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ABSTRACT

As an epistemic technology, AI exerts influence over the ideas of individuals and
society by acting as producer, mediator, and receiver of information. It impacts
our collective knowledge, beliefs, and morality. In this position paper, we argue
that there are mechanisms of hidden influence in AI development pipelines, which,
when amplified by societal dynamics, could lead to dangerous outcomes that we
may reverse by early interventions. We detail those mechanisms, amplifiers, and
potential consequences in this paper.

1 INTRODUCTION

1.1 AI AS AN EPISTEMIC TECHNOLOGY

AI has always been thought of as labor-replacement technology, automatic decision makers, or daily
assistants. We argue that AI should be also regarded as epistemic technology, where AI is an active
participant that shapes how do we perceive and understand our surroundings.

Defining Epistemic Technology Epistemic technologies are tools intentionally designed for ac-
quiring, creating, manipulating, and disseminating knowledge. When studying these technologies,
researchers primarily focus on epistemic concerns: specifically, how these tools modify epistemic con-
texts, content, and operations in ways that permanently alter both individual and collective approaches
to perceiving and understanding the world.

As epistemic technology, AI can exert “epistemic” influence in humans’ collective truth-seeking
and morality forming process. By epistemic influence, we mean the influence is mainly onto the
production of knowledge, such as microscopic, slide presentations, search engine, GPS navigation
systems, and mathematical proofs, as opposed to production technology, which is mainly to enable
speed and efficiency, such as hammers, pharmaceuticals, bulldozers, robotic arms, and IT systems
(Alvarado, 2023). The point of framing this as an epistemic technology is we want to call attention
to its potential epistemic harm onto humans, such as diversity loss (Padmakumar & He, 2023), and
knowledge collapse in the longrun (Peterson, 2024) which are much less tangible, but their potential
harms are no lesser significant.

1.2 OVERVIEW OF AI INFLUENCE

Our position is that: AI exerts influence over the ideas of individuals, whether as a producer
(e.g., content generator), mediator (e.g., recommender system), or receiver (e.g., preference
learning from human feedback) of information. Such influence, which we term AI influence, can
either be beneficial or harmful.

Empirical research on AI influence is ongoing but scattered. Those efforts are either clustered around
specific affected subjects — Wikipedia (Wagner & Jiang, 2025), Stack Exchange community (Burtch
et al., 2024), open-source community (Yeverechyahu et al., 2024), scientific publication and peer
review (Liang et al., 2024a;b), political campaigns and elections (Hackenburg & Margetts, 2024;
Potter et al., 2024) — or carved up along discipline boundaries like machine learning, cognitive
science, and epistemology, with little cross-disciplinary discourse taking place.

AI influence is not necessarily a harm. Despite that we wanted to raise concerns around AI influence
on human epistemology, it is too early to conclude that it is a bad thing. Humans are bound by
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Figure 1: AI influence: mechanisms, amplifiers, and consequences.

cognitive limitations and it’s likely that AI may expand our cognitive capacity and improve our
collective deliberation.

1.3 OUR CONTRIBUTIONS

AI influence has deep roots in both AI safety research, where epistemic disruption has been identified
as a key cause of catastrophic risks (Hendrycks & Mazeika, 2022), and AI ethics research, where the
entrenchment of discriminatory biases has been a leading concern (Gross, 2023).

At the same time, AI influence has an explicit focus on the impact of AI via cognitive influence, as
opposed to autonomous decision-making. Such a distinction implies differences in both research
goals and methodology, both of which we highlight in this paper.

By introducing the framework of AI influence, we aim to synthesize fragmented research efforts and
facilitate collaboration on this problem. The framework has the following notable traits.

Multi-agent and Human-AI interaction We think the problem of AI influence intrinsically focuses
on multi-agent and human-AI interaction scenarios.

Knowledge, Beliefs, and Morality Our focus is AI’s impact on humans’ knowledge, beliefs, and
morality, namely, what and how collectively humans perceive, understand, and value.

Long-term, Systematic, and Subtle We focus on long-term, systematic (including knock-on
effects), and subtle influence from LLMs on human knowledge, beliefs, and morality. Those problems
are often elusive and hard to evaluate. The methodologies to study and mitigate the problems are
accordingly different from existing problems, notably those categorized as AI ethics and AI safety.

Mechanisms, Amplifiers, and Consequences We decompose the landscape of AI influence into
three dimensions: mechanisms, the basic channels through which AI influences human epistemology;
amplifiers, external factors that significantly enlarge such influence; and consequences, societal
hazards that the amplified influence have led to or may soon lead to. These are orthogonal dimensions
often connected by fully interconnected relationships, which allows us to focus on each of them
individually while also touching on their connections.

Methodology to Study AI Influence We summarize all the methods that are used so far to study
AI influence in Table 1. We also reason from first principles what could be used to study the influence
from technologies on human truth-seeking and morality forming process. We illuminate the gap and
discuss future research directions.

2 MECHANISMS

In this section we cover specific mechanisms through which AI systems play a role in influencing
human epistemics and morality, at an individual level and population level. By ”mechanisms”, we
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Table 1: Classification of related research by methodology and topic.

Qualitative Research Formal Models Simulations Descriptive Analysis Causal Inference RCTs

Mechanisms

Digital Reliance Hirvonen et al. (2024);
Glickman & Sharot (2024a)

Burtch et al. (2024);
Nirman et al. (2024);

Thompson et al.
(2024); Wagner &

Jiang (2025)

Burtch et al. (2024);
Gerlich (2025)

Human-AI Dual Influence

Brady et al. (2023); Brady &
Crockett (2024); Collins
et al. (2024); Lazar et al.
(2024); Li & Yin (2024)

Lin et al. (2024);
Ferbach et al.

(2024); Krueger
et al. (2020)

Wang et al.
(2024);

Brinkmann
et al. (2022);
Ferraro et al.

(2024);
Mansoury

et al. (2020);
Perra &

Rocha (2019)

Li et al. (2023);
Liang et al. (2024a)

Glickman & Sharot
(2024b); Brinkmann et al.
(2022); Chan et al. (2024);

Pataranutaporn et al.
(2023); Haupt et al.

(2023); Hosseinmardi et al.
(2024); Lu et al. (2024);
Pappalardo et al. (2024);

Sharma et al. (2024)

Distinct AI Biases Brandtzaeg et al. (2024);
Köbis et al. (2021)

Taori &
Hashimoto (2022)

Adilazuarda et al.
(2024); Barman et al.

(2024); Lamparth
et al. (2024); Ryan

et al. (2024)

Glickman & Sharot
(2024b); Fisher et al.
(2024); Danry et al.

(2024); Costello et al.
(2024); Kidd & Birhane
(2023b); Kruegel et al.

(2025); Leib et al. (2021);
Piccardi et al. (2024);

Potter et al. (2024)

Attention Reallocation

Mendler-Dünner et al.
(2024b); Haupt et al.

(2023); Hosseinmardi et al.
(2024)

Amplifiers

Trust
Araujo et al. (2020);

Helberger et al.
(2020)

Narayanan et al. (2023);
Pataranutaporn et al.

(2023); Reis et al. (2024)

Institutional Path Dependence

Simon & Isaza-Ibarra
(2023); Aoki (2024);

Gruetzemacher et al. (2024);
Lazar & Manuali (2024);

Matz et al. (2024); Ovadya
et al. (2024)

Potter et al. (2024)

Socio-Economic Matthew Effect Capraro et al. (2024)

Consequences

Lock-in of Human Errors Lin et al. (2024)

Wang et al.
(2024);

Mansoury
et al. (2020);

Perra &
Rocha (2019)

Chan et al. (2024);
Costello et al. (2024);

Haupt et al. (2023); Kubin
& Sikorski (2021)

Lock-in of AI Biases Brandtzaeg et al. (2024);
Köbis et al. (2021)

Taori &
Hashimoto (2022)

Adilazuarda et al.
(2024); Barman et al.

(2024); Lamparth
et al. (2024); Ryan

et al. (2024)

Glickman & Sharot
(2024b); Fisher et al.
(2024); Danry et al.

(2024); Costello et al.
(2024); Kidd & Birhane
(2023b); Kruegel et al.

(2025); Leib et al. (2021);
Piccardi et al. (2024);

Potter et al. (2024)

Value Capture Nguyen (2024b)

Knowledge Collapse

Brandtzaeg et al. (2024);
Glickman & Sharot (2024a);

Koskinen (2024); Wihbey
(2024)

Peterson
(2024);

Bossens et al.
(2024)

Burtch et al. (2024);
Dohmatob et al.

(2024); Thompson
et al. (2024); Li et al.
(2023); Liang et al.

(2024a); Si et al.
(2024); Wagner &
Jiang (2025); Wu

et al. (2024)

Anderson et al.
(2024)

Doshi & Hauser (2023);
Padmakumar & He

(2023); Sharma et al.
(2024)

Epistemic Stratification Kay et al. (2024)
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refer to either technical limitations of AI systems or new ways through which humans interact with
AI may become sources of concerns over their epistemic impact over the long-term.

Here, we emphasize that the AI systems changes how information is originated, disseminated,
propagated, and received, by humans or AI systems. The scope extends beyond that of algorithmic
biases.

2.1 AI INTRODUCES DISTINCT BIASES INTO COLLECTIVE KNOWLEDGE

Although AI systems are trained on data generated by humans, they do acquire distinctive biases from
humans (Glickman & Sharot, 2024b; Kahneman et al., 2021). Specifically, there are the following
reasons that introduce distinctive AI biases:

• Token frequency more strongly impacts LLMs’ output style than human’s: Tokens that are over-
representative in dataset (e.g., words such as “significantly”, “intricate”, or “delve” appear dramat-
ically more in academic writings in recent years (Geng et al., 2024; Liang et al., 2024a; Kobak
et al., 2024);

• LLMs are struggling with long-tail knowledge: The accuracy of QnA correlates strongly with how
many times questions and answers co-occur in the training dataset. (Kandpal et al., 2023; Das
et al., 2024). On the other hand, LLMs rely on Retrieval-Augmented Generation (Lewis et al.,
2020) to address LLMs’ limitations dealing with long-tail knowledge. This approach, however,
suffers from wasting compute resources on common knowledge since it indiscriminately retrieves
documents.

• Architectures create unique AI biases: Architectural biases often stem from technical limitations,
as opposed to biases in datasets that can be more readily resolved by more training or more
data. One notable example is Convolutional Neural Networks (CNNs) are biased towards texture
(Geirhos et al., 2018). Tokenization, the strategy LLM employs to split words into subwords,
introduces biases unique to AI, such as downgrading arithmetic performances (Singh & Strouse,
2024), mishandling grammatical structures, and biases handling rare words (Phan et al., 2024).

Through training and deploying AI systems that acquire distinct biases, we risk introducing new
biases the collective knowledge-making process (such as publication, journalism, scientific research
etc). Such AI-biases might be persistent or even amplified because of digital reliance or feedback
loops, as we will discuss in the following two subsections.

2.2 COGNITIVE OFFLOADING, COGNITIVE ENHANCEMENTS, AND DIGITAL RELIANCE

AI can enhance the human cognitive performance, which can take place either directly by providing
advice and implementable solutions Senior et al. (2020); Fawzi et al. (2022) or indirectly by revealing
novel cognitive strategies and problem-solving approaches Shin et al. (2023). Cognitive offloading
is the term commonly used to describe such activities, namely, physical actions (such as preparing
for a grocery list) to reduce cognitive demands required (Risko & Gilbert, 2016). Research shows
that humans are willing to offload attention-demanding tasks to AI systems (Wahn et al., 2023). AI
systems are also used to improve human cognitive performances. For example, A study that examines
the performance of Go players Shin et al. (2023) reveals the performance of Go players improved after
being exposed to AlphaGo moves, possibly as a result of learning novel non-human strategies from
AlphaGo. Consistent results come from a study examining human problem-solving in a navigation
task Brinkmann et al. (2022) . In this study, participants navigated through complex networks. Each
path was associated with rewards (earning points) or penalties (losing points). Before performing
the task, participants were exposed to solutions generated by the AI or by humans. The results
demonstrated enhanced performance (accumulation of higher rewards) among players learning from
AI, mainly due to the exposure to counterintuitive but optimal strategies generated by the AI. For
example, the AI better identified than humans paths that initially appeared suboptimal but ultimately
yielded better outcomes.

On the other hand, those cognitive offloading and enhancement activities enabled by AI may lead
to digital reliance. Research demonstrates that reliance on digital tools, and in particular AI, alters
different cognitive processes such as memory, critical thinking and problem-solving. For example,
Sparrow et al. (2011) showed that when information is accessible through search engines, individuals
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prioritize remembering where to find this information rather than retaining it. This pattern extends
to modern AI systems as well. Gerlich (2025) found that cognitive offloading to AI tools correlates
with reduced critical thinking engagement, particularly among younger users who exhibit higher
dependency. Consistent with these empirical findings, Zhai et al. (2024) conducted a systematic
review revealing that over-reliance on AI dialogue systems impairs critical thinking and decision-
making by fostering cognitive shortcuts. Together, these studies suggest that in some cases, delegating
cognitive tasks to AI systems may deteriorate fundamental cognitive and thinking capabilities.

In this context of this position paper, digital reliance makes space for bias amplification, as we will
discuss in the following subsections.

2.3 HUMAN-AI DUAL INFLUENCE CREATES FEEDBACK LOOPS

The influence between AI and humans is not one-directional. Humans’ preferences can be influenced
by the content generated by AI systems, while AI systems are trained to align with human preferences
as well (e.g., Reinforcement Learning with Human Feedback Ziegler et al. (2019)). Such a feedback
loop between humans and AI is similar to the feedback loop between content users and content
creators in recommender systems, where users’ tastes are shaped by the content they consume and
creators produce content to fit users’ tastes Jiang et al. (2019); Lin et al. (2024).

Although the human-AI dual influence mechanism might help to improve the alignment between
humans and AI, it could also bring potential harms. For example, when humans or AI have initial
biases or errors regarding a certain topic, such biases and errors can be circulated and amplified
in human-AI interactions. There has been extensive research on human-to-AI and AI-to-human
influence, but it was not until very recently research showed that the human-AI dual interaction may
further exacerbate this influence mechanism: biased AI systems can affect human beliefs, rendering
humans more biased compared to the initial state, due to the amplification of bias by AI systems and
assigned trust by humans in AI judgements (Glickman & Sharot, 2024b;a).

AI bias is an established research field Mayson (2018). In this piece, however, we argue digital
reliance on AI and feedback loops established in human-AI interactions legitimatize larger concerns
over this topic. Not only because bias affects accuracy of medical decisions (Challen et al., 2019) or
racial fairness (Salinas et al., 2023), which are by themselves important problems, but also because
those biases are permanently introduced into epistemic processes and alter our worldviews (Vicente
& Matute, 2023).

2.4 AI REALLOCATES HUMAN ATTENTION

One of the major functionalities of AI systems is they reorganize and redistribute information available
to us, as search engines (including LLM-based ones) and RecSys-based social media do. In the
previous subsection we cover new mechanism through which AI biases affect human judgements,
while in this case, AI influence what do we see and think by selecting what information gets presented
to us and receives our attention. This may have a strong agenda-setting effect on our thinking
(Mendler-Dünner et al., 2024a).

It is worth getting very specific about the problem of attention and segmenting users with regard to
potential problem. For sophisticated users of AI technologies, it is possible for generative models
to be hugely creative, adding to intellectual diversity (Meincke et al., 2024). But such possibilities
require careful technique and strategy, from few-shot prompting to chain of reasoning to iterative
strategies generally. For the vast majority of the model-using public – which may not understand
what the models are and do, and have little to little ability to execute prompt engineering strategies
– usage may be largely passive and simplistic. Models will therefore tend to provide answers and
content to the majority of users that conform to mainstream, modal patterns – the most likely next
token, the probabilistic best answer or idea. This, in fact, is their central tendency and what they are
architected to do. Using the models in a simplistic autocomplete or recommendation engine-style
is likely to direct human attention to mainstream ideas and trends that are featured prominently on
the open web (where the model pre-training has taken place), and not necessarily to more diverse,
challenging, obscure, or marginal ideas or points.
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3 AMPLIFIERS

Mechanisms enumerated in §2 explain the forces that AI systems exert on human cognition and
epistemology. These forces tend to be subtle and may not pose extreme risks on their own.

In this section, however, we introduce a range of amplifiers that are external to AI systems and may
significantly increase AI influence, to the point of posing systemic risks described in §4.

3.1 TRUST AMPLIFIES AI IMPACT

Do higher levels of trust in AI correlate with increased AI influence? Recent research provides
evidence supporting this claim. For example, Vicente and Matute Vicente & Matute (2023) demon-
strated that higher trust in AI systems in medical diagnostic tasks led participants to adopt more
of AI’s biased recommendations, and even carrying these into subsequent tasks. Similarly, it was
found that self-reported trust in AI systems was associated with the persuasiveness of deceptive AI
classifications Danry et al. (2024). Interestingly, trust was not associated with additional the effect of
additional AI-generated explanations.

Current evidence suggests that human trust in AI is highly sensitive to context and culture. While in
many contexts, people prefer AI advice over humans’ Araujo et al. (2020); Logg et al. (2019), in high
stakes contexts (such as medicine or other life-threatening cases), people assign trust to humans more
than they do to AI systems Reis et al. (2024). Additionally, Globig et al. (2024) found that trust in AI
varies significantly across cultures Globig et al. (2024). Individuals in Eastern countries (e.g., India,
Indonesia) exhibit greater trust and optimism towards AI compared to their Western counterparts
(e.g., U.S., Germany), who tend to be more skeptical and cautious (Globig et al., 2024).

3.2 INSTITUTIONAL PATH DEPENDENCE

Institutional path dependence refers to the tendency of organizations and systems to make decisions
and adopt practices based on past trajectories, often locking in early patterns of behavior (Page
et al., 2006). Epistemic frameworks through which institutions understand and address issues can
be influenced by AI, an influence that can be hard to remove given the self-reinforcing nature of
institutions (Arthur, 2018).

For instance, widespread AI application in the education sector may plant deep-rooted AI influence
in children (Xu & Ouyang, 2022), AI advisors and analytics may bias governmental decision-making
processes toward specific data-driven perspectives (Castelnovo & Sorrentino, 2021), AI-influenced
public opinion can reinforce or challenge institutional norms (Panait & Ashraf, 2021), and early
critical attitudes toward AI-generated art and writing has led to the enactment of institutional policies
against the use of language models (Takagi, 2023; Kreitmeir & Raschky, 2023). Once these AI-
mediated epistemic influences take root, their self-reinforcing nature may make it difficult to shift
away from initial decisions, even in light of new evidence or changing contexts.

The self-reinforcing nature of the institutional path dependence problem will be particularly difficult
to mitigate given recursion (Peterson, 2024). Once embedded narratives take hold and the climate
of human opinion gets expressed at scale on social media and the web, AI models themselves will
subsequently be trained on this new data containing AI influence. This “data coil” means path
dependence becomes difficult to resist or reverse (Beer, 2022).

3.3 SOCIO-ECONOMIC MATTHEW EFFECT

Advanced AI systems threatens to dramatically amplify existing socio-economic inequalities through
what we term the “AI Matthew Effect,” whereby initial advantages in AI access and capability
compound exponentially over time.

Namely, it occurs when groups initially receiving more benefit from AI (e.g., the wealthy, speakers
of majority languages, those living in developed nations, those with access to GPUs, those working
in fields where training data is more abundant) receive cascading benefits, and vice versa. An
example is when biases against minority languages in LLMs shrink their user base who speaks
minority languages, which could further reinforce biases against minority languages due to under-
representation.
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This dynamic could manifest through several interconnected mechanisms:

Productivity amplification: AI systems act as force multipliers for human productivity, with their
effectiveness scaling in proportion to the user’s existing capabilities and resources. High-skilled
knowledge workers with access to state-of-the-art AI tools can leverage them to augment their
expertise, potentially increasing their productivity by orders of magnitude. Meanwhile, workers in
lower-skilled positions may find their jobs automated or devalued, widening the productivity gap.

Capital concentration: Organizations with early access to powerful AI systems can optimize
operations, reduce costs, and capture market share more effectively than competitors. This advantage
creates a self-reinforcing cycle where increased profits enable further AI investment and development,
leading to market concentration.

4 CONSEQUENCES

Influence mechanisms (§2), whose effects are magnified by amplifiers (§3), may lead to long-term
consequences that are associated with large-scale hazards.

Long-term consequences are hard to clearly demonstrate in advance, but some have nonetheless
manifested in empirical studies. Here we make a non-exhaustive list of these potential consequences.

AI systems that are trained on human data contains human errors and biases (such as cognitive
biases (Binz & Schulz, 2023; Yax et al., 2024) can inherit the same biases and errors (Mayson,
2018). Interactions with those models can circulate those biases back to humans (Morewedge et al.,
2023), even if humans do not have direct interactions with models (Valyaeva, 2024). Furthermore,
those human errors and biases can be amplified via human-AI interactions because humans may
assign more trust in AI output than average humans (Logg et al., 2019). The in-place mechanisms
such as the psychological traits of humans and the training methods of LLMs raise concerns that
those human errors and biases might be permanently preserved, amplified, and even locked into
human society over the long run. The term Lock-in refers to the cases where values, beliefs, and
knowledges memes/practices introduced into human society that last a long time, spread widely,
assume a dominant position in ideology among a population, are are institutionalized (therefore hard
to be removed), and cause damage (Hendrycks & Mazeika, 2022).

4.1 LOCK-IN OF AI BIASES

AI bias has been well documented and studied (Caliskan et al., 2017; Bolukbasi et al., 2016). However,
a consequential effect has been largely overlooked: when humans interact with these biased systems,
they internalize the systems’ amplified bias becoming more biased than they initially were Glickman
& Sharot (2024b); Vicente & Matute (2023). This bias amplification feedback loop relies on two key
characteristics of AI systems: First, AI systems provide a higher signal-to-noise ratio compared to
humans, consistently producing less variable outputs than human judgments (Kahneman et al., 2021).
Second, in many domains, humans perceive AI systems as more capable and accurate than other
humans Logg et al. (2019), making them more receptive to AI influence, or uncritically adopting
AI biases. For instance, clinicians inherit AI biases even after AI systems are removed (Vicente &
Matute, 2023). These characteristics create a dynamic where even small initial biases can be rapidly
adopted and magnified through human-AI interactions. Furthermore This effect raises particular
concerns for children, who have more malleable knowledge structures and may be more susceptible
to AI’s influence than adults (Kidd & Birhane, 2023a), making it concerning that such AI biases
would be locked-in over generations.

4.2 VALUE CAPTURE

Human objectives are often operationalized into quantifiable metrics — for instance, research quality
being quantified as citation counts, and idea quality being quantified as the number of retweets.

Value capture happens when one mistakes quantified proxies for their much richer terminal values,
and exclusively optimizes for the former instead, thereby losing the ability of personal deliberation
on their values (Nguyen, 2024a).
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AI has already been used in such quantification of objectives, for example in social media (Anandhan
et al., 2018); other similar uses of AI has also been proposed, including as arbiters for resolving
human disagreement (Tessler et al., 2024) and human representatives for collective decision-making
(Zhang et al., 2024). In all such cases, human actors may be incentivised, or are already incentivised
(Lüders et al., 2022; Wolf et al., 2017), to optimize for the AI-defined objectives. If such optimization
becomes the dominant concerns of human participants — which is plausible given that AI products
are often designed to be game-like and addictive (De et al., 2025) — value capture may steer people’s
values and objectives away from an ideal deliberative choice.

4.3 KNOWLEDGE COLLAPSE

Knowledge collapse (Peterson, 2024) is defined as the progressive narrowing over time of the set of
information available to humans, along with a concomitant narrowing in the perceived availability
and utility of different sets of information. It is hypothesized to manifest as a “mode collapse” of
collective knowledge in the human community, where long-detail information is lost while mainstream
information is strengthened.

Peterson (2024) mainly focuses on unrepresentative data, lack of in-depth exploration during LLM
inference, and algorithmic limitations of next-token prediction as the potential causes of knowledge
collapse. Peterson (2024) argues that by making mainstream information more readily available,
LLMs shift attention away from long-tail information.

In addition to these concerns, we note that other mechanisms outlined in this paper, including for
example dual influence (Lin et al., 2024), can similarly contribute to knowledge collapse. From a
mechanistic angle, knowledge collapse and lock-in share many commonalities, most especially the
reinforcement of existing popular ideas and the suppression of marginal ones.

4.4 EPISTEMIC STRATIFICATION

Epistemic stratification is the unequal distribution of access to knowledge, resources, and cognitive
tools across individuals or groups, leading to disparities in their ability to acquire, evaluate, and
generate knowledge (Silva Filho et al., 2023).

AI may contribute to epistemic stratification by amplifying existing disparities, such as through
unequal access to advanced AI tools, biased algorithmic recommendations that reinforce echo
chambers, the prioritization of information access for privileged demographics (Kay et al., 2024), or
the increasingly centralized control over AI development (Brynjolfsson & Ng, 2023).

5 ALTERNATIVE VIEWS

5.1 AI SYSTEMS HAVE NEGLIGIBLE IMPACT ON HUMAN COGNITION

Empirical evidence does not provide with a holistic picture of AI’s impact on human cognition. It is
true that humans are becoming more reliant on AI systems for their tasks, but it is unclear whether
having AI systems to process those tasks for humans would necessarily degenerate or enhance those
cognitive capabilities of humans. At least, it is still unclear whether humans’ navigation skills are
compromised because of using GPS tools (Fricker, 2021; Jadallah et al., 2017).

Two questions that are instrumental to understand AI systems’ impact on human cognition. For one,
does digital reliance influence human cognitive skills that are directly replaced by corresponding AI
capabilities (Teschke et al., 2013)? For instance, does the use of GPS hurt human navigation skills
(Fricker, 2021)? The same question could be asked about other digital tools and human skills, such
as calculators and arithmetic skills, machine translation tools and second language acquisition skills.
For the other, do the replaced domain-specific human skills undermine more general human cognitive
capabilities? For example, does the undermined arithmetic skills hurt human general mathematical
reasoning and problem-solving abilities (Geary et al., 2015; Hurst & Cordes, 2018)?

Without sufficient empirical evidence on how might human cognition be altered in the presence of
new tools, especially AI systems, it is hard to firmly hold our position. Hence, an alternative view
is, AI systems may have negligible impact on human cognitive capabilities over the long-term. One
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reason this might be true is we do not understand the relationship between low-level domain-specific
skills to high-level general capabilities. Replacing the former by AI may have little negative impact
on the latter, or using tool may enhance cognitive capabilities (Teschke et al., 2013).

5.2 HIGHLY PARAMETERIZED AI SYSTEMS ARE LESS BIASED AND ERROR-PRONE THAN
HUMANS ARE

AI systems are biased (Jadallah et al., 2017) and error-prone (Zhou et al., 2024), as research has
revealed, but so are humans. Besides those inductive biases that are introduced by specific archi-
tectures and training methods (Geirhos et al., 2018; Singh & Strouse, 2024), AI systems acquire
their biases from training datasets and by extension, from humans. Highly parameterized AI systems
such as LLMs are less biased and error-prone than conventional machine learning models because
LLMs are more expressive and techniques such as RAG helps to consult external sources for truth
validation (Gao et al., 2023). Meanwhile, it is also likely that state-of-arts AI systems may become
even less biased and error-prone than average humans are. From the point of view of collective truth-
seeking (such as conducting scientific research and collective deliberation), AI systems functioning
as ”shadow authors” to individual humans can be positive.

That being said, err should be on the side of being cautious. It is likely that AI biases, errors, and
hallucinations become more elusive before they are removed (Zhou et al., 2024). Once they are hard
to be found by average users, commercial developers are much motivated to address those problems,
creating persistent and even amplified biases and errors (Ren et al., 2024), which are precisely what
we warn in this piece.

5.3 AI’S EPISTEMIC IMPACT CAN BE POSITIVE

In 4 we have detailed AI’s long-term impact on human knowledge and values. Notably, they seem
overwhelmingly negative. As much as we strive to be epistemic neural on AI influence, we are biased
and limited in our perspectives. It is not our intention to present negative views only. We want to raise
attention on AI’s epistemic over the long-term and avoid the knock-on effects over the long-term, but
we also want to acknowledge we are far from having a holistic picture.

It is entirely likely the issues we have raised here can be addressed over time and people can become
wise in using those tools. For instance, users, especially students and researchers may acquire a
critical lens of AI’s generated content. Such a field is called ”AI literacy”, which is to teach individuals
to use, understand, and evaluate AI systems (Casal-Otero et al., 2023). Sufficient critical thinking
skills, paired with AI systems increasing reach and capabilities may cultivate a generation of more
informed learners and citizens who are more capable to participate in collective truth-seeking and
deliberative processes.

6 CONCLUSION

AI exerts systematic influence over the ideas in individuals and society. We have outlined the
mechanisms that enable such influence, the amplifiers that magnify the influence, and potential
consequences it may entail.

The eventual aim of AI influence research is to enable the responsible management of AI influence,
reaping its benefits while avoiding the harms. It is crucial in light of the rapid development of
generative models, which exerts large influence on human users and society that is not seen before.

Accomplishing such an aim requires coordination between AI safety and ethics communities, machine
learning and human-computer interaction communities, social science communities, and importantly,
industry actors. We hope this paper could be the start of a partnership between different communities
in search for robust solutions for the management of AI influence.
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