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Abstract

Overfitting is still a common problem in NER
with insufficient data. Latest methods such
as Transfer Learning, which focuses on stor-
ing knowledge gained while solving one task
and applying it to a different but related task,
or Model-Agnostic Meta-Learning (MAML),
which learns a model parameter initialization
that generalizes better to similar tasks. How-
ever, these methods still need rich resources to
pre-train. In this work, we present new perspec-
tives on how to make the most of in-domain and
out-domain information. By introducing a fu-
sion method of data augmentation and MAML,
we first use data augmentation to mine more
information. With the augmented resources,
we directly utilize out-domain and in-domain
data with MAML, while avoiding performance
degradation after domain transfer. To further
improve the model’s generalization ability, we
proposed a new data augmentation method
based on a generative approach. We conduct
experiments on six open Chinese NER datasets
(MSRANER, PeopleDairyNER, CLUENER,
WeiboNER, Resume NER, and BOSONNER).
The results show that our method significantly
reduces the impact of insufficient data and out-
performs the state-of-the-art.

1 Introduction

NER is one of the common problems in Natural
Language Processing(NLP), which aims at divid-
ing the elements in text into predefined categories,
such as person names, place names, organizations,
or any other classes of interest. Despite being con-
ceptually simple, NER is not an easy task. In re-
cent years, papers applying deep neural networks
(DNNGs) to the task of NER have successively ad-
vanced the state-of-the-art (SOTA) (Huang et al.,
2015; Lample et al., 2016; Ma and Hovy, 2016;
Chiu and Nichols, 2016; Peters et al., 2017, 2018).
However, the more parameters you want the model
to learn or as complex as the problem at hand so

does the data required for training increase. Oth-
erwise, the problem of having more dimensions
yet small data results in over-fitting. For instance,
on the OntoNotes-5.0 English dataset, whose train-
ing set contains 1,088,503 words, a DNN model
outperforms the best shallow model by 2.24% as
measured by F1 score (Chiu and Nichols, 2016).
On the other hand, for comparatively small CoNLL-
2003 English dataset, whose training set contains
203,621 words, the best DNN model enjoys only
a 0.4% advantage. To make deep learning more
broadly useful, it is crucial to reduce its training
data requirements. Generally, the annotation bud-
get for labeling is far less than the total number of
available (unlabeled) samples. For NER, getting
unlabeled data is practically free. However, when
facing customrized labels, it is especially expensive
to obtain annotated data for NER since it requires
multi-stage pipelines with sufficiently well-trained
annotators (Kilicoglu et al., 2016; Bontcheva et al.,
2017).

In such cases, many methods are introduced to
tackle this problem. Data augmentation methods
explored for NER tasks differ from NLP tasks, ei-
ther create augmented instances by manipulating
a few words in the original instance, such as label-
wise token replacement (Dai and Adel, 2020), men-
tion replacement, and using neural generative net-
work (Ding et al., 2020). Despite data augmenta-
tion can help extend the amount of data, it still has
a limited effect on low-resource data sets. Adapting
the meta-learning approach (Finn et al., 2017) to
NER can transfer rich-resource domain knowledge
to the low-resource domain. However, it not only
needs two domains that are relevant but also needs
a rich-resource domain to train the model.

In this paper, we use the recently proposed
MAML approach (Finn et al., 2017) and extend it
with neural generative data augmentation methods
to open Chinese data sets. We selected parts of data
from few open Chinese data sets to simulate low-



resource domain, and firstly propose a neural net-
work augmentation method to extend low-resource
domain data sets, after that, we use a meta-learning
algorithm to find a good model parameter initial-
ization with those extended open data sets and that
could fast adapt to new tasks. When it comes to
the adaptation phase, we regard each test example
as a new task, build a pseudo training set with data
augmentation for it, and fine-tune the meta-trained
model before testing.
To summarize our contributions:

* We propose a meta-learning-based approach
to tackle Chinese NER with minimal re-
sources.

* We propose an augmentation before the meta-
learning approach to augment low-resource
training datasets. To our best knowledge, this
is the first successful attempt in adapting data
augmentation with meta-learning in Chinese
NER.

* We evaluate our approach over 5 open Chi-
nese data sets target languages, which cross
different source domains. We show that the
proposed approach significantly outperforms
existing SOTA methods across the board.

2 Related Work

In this section, we review related work in three
parts: NER, meta-learning, and data augmentation.

2.1 NER

Generally, NER technology is divided into three
stages according to the technological develop-
ment path: early methods (Sekine and Nobata,
2004)(based on rules and dictionaries), traditional
machine learning methods (Morwal and Chopra,
2013; Mccallum and Wei, 2003), and deep learn-
ing methods (Li et al., 2020c). We will mainly
introduce the research progress of deep learning in
NER and focus on recent research trends. When it
comes to deep learning, better performance, higher
efficiency, and lower transfer cost are the advan-
tages, which are mainly due to its powerful feature
representation capability. Deep learning models
can automatically learn features that require man-
ual design in traditional methods, which greatly
reduces the effort of designing features. At the
same time, innovations in the architecture of deep
learning methods in other applications can often

be applied to current tasks and achieve good re-
sults. Components of NER architecture based on
deep learning include data representation, context
encoder, and tag decoder. In data representation,
although one-hot encoding is simple and effec-
tive, the representation vector is extremely sparse
and difficult to optimize. At present, the word-
embedding method is more commonly used, which
considers contextual semantic information while
avoiding the curse of dimensionality. And there
are many open-source word vector models, such as
Google Word2Vec (Mikolov et al., 2013), Stanford
GloVe (Pennington et al., 2014), etc., which can
be used to improve efficiency even performance.
Certainly, you can choose whether to train yourself
(Yao et al., 2015) or to use open-source (Shen et al.,
2017). In addition, in order to solve the problem of
new word characterization, (Ma and Hovy, 2016)
incorporates character-level characterization meth-
ods into word vector characterization. In context
encoder, three typical networks are convolutional
neural network (CNN), recurrent neural network
(RNN), and recursive neural networks. The ad-
vantage of CNN is that training and testing are
faster when compared with others (Strubell et al.,
2017). However, RNN has natural advantages and
can learn contextual information. At the same time,
the LSTM (Hochreiter and Schmidhuber, 1997)
and GRU (Yang et al., 2016) architectures can
partially solve the problem of efficiency. Unfor-
tunately, CNN and RNN are not good at dealing
with ambiguity problems. At this time, the recur-
sive neural network worked. (Li et al., 2017) in-
troduced a recursive neural network to learn deep
structured information, the phrase structures of sen-
tences. In tagger decoder, MLP+Softmax (Akbik
et al., 2018) is introduced when the NER task is re-
garded as a multi-class classification problem. And
the most commonly used and optimal method in
NER is based on the Conditional Random Field
(CRF) model (Zhai et al., 2017). In addition, RNN
(Shen et al., 2017) and its variants such as pointer
network (Vinyals et al., 2015) are also used as NER
decoders. (Shen et al., 2017) pointed out that when
there are many types of entities, RNN is better and
more efficient than CRF. (Zhang and Yang, 2018)
uses a pointer network for sequence labeling tasks
and performs segmentation and labeling functions
at the same time.



2.2 Chinese NER

In the NER task, Chinese is more difficult and
more challenging due to its own characteristics
compared with other languages such as English,
Spanish, French, German, Japanese, and so on.
Difficulties lie in (1) there is no explicit boundary
identifiers similar to English space which requires
word segmentation, another extremely challenging
task; (2) Special English entities may appear in
Chinese entity types; (3) The proportion of new
words is constantly increasing, and the old labeled
corpus is difficult to meet the demand; (4) There
are many ambiguities and it is difficult to disam-
biguate. In recent years, Chinese NER technology
has also achieved some results, especially based
on deep learning methods. Lexicon is one of the
commonly used methods. (Zhang and Yang, 2018)
investigated a lattice-structured LSTM model to
encode input characters and all potential words ob-
tained from a lexicon that explicitly leverages word
and word sequence information. A lexicon-based
neural graph network with global semantics is in-
troduced by (Gui et al., 2019) to solve the problem
of word ambiguities. For efficiency issues, (Ma
etal., 2019) designed a simple but effective method
for any neural NER model which requires only sub-
tle adjustment of the character representation layer
to introduce the lexicon information. Attention
mechanism, transfer learning, multi-task learning,
etc. are also used alone or in combination. (Cao
et al., 2018) proposed a novel adversarial transfer
learning framework to make full use of task-shared
boundaries information and exploit self-attention
to explicitly capture long-range dependencies be-
tween two tokens. (Zhu et al., 2019) introduced
a convolutional attention network to capture con-
text information by the local-attention layer and a
global self-attention layer. In order to adapt limited
data, (Dong et al., 2019) presented a novel mul-
titask bi-directional RNN model combined with
deep transfer learning to get transferring knowl-
edge and data augmentation. To solve the problems
of out-of-vocabulary and word segmentation errors,
a self-attention mechanism is introduced into the
BiLSTM-CREF neural network structure to compute
similarity on the total sequence consisted of char-
acters and words (Chang et al., 2020). Instead of
direct transfer from a source-learned model to a
target language while further solving the problem
of insufficient data, meta-learning was introduced
into Chinese NER. (Wu et al., 2020) utilized a few

similar examples to fine-tune the learned model
in which a meta-learning algorithm is used to get
model parameter initialization. In general, many
works show good performance, but problems such
as new words and insufficient data still exist.

2.3 Meta-Learning

Different from traditional transfer learning, meta-
learning aimed at the model’s learning capacity and
the obtained general model solve new domain prob-
lems by the experiences across other various but
data limited domains just like human beings. With
its advantages of low resource and strong adaptabil-
ity, it has become one of the most potential fields of
deep learning recently that achieved great success
in image classification (Koch et al., 2015), demand
prediction (Shi et al., 2020), and reinforcement
learning (Finn et al., 2017). There are metric-based
models (Strubell et al., 2017), memory-based mod-
els (Ravi and Larochelle, 2016), and optimization-
based models (Finn et al., 2017) in the pioneering
meta-learning studies (Huisman et al., 2021), and
we adopted the last one, namely learning adapt-
able initial parameters of a model. The popular
optimization-based technique MAML (Huisman
et al., 2021) and the pre-train model were incorpo-
rated to address the Chinese NER problems in this

paper.
24 MAML

MAML proposed a meta-learner and a target-
learner, and the gradients that meta-learner accu-
mulated were utilized to update the target learner’s
gradient. The bilevel optimization strategy of the
gradient helped the meta-task with limited data a
lot. However, other than neural machine transla-
tion (Gu et al., 2018), query generation (Huang
et al., 2018) and dialog tasks (Qian and Yu, 2019),
there is a limited concentration at such strategies
applied in natural language processing. And the
applications of MAML are merely at the begin-
ning in the NER field. (Wu et al., 2020) first
implemented a cross-lingual NER method based
on MAML and achieved SOTA performance over
five target languages. Another successful attempt
is MetaNER (Li et al., 2020b), a MAML based
approach that also demonstrated that the in-domain
results could be achieved using only a third of the
target data. (Li et al., 2020a) improved MAML in
adapting to target tasks with fewer gradient steps
via intra-domain, cross-domain and cross-domain
three cross-type training.
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Figure 1: An overview of DAML, which consists of a data augmentation process and a maml training process .
During augmentation process, a GPT-2 generation model is used to augment data sets.

2.5 Data Augmentation

Recent works always focused on back transla-
tion (Sennrich et al., 2015) and auto augmenta-
tion (Cubuk et al., 2018) methods including syn-
onym substitution, random insertion, and random
exchange, which generates new corpus by intro-
ducing noises or relying on additional knowledge
bases. More recently, (Ding et al., 2020) pro-
posed a novel data augmentation approach on NER
and POS tagging with the main idea that lineariz-
ing labeled sentences. Specifically, they inserted
the significant tag in front of the word physically
and obtained superior performance after an LSTM
based language generation model. Our method is in
line with the above approach that fuses both manual
labels and semantic information. The difference
is a pre-trained generation model was adopted to
obtain more abundant synthetic data with labeled
sentence linearization, making it more suitable for
Chinese datasets.

3 Methodology

NER problem can be seen as a sequence labelling
problem which refers to assigning labels or tags to
each element of a sequence being passed as an in-
put using an algorithm or machine learning model.
This sequence can be words of a sentence passed
in the same order as in the sentence. At training
steps, given Dy = {D1, Do, -+, DN}, where N
refers N low resources from different domains. For
each resource D,,, it has annotated raw text X, as
input and a corresponding domain-specific label
set Y} with the BIO schema. Meanwhile, for a
target task, which is unseen in training steps. Our
ultimate goal is to learn fast and get a good result
on the target dataset with low resources. In this

section, we present the general form of our algo-
rithm, and the approach we fusion MAML with
data augmentation.

3.1 Overview of DAML

Figure 1 shows an overview of our approach, which
consists of an augmentation step with the GPT-2
model and a training step with MAML. The main
purpose of our method is to learn initial parameters
based on various low-resource tasks, such that the
model can learn how to quickly solve new tasks
with only small training resources. Furthermore,
considering training phases with low resources D;.
DAML can (1) Produce good generalization per-
formance on a new task with a small amount of
training data. (2) Use low resources with similar
labels. Meanwhile, synthetic data using the lim-
ited datasets are generated beforehand and later
fed into MAML processes to train the model. In
addition, the N-way K-shot MAML mechanism
allows DAML to learn meta-knowledge and label
dependencies from the learning experience across
many different low-resource tasks that share the
same labels.

In our scenario, we want our model to be able to
get a tag sequence Y}, for a raw text input dataset
which only providing a few labeled examples for
each entity class. In MAML’s K-shot learning set-
ting, new tasks with low resources are first aug-
mented by a pre-trained GPT-2 generation model.
More specifically, it first linearizes labeled sen-
tences, and a pre-trained language model can be
used to learn the distribution of words and tags to
generate synthetic training data for the next step.
During meta-training, our base model is trained
with K samples which contained augmented data
and feedback from a corresponding Loss Ly, and
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Figure 2: An overview of BERT-CRF constructure.

then the model can improve by the test error. At the
end of meta-training, target tasks are augmented
by GPT-2 model as well, and meta-performance is
measured by the model’s performance after learn-
ing from K samples. Generally, each task used for
meta-testing is held out during meta-training.

3.2 Base Model

Some works have been done with Bert-BiLSTM-
CRF which replaces the full connectivity layer in
the Bert-CRF with the BILSTM layer. However, it
shows that there was no significant performance dif-
ference between Bert-BiLSTM-CRF and Bert-CRFE.
Besides the network structure of Bert-BiLSTM-
CRF takes more resources on the computation. So,
in this section, we first give a brief introduction to
the BERT-CRF model, which we leverage as the
base model in our approach. It produces a clear
base structure for the deep learning NER model
and it has shown great improvements across vari-
ous NLP tasks. Figure 2 gives an overview of deep
learning-based NER structure. Basically, the struc-
ture is mainly divided into two parts, the first part
is the BERT structure, with the BERT pre-training
language model, each word in the input sentence
is converted into a low-dimensional vector form.
The second part is the CRF structure, which aims
to solve the dependency between the output tags to
obtain the global optimal annotation sequence of
the text.

We start with BERT (Devlin et al., 2018), or
Bidirectional Encoder Representations from Trans-
formers here. BERT is a language model learned
with the transformer encoder (Vaswani et al., 2017).
It reads the input sequence at once and is effective
in automatically learning useful representations
and underlying factors from raw data. BERT uses
masked language models to enable pre-trained deep

bidirectional representations. Given a sentence in-
put, we first use character-based tokenization for
Chinese input and then comprise corresponding
position embeddings, segment embeddings, and to-
ken embeddings as an input representation. All the
embeddings will be fine-tuned during the training
process. At the output, the low-dimensional vector
token representations are fed into the CRF layer for
sequence labeling.

There are two phases of model training: pre-
training and fine-tuning. For the pre-training phase,
this model directly loads BERT-Base-Chinese, a
pre-trained model from google which is pre-trained
base on entire Chinese Wikipedia 25M sentences,
raw text without formatting. The structure of the
model has 12-layer, 768-hidden, 12-heads, and
110M parameters. In fine-tuning phase, we sim-
ply train the BERT model with specific inputs and
outputs and fine-tune all the parameters end-to-end.

We use the CRF (Lafferty et al., 2001) layer
as tag decoders. CRF combines the advantage of
graphical modeling and takes the previous context
into account when making multivariate output pre-
dictions. A CRF layer has a state transition matrix
as parameters. With such a layer, we can efficiently
use past and future tags to predict the current tag.
The probability distribution for CRF can be defined
as:

1
P(Z/l, R

ayn‘X) = (X)
—1

exp(h(y1|X)+

n

[9(Yks Yr+1) + D(Yr11]X))]

k=1

D
where Z(x) is a normalization factor over all
possible tags of x, and h(yy|X) indicates the prob-
ability y;. of the tag at position k£ which is calcu-
lated by the previous softmax layer. g(yg, Yr+1) is
the transition probability of a tag from states yy, to
Yk+1-10 apply Maximum Likelihood on the neg-
ative log function —logP(y1,y2, -+ ,yn]|X), we
will take the argmin and lean the transition proba-

bility.

3.3 Data Augmentation

Retained the label linearization part in (Ding et al.,
2020), pre-processed operations are illustrated
in Figure 3, in which paired < tok!,tag' ><
tok?,tag’? > --- is converted into a line <
tag',tok!, tag® tok?,--- > with deleting all the
“0O” tags and inserting the remaining valid tags
starting with “B-" or “I-” before the correspond-



ing characters. After adding special tokens (<
BOS > and < EOS >) to the beginning and
the end of each sentence, all the sentences were
tokenized before feeding into the model. Given
that the transformer decoder-based Generative Pre-
Training (GPT) model performs better on long text
as have been extensively reported (Radford and
Narasimhan, 2018; Radford et al., 2019), the pre-
processed corpus was put into the GPT-2 model for
training and generating. The architecture of GPT-
2 small is shown in Figure 3 with 12-decoders.
The implementation of the GPT model mainly de-
pends on predicting the next character with only
one ‘“Masked Multi Self Attention” block before
the “Feed Forward” block in each decoder. For
training, two main stages, pre-train and fine-tune
are implemented successively with object functions
shown as formula 2 where i is set to 1 and 2 cor-
respondings to pre-train and fine-tune respectively.
For both large-scale pre-train datasets C'; and our
own fine-tune labeled datasets C', the current word
y was predicted via m words before it. In pre-train,
only L, is optimized with the large-scale unsuper-
vised datasets. Taking both I; and Lo into account,
the weight parameter A was set, and L., wWas
calculated as the fine-tune basis for optimization.
In this paper, we adopted the GPT-2 model with
24 layers and 345 million parameters and set the
embedding size to 1024.

Li(Cy) = Z logP(y|z1,x2, ..., Tp),i = 1,2
(zy)

2

Liotai(C) = L1(C1) + Ax La(Ca)  (3)
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Figure 3: Illustration of Data augmentation with the
pre-process pipeline and the augmentation model.

34 MAML

In this section, we describe the detail of the MAML
approach. The MAML strategy consists of two
core phases: a meta-training phase and a meta-
adapting phase. First, we elaborate on the meta-
training phase and how we set our MAML training
tasks up. In effect, augmented data sets are used
to enhance the performance of the model in this
meta-training process. Then, we describe how to
adapt the learned model to the final target task,
also known as the meta-adapting phase. The whole
process is shown in Algorithm1.

Algorithm 1 Training and Adapting DAML

1: META-TRAINING
2: Input: Dy = {Dy,Ds,---,Dn}, «, 3, base
model Initialize parameters 6.
3: Output: base model parameters 6*.
4: Initialize a deep copy model with the pre-
trained base model M.
5: while not done do
6:  Sample batch of source training data D;
from Dy.
for All D; do
Evaluate VL, ( fg) with respect to N ex-
amples’ evaluation data.
9: Compute adapted parameters with gradi-
ent descent: 9; =0 —aVoLr,(fp)
10:  end for

11:  Aggregate gradient de-
scent: mamlgradient =
BV6 2 po~py L. (fy)

12: end while
13: Update base model’s parameter § with MAML
gradient.

3.4.1 Meta-training Phase

Formally, we divide our data sets into meta-training
data sets D, the low resources we use to improve
our model performance, and final target data sets
T}, the target data we want our model to be able
to adapt to. For each data set, it has been split
into training parts and evaluation parts. In our sce-
nario, consider the base NER model denoted as
fo with parameters 6. In the meta-training phase,
our approach is going to learn adaptation param-
eters from the meta-training tasks and its associ-
ated dataset (D j)pqin, D(ijtest). The parameters
of the temporary model are adapted by AdamW
with one or more steps. To achieve a good general-



ization across a variety of tasks, the model would
like to find the optimal 8* so that the task-specific
fine-tuning is more efficient. The loss, denoted as
L1,(fg)), depends on the tasks.

3.4.2 Meta-adapting Phase

After meta-training, the model has already learned
a model with parameters §* with the meta-training
domains D,. The meta-adapting phase tries to
learn the distribution between the source domains
Dtr and simulated target domains D,,,; using the
learned temporary model. It mimics the process of
the temporary model being adapted to unseen do-
mains. More specifically, the outer meta-validation
loss is computed on the task T} from the meta-
validation domains Dyq; by Lq;-

4 Experiment

In this section, we first describe our experimental
settings. Then, we present our experiment details
for the approach used in this paper. Finally, we
detail the result on the MSRA dataset and give
a comparison for experiments based on various
amounts of augmentation data.

4.1 Data Sets

We evaluated the effectiveness of our method
on subsets of six wide used Chinese datasets,
MSRANER (Levow, 2006), PeopleDairyNERl,
CLUENER (Xu et al., 2020), WeiboNER (Peng
and Dredze, 2015), Resume NER (Zhang and
Yang, 2018) and BOSONNER (Min et al., 2015),
with longer sentences and context-dependent se-
mantics as well, which originated from the newspa-
per, social media, news, commentary, and financial
domains. In particular, in order to verify the effec-
tiveness of our method in the Fewshot scenario, the
number of sub-datasets of this article is 2000 (all if
less than 2000).

4.2 Implementation Details

To verify the effectiveness of our method in
the supervised datasets, we set MSRANER as
the target data set. For the base model, we
fine-tune on MSRANER data set based on bert
opensource model. At the same time, we fine-tune
PeopleDairyNER, CLUENER, WeiboNER,
and Resume NER four open datasets(we call
them training sets in the following parts of the
paper.) without any augmented data based on

"https://github.com/zjy-ucas/ChineseNER

bert opensource model as our "Pre-Train" model.
After that, we augment training sets with 50%
more amount of sentences with LSTM model and
GPT-2 model to fine-tune bert opensource model
in both MAML training steps and model fine-tune
process as "GPT2+MAML", "LSTM+Pre-Train"
and "GPT2+Pre-Train". Next, we augment
0%,25%,50%,75%,100% amount of MSRANER
training sentences with LSTM model and GPT-2
model to show the final comparison. As mentioned
above, 2000 sentences are randomly split from the
original development and test data to verify our
methods.

The total experiments used the same hyper-
parameters. The models were trained using
the AdamW optimizer with a bert learning rate
of 3e — 5 and a CREF learning rate of le — 3.
mMx sequence’s length for training data is 128
and 512 for evaluating data. And for MAML
processes, we used « = 0.99 and 3 = 0.99 as well.

We wuse exact match to evaluate our
precision/recall/f1-score result where roughly
describing precision is the percentage of correct
named-entities found by the NER system, and
recall is the percentage of the named-entities in the
golden annotations that are retrieved by the NER
system. The formula is shown as follows:

i TP
recitsion = TP + FP
TP
Recall = ——
U= TPYEN

Fl— 2 x Precision * Recall

Precision + Recall
4.3 Experimental Results

We report the f1 results of 7 approaches in Table
1. Our method shows consistent performance im-
provement for GPT-2 model and MAML combined
approach, especially for the smaller sampled sets.
For details, firstly, compared with the base model,
all other methods show advantages which show ad-
vantages for the combination of out-domain and
in-domain information. Secondly, compared with
the LSTM augmentation method, the GPT2 aug-
mentation method shows advantages. Thirdly, com-
pared with Pre-Train and augmentation method,
MAML and augmentation method shows advan-
tages. At last, with GPT-2 augmentation in MAML



Methods Datasets | 0% 25% | 50% | 75% | 100%

Base MSRA | 0.857 - - - -
LSTM+Pre-Train+LSTM | MSRA | 0.860 | 0.870 | 0.881 | 0.875 | 0.870
GPT2+Pre-Train+GPT2 | MSRA | 0.902 | 0.909 | 0.910 | 0.918 | 0.913
GPT2+MAMLA+GPT?2 MSRA | 0.909 | 0.912 | 0.917 | 0.921 | 0.915
Pre-Train+LSTM MSRA | 0.869 | 0.867 | 0.867 | 0.879 | 0.887
Pre-Train+GPT?2 MSRA | 0.899 | 0.904 | 0.904 | 0.909 | 0.900
MAMLA+GPT?2 MSRA | 0.907 | 0.906 | 0.913 | 0.913 | 0.901

Table 1: Experiments Results for datasets of MSRA, People’s Daily, Weibo, Resume and CLUE. Seven methods are

listed with 0%,25%, 50%,75% and 100% datasets.

and Pre-Train stage show advantages when com-
pared with augmentation only in fine-tune stage.
Augmentation with the LSTM model shows dis-
advantages when added in MAML and Pre-Train
stage, for the effectiveness of the augmentation
quality. Especially, we conduct "Pre-Train+GPT2"
and "MAMLA+GPT2" models to test the BOSON-
NER data set, the f1 scores are 0.684 and 0.761
which verifies the effectiveness of the GPT-2 model
and MAML combined approach.

5 Conclusion

In this paper, we have shown that the fusion of
data augmentation and MAML work well in the
NER task. Besides, our method takes full use of
out-domain and in-domain information which can
apply to low-resource tasks. Continued work can
be focused on high-quality data augmentation meth-
ods. We hope that DAML will encourage future
research to transfer advanced for different tasks.
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