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Abstract
When applied to open-domain question answer-001
ing, large language models (LLMs) frequently002
generate incorrect responses based on made up003
facts, which are called hallucinations. Retrieval004
augmented generation (RAG) is a promising005
strategy to avoid hallucinations, but it does006
not provide guarantees on its correctness. To007
address this challenge, we propose the Trust-008
worthy Retrieval Augmented Question Answer-009
ing, or TRAQ, which provides the first end-to-010
end statistical correctness guarantee for RAG.011
TRAQ uses conformal prediction, a statistical012
technique for constructing prediction sets that013
are guaranteed to contain the semantically cor-014
rect response with high probability. Addition-015
ally, TRAQ leverages Bayesian optimization016
to minimize the size of the constructed sets.017
In an extensive experimental evaluation, we018
demonstrate that TRAQ provides the desired019
correctness guarantee while reducing predic-020
tion set size by 18.4% on average compared to021
an ablation.022

1 Introduction023

Large Language Models (LLMs) have achieved024

State-Of-The-Art (SOTA) results on many ques-025

tion answering (QA) tasks (OpenAI, 2023; Tou-026

vron et al., 2023a,b). However, in open-domain027

QA tasks where no candidate answers are pro-028

vided, LLMs have also been shown to confi-029

dently generate incorrect responses, called hallu-030

cinations (Ouyang et al., 2022; Kuhn et al., 2023).031

Hallucinations have already led to real-world con-032

sequences when end users rely on the accuracy of033

the generated text. As a consequence, there is an034

urgent need for techniques to reduce hallucinations.035

We propose a novel framework, Trustworthy Re-036

trieval Augmented Question Answering (TRAQ),037

summarized in Figure 1, that combines Retrieval038

Augmented Generation (RAG) (Guu et al., 2020;039

Lewis et al., 2021) with conformal prediction (Vovk040

et al., 2005; Shafer and Vovk, 2007; Park et al.,041

Figure 1: Using the standard retrieval augmented genera-
tion (RAG), the retrieved passage may not be relevant to
answering the question. In contrast, TRAQ uses confor-
mal prediction to guarantee both that the gold standard
passage is in the retrieved set with high probability, and
that a semantically correct answer is in the generated set
of answers with high probability. By composing these
two prediction sets, TRAQ guarantees that a semanti-
cally correct answer is in its set of answers with high
probability. Furthermore, it uses Bayesian optimization
to minimize the size of the prediction set.

2020; Angelopoulos and Bates, 2022) to provide 042

theoretical guarantees on question answering per- 043

formance. 044

RAG reduces hallucinations by retrieving pas- 045

sages from a knowledge base such as Wikipedia, 046

and then using an LLM to answer the question. If 047

the retrieved passages are relevant to the question, 048

the LLM can use this information to generate ac- 049

curate answers. However, RAG can fail for two 050

reasons: either the retrieved passage is not relevant 051

to the question, or the LLM generates the incorrect 052

answer despite being given a relevant passage. 053

To avoid these issues, TRAQ uses conformal 054

prediction, an uncertainty quantification technique 055

that modifies the underlying model to predict sets 056

of outputs rather than a single output. These predic- 057

tion sets are guaranteed to contain the true output at 058
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a user-specified rate, e.g., at least 90% of the time.059

In particular, TRAQ applies conformal prediction060

separately to the retrieval model (to obtain sets of061

retrieved passages guaranteed to contain the gold062

standard passage with high probability), and the063

generator (to obtain sets of answers that contain064

the true answer with high probability, assuming the065

gold standard passage is given). Then, TRAQ out-066

puts all possible answers for all possible retrieved067

passages. By a union bound, both these prediction068

sets are valid with high probability, establishing069

that the prediction set output by TRAQ contains070

the ground truth answer with high probability.071

A major challenge to this basic pipeline is that072

there may be many different ways of expressing073

the correct answer in natural language. For exam-074

ple, for the responses deep learning is a subset of075

machine learning and machine learning is a super-076

set of deep learning are different ways of express-077

ing the same meaning (Kuhn et al., 2023; Lin and078

Demner-Fushman, 2007). This diversity of possi-079

ble responses also makes prediction probabilities080

less reliable, since if an answer can be expressed081

in many different but equivalent ways, then the082

probabilities may be divided across these differ-083

ent responses, making them all smaller even if the084

model is confident it knows the correct answer.085

TRAQ addresses this challenge by modifying the086

notion of coverage to focus on semantic notions of087

uncertainty. In particular, TRAQ aggregates seman-088

tically equivalent answers across a large number089

of samples from the LLM, and uses the number of090

clusters of non-equivalent answers as a measure of091

uncertainty. This measure is used as a nonconfor-092

mity measure to construct prediction sets. Finally,093

the prediction sets are over clusters of equivalent094

answers rather than individual answers. This strat-095

egy also enables TRAQ to work for blackbox APIs096

such as GPT-3.5-Turbo, where predicted probabili-097

ties for individual tokens are unavailable.098

A second challenge is that the prediction sets099

can become very large since we are aggregating100

uncertainty across multiple components. This com-101

plexity introduces hyperparameters into TRAQ;102

while TRAQ guarantees correctness regardless of103

the choice of these hyperparameters, they can af-104

fect the performance of TRAQ in terms of the aver-105

age prediction set size. To address this challenge,106

TRAQ uses Bayesian optimization to minimize the107

set of the overall prediction sets it generates.108

We evaluate TRAQ in conjunction with several109

generative LLMs, including both GPT-3.5-Turbo-110

0613 and Llama-2-7B, on four datasets, including a 111

biomedical question answering dataset. Our experi- 112

ments demonstrate that TRAQ empirically satisfies 113

the coverage guarantee (i.e., the prediction set it 114

outputs contains a semantically correct answer with 115

the desired probability), while reducing the aver- 116

age prediction set size compared to an ablation by 117

18.4%. Thus, TRAQ is an effective strategy for 118

avoiding hallucinations in applications of LLMs to 119

open domain question answering. 120

Contributions. We offer the first conformal pre- 121

diction guarantees for retrieval augmented gener- 122

ation (RAG) targeted question answering. Our 123

framework, TRAQ, introduces a novel nonconfor- 124

mity measure that measures uncertainty for each 125

semantically distinct meaning and obtains a cover- 126

age guarantee at the semantic level. Furthermore, 127

TRAQ leverages Bayesian optimization to mini- 128

mize the average size of the generated prediction 129

sets. Finally, our experiments demonstrate that 130

TRAQ is effective at avoiding hallucinations in 131

open domain question answering. 132

2 Related Work 133

Retrieval for Open-Domain QA. A two-stage 134

approach is often used for open-domain question 135

answering (QA): first, a retriever is used to obtain 136

informative passages; and second, a generator pro- 137

duces answers based on the retrieved passages. A 138

popular choice for retrieval is the Dense Passage 139

Retriever (DPR) (Karpukhin et al., 2020b), which 140

measures similarity by taking the inner product of 141

the BERT (Devlin et al., 2019) embeddings of the 142

question and the passage. Other works (Lin and 143

Lin, 2022; Salemi et al., 2023; Lin et al., 2022; 144

Zhang et al., 2021) have improved the performance 145

of DPR and extended it to more diverse settings. 146

Retrieval Augmented Generation (RAG) (Lewis 147

et al., 2021) proposes to jointly finetune the re- 148

triever and the generator for QA tasks. 149

Conformal Prediction. Conformal predic- 150

tion (Vovk et al., 2005; Papadopoulos, 2008) is a 151

general distribution-free approach to quantifying 152

uncertainty for machine learning (ML) models. It 153

is based on a nonconformity measure (e.g., proba- 154

bilities predicted by an ML model) s : X ×Y → R 155

and a held-out calibration set B = {(xi, yi)}Ni=1 156

sampled i.i.d. from the data distribution D, as well 157

as a user-specified error level α. The prediction set 158
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for a testing data point Xtest is then constructed as159

C(Xtest) = {y ∈ Y | s(Xtest, y) ≤ τ}, (1)160

where τ is the ⌈(1−α)(N+1)⌉
N -th smallest score in161

{s(xi, yi)}Ni=1. Conformal prediction guarantees162

that the true labels are contained in the constructed163

prediction sets with probability at least 1− α:164

Theorem 1. Conformal Prediction Guarantee (An-165

gelopoulos and Bates, 2022, Theorem 1). Suppose166

{(xi, yi}Ni=1 and (Xtest, Ytest) are i.i.d. from D, and167

C(Xtest) is constructed by (1); then, we have168

Pr
(Xtest,Ytest)∼D

(Ytest ∈ C(Xtest)) ≥ 1− α. (2)169

170

We call this guarantee a coverage guarantee. An171

extension of conformal prediction is Probably Ap-172

proximately Correct prediction sets (Park et al.,173

2019) (PAC prediction set) or training-conditional174

conformal prediction (Vovk, 2012). Compared175

with vanilla conformal prediction, where the cov-176

erage guarantee holds on average, PAC prediction177

sets guarantee that coverage is satisfied with high178

probability given the current calibration set:179

Theorem 2. PAC Guarantee (Park et al., 2019,180

Theorem 1). Suppose {(xi, yi}Ni=1 and (Xtest, Ytest)181

are sampled i.i.d. from D, and C(Xtest) is con-182

structed via (4) in the Appendix; then, we have183

Pr
B∼Dn

[ Pr
(X,Y )∼D

(Ytest ∈ C(Xtest)) ≥ 1−α] ≥ 1−δ.184

185

Further details on conformal prediction and PAC186

prediction sets are in Appendices A.1 & A.2, re-187

spectively; a brief comparison between the two is188

given in Appendix A.3. Both vanilla conformal pre-189

diction and PAC prediction sets have been applied190

to deep learning (Park et al., 2019; Angelopoulos191

et al., 2020; Bates et al., 2021).192

Uncertainty Quantification for LLMs. Uncer-193

tainty quantification for Large Language Models194

(LLMs) has been gaining attention due to their hal-195

lucinations. A recent study (Kuhn et al., 2023)196

combined confidence calibration with natural lan-197

guage inference to measure the LLMs’ certainty198

in responding to an input question. However, this199

work does not guarantee the accuracy of the re-200

sponses. Other studies have applied conformal201

prediction to LLM predictions, mainly focusing on202

the multiple choice question answering problem203

and using vanilla conformal prediction to ensure 204

correctness (Kumar et al., 2023; Ren et al., 2023). 205

However, these methods necessitate a finite set of 206

labels, such as {True, False} or {A, B, C}, and can- 207

not be used for open-domain question answering. 208

A related work concurrent to ours is Quach et al. 209

(2023), which applies conformal prediction to open- 210

domain QA. However, they only consider the gen- 211

erator, whereas our approach provides conformal 212

guarantees for RAG. Furthermore, their approach 213

requires the generation probability from the LLM, 214

which is not available in many blackbox APIs. 215

3 The TRAQ Framework 216

TRAQ is composed of two steps. The first is the 217

Prediction Set Construction step, where a ques- 218

tion q is used to create a retrieval set CRet(q) for 219

the retriever, and a LLM set CLLM(q, p) for each 220

pair (question q, passage p). These sets are aggre- 221

gated into an Aggregation Set CAgg(q). The second 222

step is the Performance Improvement step, where 223

promising error budgets αRet and αLLM are sam- 224

pled from a Bayesian model. Using these budgets, 225

prediction sets are constructed on the optimization 226

set and evaluated for their performance. This pro- 227

cess is repeated N times, and the final output is the 228

error budgets αRet and αLLM with the highest per- 229

formance. The chosen hyperparameters are used 230

to construct prediction sets as in the first step us- 231

ing a separate held-out calibration set. The overall 232

TRAQ framework is summarized in Figure 2. 233

3.1 Assumptions 234

To construct provable prediction sets, we first make 235

three necessary assumptions: 236

Assumption I.I.D. For both the retrieval and LLM 237

tasks, the examples are drawn independently and 238

identically from the data distribution D. 239

Assumption Retriever Correctness. Given a ques- 240

tion q, the underlying retriever is able to retrieve 241

the most relevant passage p∗ within the top-K re- 242

trieved passages. 243

Assumption LLM Correctness. Given a question 244

q and its most relevant passage p∗, the LLM is able 245

to generate a semantically correct response within 246

the top-M samples. 247

Assumption I.I.D is a standard assumption from 248

the conformal prediction literature, and is needed 249

to apply conformal prediction algorithms (it can be 250

slightly relaxed to exchangeable distributions, but 251

we make the i.i.d. assumption for simplicity). 252
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(a) Prediction Set Construction (b) Performance Improvement

Figure 2: Given a question, TRAQ first constructs the retriever prediction; then, for every (question, contained
passage) pair, TRAQ constructs a LLM prediction on the LLM generated responses. Finally, LLM prediction
sets are aggregated as the final output. In Figure 2b, TRAQ takes in candidate error budgets from the Bayesian
optimization; it then constructs aggregated prediction sets on the optimization set. Next, the average semantic counts
in constructed sets are computed to update the Gaussian process model in Bayesian optimization.

Assumptions Retriever Correctness and LLM253

Correctness are needed to ensure that most relevant254

passages and semantically correct answers can be255

contained in the prediction sets if the prediction256

sets are sufficiently large. In principle, we can257

use very large values of K and M to satisfy this258

assumption, though there are computational and259

cost limitations in practice. We discuss ways to260

remove these assumptions in Section 7.261

3.2 Prediction Set Construction262

Retriever Set: To construct the retriever sets263

CRet, we use the negative inner product between the264

question q and the annotated most relevant passage265

p∗, denoted as Rq,p∗ , as the nonconformity mea-266

sures (NCMs). Given N such NCMs {s1, . . . , sN}267

in the calibration set and the error budget αRet for268

the retriever set , we construct the retriever set by269

CRet(q) = {p | −Rq,p ≤ τRet}, (3)270

where

τRet = Quantile

(
{sk}Kk=1;

⌈(K + 1)(1− αRet)⌉
K

)
.

Given this construction and Assumptions I.I.D and271

Assumption Retriever Correctness, the retriever272

sets are guaranteed to contain the most relevant273

passage with probability at least 1− αRet:274

Lemma 2.1. Suppose the questions q and their cor-
responding most relevant passage p∗ are sampled
from distribution Dpassage. Given the error budget
αRet, the retriever prediction sets satisfy

Pr
(q,p∗)∼DPassage

(p∗ ∈ CRet(q)) ≥ 1− αRet.

275

This result follows straightforwardly from Theo- 276

rem 1 and Assumptions I.I.D & Retriever Correct- 277

ness. We give a proof in Appendix B. 278

LLM Set: We utilize Monte Carlo sampling to 279

approximate confidences for different semantic 280

meanings; then, we use the approximated confi- 281

dences as the NCMs to construct LLM sets. Specif- 282

ically, for each (question, passage) pair, we ask 283

the LLM to generate M responses (M = 30 284

in our experiments). Given these responses, we 285

cluster them by their semantic meanings using 286

Rouge-score (Lin, 2004) or using BERT embed- 287

dings (Kuhn et al., 2023). After clustering, for 288

each cluster i, let Ni be the number of responses 289

in the cluster; we approximate the confidence of 290

i-th cluster by Ni/M . We then put the confidences 291

of semantically correct answers into the calibration 292

set {s1, . . . , sN}. Finally, given the error budget 293

for the LLM αLLM, we can utilize a similar process 294

as in (3) to construct LLM sets. The constructed 295

sets satisfy the following: 296

Lemma 2.2. Suppose the questions q, their cor-
responding most relevant passage p∗, and seman-
tically correct responses r∗ are sampled from dis-
tribution DResponse. Given error budget αLLM, if
Assumptions I.I.D & LLM Correctness hold, the
LLM sets satisfy

Pr
(q,p∗,r∗)∼DResponse

(r∗ ∈ CLLM(q, p
∗)) ≥ 1− αLLM.

297

The proof of Lemma 2.2 is similar to that of 298

Lemma 2.1; we give it in Appendix B. 299

Aggregated Set: To obtain an overall correctness 300

guarantee, we construct LLM sets for each passage 301
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contained in the retriever set. Then, we aggregate302

these individual LLM sets by removing duplicated303

and re-clustering semantic meanings. The resulting304

Aggregated set CAgg satisfies the following:305

Theorem 3. Suppose the questions q and seman-
tically correct responses r∗ are sampled from dis-
tribution D, and a user-specified error level α is
given. By aggregating retriever sets with error
budget αRet with LLM sets with error budget αLLM,
with α = αRet + αLLM, the aggregated sets satisfy

Pr
(q,r∗)∼D

(r∗ ∈ CAgg(q)) ≥ 1− α.

306

We give a proof in Appendix B. Note that this ag-307

gregation process is actually a global hypothesis308

testing method called the Bonferroni Correction.309

Lemmas 2.1 & 2.2 and Theorem 3 can be straight-310

forwardly extended to the probably approximately311

correct (PAC) guarantee by constructing PAC pre-312

diction sets; see Appendix B.1 for details.313

3.3 Performance Improvement314

By Theorem 3, we can guarantee that semantically315

correct responses are included in the aggregated316

set with a probability of at least 1 − α, assuming317

α = αRet + αLLM. This theorem is valid for any318

combination of the two error budgets. However, the319

predictive performance of the aggregation sets is in-320

fluenced by the specific choice of the error budgets.321

This issue has been discussed in the Bonferroni cor-322

rection and the global testing literatures (Neuwald323

and Green, 1994; Wilson, 2019; Poole et al., 2015).324

Therefore, we optimize the error budgets using325

Bayesian optimization, a sampling-based global op-326

timization technique suitable for nonconvex, non-327

closed form problems; see Appendix A.4 for de-328

tails. In TRAQ, Bayesian optimization first mod-329

els the underlying performance landscape using a330

Gaussian process; then, it samples potential error331

budgets (i.e., αRet and αLLM) based on the Gaus-332

sian process. After assessing the performance of333

the sampled error budgets on a held-out optimiza-334

tion set, the Gaussian process is modified to more335

accurately reflect the performance landscape. This336

process is repeated for N times. Pseudo-code for337

this procedure is shown in Algorithm 1.338

4 Experiments339

Experiment Setup. We evaluated TRAQ on four340

datasets, including three standard QA datasets341

(Natural Question (Kwiatkowski et al., 2019),342

Algorithm 1 Prediction Set Optimization

input: Calibration set BCal, optimization set
BOpt, performance metric f , error level α
Initialize Gaussian process G
for t ∈ {1, ..., T} do

Sample αRet and αLLM basing on G
Compute τRet and τLLM using sampled bud-

gets and calibration set BCal
Construct aggregation prediction set CAgg on

the optimization set BOpt
Evaluate the performance of the sets using f
Update G using the evaluation results

end for
return: the best error budgets αRet and αLLM

TriviaQA (Joshi et al., 2017), SQuAD-1 (Ra- 343

jpurkar et al., 2016)), and a biomedical QA dataset 344

(BioASQ (Tsatsaronis et al., 2012)). We gathered 345

1,000 samples that met the criteria of Assump- 346

tions Retriever Correctness & LLM Correctness. 347

We divided each dataset into calibration, optimiza- 348

tion, and testing sets, with 300, 300, and 400 data 349

points, respectively. 350

We employed two fine-tuned DPR models, 351

one (Karpukhin et al., 2020a) trained on Natural 352

Question, TriviaQA, and SQuAD-1 datasets, and 353

the other fine-tuned on BioASQ (see Appendix D.2 354

for training details). Additionally, we used two 355

generative large language models (LLMs): GPT- 356

3.5-Turbo-0613 (GPT-3.5), whose internal embed- 357

ding and prediction probabilities are not accessi- 358

ble, and Llama-2-7B (Llama-2). We separately 359

fine-tuned Llama-2 on Natural Question, TriviaQA, 360

and SQuAD-1, with hyperparameters given in Ap- 361

pendix D.1. 362

For each question, we retrieved the top-20 pas- 363

sages; for each (question, passage) pair, we sam- 364

pled 30 responses, with a temperature of 1.0. 365

We evaluated using coverage levels 50%, 60%, 366

70%, 80%, and 90%. For the PAC guarantee, we 367

use confidence level 90%. We used five random 368

seeds for each experiment. To investigate the influ- 369

ence of prompt design, we designed two prompts, 370

a zero-shot and a few-shot prompt; the few-shot 371

prompt included two demonstrations. The prompt 372

templates are provided in Appendix D.3. Unless 373

otherwise specified, the zero-shot prompt was used 374

for both GPT-3.5 and Llama-2. 375

We evaluated the performance of our approach 376

using two metrics. The first metric is the coverage 377

rate, which is the rate at which correct responses 378
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are contained in the constructed sets. We consider379

responses to be correct if their Rouge-1 (Lin, 2004)380

scores with the annotated answers were higher than381

0.3. The coverage rate is expected to be no less382

than the desired level on average across different383

random seeds. The second metric is the predic-384

tion set size. Specifically, we consider two size385

measures: (i) the average number of semantic clus-386

ters, and (ii) the average number of unique answers.387

Lower values indicate better performance. In gen-388

eral in conformal prediction, the goal is to obtain389

the smallest prediction set size subject to satisfying390

the desired coverage rate.391

We compared our approaches, TRAQ and TRAQ-392

P (the PAC version), to several baselines, including393

Vanilla, Bonf, and Bonf-P. Vanilla is a baseline that394

does not construct prediction sets and only uses the395

top retrieved passage and generated answers. Bonf396

and Bonf-P are ablations that omit Bayesian opti-397

mization. In all plots, we also show the Reference398

line indicating the desired coverage level.399

Our experiments aim to answer the following:400

(Q1) Do the coverage guarantees hold for the re-401

triever and the generator?402

(Q2) Does the overall coverage guarantee hold?403

(Q3) Does Bayesian optimization help?404

(Q4) Does TRAQ work for different semantic clus-405

tering and performance metrics?406

(Q5) How does the prompt affect the results?407

Q1: Do the coverage guarantees hold for the re-408

triever and generator? To validate the retriever409

and generator coverage guarantees, we consider the410

coverage rates of retriever and LLM sets (named411

Ret and LLM), and with the PAC guarantee (named412

Ret-P and LLM-P). We report results on BioASQ413

using GPT-3.5 in Figure 3; results for other datasets414

and different LLMs are reported in Figure 10, and415

are qualitatively similar. As shown in Figure 3,416

the empirical coverage levels of the retrieval and417

QA prediction sets are close to the desired cover-418

age levels. Thus, the coverage guarantees hold for419

individual components, as desired.420

We also report empirical coverage rates with 20421

random seeds in Figure 11. Compared to results422

with 5 random seeds, empirical coverages with423

more random seeds become closer to the desired424

level. Furthermore, when using the PAC prediction425

sets, the empirical coverage levels were almost426

always above the expected coverage levels across427

all random seeds, as desired.428

Figure 3: Retriever and generator coverage rates on the
BioASQ dataset.

Q2: Does the end-to-end coverage guarantee 429

hold? To verify the end-to-end guarantees from 430

TRAQ, we report two rates. The first is the rate that 431

the correct responses are covered considering only 432

the annotated most relevant passages: 433

Pr(p∗ ∈ CRet(q))× Pr(r∗ ∈ CLLM(q, p∗)). 434

These results are shown in Figure 4. They show that 435

the rates on average satisfy the desired coverage 436

levels when using conformal prediction. Also, the 437

rates are mostly above the desired coverage levels 438

when using PAC prediction sets. Second, we report 439

the rate that the correct responses are covered in 440

the aggregated prediction set: 441

Pr(r∗ ∈ CAgg(q)). 442

The results are shown in Figure 5. Different from 443

Figure 4, empirical levels of both conformal pre- 444

diction and PAC prediction sets were above the 445

expected coverage levels most of the time. This 446

is because the generator can output the correct re- 447

sponse even if it is not given a relevant passage. 448

Q3: How does the Bayesian optimization help? 449

To demonstrate the advantages of incorporating 450

Bayesian optimization, we evaluate the average 451

prediction set size (in terms of number of semantic 452

clusters) across different approaches. We show re- 453

sults for different coverage levels and random seeds 454

on BioASQ dataset in Figure 6. We reported the 455

semantic counts on other datasets in Table 1 (for 456

GPT-3.5) and Table 2 (for Llama-2). Both TRAQ 457

and TRAQ-P, which use Bayesian optimization, are 458

able to construct significantly smaller prediction 459

sets, reducing them on average by 18.4% (15.3% 460

in Table 1 and 21.5% in Table 2). These results 461
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Figure 4: End-to-end Guarantee Considering Only the
Most Relevant Passage on BioASQ Dataset

Figure 5: Overall coverage guarantee considering all
passages on the BioASQ dataset

demonstrate that Bayesian optimization can effec-462

tively improve performance. Importantly, even463

though the prediction sets are smaller, the desired464

overall coverage guarantees still hold.465

Q4: Does TRAQ work for different semantic466

clustering and performance metrics? We eval-467

uated whether TRAQ remains effective with a dif-468

ferent semantic clustering method and performance469

metrics. We use the semantic clustering method470

proposed by Kuhn et al. (2023), which is based on471

BERT (Devlin et al., 2019), and specified the per-472

formance metric as the average number of unique473

answers in the aggregated prediction sets. We eval-474

uated this setup on the SQuAD-1 dataset using475

GPT-3.5. The results, shown in Figure 7 & 8,476

demonstrate that TRAQ remains successful. Fur-477

thermore, Figure 7 demonstrates that the overall478

coverage guarantee still holds, and Figure 8 demon-479

strates that TRAQ and TRAQ-P still reduce predic-480

tion set size compared to their ablations Bonf and481

Bonf-P, respectively.482

Figure 6: Prediction set sizes according to the average
number of semantic clusters

Figure 7: Coverage rate using BERT embeddings on
SQuAD-1 dataset

Q5: How does the prompt affect the results? 483

We investigated how prompt engineering affects 484

the performance of TRAQ by using a few-shot 485

prompt with two demonstrations. The prompt tem- 486

plate is provided in Appendix D.3. We evaluated 487

TRAQ on SQuAD-1 using GPT-3.5. The end-to- 488

end coverage rates and prediction set sizes using 489

different methods are shown in Figure 16. TRAQ 490

with a few shot prompt achieved the desired cover- 491

age rate on average, and reduced prediction set size 492

compared to its ablation. In Figure 9, we also com- 493

pared the zero-shot and few-shot prompts in terms 494

of performance. Interestingly, zero-shot prompting 495

consistently yielded better efficiencies. This could 496

be because zero-shot prompting generated more di- 497

verse answers and had lower confidence in wrong 498

answers. An example of the comparison between 499

responses using different prompts is given in the 500

Appendix D.3. 501

Qualitative Analysis. By incorporating multiple 502

passages, TRAQ guarantees that it considers a rel- 503
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Figure 8: Prediction set size according to the average
number of unique responses

Figure 9: Comparison between zero-shot and few-shot
prompts on prediction set size.

evant passage with high probability. For example,504

we consider the following question: Who played in505

the movie a star is born with Judy Garland?, where506

James Mason is a correct answer. For this example,507

we obtained the following outputs:508

509
Question: who played in the movie a star is born510

with judy garland511
512

Gold Answer: {'James Mason', 'Charles Bickford',513
'Jack Carson'}514

515
vanilla: {'Gary Busey', 'Judy Garland', 'Barbra516

Streisand'}517
518

TRAQ: {'Judy Garland', 'James Mason', 'Lady Gaga519
', 'Sid Luft', 'Danny Kaye'}520

521
Bonf {'Gary Busey', 'Judy Garland', 'James Mason522

', 'Lady Gaga', 'Bradley Cooper', 'Sidney523
Luft', 'Danny Kaye'}524

We show additional examples in Appendix C.6.525

5 Conclusion 526

We proposed an algorithm, called Trustworthy Re- 527

trieval Augmented Question Answering (TRAQ), 528

that applies conformal prediction to construct pre- 529

diction sets for Retrieval Augmented Generation 530

(RAG). TRAQ first constructs prediction sets for 531

the retriever and generator, and then aggregates 532

these sets. TRAQ guarantees that for each question, 533

a semantically correct answer is included in the 534

prediction set it outputs with high probability. To 535

the best of our knowledge, this guarantee is the first 536

conformal guarantee for retrieval augmented gener- 537

ation. Additionally, to minimize prediction set size, 538

TRAQ leverages Bayesian optimization to identify 539

optimal hyperparameters. In our comprehensive 540

experiments, we demonstrate that TRAQ provides 541

an overall semantic level coverage guarantee across 542

different tasks, and that Bayesian optimization con- 543

sistently reduces prediction set size. 544

6 Broader Impacts 545

The need for trustworthy AI algorithms has recently 546

become paramount due to the risks for spreading 547

misleading information (Biden, 2023; Commission, 548

2023). We propose TRAQ, a framework that aims 549

to address the hallucination problem by using con- 550

formal prediction to provide probabilistic guaran- 551

tees for retrieval augmented generation (RAG). In 552

addition, TRAQ leverages novel techniques for 553

improving performance that may be useful more 554

broadly in conformal prediction. 555

7 Limitations 556

TRAQ makes three assumptions: that the data is 557

independent and identically distributed (I.I.D), that 558

the retriever has good performance (Retriever Cor- 559

rectness), and that the language model can generate 560

a response to the input question (LLM Correctness). 561

Our experiments have verified I.I.D, but Retriever 562

Correctness and LLM Correctness may not hold 563

if the underlying retriever and language model do 564

not have good performance. To relax Retriever 565

Correctness, we can select more passages than the 566

top-20 used in our experiments. To remove LLM 567

Correctness, we propose providing a guarantee of 568

including I do not know in the aggregation set if the 569

language model cannot answer the input question. 570

We describe how TRAQ can be modified to provide 571

such guarantees in Appendix E. 572

TRAQ is a post-hoc method, so its prediction 573

sets may be larger than necessary if the underlying 574

8



models, such as the retriever and large language575

model, do not work properly. Additionally, if the576

semantic clustering techniques (Rouge-score based577

or BERT-based) are invalid, then some semantically578

unrelated answers may be aggregated.579
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A Conformal Prediction and PAC Guarantees810

A.1 Conformal Prediction and Hypothesis Testing811

Conformal prediction is a distribution-free uncertainty quantification technique that constructs provable812

prediction sets for black-box models. Specifically, let X and Y be the input and label spaces, respectively,813

and (x, y) be an input-label pair. Conformal prediction assumes given a calibration set B = {xi, yi}Ni=1814

with N input-label pairs, along with a nonconformity measure s : X ×Y → R that measures how different815

a pair (x, y) is from the examples sampled from the distribution D. Given a new input xtest, conformal816

prediction constructs a prediction set C(xtest) ⊆ Y using Algorithm (Angelopoulos and Bates, 2022).817

Intuitively, for every label y ∈ Y , this algorithm checks whether (xtest, y) is similar to examples in the818

B according to the nonconformity measure s(xtest, y). If s(x, y) is lower enough, then y is included819

in the prediction set C(xN+1); otherwise, y is excluded from C(xN+1). To connect these ideas with820

multiple hypothesis testing, we note that conformal prediction can be framed as an application of the821

Neyman-Pearson theory for hypothesis testing (Shafer and Vovk, 2008).822

Algorithm 2 The Conformal Algorithm

Input: Nonconformity measure s, significance level α, calibration st B = {xn, yn}Nn=1, a new input
xtest, label space Y
Compute the threshold τ as the ⌈(1−α)(N+1)⌉

N -th smallest score in {s(xi, yi)}Ni=1.
Construct prediction set for xtest by

C(xtest) = {y | s(xtest, y), y ∈ Y}

Return: C(xtest).

A.2 PAC Prediction Set823

PAC prediction sets (Vovk, 2012; Park et al., 2021) are a variant of conformal prediction approache824

that satisfy stronger PAC-style guarantees. Let D be the distribution of samples, B = {xn, yn}Nn=1825

be a held-out calibration set of i.i.d. data points from D of size N . We denote the joint distribution826

over N samples as DN . The goal is to find a set of a small size satisfying the PAC property, i.e., given827

α, δ ∈ (0, 1),828

Pr
Z∼Dn

[LD(C) ≤ α] ≥ 1− δ,829

where the PrZ∼Dn refers to the chances of calibration succeeding. In this case, we say C is (α, δ)-830

probably approximately correct (PAC). To construct (α, δ)-PAC sets, the PAC prediction set considers the831

following one-dimensional parameterization of the prediction sets:832

Cτ (x) = {y ∈ Y | g(x, y) ≥ τ},833

where τ ≥ 0 and g : X ×Y → R≥0 is any given scoring function (e.g., the label probabilities output by a834

deep neural network). The threshold τ is computed by solving the following optimization problem:835

τ̂ = argmax
τ≥0

τ subj. to
∑

(x,y)∈Z

I[y /∈ Cτ (x)] ≤ k∗, (4)836

where837

k∗ = argmax
k∈N∪{0}

k subj. to F (k;N,α) ≤ δ,838

where F (k;N,α) is the cumulative distribution function of the binomial random variable Binomial(N,α)839

with N trials and success probability α. Maximizing τ corresponds to minimizing the prediction set size.840

We have the following theorem:841

Theorem 4 ((Vovk, 2012; Park et al., 2021)). Cτ̂ is (α, δ)-correct for τ̂ as in (4).842
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A.3 Conformal Prediction and PAC Prediction Set Comparison 843

Conformal Prediction Guarantee Formally, we can write conformal prediction guarantee as

Pr(X,Y )∼D(Y ∈ C(X)) ≥ 1− ϵ.

In other words, prediction sets constructed by conformal prediction guarantee that over the whole 844

distribution D, the probability that the true label is contained in the set is at least 1 − ϵ. Note that this 845

coverage probability is marginalized over all possible calibration sets. On the other hand, for a specific 846

calibration set B, this guarantee might not hold. For instance, the guarantee will not hold if samples in B 847

are concentrated in a small region of the joint distribution and therefore are not representative of the joint 848

distribution D. 849

PAC Prediction Set Guarantee Formally, we can write PAC prediction set guarantee as

Pr
B∼DN

(Pr(X,Y )∼D ≥ 1− ϵ) ≥ 1− δ.

Compared with the conformal prediction guarantee, the difference is the outer probability, which is on 850

the given calibration set B. Intuitively, the guarantee of the PAC prediction set says that conditioning on 851

the given calibration set B, we can say with high confidence (at least 1− δ) that the true label is contained 852

in the constructed set C(X) with high probability (1 − ϵ). As a result, PAC prediction set guarantee 853

is stronger than conformal prediction guarantee as PAC prediction set guarantee is over an individual 854

calibration set, while the conformal prediction guarantee is marginalized over all possible calibration sets. 855

A.4 Bayesian Optimization 856

Bayesian optimization (BO) is a technique for finding the global optimum of a potentially non-convex, 857

non-linear, or non-closed form objective function f with decision variables {b1, . . . , bM}. It builds a 858

probabilistic model of the objective function, then selects parameters that could maximize it. The model is 859

then refined using the chosen parameters. This process is repeated until an iteration budget T is reached, 860

as shown in Algorithm 3 (Frazier, 2018). Our implementation of the Bayesian optimization is based on 861

scikit-optimization (Head et al., 2021). 862

Algorithm 3 Bayesian Optimization

Place a Gaussian process prior on f .
Observe f at t0 points according to an initial space-filling experimental design. Set t = t0.
while t ≤ T do

Update the posterior probability distribution on g using all available data.
Let bt be a minimizer of the acquisition function over b, where the acquisition function is computed

using the current posterior distribution.
Observe f(bt).
Increment t.

end while
Return a solution b: either the point evaluated with the smallest f(b) or the point with the smallest
posterior.

B Proofs 863

Proof of Lemma 2.1. First, basing on Assumption I.I.D, samples collected for the construction of the 864

retrieval prediction set construction share is i.i.d. with unobserved samples, satisfying the i.i.d. (exchange- 865

ability) assumption required by conformal prediction (PAC prediction set). 866

Second, basing on Assumption Retriever Correctness, for every input question q, since its relevant 867

passage can be retrieved, the prediction set can contain the relevant passage if the threshold τRet is 868

appropriately set. (Otherwise, the prediction set cannot contain the relevant passage even if all retrieved 869

passages are included.) 870
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Third, since we construct the retriever set following conformal prediction with the error level being871

αRet, the resulting retriever prediction sets satisfy:872

Pr
(q,p∗)∼DPassage

(p∗ ∈ CRet(q)) ≥ 1− αRet.873

874

Proof of Lemma 2.2. First, basing on Assumption I.I.D, samples collected for the construction of the LLM875

prediction set construction share is i.i.d. with unobserved samples, satisfying the i.i.d. (exchangeability)876

assumption required by conformal prediction (PAC prediction set).877

Second, basing on Assumption LLM Correctness, for every input question and its most relevant passage878

q∗, since its semantically correct responses can be retrieved, the prediction set can contain the correct879

responses if the threshold τLLM is appropriately set. (Otherwise, the prediction set cannot contain correct880

responses even if all responses are included.)881

Third, since we construct the LLM prediction set following conformal prediction with the error level882

being αLLM, the resulting retriever prediction sets satisfy:883

Pr
(q,p∗,r∗)∼DResponse

(r∗ ∈ CRet(q, p
∗) ≥ 1− αLLM..884

885

Proof of Theorem 3. Given Lemmas 2.1 & 2.2 and αRet + αLLM = α, we can prove the end-to-end886

guarantee in the following way:887

Pr
(q,r∗)∼D

(r∗ ∈ CAgg(q)) = Pr
(q,p∗)∼DPassage

(p∗ ∈ CRet(q))× Pr
(q,p∗,r∗)∼DResponse

(r∗ ∈ CRet(q, p
∗)888

≥ (1− αRet)(1− αLLM)889

= 1− αRet − αLLM + αRet × αLLM890

≥ 1− αRet − αLLM891

= 1− α.892

893

B.1 PAC Prediction Set Construction894

To construct prediction sets with probably approximately correct (PAC) guarantees, we use the same895

nonconformity measures states in 3.2 for retrieval and LLM tasks, respectively. Also, we will assign the896

error budgets αRet and αLLM with αRet + αLLM = α. Additionally, we need to specify confidence levels897

for PAC prediction set. In our work, we specify 1− δ
2 to the retriever and LLM PAC prediction set. Then,898

we have the following Corollaries:899

Lemma 4.1. Suppose the questions and their corresponding most relevant passage p∗’s are subject to the900

distribution Dpassage. Given the error budget αRet and confidence level 1− δ
2„ the constructed retriever901

prediction sets satisfy the following inequality:902

Pr
B∼DPassage

[ Pr
(q,p∗)∼DPassage

(p∗ ∈ CRet(q)) ≥ 1− αRet] ≥ 1− δ

2
. (5)903

904

Lemma 4.2. Suppose the questions, their corresponding most relevant passage p∗’s, and semantically905

correct responses r∗ are subject to the distribution DResponse. Given the error budget αLLM and confidence906

level 1− δ
2 , if Assumption I.I.D and Assumption LLM Correctness hold, the LLM sets using PAC prediction907

set satisfy the following inequality:908

Pr
B∼DResponse

N
[ Pr
(q,p∗,r∗)∼DResponse

(r∗ ∈ CLLM(q, p
∗)) ≥ 1− αLLM] ≥ 1− δ

2
. (6)909

910
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Theorem 5. Suppose the questions, and semantically correct responses r∗ are subject to the distribution
D; a user-specified error level α is given. By aggregating retriever sets with error budget αRet with LLM
sets with error budget αLLM and confidence levels 1− δ/2, with α = αRet + αLLM, the aggregation sets
satisfy the following inequality:

Pr
B∼D

[ Pr
(q,r∗)∼D

(r∗ ∈ CAgg(q)) ≥ 1− α] ≥ 1− δ.

911

Proof of Theorem 5. Given Lemmas 4.1 & 4.2 and αRet + αLLM = α, we can prove the end-to-end 912

guarantee in the following way: 913

Pr
(q,r∗)∼D

(r∗ ∈ CAgg(q)) = Pr
(q,p∗)∼DPassage

(p∗ ∈ CRet(q))× Pr
(q,p∗,r∗)∼DResponse

(r∗ ∈ CRet(q, p
∗) 914

≥ (1− αRet)(1− αLLM) 915

= 1− αRet − αLLM + αRet × αLLM 916

≥ 1− αRet − αLLM 917

= 1− α. 918

Similarly, the confidence bound holds (1 − δ) by taking a union bound over the outer probabilities of 919

Equation (5) and (6). 920

C Additional Results 921

C.1 Individual Coverage 922

(a) Natural Question using Chatgpt-3.5 (b) TriviaQA using Chatgpt-3.5 (c) SQuAD-1 using Chatgpt-3.5

(d) Natural Quesiton using Llama-2 (e) TriviaQA using Llama-2 (f) SQuAD-1 using Llama-2

Figure 10: Individual Coverages on All Datasets and Both LLMs.
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C.2 Individual Coverage with More Random Seeds923

(a) BioASQ using Chatgpt-
3.5

(b) Natural Question using
Chatgpt-3.5

(c) TriviaQA using Chatgpt-
3.5

(d) SQuAD-1 using Chatgpt-
3.5

(e) Natural Quesiton using
Llama-2 (f) TriviaQA using Llama-2 (g) SQuAD-1 using Llama-2

Figure 11: Individual Coverages on All Datasets and Both LLMs with More Random Seeds.

C.3 End-to-end Coverages924

(a) Natural Question using Chatgpt-3.5 (b) TriviaQA using Chatgpt-3.5 (c) SQuAD-1 using Chatgpt-3.5

(d) Natural Quesiton using Llama-2 (e) TriviaQA using Llama-2 (f) SQuAD-1 using Llama-2

Figure 12: End-to-end Coverage on All Datasets and Both LLMs.
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C.4 End-to-end Coverages 925

(a) Natural Question using Chatgpt-3.5 (b) TriviaQA using Chatgpt-3.5 (c) SQuAD-1 using Chatgpt-3.5

(d) Natural Quesiton using Llama-2 (e) TriviaQA using Llama-2 (f) SQuAD-1 using Llama-2

Figure 13: End-to-end Coverage on All Datasets and Both LLMs.

C.5 Performance 926

Most of the results are similar to those in Figure 6. The results on TriviaQA using Llama-2 have relatively 927

large prediction set size. This could be explained by the fact that true scores on this task have a large 928

variance. Therefore, the identified threshold τLLM was relative low (as in Figure 15a compared to other 929

tasks (as in Figure 15b). 930

(a) Natural Question using Chatgpt-3.5 (b) TriviaQA using Chatgpt-3.5 (c) SQuAD-1 using Chatgpt-3.5

(d) Natural Quesiton using Llama-2 (e) TriviaQA using Llama-2 (f) SQuAD-1 using Llama-2

Figure 14: Efficiency on All Datasets and Both LLMs.
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task Cov TRAQ Bonf TRAQ-P Bonf-P

NQ

50 2.840.25 2.980.19 3.470.17 3.610.14
60 3.490.17 3.660.13 4.250.19 4.420.31
70 4.450.31 4.620.25 5.470.34 5.770.48
80 5.830.38 6.320.79 7.270.69 9.421.80
90 10.261.68 12.561.48 17.075.23 22.454.22

SQuAD1

50 3.400.11 3.460.12 3.900.07 4.050.05
60 3.940.08 4.070.05 4.420.10 5.070.29
70 4.600.09 5.200.21 5.380.25 6.980.64
80 6.120.44 7.840.75 7.960.79 11.121.71
90 11.881.68 12.931.79 14.641.11 24.184.39

Trivia

50 1.900.28 2.030.20 2.250.28 2.360.23
60 2.340.24 2.400.22 2.670.25 2.740.25
70 2.800.29 2.920.30 3.380.21 3.470.31
80 3.580.30 3.810.26 4.550.31 4.890.40
90 5.600.61 6.160.70 7.380.95 8.151.21

Average 4.870.46 5.400.50 6.270.73 7.911.10

Table 1: Average Semantic Counts using Chatgpt-3.5

(a) True Scores on TriviaQA using Llama-2 (b) True Scores on Natural Quesiton using Llama-2

Figure 15: True Scores Collected on TriviaQA and Natural Question using Llama-2

C.6 Additional Qualitative Results931

C.6.1 All Covered932

As shown in the example below, when the first retrieved passage is sufficiently informative, the LLM933

can probably generate correct responses for the question. In this case, TRAQ and Bonf can also include934

semantically correct responses in the aggregated sets. Again, TRAQ included as semantic meanings than935

Bonf did.936

Query: who plays zack and cody in the suite life937
938

Golden answer: ['Dylan and Cole Sprouse']939
940

vanilla: {'Dylan and Cole Sprouse', 'Dylan and Cole Sprouse.'}941
942

TRAQ: {'Dylan and Cole Sprouse', 'Dylan Sprouse', 'Phill Lewis'}943
944

Bonf: {'Dylan and Cole Sprouse', 'Cole Sprouse', 'Dylan Sprouse'}945
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task Cov TRAQ Bonf TRAQ-P Bonf-P

NQ

50 4.810.77 5.000.78 6.140.99 6.570.93
60 5.830.85 6.131.02 7.990.91 8.450.95
70 7.690.99 7.860.99 10.280.84 10.671.25
80 10.080.73 10.721.23 13.261.61 14.721.23
90 14.101.63 15.631.72 20.52.93 25.166.46

SQuAD1

50 4.050.26 5.120.47 4.980.55 6.330.49
60 5.370.51 6.520.60 6.600.57 7.740.68
70 7.130.42 8.050.66 8.540.55 10.150.61
80 9.340.70 11.30.94 11.541.11 14.451.92
90 15.052.05 18.01.98 20.151.25 23.742.15

Trivia

50 3.990.61 4.511.16 5.270.58 6.471.20
60 5.590.97 6.841.22 7.301.25 9.252.21
70 8.481.54 10.221.94 11.301.39 18.486.17
80 14.092.14 19.226.13 22.756.84 71.3260.67
90 71.6757.5 100.6865.19 147.6110.86 158.357.81

Average 12.484.78 15.725.74 20.282.15 26.126.31

Table 2: Average Semantic Counts using Llama-2

C.7 Miscovered 946

Query: who sang i love rock and roll original 947
948

GOLDEN ANSWER: ['Alan Merrill'] 949
950

vanilla: {'Joan Jett'} 951
952

TRAQ: {'Joan Jett', 'Elvis Presley', 'Lou Reed', 'Joan Jett \& the Blackhearts', 'Alan Merrill', ' 953
Chuck Berry', 'Donna Summer', 'Kevin Johnson', 'Joan Jett and The Arrows'} 954

955
Bonf: {'Joan Jett', 'Elvis Presley', 'The Velvet Underground', 'Lou Reed', 'Joan Jett & the 956

Blackhearts', 'Alan Merrill', 'Chuck Berry', 'Donna Summer', 'Bobby Vee', 'Buddy Holly', 'Kevin 957
Johnson', 'Mac Davis', 'The original version of "I Love Rock and Roll" was sung by The Arrows.', 958
'The Runaways', 'The answer to the question is not provided in the given context.', 'The 959
Runaways sang the original version of "I Love Rock and Roll".', 'Joan Jett and The Arrows'} 960

D Implementation Details 961

D.1 Llama-2 Finetune Hyperparameters 962

We used 4-bit QLoRA (Dettmers et al., 2023) to fine-tune Llama-2 (Touvron et al., 2023b) models on 963

Natural Question, TriviaQA, and SQuAD-1 datasets separately. Hyperparameters used for QLoRA are 964

listed in Table 3; for fine-tuning are listed in Table 4. 965

Name Value Name Value

r 64 alpha 16
dropout 0.1 precision 4bit

Table 3: QLoRA Hyperparameters
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Name Value Name Value

batch_size 16 learning rate 2e-4
weight_decay 0.001 lr scheduler constant
warmup ratio 0.03 epoch 3

Table 4: Fine-tuning Hyperparameters

D.2 Finetune Dense Passage Retriever (DPR) on the Biomedical Dataset (BioASQ)966

We collected our dataset for DPR fine-tuning by using the collection of all passages mentioned in BioASQ967

as our knowledge corpus, resulting in 56,795 passages. Following the method in (Karpukhin et al., 2020a),968

we created negative contexts for each sample in BioASQ by first retrieving the top-20 passages; and969

labeling contexts that did not contain the golden answers as the negative passages. We then divided the970

original BioASQ dataset into training, validation, and testing sets, with 3,775, 471, and 469 data points,971

respectively.972

We fine-tuned the DPR model (Karpukhin et al., 2020a) using the Haystack framework (Haystack),973

adjusting key hyperparameters to epochs=5 and batch size=16. Other hyperparameters were left at their974

default values. To evaluate the performance of the fine-tuned DPR, we used hit rate, which is the rate of975

relevant passages included in the top-k retrieved passages. With k set to 20, the fine-tuned DPR achieved976

hit rates of 77.2% on the training set, 72.8% on the validation set, and 75.7% on the testing set.977

D.3 Different Prompts978

Zero-shot Prompt

Answer the following question based on the given context; Answer the question shortly.

Question: {question}
Context: {context}
Answer:

979

Few-shot Prompt

Answer the following question based on the given context; Answer the question shortly.

Question: {question 1}
Context: {context 1}
Answer: {answer 1}

Question: {question 2}
Context: {context 2}
Answer: {answer 2}

Question: {question}
Context: {context}
Answer:

980

['The Great Lakes do not meet the ocean.',981
'The Great Lakes meet the ocean at the Saint Lawrence River.',982
'The Great Lakes meet the ocean through the Saint Lawrence River.',983
'The Great Lakes do not meet the ocean.',984
'The Great Lakes do not directly meet the ocean.',]985

986
['There is no specific answer given in the provided context about where the Great Lakes meet the987

ocean.',988
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'Atlantic Ocean', 989
'Saint Lawrence River', 990
'The Great Lakes do not meet the ocean.', 991
'The Great Lakes do not meet the ocean. They are primarily connected to the Atlantic Ocean through 992

the Saint Lawrence River.', 993
'The Great Lakes do not meet the ocean. They connect to the Atlantic Ocean through the Saint Lawrence 994

River.', 995
'The Great Lakes meet the ocean through the Saint Lawrence River.', 996
'They do not meet the ocean.'] 997

(a) End-to-end Coverage (b) End-to-end Coverage 2 (c) Performance

Figure 16: Results using Few-shot Prompting on Natural Question using Chatgpt-3.5.

D.4 Main Packages 998

Package Version Package Version

transformer (Wolf et al., 2020) 4.32.1 nltk (Bird et al., 2009) 3.8.1
spacy (Honnibal and Montani, 2017) 3.6.1 torch (Paszke et al., 2019) 2.0.1
rouge-score (Lin, 2004) 0.1.2 scikit-optimize (Head et al., 2021) 0.9.0

D.5 Artifact License and Terms 999

Our implementation is based on haystack, transformers and DPR (Karpukhin et al., 2020a). The first 1000

two are licensed under Apache License 2.0, the third is licensed under Attribution-NonCommercial 1001

4.0 International. We used four datasets, namely BioASQ, Natural Quesiton, TriviaQA, and SQuAD-1. 1002

BioASQ is licensed under the CC BY 2.5 license, Natural Question is under CC BY-SA 3.0 license, 1003

TriviaQA is under the Apache License 2.0, and SQuAD-1 is under the CC BY-SA 4.0 license. We 1004

used two LLMs, namely Chatgpt-3.5 and Llama-2. Chatgpt-3.5 usage is subject to OpenAI’s Sharing & 1005

Publication Policy and Usage Policies. Llama-2 is under Llama-2 Community License (Meta, 2023). Our 1006

implementation and the data collected are under the MIT License. 1007

Our use of the existing artifacts is consistent with their original intended use. Our created artifacts 1008

intends to verify our proposed method in our submission, which is consistent with original access 1009

conditions. 1010

E Removing Assumption LLM Correctness 1011

In certain scenarios, even if the most pertinent passage is identified and given to the language understanding 1012

model (LLM), the LLM is still unable to answer the question with accurate answers. This could be due 1013

to a variety of reasons, such as the passage not being sufficiently specific or the LLM not being able to 1014

extract enough information from the passage. If the LLM is unable to generate correct responses even 1015

when the most pertinent passage is provided, our guarantee regarding the LLM and end-to-end pipeline 1016

may not hold. This problem can be alleviated by annotating better passages or creating more powerful 1017

LLMs. 1018

To address the issue with the existing datasets and language models, we offer a guarantee of claiming 1019

I do not know if the language model is unable to generate a correct response to a question and its most 1020
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relevant passage. We collected questions and their most relevant passages, and also whether the Chatgpt-1021

3.5 could generate a correct response. We then divided the dataset into training, validation, and testing1022

sets, with 6,899, 1,725, and 1,725 data points respectively. We labeled True if the language model could1023

generate a correct response, and False otherwise. We then trained a BERT-based text classifier which1024

takes in the questions and their most relevant passages, and predicts whether the Chatgpt-3.5 can generate1025

a correct response. We named the trained classifier Conf-Classifier. Surprisingly, Conf-Classifier achieved1026

an accuracy of 95% on the testing set. To provide guarantees, we applied conformal prediction to the1027

outputs of Conf-Classifier. We included I do not know in the LLM set if the constructed prediction set1028

contained False.1029

To construct the calibration set, we collected estimated confidences on not being able to answer the1030

question on input questions that the LLM failed to generate correct response. We denote these estimated1031

confidences as {s1, . . . , sK}. Given a user-specified coverage level, we then utilized conformal prediction1032

to identify the ⌈(K+1)(1−α)⌉
K ) quantile as the threshold τIgn to construct the set. Given an input question q,1033

we then include I do not know in the aggregation set CAgg(q) if the estimated confidence nK+1 is above1034

τIgn Then, we can guarantee the following:1035

Lemma 5.1. Given an input question q that the LLM cannot correct answer and a user-specified error1036

level α, if αIgn is used to decide whether to include I do not know, the aggregation set satisfies the1037

following property:1038

Pr
q∼D

[I do not know ∈ CAgg(q)]1039

This results follows straightforwardly from Theorem I.I.D.1040

We tested our guarantee by using five distinct random seeds and five different coverage levels. The1041

results are shown in Figure 17. As the figure illustrates, our method can include I do not know at various1042

required coverage levels. By combining this with our guarantee on the LLM, we can guarantee all1043

questions.1044

Theorem 6. Given a user-specified error level α, if aggregation are constructed with error level α, the1045

resulting prediction sets contain true answers (i.e., semantically correct responses if the input question is1046

answerable; or I do not know if the input question is unanswerable) with probability at least 1− α, i.e.,1047

Pr
q∼D

[True answer ∈ CAgg(q)] ≥ 1− α.1048

1049

Proof. Suppose we construct the aggrgation set and ignorance set both with coverage level 1− alpha,1050

then we have the following inequalities:1051

Pr
q∼D

[True answer in the resulting set]1052

= Pr
q∼D

[Correct response ∈ CAgg(q)]× Pr[q is answerable]1053

+ Pr
q∼D

[I do not know ∈ CAgg(q)]× Pr[q is unanswerable]1054

≤ (1− α)× Pr[q is answerable] + (1− α)× Pr[q is unanswerable]1055

= 1− α.1056

1057

F AI Assistant Usage1058

We used Copilot to assist our coding.1059
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(a) Coverage Rate on I do not know. (b) False Positive Rates (claiming I do not
know but actually being able to answer.

(c) The distribution of confidence on
claiming I do not know using the train-
ing classifier.

Figure 17: Results on Identifying Whether A Given Prompt Is Answerable or Not.
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