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Abstract. Existing approaches for human-centered tasks such as hu-
man instance segmentation are focused on improving the architectures of
models, leveraging weak supervision or transforming supervision among
related tasks. Nonetheless, the structures are highly specific and the weak
supervision is limited by available priors or number of related tasks. In
this paper, we present a novel self-supervised framework for human in-
stance segmentation. The framework includes one module which itera-
tively conducts mutual refinement between segmentation and optical flow
estimation, and the other module which iteratively refines pose estima-
tions by exploring the prior knowledge about the consistency in human
graph structures from consecutive frames. The results of the proposed
framework are employed for fine-tuning segmentation networks in a feed-
back fashion. Experimental results on the OCHuman and COCOPersons
datasets demonstrate that the self-supervised framework achieves current
state-of-the-art performance against existing models on the challenging
datasets without requiring additional labels. Unlablled video data is uti-
lized together with prior knowledge to significantly improve performance
and reduce the reliance on annotations.

Keywords: Instance Segmentation, Prior Knowledge, Self-supervised

1 Introduction

In recent years, the computer vision community has devoted great efforts in
acquiring understandings of human from images. Typical applications include
human instance segmentation which predicts human masks [14] [37], pose esti-
mation which detects body joints as keypoints [16], [34], [2], [10], [32], [28], [23],
and human parsing which performs pixel-level analysis [8], [20], [22], [15], [36].
The three lines of research play a crucial role in intelligent surveillance systems.
This study concentrates on human instance segmentation and leverages prior
knowledge to reduce the need for annotations while improving generalization.

Existing research have explored either new model structures [5] or feature
propagation methods [13]. However, the generalization capability of models can-
not be greatly improved due to the domain discrepancy between training data
and real-world test data. For intance, the identities in input images are with a
limited set of poses, a model cannot detect a human with the pose that does not
appear in training data. Moreover, model architectures are also limited by the
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Fig. 1. The rationale behind the proposed approach. All the images are without any
annotations. The training data of Pose Module covers limited poses and does not
include the special cases in test images. For instance, the person which is occluded by
another one in red bounding box in the middle image from the bottom row cannot be
detected because this scenario with severe partial occlusion is not included in training
data. However, if we refer to the predictions from neighboring frames, the occluded
person can be recovered. The scenarios in adjacent frames are more similar to those in
training data and the same person can be detected in those frames. The trajectories
estimated from consecutive frames facilitate the recovery. In this way, the mistakes
in the bottom middle image from test set can be fixed by the prior knowledge about
motion consistency in videos. By fine-tuning on the recovered predictions, the Pose
Module can generalze to the cases in test set which are not included in training data.

available training data, a typical example is the NAS-based model Auto-Deeplab
[25] which was built by searching over the network space and maximizing the ac-
curacy on training data. Nonetheless, the optimal architecture on training data
leads to suboptimal performance on test set. Even if some weakly supervised
methods [13] augmented supervision by exploiting the relations between differ-
ent tasks, they suffer from the upper limit on the number of related tasks. The
performance cannot be further improved because the approach for training with
unlabelled data is under-explored.

Existing solutions to improve generalization include employing more general-
izable backbones [3] [17] which were pre-trained on larger classification datasets,
revising loss functions and resorting to prior knowledge [15] [20], [9]. However,
the above-mentioned methods cannot resolve the challenging cases and the pri-
ors can only function as weak constraints. To significantly improve generalization
by leveraging prior knowledge, we present a novel self-supervised framework for
instance-segmentation. The framework is able to be trained on real-world un-
labelled video sequences and achieves improvement on test set. The rationale
behind the proposed framework is shown in Fig. 1.

The human-centered images can be regarded as vetors in a high-dimensional
manifold. Different from common distances such as Wasserstein metrics which
consider the intensities on all pixels, we measure the distances between images by
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Fig. 2. The proposed framework for human instance segmentation. It is composed of
a temporal parsing refinement module (TPR Module) for mutually refining segmen-
tation masks and optical flow estimations, a graph-based skeleton refinement module
(GBSR Module) for iteratively conducting graph distances minimization and poes es-
timation. The refined pose estimations are then converted to parsing results using
pose-to-segmentation module (Pose2Seg Module) whose outputs are combined with
those from TPR Module to produce final predictions. The final results are leveraged to
fine-tune segmentation networks. The full details of GBSR Module and TPR Module
are demonstrated in Fig. 3 and Fig. 5 (a), respectively.

using the similarities in human structures (poses) and human appearances. As is
shown in the bottom row in Fig. 1, the model cannot detect all identities in the
middle image because the patterns of poses did not appear in training images.
However, the missed identity can be detected in adjacent frames. By recovering
the missed detections with the consistency in temporal movements and fine-
tuning the Pose Module with the recovered predictions, the Pose Module can
generalize from familiar cases to previously unfamiliar cases.

As is shown in Fig. 2, the proposed framework is composed of a GBSR
Module, a TPR Module and a Pose2Seg Module. The unlabelled videos are
collected online resources which include [1] and other online videos. In the self-
supervised training phase, the Seg Module in TPR Module and Pose Module in
GBSR Module firstly conduct inference on each frame. Optical flow estimation is
also conducted [18] in this phase. Then segmentation refinement and optical flow
refinement are alternately conducted and mutually benefit each other. In this
way, the TPR Module iteratively tackles two coherent goals: minimizing cross-
entropy loss [3] for segmentation and minimizing matching error for optical flow
estimations, as will be introduced in section 3.3.
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In pose estimation, the GBSR Module builds a graph for each detected hu-
man, the attributes of each node in a graph include both the appearance of
the semantic part and its connections with other nodes. The distances between
corresponding graphs in adjacent frames are minimized with the aim of refining
pose estimations. Furthermore, a pose-to-segmentation module (Pose2Seg Mod-
ule) is proposed to convert the corrected skeletons to segmentation masks and
the generated masks are merged with the output of TPR Module to generate
the final corrected prediction. The final predictions are utilized to fine-tune the
weights in Seg Module and Pose2Seg Module under a feedback fashion. The over-
all process is conducted for several rounds until the outputs of the Seg Module
approximates the final predictions.

Our major contributions can be summarized as follows:

1. We propose a novel self-supervised framework which can be trained on un-
labelled video data iteratively and improves the performance of instance
segmentation with the prior knowledge about videos.

2. We propose a TPR Module which conducts mutual refinement between seg-
mentation and optical flow estimation. Different from other methods which
leverage optical flow estimations without remedying errors, the two tasks in
TPR Module benefit from each other and the TPR Module facilitates the
propagation of predictions from simple frames to challenging frames in the
same video, as will be shown in Section 3.3.

3. We propose a novel graph based module, called GBSR Module, which tack-
les the goals of finetuning the pose estimation network and graph distance
minimization alternately and boosts the performance in pose estimation.

4. We demonstrate the effectiveness of the framework, it achieves current state-
of-the-art performance without requiring additional labels.

2 Related Work

Instance Segmentation In this task, a single mask is asigned for each object in
an image. Existing deep learning methods for instance segmentation are divided
into two categories. The first type of methods are composed of more than one
stage. Detection is conducted before segmentation [7] [11] [35] [16]. The second
type of models jointly conduct detection and segmentation in one pass [19] [26].
For instance, [26] grouped the detected line segments into connected components
before figuring out object boundaries. [14] unified semantic segmentation and
instance-aware edge detection in an end-to-end pass. A typical shortcome of the
two-stage methods lies in their failure in detection when nearby bounding boxes
are highly overlapped. Besides, different stages are trained using independent
targets and their predictions are inconsistent. Even if the second type of methods
do not rely on bounding boxes, some of them are composed of several sub-
networks [14]. As a result, the great number of learnable parameters easily leads
to over-fitting. The OCHuman and COCOPersons datasets [24] are introduced
by [35]. In this paper, we introduce a self-supervised framework for instance
segmentation and human parsing, unlabelled images from real-world scenarios
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contribute to generalization. Besides, the proposed framework is not built on
detection modules.

Human Pose Estimation The large datasets such as COCO Key-points
Challenge have contributed to the remarkable progress in human pose estimation
[30] [3] [4] [15] [21] [22] [27] [31] [37] [33]. Existing approaches can be divided
into top-down [30] and bottom-up methods [28]. The former localize bounding
boxes before estimating the poses inside boxes. However, challenging cases with
occlusion, complex lightening conditions or entanglement usually lead to the
failures of detectors. The missed detections cannot be recovered by pose esti-
mating models. Even when parts of occluded humans are detected, the accuracy
of predictions is unsatisfactory and the precision of pose estimation also drops
significantly. The efficiency of top-down approaches is also inferior to bottom-up
methods because their inference time is proportional to the number of people
in images. Bottom-up methods predict the locations of body joints before orga-
nizing them into human structures. The computational burdens of bottom-up
methods are not influenced by the number of identities in an image. However,
the limbs belonging to different humans are easy to be mixed because adjacent
identities are highly entangled. Additionally, the variations in scales and poses
lead to the failures in organizing joints into people. To improve the robustness
to occlusions and entanglement while improving generalization, we propose a
GBSR Module which leverages the consistency between human poses in adja-
cent frames as a constraint, and refines pose predictions to meet the constraint.

3 Self-supervised Framework

3.1 The structure of the framework

The framework is composed of a GBSR Module, a TPR Module and a Pose2Seg
Module. The GBSR Module and the TPR Module are introduced in Section
3.2 and Section 3.3, respectively. The method for integrating the modules are
introduced in Section 3.4. The deeplabv3+ model [5] is incorporated in TPR
Module as the Seg Module while the model proposed in [28] is incorporated in
GBSR Module as the Pose Module. The Pose2Seg Module has the same structure
as the Seg Module.

The available training data for pose estimation is significantly larger than
that for segmentation. As a result, the Pose Module has a better generalization
capacity and thus its predictions are leveraged to improve the segmentation
performance after the post-processing of Pose2Seg Module.

3.2 Graph-Based Skeleton Refinement Module (GBSR Module)

The GBSR Module is introduced in Fig. 3. In the inference on single RGB images,
some body joints cannot be detected due to occlusions, motion blurs or complex
lightening conditions. However, the influences change from frame to frame and
the same keypoint is unlikely to be missing in consecutive frames. The GBSR
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Fig. 3. The structure of the proposed GBSR Module.

Fig. 4. The structure of a human graph where the representations of both appearances
and structures are involved.

Module builds one graph for each human and enforces the consistency between
corresponding graphs in consecutive frames by minimizing graph distances. The
minimization serves the purpose of refining pose estimations. Each node in a
human graph corresponds to one keypoint (body joint) and the attributes of a
node involve both the appearances of the joint and its structural information
such as the connections between the node and other nodes. Fig. 3 demonstrates
the workflow of the GBSR Module and Fig. 4 shows human part graphs, the
cells in the right table are marked in black if correponding nodes are connected.

Suppose that Gi and Gi+1 are the two graphs describing the same person in
the i − th and (i + 1) − th frames. Each graph is composed of N = 17 nodes
if without occlusion. The 17 nodes are nose, left and right eyes, left and right
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ears, left and right shoulders, left and right elbows, left and right wrists, left and
right hips, left and right knees, left and right ankles. The distance between two
graphs is the sum of two parts

D(Gi, Gi+1) = (1− α) ∗ L1(Gi, Gi+1) + α ∗ L2(Ci, Ci+1) (1)

The first term L1(Gi, Gi+1) measures the similarity in appearances:

L1(Gi, Gi+1) =
∑
m,o

vm,od(fi(lm,i), fi+1(lo,i+1)) (2)

where ln,i and ln,i+1 denote the predicted locations of the m−th and o−th body
joints in the i − th and (i + 1) − th frames, respectively. A feature extraction
stage consisting of 14 convolutional layers is employed to obtain the featuremaps
of both frames fi and fi+1. fi(ln,i) and fi+1(ln,i+1) are obtained by cropping
a bounding box with an appropriate side length (twice the distance between
neck and nose) from the predicted locations on feature maps and input images.
fi(ln,i) and fi+1(ln,i+1) include both low-level and high-level contextual cues.
The second term L2(Ci, Ci+1) measures the similarity in graph structures. The
structure of each graph is described by a matrix which is shown by the right col-
umn in Fig. 4. Ci and Ci+1 are two N−by−N matrices and Ci(m,n) = 1 if there
is connection between the m−th and the n−th body joints, m,n, o, p = 1, ..., N ,
the arrangements of indices are shown in the left part of Fig. 4. L2(Ci, Ci+1) is
computed by

L2(Ci, Ci+1) =
∑
m,o

vm,o

∑
n,p

vn,pd(Ci(m,n)− Ci+1(o, p)) (3)

d() is implemented using 1− norm, vm,n and vo,p denote the visibility scores
of different body joints and ranges from 0 to 1. For instance, m and n denote the
joints with same semantic meaning in two frames, vm,n is higher only when both
of them are visible. As people in consecutive frames have quite similar poses,
the Graph Distance Minimization Unit minimizes the distances with respect to
visibility scores:

min
vm,o,vn,p,m,n,o,p∈1,...,N

D(Gi, Gi−1) +D(Gi, Gi+1) (4)

Visibility scores are obtained in this way and are used to adjust the side
lengths of boxes for cropping regions around body joints. For instance, the size
of a box descreases if its visibility score is lower. The regions cropped with new
sizes are leveraged in the matching of joints for a second time. Then the matching
results are used to refine body joint predictions.

3.3 Temporal Parsing Refinement Module (TPR Module)

The details of the TPR Module is demonstrated in Fig. 5. Fig. 5 (a) shows
the structure of the TPR Module, it includes a segmentation module, a unit
for optical flow estimation, a unit for optical flow refinement and a unit for
segmentation mask refinement. The temporal window size shows the number of
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Fig. 5. Introduction to the proposed TPR Module. (a) Structure of the TPR Module.
The shaded area denotes the iteration steps. (b) Applying the Seg Module on a single
challenging frame. (c) The application of TPR Module in a video sequence where the
last frame is the same as the input of (b), the consistency among consecutive frames is
improved by refinement and the performance on that frame is significantly improved.

consecutive frames which compose the input to TPR Module, it is selected to
be three for clear demonstration.

Firstly, optical flow estimation is conducted and the segmentation module
predicts three consecutive masks. The optical flow vectors which are inconsistent
with the predicted masks are regarded as unreliable vectors and are fed into
the Optical Flow Refinement Unit which re-conducts a search over surrounding
regions and minimizes pixel-level matching error. For the first frame and the
last frame, the activations before softmax layer are warped to the middle frame
based on refined flow vectors, then the element-wise sum of activations from
three consecutive frames are fed to the Softmax layer (5) to produce the output.
Finally the refined segmentation mask is leveraged to finetune the segmentation
module. The 4 steps in the shaded area in Fig 5 (a) are conducted iteratively.
The size of temporal window can be revised to adjust the dependency among
consecutive predictions, as will be shown in experiments.

Softmaxi = Softmax(at(xi, yi) + at+1(xi + ut+1(xi, yi), yi + vt+1(xi, yi))+

at−1(xi − ut(xi, yi), yi − vt(xi, yi)))
(5)

where Softmaxi denotes the i− th pixel on the output of softmax layer, at and
at+1 denote the activations before softmax layers in the t− th and (t+ 1)− th
frames. The corrected optical flow vectors on the i−th pixel are (ut(xi, yi), vt(xi, yi))
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and (ut+1(xi, yi), vt+1(xi, yi)). The rationality behind applying iterations in Fig.
5 (a) is the fact that optical flow estimations are quite noisy and many estimated
motion vectors are incorrect. The input in Fig. 5 (b) is the same as the last input
in Fig. 5 (c). The improvements demonstrate the merits of mutual refinement
which improves the consistency among consecutive predictions.

Suppose that image A is easy to conduct segmentation on while image B is
challenging. A and B belong to the same video sequence. The refined optical
flow estimations in Fig. 5 (a) implicitly facilitate the propagation of predictions
from A to B and obtain better results on B. The propagation can be expressed
in the following form

IA(x, y) = IB(x+ u(x, y), y + v(x, y)), x ∈ [1, H], y ∈ [1,W ] (6)

where IA and IB denote the segmentation masks of RGB images A and B with
width W and height H. IA(x, y) shows the color intensity at location (x, y) in
image A. The pixel (x, y) belongs to a certain semantic part and the pixel moves
to a different location (x+ u(x, y), y + v(x, y)) in image B. The transformation
of human poses from A to B is divided into many intermediate steps each of
which corresponds to the refined optical flow estimations in one frame. u(x, y)
and v(x, y) are achieved by integrating the refined vectors from all intermediate
steps:

u(x, y) =

T∑
t=1

ut(x, y) (7)

v(x, y) =

T∑
t=1

vt(x, y) (8)

A series of intermediate refined segmentation masks between A and B are
obtained, such as IA+1(x, y), ..., IA+T−1(x, y) which satisfy

IA+t(x, y) = IA+t+1(x+ ut+1(x, y), y + vt+1(x, y)), t = 1, ..., T − 1 (9)

where the motion vectors ut+1(x, y) and vt+1(x, y) are the refined vectors in the
(t+ 1)− th step. The refined mask IB contributes to improvements in Fig. 5 (c).

3.4 The method for combining TPR Module with GBSR Module

Even if the TPR Module proposed in section 3.3 contributes to improving seg-
mentation performance. There are still some limbs which cannot be detected.
On the other hand, The available data for training GBSR Module [24] is dif-
ferent from that for training TPR Module [14] and both modules are better at
handling different cases. As a result, it is necessary to combine the predictions
from GBSR Module and those from TPR Module due to their complementary
nature.

A pose-to-seg module (Pose2seg Module) is trained in this phase, it has the
same structure as the Seg Module except for the input layer which takes in the
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Algorithm 1 The pipeline of the proposed approach.

Input: The number of rounds NTPR = 5 for mutual refinement in TPR Module, the
number of rounds NGBSR = 1 in GBSR Module for alternate between finetuning Pose
Module and conducting graph distance minimization (pose refinement). The Temporal
Window Size Wintemporal = 3 in both modules.
Output: Predictions on the test sets of benchmark data.

1: Select Wintemporal = 3 consecutive frames as one group. Apply the Seg Module to
generate initial segmentation predictions. Also apply the Optical Flow Estimation
Unit to obtain initial optical flow estimations.

2: Obtain refined segmentation masks by alternately conducting optical flow refine-
ment with segmentation predictions and fine-tuning Seg Module using refined seg-
mentation masks.

3: alternately conduct minimization on graph distances by refining pose estimations
and re-training Pose Module.

4: Apply Pose2seg Module to generate segmentation masks using the output from
Step 3. Combine the outputs from TPR Module and Pose2Seg Module using (10).

5: If the output of Step 4 and that of the Pose Module are similar enough (intersection
over union above 0.95), apply the current set of learnable parameters in Seg Module
to make predictions on test set and go to Step 6. Else go back to Step 1.

6: return Predictions on test set.

concatenation of RGB images and skeleton predictions. The activations before
the softmax layer in Pose2Seg Module and those before the softmax layer in
TPR Module are combined according to (10) to obtain the final predictions.

Softmaxi = Softmax(aTPR(xi, yi) + aPose2Seg(xi, yi)) (10)

The final predictions obtained by (10) are used to re-train the learnable
parameters in the TPR Module and those in the Pose2Seg Module. the pipeline
of the proposed approach is presented in Algorithm 1.

4 Experiments

The proposed framework is evaluated on two tasks: instance segmentation and
human parsing.

In instance segmentation, the framework is evaluated on two datasets: (1)
COCOPersons is a subset of the MSCOCO dataset [24] and contains 64,115
images with 273,469 labelled humans. (2) OCHuman dataset which is proposed
in [35] includes 4,731 images with 8,110 labelled humans. The humans in the
dataset are heavily occluded and the dataset is challenging. The two datasets are
among the largest ones with annotations on both human instance segmentation
and pose estimation. The criterion for evaluating segmentation performance is
Average Precision (AP). The MSCOCO dataset is split into three subsets: images
with small objects, images with medium objects and those with large objects.
The corresponding metrics are APS ,APM and APL. The OCHuman dataset is
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divided into two subsets: OCHuman-Moderate and OCHuman-Hard, the first
subset contains instances with MaxIoU in the range of 0.5 and 0.75 while the
second contains instances with MaxIoU larger than 0.75, the second is more
challenging. The metrics are APM and APH , respectively.

The online collected videos include a comprehensive set of poses and actions,
such as sport events, daily exercises and so on. The annotations are automati-
cally generated with the proposed modules. Over 1,100 high-quality videos are
collected in this way and will be released after publication.

4.1 Implementation Details

The Seg Module in TPR Module is with Deeplab-V3+ [5] structure and xception-
71 [6] backbone. Firstly the Seg Module is trained on the benchmark datasets for
30 epoches with initial learning rate 1e-2 and a polynomial learning rate policy.
In each round of mutual refinement, fine-tuning is conducted for 10 epoches. The
Pose Module is directly inherited from [28] and it is trained on the COCOPersons
dataset [24]. The initial learning rate is 2e-4. The learning rate is decayed by 0.1
after 33 epoches and ends after 40 epoches for instance segmentation.

Our performance of instance segmentation is compared with that of the
Mask-RCNN model [16] and the model proposed in [35]. The Mask-RCNN model
is trained with the configurations provided by the official website [12]. Resnet-50
[17] is the backbone of Mask-RCNN and the initial learning rate is 2e-2. We have
also re-implemented the model proposed in [35] with official settings. The refine-
ments are conducted until convergence, according to Algorithm 1. The training
data in each round consists of the combination of the benchmark datasets and
the refined segmentation results on the video dataset.

4.2 Performance comparison on the heavily occluded human data
for instance segmentation

In this experiment, we compare the performance of the proposed framework
with that of existing methods on the OCHuman dataset with occlusion cases. In
this section we fix the number of rounds in mutual refinement and the temporal
window size in TPR Module to be both 3, the number of refinements in GBSR
Module is fixed to be 1. More choices will be discussed in section 4.5. From Table
1 it can be seen that the performance measured in AP is improved by over 4
percent over existing methods on the validation and test set. Some subjective
results are shown in Fig. 6.

Besides segmentation, our proposed GBSR Module can also improve the
performance of keypoint localization over the Pose Module. The Pose Module
achieves 0.285 / 0.303 AP on the val/test set of the OCHuman dataset, the
refinement introduced in GBSR Module improves the performance to 0.299 and
0.318, respectively.

Additionally, the α in (1) is selected to be 0.5 because other values including
0.1, 0.2, 0.3, 0.4, 0.6, 0.7, 0.8 and 0.9 all produce inferior AP than 0.5.
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Table 1. Performance comparison on the validation and test set of the OCHuman
dataset [35].

Methods Backbone AP
val

APM

val
APH

val
Methods Backbone AP

test
APM

test
APH

test

Mask-
RCNN[16]

Resnet50 0.163 0.194 0.113 Mask-
RCNN[16]

Resnet50 0.169 0.189 0.128

Pose to
Seg[35]

Resnet50 0.222 0.261 0.150 Pose to
Seg[35]

Resnet50 0.238 0.266 0.175

Ours Resnet50 0.267 0.310 0.181 Ours Resnet50 0.272 0.305 0.194

4.3 Performance comparison on general human data for instance
segmentation

The COCOPersons dataset [24] is the existing largest dataset for human instance
segmentation and includes all types of scenarios. The comparison is conducted
on the whole dataset, the subset with medium objects and the subset with large
objects. Table 2 demonstrates the results. Training is conducted on the training
split and the model is evaluated on the validation set.

4.4 Ablation study

4.4.1 The number of rounds for fine-tuning As is introduced in section
4.2, the pipelines of TPR Module and GBSR Module consist of iterations. In this
section, we evaluate the influence of the number of iterations on performance.
Table 3 shows the results on the OCHuman dataset and Table 4 shows the results
on the COCOPersons dataset.

From Table 3 and Table 4 it can be inferred that the increase in the round
number contributes to improving performance. Besides, the advantage of more

Fig. 6. Subject results on the OCHuman dataset [35] with occluded humans. On the
top row are the predictions from the current state-of-the-art model [35]. The results of
the proposed framework are shown in the bottom row. It can be seen that occlusions
are better handled and background interferences are eliminated.
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Table 2. Performance comparison on the COCOPersons dataset [35].

Methods Backbone AP APM APL

Mask-RCNN[16] Resnet50 0.532 0.433 0.648
PersonLab[29] Resnet101 - 0.476 0.592
PersonLab[29] Resnet101 - 0.492 0.621
PersonLab[29] Resnet152 - 0.483 0.595
PersonLab[29] Resnet152 - 0.497 0.621
Pose to Seg[35] Resnet50 0.555 0.498 0.670
Ours Resnet50 0.626 0.565 0.714

Table 3. Performance comparison on the validation / test set of the OCHuman dataset
[35] over the numbers of iterations NTPR and NGBSR in TPR Module and GBSR
Module.

NTPR NGBSR Split AP APM APH NTPR NGBSR Split AP APM APH

1 1 val 0.250 0.291 0.169 1 2 val 0.250 0.291 0.169
3 1 val 0.262 0.305 0.177 3 2 val 0.262 0.305 0.177
5 1 val 0.267 0.310 0.181 5 2 val 0.267 0.310 0.181
1 1 test 0.260 0.291 0.187 1 2 test 0.260 0.291 0.187
3 1 test 0.269 0.302 0.192 3 2 test 0.269 0.302 0.192
5 1 test 0.272 0.305 0.194 5 2 test 0.272 0.305 0.194

Table 4. Performance comparison on the COCOPersons dataset [24] over the number
of iterations NTPR and NGBSR.

NTPR NGBSR AP APM APL NTPA NGBSA AP APM APL

1 1 0.598 0.539 0.696 1 2 0.598 0.539 0.696
3 1 0.618 0.558 0.709 3 2 0.618 0.558 0.709
5 1 0.626 0.565 0.714 5 2 0.626 0.565 0.714

rounds in TPR Module demonstrates that the optical flow estimations are also
improved during the mutual refinement process.

4.4.2 The improvements brought by TPR Module and GBSR Mod-
ule The framework is composed of TPR Module and GBSR Module. To demon-
strate the merits of both modules, we compare the performance of using neither
of them (only using Seg Module and Pose Module), using TPR Module together
with Pose Module and using TPR Module together with GBSR Module. Ac-
cording to the discussion section in 4.4.1, NTPR = 5 and NGBSA = 1. Table 5
shows the results on the OCHuman dataset while Table 6 shows the results on
the COCOPersons dataset. Using Seg Module or Pose Module means only using
the Seg Module in Fig. 5 or the Pose Module in Fig. 3 without other compo-
nents and do not introduce iterations. It can be seen that both TPR Module
and GBSR Module contribute to improvements on performance.
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Table 5. Influence on the validation / test set of the OCHuman dataset [35] brought
by TPR Module and GBSR Module.

Configuration Split AP APM APH

Seg Module and Pose Module val 0.223 0.262 0.150
TPR Module and Pose Module val 0.237 0.277 0.163
TPR Module and GBSR Module val 0.267 0.310 0.181
Seg Module and Pose Module test 0.239 0.268 0.175
TPR Module and Pose Module test 0.253 0.285 0.186
TPR Module and GBSR Module test 0.272 0.305 0.194

Table 6. Influence on the COCOPersons dataset [24] brought by TPR Module and
GBSR Module.

Configuration AP APM APH

Seg Module and Pose Module 0.555 0.498 0.670
TPR Module and Pose Module 0.576 0.519 0.682
TPR Module and GBSR Module 0.626 0.565 0.714

The complementary nature of pose estimation and segmentation has already
been demonstrated in [35] and it is necessary to integrate GBSR Module in the
framework.

4.4.3 The influence of temporal window size In Fig. 3 and Fig. 5, three
consecutive images are fed into TPR and GBSR once at a time. Experiments
are conducted to evaluate the influence of temporal window size on performance.
NTPA = 5 and NGBSA = 1 are fixed. If the window size is 2, the AP on the
validation set and test set of OCHuman dataset [35] drop to 0.264 and 0.268,
respectively. The AP on the COCOPersons dataset [24] drops to 0.612. Due to
limitations in computational resources, the temporal window size is not further
enlarged.

5 Conclusions

The paper presents a novel framework for instance segmentation. The proposed
TPR Module conducts mutual refinement between segmentation and optical flow
estimation while the GBSR Module refines pose estimations by enforcing the
consistency among human graph structures from consecutive frames. Different
coherent modules are unified in a framework and produce the final segmentation
results. Experimental results on the OCHuman dataset [35] and the COCOPer-
sons dataset [24] have shown that the proposed framework outperforms existing
methods on the task by leveraging unlabelled data together with prior knowl-
edge. The self-supervised learning process benefits from the prior knowledge
about video data.
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