value at position (x, y) for
the corresponding token, I(·) is the indicator function that outputs 1 if the condition is true (and 0
otherwise), and λ is a threshold value between 0 and 1. This thresholding process ensures that only
areas with attention values exceeding a certain percentage of the maximum attention value in the map
are included in the mask. When multiple tokens contribute to a single LoRA (such as ‘L1’ and ‘S1’
for L1), we perform a union operation on the individual masks to ensure that any region receiving
attention from either token is included in the final mask for that LoRA. This masking procedure
restricts the influence of each LoRA to the relevant regions, thereby preserving the integrity of the
generated image while incorporating the specific stylistic elements defined by the LoRAs.

4 EXPERIMENTS

In this section, we present qualitative results, along with quantitative comparisons and a user study.
For additional results, please refer to our supplementary material.

Datasets. Due to the absence of standardized benchmarks for composing multiple LoRA models,
we compile a set of 131 LoRA models. These models include custom characters generated with the
character sheet trick (see Appendix D) and various concepts from Custom Concept dataset (Kumari
et al., 2023). These models are accompanied by 200 prompts, such as ‘A plushie bunny and a flower
in the forest,’ where both ‘plushie bunny’ and ‘flower’ have corresponding LoRA models. Additional
details about the dataset and composition prompts can be found in the Appendix D.

Implementation Details. For each prompt, we use 10 different seeds, running 50 iterations with
Stable Diffusion v1.5. Following Chefer et al. (2023), we apply optimization in iterations i ∈
{0, 10, 20}, and stop further optimization after i = 25 to prevent artifacts. For contrastive learning,
we set the temperature to τ = 0.5 in Equation 2. Image generation was performed on a V100 GPU.
Our approach takes ≈ 25 seconds to compose two LoRA models, and can successfully combine up to
eight LoRAs on a single H100 Nvidia GPU. See Appendix A for more details.

Baselines. We compare our results with baselines such as LoRA-Merge (Ryu, 2023) that merges
LoRAs as a weighted combination, ZipLoRA (Shah et al., 2023) that synthesizes a new LoRA model
based on the provided LoRAs, Mix-of-Show (Gu et al., 2023) that requires training a specific LoRA
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L2 dogL1 cat

An L1 cat, an L2 dog and an L3 flower on the mountain

L3 flower

Ours LoRA Merge MultiLoRA

(a) Comparison of three LoRA compositions.

L2 bunnyL1 man

An L1 man and L2 bunny in the room

Ours LoRA Merge MultiLoRA

(b) Comparison of human subject compositions.

L2 flowerL1 woman

L3 style
An L1 woman and an L2 flower in L3 style 

L4 style L5 style
An L1 woman and an L2 flower in L4 style An L1 woman and an L2 flower in L5 style

(c) Results showcasing the composition of two subject and one style LoRAs.

Figure 5: Qualitative Results and Comparisons of CLoRA. (a) Our method can successfully
compose images using three LoRAs. (b) Our method can handle realistic compositions featuring
humans. (c) Our method can seamlessly compose images using style, object, and human LoRAs.

type, Custom Diffusion (Kumari et al., 2023) and MultiLoRA (Zhong et al., 2024). For MultiLoRA,
we use the ‘Composite’ configuration, as it outperformed MultiLoRA-Switch (Zhong et al., 2024).

4.1 QUALITATIVE EXPERIMENTS

Qualitative Results. The qualitative performance of our approach is shown in Fig. 1 and 3. Our
method successfully composes images using multiple content LoRAs, such as a cat and dog, within
varied backgrounds like the mountain or moon (Figs. 1 and 3). Furthermore, it successfully composes
a content LoRA with a scene LoRA, such as situating the cat within a specific canal as defined by
the scene LoRA (Fig. 3). Our method also demonstrates versatility, combining diverse LoRAs, such
as pairing a cat with a bicycle or clothing (Fig. 3). Notably, it handles compositions involving more
than two LoRAs, as illustrated by a panda, shoe, and plant in the bottom right of Fig. 3.

Qualitative Comparison We provide a qualitative comparison between our method and several
baselines in Fig. 4 , focusing on animal-animal and object-object compositions. Each comparison
visualizes four randomly generated compositions using our method, Mix of Show (Gu et al., 2023),
MultiLoRA (Zhong et al., 2024), LoRA-Merge (Ryu, 2023), ZipLoRA (Shah et al., 2023), and
Custom Diffusion (Kumari et al., 2023). Our method faithfully captures both concepts from the
corresponding LoRA models without attention overlap issues. Other approaches often struggle with
attribute binding or fail to represent one of the concepts due to overlapping attention maps. For
example, in a prompt such as ‘An L1 cat and an L2 penguin in the house’ (where L1 represents a
cat LoRA and L2 a plush penguin LoRA), Mix of Show blends the two objects, producing either
two plush penguins while ignoring the cat, or a single cat with plush-like features (Fig. 4, top-left).
MultiLoRA fails to resemble the specific LoRA models, producing either two cats or two penguins.
LoRA-Merge generates a cat that somewhat aligns with the intended LoRA but does not capture
the penguin accurately. ZipLoRA frequently fails to incorporate the plush penguin, instead creating
two cats due to its design constraints for combining multiple content LoRAs. Similarly, Custom
Diffusion often overlooks the cat LoRA entirely, focusing only on generating the plush penguin.
Similar observations can be made when combining object-object LoRAs (see Fig. 4 bottom row).
Our method successfully generates both elements within a composition, e.g. effectively positioning
a specific pair of shoes and a purse as dictated by different LoRA models (Fig. 4, bottom-left). In
contrast, other approaches frequently miss one of the elements or create objects that do not match the
characteristics outlined by the respective LoRAs. Additionally, these methods often struggle with
attribute binding issues. This problem is evident in Fig. 4 (bottom right), where the book LoRA tends
to blend with the cup LoRA, leading to an image of a cup that features the cover of the book. We also
note that our method struggles to depict the identity of the book and the cup objects, however it is
still able to create a composition without blending the objects. Please see Appendix G for additional
comparisons.
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Table 1: Average, Minimum/Maximum DINO image-image similarities, and CLIP-I and CLIP-T
metrics between the merged prompts and individual LoRA models, User Study. For all metrics, the
higher, the better.

Merge Ryu (2023) Composite Switch Zhong et al. (2024) ZipLoRA Shah et al. (2023) Mix-of-Show Gu et al. (2023) Ours

D
IN

O Min. 0.376 ± 0.041 0.288 ± 0.049 0.307 ± 0.055 0.369 ± 0.036 0.407 ± 0.035 0.447 ± 0.035
Avg. 0.472 ± 0.036 0.379 ± 0.045 0.395 ± 0.053 0.496 ± 0.030 0.526 ± 0.024 0.554 ± 0.028
Max. 0.504 ± 0.038 0.417 ± 0.046 0.432 ± 0.055 0.533 ± 0.032 0.564 ± 0.024 0.593 ± 0.024

C
L

IP
-I Min. 0.641 ± 0.029 0.614 ± 0.035 0.619 ± 0.039 0.659 ± 0.022 0.664 ± 0.023 0.683 ± 0.017

Avg. 0.683 ± 0.029 0.654 ± 0.035 0.659 ± 0.036 0.707 ± 0.021 0.712 ± 0.022 0.725 ± 0.017
Max. 0.714 ± 0.028 0.690 ± 0.033 0.695 ± 0.036 0.740 ± 0.021 0.744 ± 0.023 0.756 ± 0.017

CLIP-T 0.814 ± 0.054 0.833 ± 0.091 0.822 ± 0.089 0.767 ± 0.081 0.760 ± 0.074 0.862 ± 0.052

User Study 2.0 ± 1.10 2.11 ± 1.12 1.98 ± 1.14 2.81 ± 1.18 2.03 ± 1.12 3.32 ± 1.13

Composition with three LoRA models. We evaluate the ability to compose with more than two
LoRA models in Fig. 5a. Our method effectively maintains the characteristics of each LoRA in
the composite image, while other methods struggle to create coherent compositions, often blending
multiple models together2. Moreover, Fig. 5c shows sample compositions using 3 LoRAs that
corresponds to style, object and human LoRAs.

Composition with human subjects. We compare the composition of human subjects in Figs. 1 and
5b. Our method seamlessly composes human subjects with objects, preserving the distinct properties
of each LoRA. Other methods often struggle to integrate both elements effectively (see Fig. 5b).

Composition with style LoRAs. Our approach can blend both style and concept LoRAs (see Figs. 1
and 5c). The results show that our method captures the unique features of each content LoRA (e.g., a
flower and a human), while applying the style LoRA consistently across the entire image.

4.2 QUANTITATIVE EXPERIMENTS

Quantitative Comparison. We leverage DINO and CLIP features (Radford et al., 2021) to assess
the quality of images generated by our method and compare methods that combine multiple LoRAs.
DINO offers a hierarchical representation of image content, enabling a more detailed analysis of how
each LoRA contributes to specific aspects of the merged image. To calculate DINO-based metrics,
we first generate separate outputs using each individual LoRA based on the prompt sub-components
(e.g., L1 cat’ and L2 flower’). Then, we extract DINO features for the merged image and each single
LoRA output. Finally, we calculate cosine similarity between the DINO features of the merged image
and the corresponding features from each single LoRA output.

We utilize three DINO-based metrics: Average DINO Similarity, which reflects the overall alignment
between the merged image and individual LoRAs averaged across all LoRAs; Minimum DINO
Similarity, which uses the cosine similarity between the DINO features of the merged image and
the least similar LoRA reference output; and Maximum DINO Similarity, which identifies the LoRA
reference image whose influence is most represented in the merged image. For each LoRA model
and composition prompts, 50 reference images are generated and DINO similarities are calculated.
Prompts used in benchmarks consist of two subjects and a background, such as ‘an L1 cat and an L2

penguin in the house’ (see Fig. 4). The results (see Table 1) demonstrate that our method surpasses
the baselines in terms of faithfully merging content from LoRAs.

Additionally, we include comparisons using CLIP-I (image-to-image similarity) and CLIP-T (image-
to-text similarity) metrics to evaluate the performance of our method against competing approaches
(see Tab. 1). The results demonstrate that CloRA consistently outperforms other methods across both
metrics, highlighting its ability to generate images that align with the intended concepts and prompts.

User Study. To further validate our approach, we conducted a user study involving 50 participants
recruited through the Prolific platform3. Each participant was shown four generated images per
composition from different methods and asked to rate how faithfully each method preserved the
concepts represented by the LoRAs (on a scale from 1 = “Not faithful” to 5 = “Very faithful”). As
presented in Table 1, our method consistently outperformed the baseline approaches, achieving higher
scores for faithful representation of concepts.

2Some methods were excluded because they could not compose three LoRAs (Shah et al., 2023), or require
additional controls (Gu et al., 2023).

3http://prolific.com.
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L2 dog

L1 cat

An L1 cat and an L2 dog on the mountain

With latent update and masking With latent update and without maskingWithout latent update and with masking Without latent update and masking

Figure 6: CLoRA Ablation Study. Using the L1 cat and L2 dog LoRAs, the effects of two key
components (latent update and latent masking) can be observed.

Ablation Study Our method integrates two key components to generate compositions with multiple
LoRAs: Latent Update and Latent Masking. Latent Update employs our contrastive objective to direct
the model’s attention precisely towards the concepts specified by each LoRA, preventing misdirection
and attention to irrelevant areas. Without this component, the model could erroneously generate
duplicate objects or incorrect attribute connections (e.g., producing two dogs instead of a cat and a
dog), as shown in Fig. 6. Latent Masking protects the identity of the main subject during generation.
Without masking, every pixel would be influenced by all prompts, leading to inconsistencies and loss
of identity in the final image. Together, these components enhance composition process, enabling
users to introduce specific styles or variations into designated regions guided by multiple LoRAs.

5 LIMITATIONS

Our method marks a significant advancement in creative fields, enabling users to cre-
ate compositions from multiple LoRA models. However, while democratizing creativ-
ity, our method raises concerns about ethical implications of automated tools in art
creation, necessitating thoughtful discourse around their use Kenthapadi et al. (2023).

Figure 7: Number of LoRAs vs.
VRAM usage (left) and inference time
(right).

Additionally, the ease of generating personalized images
could lead to misuse for malicious purposes, such as creat-
ing deepfakes or spreading misinformation, as highlighted
by Korshunov & Marcel (2018). Additionally, integrat-
ing and optimizing multiple LoRA models simultaneously
poses a challenge due to potential increases in compu-
tational complexity, which can affect processing times
and resource demands as the number of LoRA models
increases, a limitation that is also common among com-
peting methods. Nevertheless, our method is capable of
successfully combining up to four LoRAs on a single
Nvidia H100 GPU, taking between 25 seconds (2 LoRAs)
up to 90 seconds (8 LoRAs), while consuming a memory
from 25GB to 80GB, respectively (see Fig. 7 ). A more detailed discussion is provided in App. A.

6 CONCLUSION

In this paper, we presented a training-free method, CLoRA, for integrating content from multiple Lo-
RAs to compose images. Our approach addresses the limitations of existing methods by dynamically
adjusting attention maps in test-time, ensuring each LoRA guides the diffusion process toward its
designated subject. Furthermore, we provide a benchmark LoRA and composition prompt dataset for
a thorough evaluation. Our experimental results demonstrate that CLoRA significantly outperforms
existing baselines across various metrics, including DINO-based similarity, CLIP alignment, and
user study evaluations, showcasing its robustness in faithfully representing and blending multiple
LoRAs.Unlike competing methods, our approach does not require the training of specific LoRAs and
is compatible with a wide range of community-developed LoRAs available on platforms like Civit.ai.
By making our source code and LoRA collection publicly available, we aim to promote transparency
and reproducibility, as well as encourage further advancements in this area. We envision CLoRA as
a valuable tool for democratizing creativity in visual generative AI, enabling broader adoption and
innovation in applications ranging from digital art and storytelling to gaming.
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7 REPRODUCIBILITY STATEMENT

To promote reproducibility and facilitate further research, we have made our source code publicly
available in the supplementary materials. Detailed descriptions of our experimental procedures are
thoroughly outlined in the main paper under ‘Implementation Details’ in Section 4. Additionally,
comprehensive information about our LoRA collection is provided in Appendix D.

We also offer an extensive collection of uncurated qualitative comparisons between our method and
those of competitors, which can be found in Appendix G. This extensive compilation aims to provide
a robust and comprehensive assessment of our approach compared to existing methods. For our
quantitative analyses, we include standard deviations for all metrics, which are presented in Table 1
to ensure transparency and reliability of the reported results.

8 ETHICS STATEMENT

While our method democratizes creativity by simplifying the process of art creation, it also introduces
ethical considerations that must be taken into account. Our method enable the generation of per-
sonalized images with minimal effort, and opens the door to transformative opportunities in art and
design. However, as noted by Kenthapadi et al. (2023), it necessitates a comprehensive and thoughtful
discourse around their ethical use to prevent potential abuses. In addition to these concerns, our user
study strictly adheres to anonymity protocols to safeguard participant privacy.

The capability of our method to effortlessly generate personalized images also poses risks of misuse
in several harmful ways, such as the creation of deepfakes. These can be used to forge identities or
manipulate public opinion, a concern underscored by Korshunov & Marcel (2018).
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A RUNTIME PERFORMANCE AND IMPACT OF NUMBER OF LORAS

A.1 COMPARISON OF METHODS IN TERMS OF RUNTIME.

This section presents a comparison of various methods in terms of their compatibility with CivitAI
(civ, 2020), VRAM requirements, and runtime performance. Table 2 summarizes the results. All
experiments were conducted on an NVIDIA H100 GPU with 80GB of VRAM.

The methods evaluated include Custom Diffusion, LoRA Merge, Multi-LoRA (composite and
switch modes), Mix-of-Show, ZipLoRA, OMG, LoRA-Composer and our proposed method. Meth-
ods like Custom Diffusion and Mix-of-Show are not compatible with CivitAI, while others, such as
LoRA Merge and the proposed method, are fully compatible.

Our proposed method demonstrates a favorable balance between VRAM usage and runtime per-
formance. It achieves faster inference times compared to methods like ZipLoRA and OMG, while
maintaining a moderate VRAM requirement of 25GB. This makes it a practical choice for scalable
and efficient multi-concept image generation tasks.

Method CivitAI Compatibility VRAM (Finetuning/Inference) Runtime (Finetuning/Inference)
Custom Diffusion × 28GB + 8GB 4.2 min + 3.5s
LoRA Merge ✓ 7GB 3.2s
Multi-LoRA - composite ✓ 7GB 3.4s
Multi-LoRA - switch ✓ 7GB 4.8s
Mix-of-Show × 10GB + 10GB 10min + 3.3s
ZipLoRA ✓ 39GB + 17GB 8min + 4.2s
OMG ✓ 30GB 62s
LoRA-Composer × 51GB 35s
Ours ✓ 25GB 24s

Table 2: Comparison of methods in terms of CivitAI compatibility, VRAM usage, and runtime.

As shown in Tab. 2, our proposed method outperforms many existing approaches in inference time
while maintaining reasonable VRAM requirements. This makes it a practical choice for scalable and
efficient deployments.

A.2 EFFECT OF NUMBER OF LORAS ON RUNTIME AND VRAM USAGE.

Figure 8 illustrates the relationship between the number of LoRAs and their impact on VRAM usage
and inference runtime. As the number of LoRAs increases, both VRAM consumption and inference
time show a gradual and predictable growth. For instance, moving from 2 LoRAs to 8 LoRAs results
in an increase in VRAM usage from 25 GB to 81 GB and inference time from 24 seconds to 96
seconds. These trends indicate that while additional LoRAs enhance multi-concept flexibility, the
associated computational requirements grow in a manageable and predictable manner, making them a
practical choice for many applications. All results were obtained using NVIDIA H100 GPUs with
80GB VRAM.

B USER STUDY DETAILS

We recruited 50 participants through the Prolific platform4. Each participant was shown 48 images,
and asked to rate how faithfully each method preserved the concepts represented by the LoRAs (on
a scale from 1 = “Not faithful” to 5 = “Very faithful”). The order of images were randomized per
participant. Please see Fig. 9 to see a screenshot of our user study.

4http://prolific.com.
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Figure 8: Number of LoRAs vs. VRAM usage (left) and inference time (right).

Figure 9: Screenshot of our user study. Each participant was shown images generated by LoRA
models (on the left) and 4 images generated by the method (ours or competitors). Users are then
requested to rate from 1-5 (Not faithful/Faithful) based on how well the generated images reflect the
concepts depicted in the LoRA models.

C ADDITIONAL RESULTS

Figure 10 shows CLoRA’s capabilities of generating images with similar subjects. Figure 11 show-
cases the CLoRA’s ability to merge LoRAs in complex and interacting scenes.
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L1 cat

L2 cat
An L1 cat and an L2 cat

in front of a castle in a fantastic land
An L1 cat and an L2 cat

with vibrant flowers

Figure 10: Qualitative results showing that CLoRA is capable of generating images using LoRAs that
has similar subjects.

L1 cat L2 dog
An L1 cat and an L2 dog playing with

a ball together, near the beach with a
ship in the background

An L1 cat and an L2 dog eating from
the same plate, in a playground

Figure 11: Qualitative Results showing that CLoRA is capable of composing images in complex
interacting scenes.

D DETAILS OF BENCHMARK LORA COLLECTION

We propose 131 pre-trained LoRA models and 200 text-prompts for multi-LoRA composition. The
details of our dataset is given below.

D.1 DATASETS

This study leverages two key datasets for benchmark:

• Custom collection: We generated custom characters such as cartoon style cat and dog,
created using the character sheet trick 5 popular within the Stable Diffusion community.
This set comprises 20 unique characters, where we trained a LoRA per character.

• CustomConcept101: We used a popular dataset Kumari et al. (2023) CustomConcept101
that includes several diverse objects such as plushie bunny, flower, and chair. All 101
concepts are utilized.

Leveraging the datasets above, we trained LoRAs to represent each concept, totaling to 131 LoRA
models. For every competitor, the base stable diffusion model cited in the relevant paper is used. For
instance, ZipLoRA Shah et al. (2023) employs SDXL, while MixOfShow Gu et al. (2023) utilizes
EDLoRA alongside SDv1.5. Similarly, our method uses SDv1.5. Note that while the majority of
our concepts are derived from CustomConcept101 dataset, the contribution of our benchmark LoRA
collection is the 131 LoRA models and additional 200 text prompts.

5https://web.archive.org/web/20231025170948/https://semicolon.dev/
midjourney/how-to-make-consistent-characters
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D.2 EXPERIMENTAL PROMPTS

To evaluate the merging capabilities of the methods, we created 200 text prompts designed to represent
various scenarios such as (the corresponding LoRA models are indicated within paranthesis):

• A cat and a dog in the mountain (blackcat, browndog)
• A cat and a dog at the beach (blackcat, browndog)
• A cat and a dog in the street (blackcat, browndog)
• A cat and a dog in the forest (blackcat, browndog)
• A plushie bunny and a flower in the forest (plushie bunny and flower 1)
• A cat and a flower on the mountain (blackcat, flower 1)
• A cat and a chair in the room (blackcat, furniture 1)
• A cat watching a garden scene intently from behind a window, eager to explore. (blackcat,

scene garden)
• A cat playfully batting at a Pikachu toy on the floor of a child’s room. (blackcat,

toy pikachu1)
• A cat cautiously approaching a plushie tortoise left on the patio. (blackcat, plushie tortoise)
• A cat curiously inspecting a sculpture in the garden, adding to the scenery. (blackcat,

scene sculpture1)

E COMPARISON WITH LORA-COMPOSER

We compare CLoRA with LoRA-Composer, which operates at test time but requires user-provided
bounding boxes, significantly limiting its practicality and ease of use. Additionally, LoRA-Com-
poser is restricted to specific models like ED-LoRA and is incompatible with the wide range of
community LoRAs available on platforms like Civit.ai. It also demands substantially more memory,
requiring 60GB for generating a composition compared to our method’s 25GB for composing two
LoRA models. In contrast, CLoRA works seamlessly with any standard LoRA models, including
community-sourced ones, without relying on bounding boxes or additional conditions. As shown
in Fig. 12, CLoRA consistently produces coherent multi-concept compositions, even in challenging
scenarios, ensuring broader compatibility and efficiency. For Fig. 12, the same seed was used for
LoRA-Composer with and without bounding boxes to demonstrate the impact of their presence on
the results.

L1 cat

L2 dog An L1 cat and an L2 dog 
on the mountain

An L1 cat and an L2 dog 
on the mountain

An L1 cat and an L2 dog 
on the mountain

Ours LoRA-Composer with Boxes LoRA-Composer without Boxes

Figure 12: Qualitative comparison with LoRA-Composer. CLoRA achieves consistent multi-con-
cept compositions without bounding boxes, unlike LoRA-Composer. Without user-provided bounding
boxes, LoRA-Composer method fails to generate the accurate depictions (see rightmost images).

F ADDITIONAL QUANTITATIVE ANALYSIS
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Merge Composite ZipLoRA Mix-of-Show Ours

C
L

IP

Min. 76.0% ± 8.7% 76.2% ± 7.2% 73.4% ± 8.1% 75.2% ± 9.5% 83.3% ± 5.5%
Avg. 79.5% ± 8.3% 79.7% ± 6.8% 77.1% ± 7.6% 78.7% ± 9.2% 87.1% ± 4.9%
Max. 82.5% ± 8.1% 82.5% ± 6.7% 80.6% ± 7.6% 81.7% ± 9.2% 89.8% ± 4.8%

D
IN

O Min. 37.0% ± 15% 30.3% ± 13% 36.9% ± 13% 37.5% ± 17% 47.2% ± 14%
Avg. 43.7% ± 17% 38.5% ± 13% 49.6% ± 15% 48.0% ± 22% 57.3% ± 14%
Max. 50.5% ± 17% 49.5% ± 14% 53.3% ± 16% 55.6% ± 23% 69.1% ± 14%

In addition to the results presented
in the main paper, we apply fur-
ther experiments to assess the per-
formance of our method in detail.
Specifically, we apply instance seg-
mentation methods to the composed
images to identify and isolate object instances. For this, we use SEEM (Zou et al., 2024) to segment
the objects within the images. After segmentation, we calculate the similarity metrics separately
for each object instance, allowing for a more granular comparison of the methods. We perform
these evaluations on a set of 700 images per method, as shown in the table. The results demonstrate
that our method significantly outperforms others across multiple metrics. In particular, we calculate
DINO scores, which further highlight the effectiveness of our approach compared to competing
methods. Moreover, we also compute CLIP scores as additional evidence of our method’s superior
performance.

G ADDITIONAL QUALITATIVE RESULTS

Comparison with OMG. We perform a qualitative comparison between our method, CLoRA, and
OMG (Kong et al., 2024). OMG relies on off-the-shelf segmentation methods to isolate subjects
before generating images. As seen in Fig. 13, while this enables well-defined subject boundaries,
the performance of OMG is heavily dependent on the accuracy of the segmentation model. Errors
in segmentation can result in incomplete or incorrect generation, particularly in complex scenes
involving multiple interacting subject. For instance, if the segmentation model fails to detect a flower,
this may prevent the correct placement of the LoRA in the composition (see Fig. 13 bottom-left).
Moreover, since OMG depends on the base image generated by the Stable Diffusion model, it also
encounters the attention overlap and attribute binding issues identified by Chefer et al. (2023). For
instance, if the Stable Diffusion model does not generate the required objects in the base image from
the text prompt ’A man and a bunny in the room’, then OMG cannot produce the desired composition.
This issue is apparent in Fig. 13, where the rightmost image shows that the base model generated
only a bunny, omitting the man. In contrast, CLoRA bypasses the need for explicit segmentation by
directly updating attention maps and fusing latent representations. This ensures that each concept,
represented by different LoRA models, is accurately captured and preserved during generation. The
comparison in Fig. 13 demonstrates that CLoRA produces more coherent compositions, maintaining
the integrity of each concept even in challenging multi-concept scenarios.

L1 cat

An L1 cat and an L2 flower 
in the garden

L2 flower

L3 woman

An L3 woman and an L2 flower 
in L4 style

An L5 man and an L6 bunny 
in the room

Ours Ours Ours

OMG OMGOMG

L4 style

L5 man

L6 bunny

Figure 13: Qualitative comparison with OMG. Our method (top row) consistently produces more
coherent and accurate compositions compared to OMG (bottom row). By leveraging attention map
updates and latent fusion, CLoRA effectively handles multi-concept generation without relying on
segmentation, leading to higher quality results, particularly in complex scenes.
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L2 shoesL1 panda

An L1 panda, an L2 shoes and an L3 plant in the room

L3 plant

Ours LoRA Merge MultiLoRA

Figure 14: Qualitative comparison of CLoRA with other LoRA methods using 3 LoRAs to generate
a single image. Our approach consistently produces images that more accurately reflect the input text
prompts, LoRA subjects, and LoRA styles.

Figure 15: Qualitative comparison of CLoRA with other LoRA methods. Our approach consistently
produces images that more accurately reflect the input text prompts, LoRA subjects, and LoRA styles.

Extensive Qualitative Results. The rest of the Supplementary Materials will provide additional
qualitative comparisons which contain the following competitors: Mix of Show Gu et al. (2023),
MultiLoRA Zhong et al. (2024), LoRA-Merge Ryu (2023), ZipLoRA Shah et al. (2023), and Custom
Diffusion Kumari et al. (2023) on various LoRAs and prompts. Figure 14 compare LoRA-Merge and
MultiLoRA using three combined LoRAs, while later figures expand the comparison to include all
methods across two separate LoRAs.
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Figure 16: Qualitative comparison of CLoRA with other LoRA methods. Our approach consistently
produces images that more accurately reflect the input text prompts, LoRA subjects, and LoRA styles.

Figure 17: Qualitative comparison of CLoRA with other LoRA methods. Our approach consistently
produces images that more accurately reflect the input text prompts, LoRA subjects, and LoRA styles.
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Figure 18: Qualitative comparison of CLoRA with other LoRA methods. Our approach consistently
produces images that more accurately reflect the input text prompts, LoRA subjects, and LoRA styles.

Figure 19: Qualitative comparison of CLoRA with other LoRA methods. Our approach consistently
produces images that more accurately reflect the input text prompts, LoRA subjects, and LoRA styles.
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Figure 20: Qualitative comparison of CLoRA with other LoRA methods. Our approach consistently
produces images that more accurately reflect the input text prompts, LoRA subjects, and LoRA styles.

Figure 21: Qualitative comparison of CLoRA with other LoRA methods. Our approach consistently
produces images that more accurately reflect the input text prompts, LoRA subjects, and LoRA styles.
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Figure 22: Qualitative comparison of CLoRA with other LoRA methods. Our approach consistently
produces images that more accurately reflect the input text prompts, LoRA subjects, and LoRA styles.

Figure 23: Qualitative comparison of CLoRA with other LoRA methods. Our approach consistently
produces images that more accurately reflect the input text prompts, LoRA subjects, and LoRA styles.
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Figure 24: Qualitative comparison of CLoRA with other LoRA methods. Our approach consistently
produces images that more accurately reflect the input text prompts, LoRA subjects, and LoRA styles.

Figure 25: Qualitative comparison of CLoRA with other LoRA methods. Our approach consistently
produces images that more accurately reflect the input text prompts, LoRA subjects, and LoRA styles.
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Figure 26: Qualitative comparison of CLoRA with other LoRA methods. Our approach consistently
produces images that more accurately reflect the input text prompts, LoRA subjects, and LoRA styles.

Figure 27: Qualitative comparison of CLoRA with other LoRA methods. Our approach consistently
produces images that more accurately reflect the input text prompts, LoRA subjects, and LoRA styles.
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Figure 28: Qualitative comparison of CLoRA with other LoRA methods. Our approach consistently
produces images that more accurately reflect the input text prompts, LoRA subjects, and LoRA styles.

Figure 29: Qualitative comparison of CLoRA with other LoRA methods. Our approach consistently
produces images that more accurately reflect the input text prompts, LoRA subjects, and LoRA styles.
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Figure 30: Qualitative comparison of CLoRA with other LoRA methods. Our approach consistently
produces images that more accurately reflect the input text prompts, LoRA subjects, and LoRA styles.

Figure 31: Qualitative comparison of CLoRA with other LoRA methods. Our approach consistently
produces images that more accurately reflect the input text prompts, LoRA subjects, and LoRA styles.
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Figure 32: Qualitative comparison of CLoRA with other LoRA methods. Our approach consistently
produces images that more accurately reflect the input text prompts, LoRA subjects, and LoRA styles.
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