
Hypernetworks in Meta-Reinforcement Learning

Jacob Beck
Department of Computer Science

University of Oxford, United Kingdom
jacob beck@alumni.brown.edu

Matthew Jackson
Department of Engineering Science

University of Oxford, United Kingdom
jackson@robots.ox.ac.uk

Risto Vuorio
Department of Computer Science

University of Oxford, United Kingdom
risto.vuorio@keble.ox.ac.uk

Shimon Whiteson
Department of Computer Science

University of Oxford, United Kingdom
shimon.whiteson@cs.ox.ac.uk

Abstract: Training a reinforcement learning (RL) agent on a real-world robotics
task remains generally impractical due to sample inefficiency. Multi-task RL and
meta-RL aim to improve sample efficiency by generalizing over a distribution of
related tasks. However, doing so is difficult in practice: In multi-task RL, state of
the art methods often fail to outperform a degenerate solution that simply learns
each task separately. Hypernetworks are a promising path forward since they
replicate the separate policies of the degenerate solution while also allowing for
generalization across tasks, and are applicable to meta-RL. However, evidence
from supervised learning suggests hypernetwork performance is highly sensitive
to the initialization. In this paper, we 1) show that hypernetwork initialization
is also a critical factor in meta-RL, and that naive initializations yield poor per-
formance; 2) propose a novel hypernetwork initialization scheme that matches or
exceeds the performance of a state-of-the-art approach proposed for supervised
settings, as well as being simpler and more general; and 3) use this method to
show that hypernetworks can improve performance in meta-RL by evaluating on
multiple simulated robotics benchmarks.

Keywords: Meta-Learning, Reinforcement, Hypernetwork

1 Introduction

Deep reinforcement learning (RL) has helped solve previously intractable problems but still remains
highly sample inefficient. This sample inefficiency makes it impractical, particularly in settings
where data collection happens in the real world. For example, a robot’s actions have the potential
to inflict damage on both itself and its surroundings. Multi-task RL and meta-RL aim to improve
sample efficiency on novel tasks by generalizing over a distribution of related tasks. However,
such generalization has proven difficult in practice. In fact, multi-task RL methods often fail to
outperform a degenerate solution that simply trains a separate policy for each task [1].

One promising way to improve generalization is with a hypernetwork, a neural network that pro-
duces the parameters for another network, called the base network [2]. In multi-task RL, using a
hypernetwork that conditions on the task ID to generate task-specific parameters can replicate the
separate policies of the degenerate solution, while also allowing generalization across tasks. Fur-
thermore, unlike the degenerate solution, hypernetworks can also be applied to meta-RL, where task
IDs are not provided and test tasks may be novel, by conditioning them on the output of a task
encoder.

However, hypernetworks come with their own challenges. Since hypernetworks generate base net-
work parameters, the initialization of parameters in the hypernetwork determines the initialization
of the base network it produces. Evidence suggests hypernetwork performance is highly sensitive
to the initialization scheme in supervised learning [3]. However, to our knowledge this question has

6th Conference on Robot Learning (CoRL 2022), Auckland, New Zealand.

0 10000 20000 30000 40000 50000 60000 70000
Step (k)

−1000

−500

0

500

1000

1500

2000

Re
tu

rn

Cheetah-Dir

Hypernetwork init
Bias-HyperInit
HFI
Kaiming

(a) Hypernetwork initialization methods

0 10000 20000 30000 40000
Step (k)

0

10

20

30

40

50

60

70

Su
cc

es
s P

er
ce

nt
ag

e
(te

st
)

Pick-Place
Architecture

Hypernetwork
VariBAD

(b) Architectures

Figure 1: Naive initializations such as Kaiming [4] fail for hypernetworks, whereas our proposed
Bias-HyperInit does not and matches the state of the art, HFI [3] (claims 1, 2). Adding hypernet-
works with the proposed Bias-HyperInit significantly improves the state-of-the-art meta-RL method,
VariBAD [5] (claim 3).

not been considered in meta-RL. In this paper, we show that hypernetwork initialization is also a
critical factor in meta-RL, and that naive initializations yield poor performance.

Furthermore, we propose two novel initialization schemes: Bias-HyperInit and Weight-HyperInit.
Both produce strong results, with the former matching or exceeding the performance of the state-of-
the-art hypernetwork initialization method designed for supervised learning [3]. Moreover, both pro-
posed methods are simpler and more general than this existing method, in that they may be applied
to arbitrary base network architectures and target base network initializations without additional
derivation. Using Bias-HyperInit, we present results that substantially improve the a state-of-the-art
method on a range of meta-RL benchmarks.

Applying hypernetworks to meta-RL, we make the following contributions (examples in Figure 1):

1. We empirically demonstrate that initialization is a critical factor in the performance of
hypernetworks in meta-RL, and that naive initializations fail to learn reliably;

2. We propose a novel hypernetwork initialization scheme that matches or exceeds the per-
formance of a state-of-the-art approach proposed for supervised settings, as well as being
simpler and more general; and

3. We use this method to show that hypernetworks can improve a state-of-the-art method on
a range of meta-RL benchmarks (grid-world [5], MuJoCo [6], and Meta-World [1]).

2 Related Work

Meta-RL. Despite the advantages of hypernetworks [2], they remain relatively unexplored in
meta-RL. We use hypernetworks to arbitrarily update a policy’s parameters at every time-step,
whereas all prior work we are aware of restrict this procedure in some way. Many procedures in
few-shot meta-RL build off of MAML [7] to adapt the parameters of a policy network using a pol-
icy gradient [7, 8, 9]. Such methods require the estimation of a policy gradient, which reduces
sample-efficiency when faster adaptation is possible, as in our benchmarks [5]. Most meta-learning
procedures capable of zero-shot adaption using an RNN (or convolutions) that can represent an ar-
bitrary update function [5, 10, 11]. These methods generally update a set of activations on which a
fixed policy is then conditioned, whereas hypernetworks update all policy parameters. We include
a state-of-the-art method from this class in our evaluations [5]. There are also unsupervised meth-
ods in zero-shot meta-RL for weight updates [12, 13] but none can produce a fully general learning
procedure since they make use of local and unsupervised heuristics. Sarafian et al. [14] use hyper-
networks in the context of meta-RL, but the policy network, not the hypernetwork, is conditioned on
the RNN used for adaptation, preventing the hypernetwork from representing a general learning pro-
cedure. Finally, FLAP [15] learns to infer a set of weights trained in the multi-task setting; however
since the adaptation procedure is not trained on a meta-RL objective, it is constrained. For example,

2

FLAP cannot learn to explore to reduce uncertainty. Finally, Xian et al. [16] use hypernetworks
to predict model dynamics then use model predictive control. However, this model still requires
planning to make use of an uncertain model, whereas model-free RL learns a policy that explores
optimally in order to attain data for adaptation. Using a general procedure trained to arbitrarily
modify the weights of a model-free policy has never been tried in RL, to the best of our knowledge.

Hypernetworks. Hypernetworks, or similar architectures, have been used in supervised learning
(SL), multi-task RL, and meta-SL. Hypernetworks have been used in the supervised learning litera-
ture for sequence modelling [2], as well as in continual learning and image classification [3], where
it was shown that the hypernetwork initialization scheme was crucial for performance. Similar mod-
els have also been used in multi-task RL and meta-SL, but not meta-RL. For instance, in multi-task
RL, Yu et al. [17] use a network conditioned on a task encoding to produce the weights and biases
for every other layer in another network conditioned on state. In meta-SL, there have also been
attempts to use one network to adapt weights of another, both as a general function of the dataset
[18, 19, 20], conditioned on an embedding adapted by gradient descent [21], and by adding deltas in
a way framed as learning to optimize [22, 23]. The abundance of representations in meta-SL suggest
there is a similarly large space of representation-based methods to explore in meta-RL. Our work –
getting hypernetworks to work in practice for meta-RL – can be seen as a first step towards applying
all of these methods in meta-RL.

3 Background

3.1 Problem Setting

An RL task is formalized as a Markov Decision Processes (MDP). We define an MDP as a tuple of
(S,A,R,P, γ). At time-step t, the agent inhabits a state, st ∈ S, observable by the agent. The agent
takes an action at ∈ A. The MDP then transitions to state st+1 ∼ P(st+1|st, at) : S × A × S →
R≥0, and the agent receives reward rt = R(st, at) : S × A → R upon entering st+1. Given
a discount factor, γ ∈ [0, 1), the agent acts to maximize the expected future discounted reward,
R(τ) =

∑
rt∈τ γ

trt, where τ is the agent’s trajectory over an episode in the MDP. To maximize this
return, the action takes actions sampled from a learned policy, π(a|s) : S ×A → R+.

Meta-RL algorithms learn an RL algorithm, i.e., a mapping from the data sampled from a single
MDP,M ∼ p(M), to a policy. Since an RL algorithm generally needs multiple episodes of inter-
action to produce a reasonable policy, the algorithm conditions on τ , which is the entire sequence of
states, actions, and rewards withinM. As in the RL setting, this sequence up to time-step t forms
a trajectory τt ∈ (S × A × R)t. Here, however, τ may span multiple episodes, and so we use the
same symbol, but refer to it as a meta-episode. The policy is then a meta-episode dependent policy,
πθ(a|s, τ), parameterized by the meta-parameters, θ.

We define the objective in meta-RL as finding meta-parameters θ that maximize the sum of the
returns in the meta-episode across a distribution of tasks (MDPs):

argmax
θ

EM∼p(M)

[
Eτ
[
R(τ)

∣∣∣∣πθ(·),M]] (1)

3.2 Policy Architecture

We consider meta-RL agents capable of adaptation at every time-step, and adaptation within one
episode is required to solve some of our benchmarks. In such methods [5, 10, 11], the history is
generally summarized by a function, g, into an embedding that represents relevant task information.
We write this embedding as e = g(τ), and call g the task encoder. The policy, represented as a
multi-layer perceptron, then conditions on this task embedding as an input, instead of on the history
directly, which we write as πθ(a|s, e). We call this the standard architecture, shown in Figure 2.

In this paper, we primarily build off of VariBAD [5], which can be seen as an instance of the standard
architecture where the task encoder is the mean and variance from a recurrent variational auto-
encoder (VAE) [24] trained using a self-supervised loss. In other words, the task is inferred as a latent
variable optimized for reconstructing a meta-episode. See Zintgraf et al. [5] for details. Additionally,
evaluate the addition of hypernetworks to RL2 [11] on the most challenging benchmark. (See section
5.2.) In RL2, the task encoder is a recurrent neural network trained end-to-end on equation 1.

3

Figure 2: A standard architecture (left) and hypernetwork model (right).

3.3 Hypernetwork Initialization

Chang et al. [3] show that applying existing initialization methods for neural networks to hyper-
networks produces unstable base network initializations with exploding or vanishing activations.
Furthermore, they empirically demonstrate a reduction in training stability for Kaiming initializa-
tion [4]. We corroborate this failure for Kaiming initialization on meta-RL, as well as for Orthogonal
initialization [25] and Normc initialization [26], which we collectively refer to as default initializa-
tions.

As a solution, Chang et al. [3] propose the first initialization designed for hypernetworks and show
it to be effective in supervised learning. Their approach is based on Kaiming initialization, which
samples network parameters such that the activations of the network at each layer maintain the same
variance as in the previous layer. Chang et al. [3] extend this variance analysis to hypernetworks [2].
They propose two methods: Hyperfan-in (HFI) sets the variance of the initial parameter distribution
of the hypernetwork to maintain constant variance of activations in the base network in the forward
pass, and hyperfan-out (HFO) does the same for the backward pass. Since these are equally compet-
itive, and produce state-of-the-art results, we include HFI as a baseline for comparison. However,
this variance analysis is involved and requires modification for specific use cases depending on the
activation function and whether or not the network produces weights or biases in the base network.
This motivates the need for a simpler and more general initialization method, which we propose in
this paper.

4 Methods

In this section we introduce our proposed architecture using hypernetworks and our proposed hy-
pernetwork initialization. At a high level, the hypernetwork conditions on a task representation to
generate all of the parameters for a base policy. The initialization provides a simple and general way
to sample parameters for this hypernetwork at the start of training.

4.1 Policy Architecture

We propose the use of hypernetworks in meta-RL, instead of the standard architecture described
earlier. In this setting, we use a hypernetwork to arbitrarily adapt the parameters of the base policy.
We still use a task encoder, e = g(τ), but instead of conditioning a policy on these activations, we
use a hypernetwork, hθ, to generate policy parameters, φ = hθ(e). These parameters, i.e., weights
and biases, are then used directly for the base network, which we write: πφ(a|s). This is also
depicted in Figure 2.

In this case, the hypernetwork can arbitrarily adapt all the the parameters of π based on history. In
comparison, in the standard architecture, the shared fixed parameters of the base network (θ) are still
required to generalize between all of the tasks. Since training separate policies for each task often
performs better than state-of-the-art methods for generalizing across all tasks [1], this motivates the
ability to produce base policies with no or few shared parameters. Hypernetworks allow for shared

4

parameters when possible, but also provide the ability to have no shared parameters in the base
policy when diverse policies are necessary and little generalization between tasks is possible.

In fact, hypernetworks are capable of replicating the training of separate policies for each task under
certain conditions. To see this, consider the case where the hypernetwork is linear and has no
bias. Then, the hypernetwork consists only of a weight matrix, W . (That is, θ = W .) If this
hypernetwork conditions on a one-hot task ID for task i: e = 1i, then the parameters selected by
this hypernetwork, φ are a separate set of parameters for each task: φi = h(e) = W1i. In other
words, training individual networks for each task is equivalent to training a hypernetwork when that
hypernetwork is: 1) linear, 2) has no a bias, and 3) is conditioned on a one-hot task ID.

However, we can relax these assumptions and still retain the ability to produce distinct parameters,
while also enabling generalization. If we add a bias, we reintroduce shared parameters in the hyper-
network, but they can still produce separate base networks for each task when little transfer between
the policies is required. If we relax the one-hot assumption, the network is still capable of producing
a one-hot encoding when the tasks are discrete and the task embedding is sufficiently large. Relaxing
these restrictions allows for both generalization and the application of hypernetworks to meta-RL.

4.2 Hypernetwork Initialization

Default initialization methods fail for hypernetworks. However, given that hypernetworks generalize
training separate networks for each task, it must be possible to initialize them as if each of the cor-
responding base networks were initialized independently, from some given initialization function,
f , known to train reliably. Using this insight, we propose and evaluate two initialization schemes
for the hypernetwork. We propose one where (under some assumptions) each base network is inde-
pendently initialized from f . We also propose one where (under no assumptions) all base networks
share an initialization sampled from f .

Our first method is Weight-HyperInit. Let W and b be the weights and bias in the last layer of
our hypernetwork, h(e), respectively. (These parameters are both contained in θ.) We define this
weight-only initialization as follows:

W:,i := φi ∼ f(φ) ∀i, b := 0,

where f is an arbitrary initialization scheme for the base network specifying a distribution over a
vector of parameters, φ, and W:,i is the i-th column of W .

Weight-HyperInit reproduces any given initialization for each base network (πφ), under the assump-
tions that e = 1i and the hypernetwork is linear. In this case, each column of W is simply a sample
from the base scheme, one of which is selected for each task via the one-hot encoding. For example,
given the task embedding e = 13, the following base network initialization φinit is produced:

φinit =We+ b =


φ11 φ21 φ31 . . .
φ12 φ22 φ32 . . .
φ13 φ23 φ33 . . .
...

...
...

. . .



0
0
1
0
...

+ 0 = φ3. (2)

Moreover, in the case that there is also no bias, it is also equivalent to training separate networks
for each task. Although these assumptions are not met for meta-RL, and so do not hold for our
experiments, we find this is still an improvement over default neural network initialization schemes.

Additionally, we propose Bias-HyperInit. This bias-only initialization is defined as follows:

Wi,j := 0 ∀i, j, b := φshared ∼ f(φ).

Bias-HyperInit achieves an arbitrary initialization for the base network without any assumptions,
by setting the parameters for any task to be the same at initialization. This encourages parameter
sharing between base networks at the beginning of training, where possible, but also allows for
separate base network parameters to be learned, if necessary. Under any set of assumptions, the

5

base network is initialised to the following:

φinit =Wx+ b =


0 0 0 . . .
0 0 0 . . .
0 0 0 . . .
...

...
...

. . .



x1
x2
x3
x4
...

+ φshared = φshared, (3)

where x is the final hidden layer of the hypernetwork. (X = e in the case of a linear hypernetwork.)

Both methods initialize only W and b, which define the head of the network. All other layers in h
may be initialized by any default initialization scheme. All such choices are detailed in supplemen-
tary materials.

4.3 Baselines

VariBAD & RL2. See Sec. 3.2.

FiLM. FiLM [27] is a convenient baseline situated between hypernetworks and the standard ar-
chitecture. In FiLM, the hypernetwork generates biases for each layer, but only point-wise scales the
activations instead of generating weight matrices. In this case, the base network has its own weights.
Bias-HyperInit can easily be adapted to FiLM; details presented in supplementary materials.

HFI. HFI [3] is a state-of-the-art initialization method developed tested in the supervised learning
setting. While we do compare to HFI, our methods are simpler and more general. Specifically, our
methods work with arbitrary base network target initialization (as opposed to being tied to Kaiming)
and our methods work with arbitrary base network architectures (without additional variance analy-
sis). Moreover, our approach is straightforward to apply to additional methods, which we show by
applying it to FiLM. Finally, although both HFI and Weight-HyperInit do make assumptions about
the input to the hypernetwork, our strongest method, Bias-HyperInit, does not.

5 Experiments

In this section, we compare our hypernetwork architecture and initialization methods to baselines on
2D navigation [5], MuJoCo [1], ML1 [1], and ML10 [1] benchmarks. MuJoCo is a common meta-
RL benchmark [7, 5, 28, 29, 12], as are toy 2D navigation tasks [7, 5, 28, 29]. These two benchmarks
allow us to demonstrate that hypernetworks with default initialization methods fail to learn, whereas
our proposed methods learn reliably. ML1 and ML10 are benchmarks in Meta-World [1]. These
two benchmarks have greater room for improvement with state-of-the-art methods [5], which allow
us to demonstrate improvement over the baseline architectures. Finally, we use two MuJoCo envi-
ronments to investigate the performance of hypernetworks against standard architectures in terms of
the number of parameters in the model overall.

Throughout our evaluation, we use two-tailed t-tests with p = 0.05 to determine significance. De-
tails on model tuning and implementation are presented in supplementary materials.

5.1 Navigation and MuJoCo

Here we evaluate on the grid-world variant from Zintgraf et al. [5] as our 2D navigation task and
MuJoCo [6]. Note Grid-World and Cheetah-Dir contain twenty-four and two non-parametric tasks
respectively, while the other MuJoCo environments have parametric variation between the tasks.

In Table 1 we see that default initializations frequently fail to learn while Bias-HyperInit learns
reliably. Specifically, Kaiming and Normc initializations used with hypernetworks achieve far lower
returns than all other methods. Orthogonal initialization is more competitive, however it is still
significantly outperformed by Bias-HyperInit in every environment.

We also compare hypernetworks with Bias-HyperInit to the standard architecture and Bias-HyperInit
to HFI. We see that Bias-HyperInit matches or exceeds the performance of HFI, with a signifi-
cant improvement in Walker. Hypernetworks with Bias-HyperInit also significantly outperform the

6

Table 1: Comparison of return on grid-world and MuJoCo tasks over five random seeds (mean ±
standard error). Entries in bold have insignificant difference from the highest-performing result.
Method Grid-World Cheetah-Dir Walker Ant-Dir Humanoid
Standard 35.5± 0.4 2104± 87 1828± 38 1167± 16 1842± 233

Kaiming 32.1± 1.2 378± 169 331± 37 253± 86 266± 23
Normc 32.2± 0.5 356± 134 357± 60 264± 106 249± 18
Orthogonal 34.9± 0.5 1379± 310 1687± 98 1127± 93 1126± 76
HFI 36.8± 0.2 2218± 80 1618± 130 1370± 9 1323± 57

Weight-HyperInit 36.1± 0.5 2066± 119 1748± 57 1346± 7 1048± 21
Bias-HyperInit 36.7± 0.2 2300± 32 1994± 67 1328± 23 1678± 162

standard architecture on grid-world and Ant-Dir. In fact, Bias-HyperInit is not significantly out-
performed by any other method. However, the standard architecture, HFI, and Bias-HyperInit all
achieve near optimal performance, motivating an evaluation on Meta-World, on which the standard
architecture has greater room for improvement [5].

5.2 ML1 and ML10

Here we evaluate on the more challenging Meta-World ML1 and ML10 benchmarks [1]. ML1 and
ML10 have one and ten non-parametric training tasks respectively (e.g. pushing a ball or opening
a window). ML10 additionally has five distinct test tasks. Within each task, there exists parametric
variation, such variation in the goal location. Note that we only test on the Pick-Place task from
ML1, since VariBAD already achieves a 100% success rate on all other tasks [5].

Table 2: Comparison of meta-test success percentage on the Pick-Place ML1 task (ten seeds) and
ML10 (three seeds).

Method Pick-Place ML10
VariBAD VariBAD RL2

Standard 4.4± 2.41 10.2 ± 3.0 7.2 ± 5.0

FiLM Normc 5.5± 4.8 — —
Bias-HyperInit 34.2± 15.9 — —

Hypernetwork HFI 25.5± 14.5 28.4 ± 6.0 7.1 ± 2.4
Bias-HyperInit 42.9± 16.3 23.9 ± 6.2 14.2 ± 7.2

In Table 2 we see significant improvement from hypernetworks with Bias-HyperInit over the stan-
dard architecture, as well as the efficacy of Bias-HyperInit on FiLM. On Pick-Place, Bias-HyperInit
outperforms the standard architecture with a 9-fold increase in test success percentage. Additionally,
Bias-HyperInit improves the FiLM architecture and exceeds the performance of HFI. On ML10, hy-
pernetworks with both Bias-HyperInit and HFI yield a 2-fold increase in test success percentage
compared to the standard architecture. Finally, we evaluated Bias-HyperInit when applied to RL2
on ML10, finding a 2-fold increase over both HFI and the standard architecture. Taken together,
these results show a clear improvement from the application of hypernetworks with Bias-HyperInit,
regardless of the baseline method they are applied to.

1Zintgraf et al. [5] report a success percentage of 29% for Pick-Place; however, we were not able to replicate
this result.

7

104 105 106

model parameters

1600

1800

2000

2200

2400

Re
tu

rn

XXL

XL
L

M

SXS

XL
L

M

S

XS

Cheetah-Dir

104 105 106

model parameters

1400

1500

1600

1700

1800

1900

2000

XXL

XLLM

S

XS

XL

L
MS

XS

Walker

Standard
Hypernet

Figure 3: Performance of standard and hypernetwork models over a range of base policy architecture
sizes on Cheetah-Dir and Walker. Architectures are presented in supplementary materials.

5.3 Network Size Comparison

Because hypernetworks learn a mapping from a task embedding to the parameters of a base network,
they require significantly more parameters in the entire model than a standard architecture with
the equivalent base network. For a fair comparison, we evaluate return over both a range of base
network sizes and total number of parameters in the model on the Cheetah-Dir and Walker tasks
(Figure 3). We find that hypernetworks consistently equal or outperform the standard architectures
with the equivalent base network size. We also find that hypernetworks likewise outperform standard
architectures for equivalent number of parameters in the entire model, i.e. for a given value on the
x-axis, when the total number of parameters in the model is sufficiently large.

6 Limitations

While our proposed methods are general, we cannot guarantee an improvement for all meta-RL
methods. To mitigate this limitation, we build on top of VariBAD, which is state of the art, and
additionally evaluate our method applied to RL2 on ML10. Furthermore, as in any empirical study,
there is no guarantee that our results hold on real robots or other meta-RL benchmarks. However,
we have tested on seven standard meta-RL environments in total, including Meta-World, which
was proposed specifically for addressing robotics. As much as is possible from simulated meta-RL
experiments, these results give us confidence in a significant improvement over previous methods.

7 Conclusion

We used hypernetworks to improve a state-of-the-art method in meta-RL, evaluating over a range
of benchmarks. In doing so, we demonstrated that hypernetworks are a promising path forward
for meta-RL. Moreover, we showed that the initialization of the hypernetwork is crucial, as default
initialization methods fail. To overcome this difficulty, we presented two novel initialization meth-
ods: Bias-HyperInit and Weight-HyperInit. Bias-HyperInit matched or exceeded the performance
of existing methods from the supervised learning setting, while also being simpler and more general
– applying to arbitrary base network initializations, base network architectures, and also improv-
ing FiLM. Using Bias-HyperInit, we showed that hypernetwork performance improves substantially
over standard architectures. Finally, we demonstrated that hypernetworks outperform the standard
architecture for equivalently sized base policies, and outperform it at any size given sufficiently
many parameters in the entire model. This paper additionally opens the path for future research
extending meta-SL methods using hypernetworks [18, 22] and multi-task RL methods with separate
parameters for each task [30, 31, 32] to meta-RL.

8

Acknowledgments

We would like to thank Luisa Zintgraf for her help with the VariBAD code-base along with general
advice and discussion. Jacob Beck is supported by the Oxford-Google DeepMind Doctoral Schol-
arship. Matthew Jackson is supported by the UK EPSRC CDT in Autonomous Intelligent Machines
and Systems, with funding from AWS in collaboration with the Oxford-Singapore HMC Initiative.
Risto Vuorio is supported by EPSRC Doctoral Training Partnership Scholarship and Department of
Computer Science Scholarship.

References
[1] T. Yu, D. Quillen, Z. He, R. Julian, K. Hausman, C. Finn, and S. Levine. Meta-world: A

benchmark and evaluation for multi-task and meta reinforcement learning. In CoRL, 2020.
(cited on p. 1, 2, 4, 6, 7)

[2] D. Ha, A. Dai, and Q. V. Le. Hypernetworks. In International Conference on Learning Repre-
sentation (ICLR), 2017. (cited on p. 1, 2, 3, 4)

[3] O. Chang, L. Flokas, and H. Lipson. Principled weight initialization for hypernetworks. In
International Conference on Learning Representations, 2020. (cited on p. 1, 2, 3, 4, 6)

[4] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing human-level
performance on imagenet classification. In Proceedings of the IEEE international conference
on computer vision, pages 1026–1034, 2015. (cited on p. 2, 4)

[5] L. Zintgraf, S. Schulze, C. Lu, L. Feng, M. Igl, K. Shiarlis, Y. Gal, K. Hofmann, and S. White-
son. Varibad: Variational bayes-adaptive deep rl via meta-learning. Journal of Machine Learn-
ing Research, 22(289):1–39, 2021. (cited on p. 2, 3, 6, 7)

[6] E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-based control. In 2012
IEEE/RSJ international conference on intelligent robots and systems, pages 5026–5033. IEEE,
2012. (cited on p. 2, 6)

[7] C. Finn, P. Abbeel, and S. Levine. Model-agnostic meta-learning for fast adaptation of deep
networks. ICML, 2017. (cited on p. 2, 6)

[8] R. Vuorio, S. Sun, H. Hu, and J. J. Lim. Multimodal model-agnostic meta-learning via task-
aware modulation. NeurIPS, 2019. (cited on p. 2)

[9] Z. Li, F. Zhou, F. Chen, and H. Li. Meta-sgd: Learning to learn quickly for few shot learning.
arxiv, 2017. (cited on p. 2)

[10] N. Mishra, M. Rohaninejad, X. Chen, and P. Abbeel. A simple neural attentive meta-learner.
ICLR, 2018. (cited on p. 2, 3)

[11] Y. Duan, J. Schulman, X. Chen, P. L. Bartlett, I. Sutskever, and P. Abbeel. Rl$ˆ2$: Fast
reinforcement learning via slow reinforcement learning. arXiv, 2016. (cited on p. 2, 3)

[12] E. Najarro and S. Risi. Meta-learning through hebbian plasticity in random networks. NeurIPS,
2020. (cited on p. 2, 6)

[13] T. Miconi, K. Stanley, and J. Clune. Differentiable plasticity: training plastic neural net-
works with backpropagation. In Proceedings of the 35th International Conference on Machine
Learning, volume 80 of Proceedings of Machine Learning Research, pages 3559–3568, Stock-
holmsmässan, Stockholm Sweden, 10–15 Jul 2018. PMLR. (cited on p. 2)

[14] E. Sarafian, S. Keynan, and S. Kraus. Recomposing the reinforcement learning building blocks
with hypernetworks. In Proceedings of the 38th International Conference on Machine Learn-
ing, volume 139 of Proceedings of Machine Learning Research, pages 9301–9312. PMLR,
18–24 Jul 2021. (cited on p. 2)

[15] M. Peng, B. Zhu, and J. Jiao. Linear representation meta-reinforcement learning for instant
adaptation. arxiv, 2021. (cited on p. 2)

9

[16] Z. Xian, S. Lal, H.-Y. Tung, E. A. Platanios, and K. Fragkiadaki. Hyperdynamics: Meta-
learning object and agent dynamics with hypernetworks. In International Conference on
Learning Representations, 2021. (cited on p. 3)

[17] T. Yu, S. Kumar, A. Gupta, S. Levine, K. Hausman, and C. Finn. Multi-task reinforcement
learning without interference. NeurIPS, 2019. (cited on p. 3)

[18] A. A. Rusu, D. Rao, J. Sygnowski, O. Vinyals, R. Pascanu, S. Osindero, and R. Hadsell.
Meta-learning with latent embedding optimization. In International Conference on Learning
Representations, 2019. (cited on p. 3, 8)

[19] T. Munkhdalai and H. Yu. Meta networks. ICML, 2017. (cited on p. 3)

[20] M. Przewiezlikowski, P. Przybysz, J. Tabor, M. Zieba, and P. Spurek. Hypermaml: Few-shot
adaptation of deep models with hypernetworks, 2022. (cited on p. 3)

[21] D. Zhao, S. Kobayashi, J. Sacramento, and J. von Oswald. Meta-learning via hypernetworks.
In MeurIPS Workshop on Meta-Learning, 2020. (cited on p. 3)

[22] S. Ravi and H. Larochelle. Optimization as a model for few-shot learning. In ICLR, 2017.
(cited on p. 3, 8)

[23] K. Li and J. Malik. Learning to optimize. ICLR, 2017. (cited on p. 3)

[24] D. P. Kingma and M. Welling. Auto-encoding variational bayes, 2013. (cited on p. 3)

[25] A. M. Saxe, J. L. Mcclelland, and S. Ganguli. Exact solutions to the nonlinear dynamics of
learning in deep linear neural network. In In International Conference on Learning Represen-
tations, 2014. (cited on p. 4)

[26] P. Dhariwal, C. Hesse, O. Klimov, A. Nichol, M. Plappert, A. Radford, J. Schulman, S. Sidor,
Y. Wu, and P. Zhokhov. Openai baselines, 2017. (cited on p. 4)

[27] E. Perez, F. Strub, H. de Vries, V. Dumoulin, and A. C. Courville. Film: Visual reasoning with
a general conditioning layer. AAAI, 2018. (cited on p. 6)

[28] J. Humplik, A. Galashov, L. Hasenclever, P. A. Ortega, Y. W. Teh, and N. Heess. Meta rein-
forcement learning as task inference. arXiv, 2019. (cited on p. 6)

[29] K. Rakelly, A. Zhou, C. Finn, S. Levine, and D. Quillen. Efficient off-policy meta-
reinforcement learning via probabilistic context variables. In International conference on ma-
chine learning, pages 5331–5340. PMLR, 2019. (cited on p. 6)

[30] Y. Teh, V. Bapst, W. Czarnecki, J. Quan, J. Kirkpatrick, R. Hadsell, N. Heess, and R. Pascanu.
Distral: Robust multitask reinforcement learning. In NeurIPS, 2017. (cited on p. 8)

[31] E. Parisotto, J. Ba, and R. Salakhutdinov. Actor-mimic: Deep multitask and transfer reinforce-
ment learning. ICLR, 2016. (cited on p. 8)

[32] I. Misra, A. Shrivastava, A. Gupta, and M. Hebert. Cross-stitch networks for multi-task learn-
ing. CVPR, 2016. (cited on p. 8)

10

	Introduction
	Related Work
	Background
	Problem Setting
	Policy Architecture
	Hypernetwork Initialization

	Methods
	Policy Architecture
	Hypernetwork Initialization
	Baselines

	Experiments
	Navigation and MuJoCo
	ML1 and ML10
	Network Size Comparison

	Limitations
	Conclusion

