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Abstract

Overfitting is still a common problem in NER001
with insufficient data. Latest methods such002
as Transfer Learning, which focuses on stor-003
ing knowledge gained while solving one task004
and applying it to a different but related task,005
or Model-Agnostic Meta-Learning (MAML),006
which learns a model parameter initialization007
that generalizes better to similar tasks. How-008
ever, these methods still need rich resources to009
pre-train. In this work, we present new perspec-010
tives on how to make the most of in-domain and011
out-domain information. By introducing a fu-012
sion method of data augmentation and MAML,013
we first use data augmentation to mine more014
information. With the augmented resources,015
we directly utilize out-domain and in-domain016
data with MAML, while avoiding performance017
degradation after domain transfer. To further018
improve the model’s generalization ability, we019
proposed a new data augmentation method020
based on a generative approach. We conduct021
experiments on six open Chinese NER datasets022
(MSRANER, PeopleDairyNER, CLUENER,023
WeiboNER, Resume NER, and BOSONNER).024
The results show that our method significantly025
reduces the impact of insufficient data and out-026
performs the state-of-the-art.027

1 Introduction028

NER is one of the common problems in Natural029

Language Processing(NLP), which aims at divid-030

ing the elements in text into predefined categories,031

such as person names, place names, organizations,032

or any other classes of interest. Despite being con-033

ceptually simple, NER is not an easy task. In re-034

cent years, papers applying deep neural networks035

(DNNs) to the task of NER have successively ad-036

vanced the state-of-the-art (SOTA) (Huang et al.,037

2015; Lample et al., 2016; Ma and Hovy, 2016;038

Chiu and Nichols, 2016; Peters et al., 2017, 2018).039

However, the more parameters you want the model040

to learn or as complex as the problem at hand so041

does the data required for training increase. Oth- 042

erwise, the problem of having more dimensions 043

yet small data results in over-fitting. For instance, 044

on the OntoNotes-5.0 English dataset, whose train- 045

ing set contains 1,088,503 words, a DNN model 046

outperforms the best shallow model by 2.24% as 047

measured by F1 score (Chiu and Nichols, 2016). 048

On the other hand, for comparatively small CoNLL- 049

2003 English dataset, whose training set contains 050

203,621 words, the best DNN model enjoys only 051

a 0.4% advantage. To make deep learning more 052

broadly useful, it is crucial to reduce its training 053

data requirements. Generally, the annotation bud- 054

get for labeling is far less than the total number of 055

available (unlabeled) samples. For NER, getting 056

unlabeled data is practically free. However, when 057

facing customrized labels, it is especially expensive 058

to obtain annotated data for NER since it requires 059

multi-stage pipelines with sufficiently well-trained 060

annotators (Kilicoglu et al., 2016; Bontcheva et al., 061

2017). 062

In such cases, many methods are introduced to 063

tackle this problem. Data augmentation methods 064

explored for NER tasks differ from NLP tasks, ei- 065

ther create augmented instances by manipulating 066

a few words in the original instance, such as label- 067

wise token replacement (Dai and Adel, 2020), men- 068

tion replacement, and using neural generative net- 069

work (Ding et al., 2020). Despite data augmenta- 070

tion can help extend the amount of data, it still has 071

a limited effect on low-resource data sets. Adapting 072

the meta-learning approach (Finn et al., 2017) to 073

NER can transfer rich-resource domain knowledge 074

to the low-resource domain. However, it not only 075

needs two domains that are relevant but also needs 076

a rich-resource domain to train the model. 077

In this paper, we use the recently proposed 078

MAML approach (Finn et al., 2017) and extend it 079

with neural generative data augmentation methods 080

to open Chinese data sets. We selected parts of data 081

from few open Chinese data sets to simulate low- 082
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resource domain, and firstly propose a neural net-083

work augmentation method to extend low-resource084

domain data sets, after that, we use a meta-learning085

algorithm to find a good model parameter initial-086

ization with those extended open data sets and that087

could fast adapt to new tasks. When it comes to088

the adaptation phase, we regard each test example089

as a new task, build a pseudo training set with data090

augmentation for it, and fine-tune the meta-trained091

model before testing.092

To summarize our contributions:093

• We propose a meta-learning-based approach094

to tackle Chinese NER with minimal re-095

sources.096

• We propose an augmentation before the meta-097

learning approach to augment low-resource098

training datasets. To our best knowledge, this099

is the first successful attempt in adapting data100

augmentation with meta-learning in Chinese101

NER.102

• We evaluate our approach over 5 open Chi-103

nese data sets target languages, which cross104

different source domains. We show that the105

proposed approach significantly outperforms106

existing SOTA methods across the board.107

2 Related Work108

In this section, we review related work in three109

parts: NER, meta-learning, and data augmentation.110

2.1 NER111

Generally, NER technology is divided into three112

stages according to the technological develop-113

ment path: early methods (Sekine and Nobata,114

2004)(based on rules and dictionaries), traditional115

machine learning methods (Morwal and Chopra,116

2013; Mccallum and Wei, 2003), and deep learn-117

ing methods (Li et al., 2020c). We will mainly118

introduce the research progress of deep learning in119

NER and focus on recent research trends. When it120

comes to deep learning, better performance, higher121

efficiency, and lower transfer cost are the advan-122

tages, which are mainly due to its powerful feature123

representation capability. Deep learning models124

can automatically learn features that require man-125

ual design in traditional methods, which greatly126

reduces the effort of designing features. At the127

same time, innovations in the architecture of deep128

learning methods in other applications can often129

be applied to current tasks and achieve good re- 130

sults. Components of NER architecture based on 131

deep learning include data representation, context 132

encoder, and tag decoder. In data representation, 133

although one-hot encoding is simple and effec- 134

tive, the representation vector is extremely sparse 135

and difficult to optimize. At present, the word- 136

embedding method is more commonly used, which 137

considers contextual semantic information while 138

avoiding the curse of dimensionality. And there 139

are many open-source word vector models, such as 140

Google Word2Vec (Mikolov et al., 2013), Stanford 141

GloVe (Pennington et al., 2014), etc., which can 142

be used to improve efficiency even performance. 143

Certainly, you can choose whether to train yourself 144

(Yao et al., 2015) or to use open-source (Shen et al., 145

2017). In addition, in order to solve the problem of 146

new word characterization, (Ma and Hovy, 2016) 147

incorporates character-level characterization meth- 148

ods into word vector characterization. In context 149

encoder, three typical networks are convolutional 150

neural network (CNN), recurrent neural network 151

(RNN), and recursive neural networks. The ad- 152

vantage of CNN is that training and testing are 153

faster when compared with others (Strubell et al., 154

2017). However, RNN has natural advantages and 155

can learn contextual information. At the same time, 156

the LSTM (Hochreiter and Schmidhuber, 1997) 157

and GRU (Yang et al., 2016) architectures can 158

partially solve the problem of efficiency. Unfor- 159

tunately, CNN and RNN are not good at dealing 160

with ambiguity problems. At this time, the recur- 161

sive neural network worked. (Li et al., 2017) in- 162

troduced a recursive neural network to learn deep 163

structured information, the phrase structures of sen- 164

tences. In tagger decoder, MLP+Softmax (Akbik 165

et al., 2018) is introduced when the NER task is re- 166

garded as a multi-class classification problem. And 167

the most commonly used and optimal method in 168

NER is based on the Conditional Random Field 169

(CRF) model (Zhai et al., 2017). In addition, RNN 170

(Shen et al., 2017) and its variants such as pointer 171

network (Vinyals et al., 2015) are also used as NER 172

decoders. (Shen et al., 2017) pointed out that when 173

there are many types of entities, RNN is better and 174

more efficient than CRF. (Zhang and Yang, 2018) 175

uses a pointer network for sequence labeling tasks 176

and performs segmentation and labeling functions 177

at the same time. 178
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2.2 Chinese NER179

In the NER task, Chinese is more difficult and180

more challenging due to its own characteristics181

compared with other languages such as English,182

Spanish, French, German, Japanese, and so on.183

Difficulties lie in (1) there is no explicit boundary184

identifiers similar to English space which requires185

word segmentation, another extremely challenging186

task; (2) Special English entities may appear in187

Chinese entity types; (3) The proportion of new188

words is constantly increasing, and the old labeled189

corpus is difficult to meet the demand; (4) There190

are many ambiguities and it is difficult to disam-191

biguate. In recent years, Chinese NER technology192

has also achieved some results, especially based193

on deep learning methods. Lexicon is one of the194

commonly used methods. (Zhang and Yang, 2018)195

investigated a lattice-structured LSTM model to196

encode input characters and all potential words ob-197

tained from a lexicon that explicitly leverages word198

and word sequence information. A lexicon-based199

neural graph network with global semantics is in-200

troduced by (Gui et al., 2019) to solve the problem201

of word ambiguities. For efficiency issues, (Ma202

et al., 2019) designed a simple but effective method203

for any neural NER model which requires only sub-204

tle adjustment of the character representation layer205

to introduce the lexicon information. Attention206

mechanism, transfer learning, multi-task learning,207

etc. are also used alone or in combination. (Cao208

et al., 2018) proposed a novel adversarial transfer209

learning framework to make full use of task-shared210

boundaries information and exploit self-attention211

to explicitly capture long-range dependencies be-212

tween two tokens. (Zhu et al., 2019) introduced213

a convolutional attention network to capture con-214

text information by the local-attention layer and a215

global self-attention layer. In order to adapt limited216

data, (Dong et al., 2019) presented a novel mul-217

titask bi-directional RNN model combined with218

deep transfer learning to get transferring knowl-219

edge and data augmentation. To solve the problems220

of out-of-vocabulary and word segmentation errors,221

a self-attention mechanism is introduced into the222

BiLSTM-CRF neural network structure to compute223

similarity on the total sequence consisted of char-224

acters and words (Chang et al., 2020). Instead of225

direct transfer from a source-learned model to a226

target language while further solving the problem227

of insufficient data, meta-learning was introduced228

into Chinese NER. (Wu et al., 2020) utilized a few229

similar examples to fine-tune the learned model 230

in which a meta-learning algorithm is used to get 231

model parameter initialization. In general, many 232

works show good performance, but problems such 233

as new words and insufficient data still exist. 234

2.3 Meta-Learning 235

Different from traditional transfer learning, meta- 236

learning aimed at the model’s learning capacity and 237

the obtained general model solve new domain prob- 238

lems by the experiences across other various but 239

data limited domains just like human beings. With 240

its advantages of low resource and strong adaptabil- 241

ity, it has become one of the most potential fields of 242

deep learning recently that achieved great success 243

in image classification (Koch et al., 2015), demand 244

prediction (Shi et al., 2020), and reinforcement 245

learning (Finn et al., 2017). There are metric-based 246

models (Strubell et al., 2017), memory-based mod- 247

els (Ravi and Larochelle, 2016), and optimization- 248

based models (Finn et al., 2017) in the pioneering 249

meta-learning studies (Huisman et al., 2021), and 250

we adopted the last one, namely learning adapt- 251

able initial parameters of a model. The popular 252

optimization-based technique MAML (Huisman 253

et al., 2021) and the pre-train model were incorpo- 254

rated to address the Chinese NER problems in this 255

paper. 256

2.4 MAML 257

MAML proposed a meta-learner and a target- 258

learner, and the gradients that meta-learner accu- 259

mulated were utilized to update the target learner’s 260

gradient. The bilevel optimization strategy of the 261

gradient helped the meta-task with limited data a 262

lot. However, other than neural machine transla- 263

tion (Gu et al., 2018), query generation (Huang 264

et al., 2018) and dialog tasks (Qian and Yu, 2019), 265

there is a limited concentration at such strategies 266

applied in natural language processing. And the 267

applications of MAML are merely at the begin- 268

ning in the NER field. (Wu et al., 2020) first 269

implemented a cross-lingual NER method based 270

on MAML and achieved SOTA performance over 271

five target languages. Another successful attempt 272

is MetaNER (Li et al., 2020b), a MAML based 273

approach that also demonstrated that the in-domain 274

results could be achieved using only a third of the 275

target data. (Li et al., 2020a) improved MAML in 276

adapting to target tasks with fewer gradient steps 277

via intra-domain, cross-domain and cross-domain 278

three cross-type training. 279
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Figure 1: An overview of DAML, which consists of a data augmentation process and a maml training process .
During augmentation process, a GPT-2 generation model is used to augment data sets.

2.5 Data Augmentation280

Recent works always focused on back transla-281

tion (Sennrich et al., 2015) and auto augmenta-282

tion (Cubuk et al., 2018) methods including syn-283

onym substitution, random insertion, and random284

exchange, which generates new corpus by intro-285

ducing noises or relying on additional knowledge286

bases. More recently, (Ding et al., 2020) pro-287

posed a novel data augmentation approach on NER288

and POS tagging with the main idea that lineariz-289

ing labeled sentences. Specifically, they inserted290

the significant tag in front of the word physically291

and obtained superior performance after an LSTM292

based language generation model. Our method is in293

line with the above approach that fuses both manual294

labels and semantic information. The difference295

is a pre-trained generation model was adopted to296

obtain more abundant synthetic data with labeled297

sentence linearization, making it more suitable for298

Chinese datasets.299

3 Methodology300

NER problem can be seen as a sequence labelling301

problem which refers to assigning labels or tags to302

each element of a sequence being passed as an in-303

put using an algorithm or machine learning model.304

This sequence can be words of a sentence passed305

in the same order as in the sentence. At training306

steps, given Ds = {D1, D2, · · · , DN}, where N307

refers N low resources from different domains. For308

each resource Dn, it has annotated raw text Xk as309

input and a corresponding domain-specific label310

set Yk with the BIO schema. Meanwhile, for a311

target task, which is unseen in training steps. Our312

ultimate goal is to learn fast and get a good result313

on the target dataset with low resources. In this314

section, we present the general form of our algo- 315

rithm, and the approach we fusion MAML with 316

data augmentation. 317

3.1 Overview of DAML 318

Figure 1 shows an overview of our approach, which 319

consists of an augmentation step with the GPT-2 320

model and a training step with MAML. The main 321

purpose of our method is to learn initial parameters 322

based on various low-resource tasks, such that the 323

model can learn how to quickly solve new tasks 324

with only small training resources. Furthermore, 325

considering training phases with low resources Ds. 326

DAML can (1) Produce good generalization per- 327

formance on a new task with a small amount of 328

training data. (2) Use low resources with similar 329

labels. Meanwhile, synthetic data using the lim- 330

ited datasets are generated beforehand and later 331

fed into MAML processes to train the model. In 332

addition, the N-way K-shot MAML mechanism 333

allows DAML to learn meta-knowledge and label 334

dependencies from the learning experience across 335

many different low-resource tasks that share the 336

same labels. 337

In our scenario, we want our model to be able to 338

get a tag sequence Yk for a raw text input dataset 339

which only providing a few labeled examples for 340

each entity class. In MAML’s K-shot learning set- 341

ting, new tasks with low resources are first aug- 342

mented by a pre-trained GPT-2 generation model. 343

More specifically, it first linearizes labeled sen- 344

tences, and a pre-trained language model can be 345

used to learn the distribution of words and tags to 346

generate synthetic training data for the next step. 347

During meta-training, our base model is trained 348

with K samples which contained augmented data 349

and feedback from a corresponding Loss Lk, and 350

4



Figure 2: An overview of BERT-CRF constructure.
.

then the model can improve by the test error. At the351

end of meta-training, target tasks are augmented352

by GPT-2 model as well, and meta-performance is353

measured by the model’s performance after learn-354

ing from K samples. Generally, each task used for355

meta-testing is held out during meta-training.356

3.2 Base Model357

Some works have been done with Bert-BiLSTM-358

CRF which replaces the full connectivity layer in359

the Bert-CRF with the BiLSTM layer. However, it360

shows that there was no significant performance dif-361

ference between Bert-BiLSTM-CRF and Bert-CRF.362

Besides the network structure of Bert-BiLSTM-363

CRF takes more resources on the computation. So,364

in this section, we first give a brief introduction to365

the BERT-CRF model, which we leverage as the366

base model in our approach. It produces a clear367

base structure for the deep learning NER model368

and it has shown great improvements across vari-369

ous NLP tasks. Figure 2 gives an overview of deep370

learning-based NER structure. Basically, the struc-371

ture is mainly divided into two parts, the first part372

is the BERT structure, with the BERT pre-training373

language model, each word in the input sentence374

is converted into a low-dimensional vector form.375

The second part is the CRF structure, which aims376

to solve the dependency between the output tags to377

obtain the global optimal annotation sequence of378

the text.379

We start with BERT (Devlin et al., 2018), or380

Bidirectional Encoder Representations from Trans-381

formers here. BERT is a language model learned382

with the transformer encoder (Vaswani et al., 2017).383

It reads the input sequence at once and is effective384

in automatically learning useful representations385

and underlying factors from raw data. BERT uses386

masked language models to enable pre-trained deep387

bidirectional representations. Given a sentence in- 388

put, we first use character-based tokenization for 389

Chinese input and then comprise corresponding 390

position embeddings, segment embeddings, and to- 391

ken embeddings as an input representation. All the 392

embeddings will be fine-tuned during the training 393

process. At the output, the low-dimensional vector 394

token representations are fed into the CRF layer for 395

sequence labeling. 396

There are two phases of model training: pre- 397

training and fine-tuning. For the pre-training phase, 398

this model directly loads BERT-Base-Chinese, a 399

pre-trained model from google which is pre-trained 400

base on entire Chinese Wikipedia 25M sentences, 401

raw text without formatting. The structure of the 402

model has 12-layer, 768-hidden, 12-heads, and 403

110M parameters. In fine-tuning phase, we sim- 404

ply train the BERT model with specific inputs and 405

outputs and fine-tune all the parameters end-to-end. 406

We use the CRF (Lafferty et al., 2001) layer 407

as tag decoders. CRF combines the advantage of 408

graphical modeling and takes the previous context 409

into account when making multivariate output pre- 410

dictions. A CRF layer has a state transition matrix 411

as parameters. With such a layer, we can efficiently 412

use past and future tags to predict the current tag. 413

The probability distribution for CRF can be defined 414

as: 415

P (y1, · · · , yn|X) =
1

Z(X)
exp(h(y1|X)+ 416

n−1∑
k=1

[g(yk, yk+1) + h(yk+1|X)]

(1)

417

where Z(x) is a normalization factor over all 418

possible tags of x, and h(yk|X) indicates the prob- 419

ability yk of the tag at position k which is calcu- 420

lated by the previous softmax layer. g(yk, yk+1) is 421

the transition probability of a tag from states yk to 422

yk+1.To apply Maximum Likelihood on the neg- 423

ative log function −logP (y1, y2, · · · , yn|X), we 424

will take the argmin and lean the transition proba- 425

bility. 426

3.3 Data Augmentation 427

Retained the label linearization part in (Ding et al., 428

2020), pre-processed operations are illustrated 429

in Figure 3, in which paired < tok1, tag1 >< 430

tok2, tag2 > · · · is converted into a line < 431

tag1, tok1, tag2, tok2, · · · > with deleting all the 432

“O” tags and inserting the remaining valid tags 433

starting with “B-” or “I-” before the correspond- 434
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ing characters. After adding special tokens (<435

BOS > and < EOS >) to the beginning and436

the end of each sentence, all the sentences were437

tokenized before feeding into the model. Given438

that the transformer decoder-based Generative Pre-439

Training (GPT) model performs better on long text440

as have been extensively reported (Radford and441

Narasimhan, 2018; Radford et al., 2019), the pre-442

processed corpus was put into the GPT-2 model for443

training and generating. The architecture of GPT-444

2 small is shown in Figure 3 with 12-decoders.445

The implementation of the GPT model mainly de-446

pends on predicting the next character with only447

one “Masked Multi Self Attention” block before448

the “Feed Forward” block in each decoder. For449

training, two main stages, pre-train and fine-tune450

are implemented successively with object functions451

shown as formula 2 where i is set to 1 and 2 cor-452

respondings to pre-train and fine-tune respectively.453

For both large-scale pre-train datasets C1 and our454

own fine-tune labeled datasets C2, the current word455

y was predicted via m words before it. In pre-train,456

only L1 is optimized with the large-scale unsuper-457

vised datasets. Taking both L1 and L2 into account,458

the weight parameter λ was set, and Ltotal was459

calculated as the fine-tune basis for optimization.460

In this paper, we adopted the GPT-2 model with461

24 layers and 345 million parameters and set the462

embedding size to 1024.463

Li(Ci) =
∑
(x,y)

logP (y|x1, x2, ..., xm), i = 1, 2

(2)464

465

Ltotal(C) = L1(C1) + λ ∗ L2(C2) (3)466

Figure 3: Illustration of Data augmentation with the
pre-process pipeline and the augmentation model.

3.4 MAML 467

In this section, we describe the detail of the MAML 468

approach. The MAML strategy consists of two 469

core phases: a meta-training phase and a meta- 470

adapting phase. First, we elaborate on the meta- 471

training phase and how we set our MAML training 472

tasks up. In effect, augmented data sets are used 473

to enhance the performance of the model in this 474

meta-training process. Then, we describe how to 475

adapt the learned model to the final target task, 476

also known as the meta-adapting phase. The whole 477

process is shown in Algorithm1. 478

Algorithm 1 Training and Adapting DAML

1: META-TRAINING
2: Input: Ds = {D1, D2, · · · , DN}, α, β, base

model Initialize parameters θ.
3: Output: base model parameters θ∗.
4: Initialize a deep copy model with the pre-

trained base model Minit.
5: while not done do
6: Sample batch of source training data Di

from Ds.
7: for All Di do
8: Evaluate∇θLTi(fθ) with respect to N ex-

amples’ evaluation data.
9: Compute adapted parameters with gradi-

ent descent: θ
′
i = θ − α∇θLTi(fθ)

10: end for
11: Aggregate gradient de-

scent: mamlgradient =
β∇θ

∑
D0∼DN

LTi(fθ′i
)

12: end while
13: Update base model’s parameter θ with MAML

gradient.

3.4.1 Meta-training Phase 479

Formally, we divide our data sets into meta-training 480

data sets Ds, the low resources we use to improve 481

our model performance, and final target data sets 482

Tf , the target data we want our model to be able 483

to adapt to. For each data set, it has been split 484

into training parts and evaluation parts. In our sce- 485

nario, consider the base NER model denoted as 486

fθ with parameters θ. In the meta-training phase, 487

our approach is going to learn adaptation param- 488

eters from the meta-training tasks and its associ- 489

ated dataset (D(i)train, D(i)test). The parameters 490

of the temporary model are adapted by AdamW 491

with one or more steps. To achieve a good general- 492
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ization across a variety of tasks, the model would493

like to find the optimal θ∗ so that the task-specific494

fine-tuning is more efficient. The loss, denoted as495

LTi(fθ)), depends on the tasks.496

3.4.2 Meta-adapting Phase497

After meta-training, the model has already learned498

a model with parameters θ∗ with the meta-training499

domains Ds. The meta-adapting phase tries to500

learn the distribution between the source domains501

Dtr and simulated target domains Dval using the502

learned temporary model. It mimics the process of503

the temporary model being adapted to unseen do-504

mains. More specifically, the outer meta-validation505

loss is computed on the task Tj from the meta-506

validation domains Dval by Lval.507

4 Experiment508

In this section, we first describe our experimental509

settings. Then, we present our experiment details510

for the approach used in this paper. Finally, we511

detail the result on the MSRA dataset and give512

a comparison for experiments based on various513

amounts of augmentation data.514

4.1 Data Sets515

We evaluated the effectiveness of our method516

on subsets of six wide used Chinese datasets,517

MSRANER (Levow, 2006), PeopleDairyNER1,518

CLUENER (Xu et al., 2020), WeiboNER (Peng519

and Dredze, 2015), Resume NER (Zhang and520

Yang, 2018) and BOSONNER (Min et al., 2015),521

with longer sentences and context-dependent se-522

mantics as well, which originated from the newspa-523

per, social media, news, commentary, and financial524

domains. In particular, in order to verify the effec-525

tiveness of our method in the Fewshot scenario, the526

number of sub-datasets of this article is 2000 (all if527

less than 2000).528

4.2 Implementation Details529

To verify the effectiveness of our method in530

the supervised datasets, we set MSRANER as531

the target data set. For the base model, we532

fine-tune on MSRANER data set based on bert533

opensource model. At the same time, we fine-tune534

PeopleDairyNER, CLUENER, WeiboNER,535

and Resume NER four open datasets(we call536

them training sets in the following parts of the537

paper.) without any augmented data based on538

1https://github.com/zjy-ucas/ChineseNER

bert opensource model as our "Pre-Train" model. 539

After that, we augment training sets with 50% 540

more amount of sentences with LSTM model and 541

GPT-2 model to fine-tune bert opensource model 542

in both MAML training steps and model fine-tune 543

process as "GPT2+MAML", "LSTM+Pre-Train" 544

and "GPT2+Pre-Train". Next, we augment 545

0%,25%,50%,75%,100% amount of MSRANER 546

training sentences with LSTM model and GPT-2 547

model to show the final comparison. As mentioned 548

above, 2000 sentences are randomly split from the 549

original development and test data to verify our 550

methods. 551

552

The total experiments used the same hyper- 553

parameters. The models were trained using 554

the AdamW optimizer with a bert learning rate 555

of 3e − 5 and a CRF learning rate of 1e − 3. 556

mMx sequence’s length for training data is 128 557

and 512 for evaluating data. And for MAML 558

processes, we used α = 0.99 and β = 0.99 as well. 559

560

We use exact match to evaluate our 561

precision/recall/f1-score result where roughly 562

describing precision is the percentage of correct 563

named-entities found by the NER system, and 564

recall is the percentage of the named-entities in the 565

golden annotations that are retrieved by the NER 566

system. The formula is shown as follows: 567

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1 =
2 ∗ Precision ∗Recall
Precision+Recall

4.3 Experimental Results 568

We report the f1 results of 7 approaches in Table 569

1. Our method shows consistent performance im- 570

provement for GPT-2 model and MAML combined 571

approach, especially for the smaller sampled sets. 572

For details, firstly, compared with the base model, 573

all other methods show advantages which show ad- 574

vantages for the combination of out-domain and 575

in-domain information. Secondly, compared with 576

the LSTM augmentation method, the GPT2 aug- 577

mentation method shows advantages. Thirdly, com- 578

pared with Pre-Train and augmentation method, 579

MAML and augmentation method shows advan- 580

tages. At last, with GPT-2 augmentation in MAML 581
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Methods Datasets 0% 25% 50% 75% 100%
Base MSRA 0.857 - - - -

LSTM+Pre-Train+LSTM MSRA 0.860 0.870 0.881 0.875 0.870
GPT2+Pre-Train+GPT2 MSRA 0.902 0.909 0.910 0.918 0.913
GPT2+MAML+GPT2 MSRA 0.909 0.912 0.917 0.921 0.915

Pre-Train+LSTM MSRA 0.869 0.867 0.867 0.879 0.887
Pre-Train+GPT2 MSRA 0.899 0.904 0.904 0.909 0.900
MAML+GPT2 MSRA 0.907 0.906 0.913 0.913 0.901

Table 1: Experiments Results for datasets of MSRA, People’s Daily, Weibo, Resume and CLUE. Seven methods are
listed with 0%,25%, 50%,75% and 100% datasets.

and Pre-Train stage show advantages when com-582

pared with augmentation only in fine-tune stage.583

Augmentation with the LSTM model shows dis-584

advantages when added in MAML and Pre-Train585

stage, for the effectiveness of the augmentation586

quality. Especially, we conduct "Pre-Train+GPT2"587

and "MAML+GPT2" models to test the BOSON-588

NER data set, the f1 scores are 0.684 and 0.761589

which verifies the effectiveness of the GPT-2 model590

and MAML combined approach.591

5 Conclusion592

In this paper, we have shown that the fusion of593

data augmentation and MAML work well in the594

NER task. Besides, our method takes full use of595

out-domain and in-domain information which can596

apply to low-resource tasks. Continued work can597

be focused on high-quality data augmentation meth-598

ods. We hope that DAML will encourage future599

research to transfer advanced for different tasks.600
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