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Abstract

We introduce Bi-SimCut: a simple but effec-
tive strategy to boost neural machine translation
(NMT) performance. It consists of two train-
ing procedures: bidirectional pretraining and
unidirectional finetuning. Both procedures uti-
lize SimCut, a simple regularization method
that forces the consistency between the output
distributions of the original and the cutoff sam-
ples. Without utilizing extra dataset via back-
translation or integrating large-scale pretrained
model, Bi-SimCut achieves strong translation
performance across five translation benchmarks
(data sizes range from 160K to 20.1M): BLEU
scores of 31.16 for en — de and 38.37 for
de — en on the IWSLT14 dataset, 30.78
for en — de and 35.15 for de — en on
the WMT14 dataset, and 27.17 for zh — en
on the WMT17 dataset. SimCut is not a new
method, but a version of Cutoff (Shen et al.,
2020) simplified and adapted for NMT, and it
could be considered as a perturbation-based
method. Given the universality and simplic-
ity of Bi-SimCut and SimCut, we believe they
can serve as strong baselines for future NMT
research.

1 Introduction

The state of the art in machine translation has
been dramatically improved over the past decade
thanks to the neural machine translation (NMT)
(Wu et al., 2016), and transformer-based models
(Vaswani et al., 2017) often deliver state-of-the-art
performance with large-scale corpora (Ott et al.,
2018). Along with the development in the NMT
field, consistency training has been widely adopted
and shown great promise to improve NMT perfor-
mance. It simply regularizes NMT model predic-
tions to be invariant to either small perturbations
applied to the inputs (Sano et al., 2019; Shen et al.,
2020) and hidden states (Chen et al., 2021) or the
model randomness and variance existed in the train-
ing procedure (Liang et al., 2021).

Specifically, Shen et al. (2020) introduced a set
of cutoff data augmentation methods and utilized
Jensen-Shannon (JS) divergence loss to force the
consistency between the output distributions of the
original and the cutoff augmented samples in the
training procedure. Despite its impressive perfor-
mance, finding the proper values for the four addi-
tional hyper-parameters introduced in cutoff aug-
mentation seems to be time-consuming if there are
limited resources available, which hinders its prac-
tical value in the NMT field.

In this paper, our main goal is to provide a sim-
ple, easy-to-reproduce, but tough-to-beat strategy
for training NMT models. Inspired by cutoff aug-
mentation (Shen et al., 2020) and virtual adversar-
ial regularization (Sano et al., 2019) for NMT, we
firstly introduce a simple yet effective regulariza-
tion method named SimCut. Technically, SimCut
is not a new method and can be viewed as a simpli-
fied version of Token Cutoff proposed in Shen et al.
(2020). We show that bidirectional backpropaga-
tion in Kullback-Leibler (KL) regularization plays
a key role in improving NMT performance. We
also regard SimCut as a perturbation-based method
and discuss its robustness to the noisy inputs. At
last, we present Bi-SimCut, a two-stage training
strategy consisting of bidirectional pretraining and
unidirectional finetuning equipped with SimCut
regularization.

The contributions of this paper can be summa-
rized as follows:

* We propose a simple but effective regulariza-
tion method, SimCut, for improving the gen-
eralization of NMT models. SimCut could be
regarded as a perturbation-based method and
serves as a strong baseline for the methods of
perturbations.

* We propose Bi-SimCut, a training strategy for
NMT that consists of bidirectional pretrain-
ing and unidirectional finetuning with SimCut



regularization.

* Our experimental results show that NMT train-
ing with Bi-SimCut achieves significant im-
provements over the transformer model on
five translation benchmarks (data sizes range
from 160K to 20.1M), and outperforms the
current state-of-the-art method BiBERT (Xu
et al., 2021) on several benchmarks.

2 Background

2.1 Neural Machine Translation

The NMT model refers to a neural network with
an encoder-decoder architecture, which receives
a sentence as input and returns a correspond-
ing translated sentence as output. Assume X =
Z1,...,ry and y = y1,...,ys that correspond to
the source and target sentences with lengths 1
and J respectively. Note that y; denotes the spe-
cial end-of-sentence symbol (eos). The encoder
first maps a source sentence x into a sequence
of word embeddings e(x) = e(x1),...,e(x),
where e(x) € R¥! and d is the embedding
dimension. The word embeddings are then en-
coded to the corresponding hidden representations
h. Similarly, the decoder maps a shifted copy
of the target sentence y, i.e., (bos),y1,...,ys—1,
into a sequence of word embeddings e(y) =
e((bos)),e(y1), ..., e(yj—1), where (bos) denotes a
special beginning-of-sentence symbol, and e(y) €
R?*/_ The decoder then acts as a conditional lan-
guage model that operates on the word embeddings
e(y) and the hidden representations h learned by
the encoder.

Given a parallel corpus S = {x?, yi}gl, the
standard training objective is to minimize the em-
pirical risk:

[£(f(x,y:0),9), (D

where ¢ denotes the cross-entropy loss, 6 is a set
of model parameters, f(x,y;0) is a sequence of
probability predictions, i.e.,

f](X7y76) = P(y‘X,Y<],9), (2)
and y is a sequence of one-hot label vectors for y.

2.2 Cutoff Augmentation

Shen et al. (2020) introduced a set of cutoff meth-
ods which augments the training by creating the
partial views of the original sentence pairs and

proposed Token Cutoff for the machine transla-
tion task. Given a sentence pair (x,y), N cut-
off samples {x’ ., vy’ }}¥, are constructed by ran-
domly setting the word embeddings of z1, ...,z
and y1, ..., ys to be zero with a cutoff probability
Peut- For each sentence pair, the training objective
of Token Cutoff is then defined as:
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in which KL(-||-) denotes the Kullback-Leibler
(KL) divergence of two distributions, and « and 3
are the scalar hyper-parameters that balance L. (6),

[:cut(H) and Ekl (9)

3 Datasets and Baseline Settings

In this section, we describe the datasets used in
experiments as well as the model configurations.
For fair comparisons, we keep our experimental
settings consistent with previous works.

IWSLT WMT
en<>de | ensrde zh—en
train | 160239 | 4468840 | 20184941
valid 7283 6003 2002
test 6750 3003 2001

Table 1: Number of sentence pairs used in our machine
translation experiments.

Datasets We initially consider a low-resource
(IWSLT14 en<+de) scenario and then show fur-
ther experiments in standard (WMT14 en<>de)
and high (WMT17 zh—en) resource scenarios in
Sections 5 and 6. The detailed information of the
datasets are summarized in Table 1. We here con-
duct experiments on the IWSLT14 English-German
dataset, which has 160K parallel bilingual sentence



pairs. Following the common practice, we lower-
case all words in the dataset. We build a shared dic-
tionary with 10K byte-pair-encoding (BPE) (Sen-
nrich et al., 2016) types.

Settings We implement our approach on top of
the Transformer (Vaswani et al., 2017). We apply
a 6-layer Transformer with 4 attention heads, em-
bedding size 512, and FFN layer dimension 1024.
We apply cross-entropy loss and set max tokens
per batch to be 4096. We use Adam optimizer
with Beta (0.9,0.98), 4000 warmup updates, and
inverse square root learning rate scheduler with
initial learning rates 5e 4. We use dropout 0.3
and beam search decoding with beam size 5 and
length penalty 1.0. We apply the same training
configurations in both pretraining and finetuning
stages which will be discussed in the following
sections. We use multi-bleu.pl! for BLEU
evaluation. We train all models until convergence
on a single NVIDIA Tesla V100 GPU. All reported
BLEU scores are from a single model. For all the
experiments below, we select the saved model state
with the best validation perplexity.

4 Bi-SimCut

In this section, we formally propose Bidirectional
Pretrain and Unidirectional Finetune with Simple
Cutoff Regularization (Bi-SimCut), a simple but
effective training strategy that can greatly enhance
the generalization of the NMT model. Bi-SimCut
consists of a simple cutoff regularization and a two-
phase pretrain and finetune strategy. We introduce
the details of each part below.

4.1 SimCut: A Simple Cutoff Regularization
for NMT

Despite the impressive performance reported in
Shen et al. (2020), finding the proper hyper-
parameters (pcut, @, 3, N) in Token Cutoff seems
to be time-consuming if there are limited resources
available, which hinders its practical value in the
NMT community. To reduce the burden in hyper-
parameter searching, we propose SimCut, a simple
regularization method that forces the consistency
between the output distributions of the original sen-
tence pairs and the cutoff samples.

Our problem formulation is motivated by Vir-
tual Adversarial Training (VAT), where Sano et al.
(2019) introduces adversarial regularization that

"https://github.com/moses-smt/mosesdecoder/blob/
master/scripts/generic/multi-bleu.perl

forces the output distribution of the samples with
adversarial perturbations dx and 4y to be consis-
tent with that of the original samples:

KL(f(e(x),e(y); 0)[|f (e(x) +0x, e(y) +0y; 0)).

Instead of generating perturbed samples by
gradient-based adversarial methods, for each sen-
tence pair (x,y), we only generate one cutoff sam-
ple (Xcut, Ycut) by following the same cutoff strat-
egy used in Token Cutoff. For each sentence pair,
the training objective of SimCut is defined as:

Esimcut(e) = £ce (9) + aﬁsimkl(0)7 (4)

where

»Csimkl('g) = KL(f(Xa Y; Q)Hf(xcut, Ycut; 0))

There are only two hyper-parameters a and pcyt
in SimCut, which greatly simplify the hyper-
parameter searching step in Token Cutoff. Note
that VAT only allows the gradient to be backprop-
agated through the right-hand side of the KL di-
vergence term, while the gradient is designed to
be backpropagated through both sides of the KL
regularization in SimCut. We can see that the con-
straint introduced by Liokcut(0) and Li;(6) in (3)
still implicitly hold in (4):

* Liokeut(6) in Token Cutoff is designed to guar-
antee that the output of the cutoff sample
should close to the ground-truth to some ex-
tent. In SimCut, L..(6) requires the outputs
of the original sample close to the ground-
truth, and L,k (0) requires the output distri-
butions of the cutoff sample close to that of
the original sample. The constraint introduced
by Liokeut (0) then implicitly holds.

* L;;(0) in Token Cutoff is designed to guar-
antee that the output distributions of the orig-
inal sample and N different cutoff samples
should be consistent with each other. In Sim-
Cut, Lg;mki(6) guarantees the consistency be-
tween the output distributions of the original
and cutoff samples. Even though SimCut only
generates one cutoff sample at each time, dif-
ferent cutoff samples of the same sentence
pair will be considered in different training
epochs. Such constraint raised by L;(0) still
implicitly holds.



Method en—de | de—en
Transformer 28.70 34.99
VAT 29.45 35.52
R-Drop 30.73 37.30
Token Cutoff' - 37.60
SimCut 30.98 37.81

Table 2: SimCut achieves the superior or comparable
performance on IWSLT14 en < de translation tasks
over the strong baselines such as VAT, R-Drop, and
Token Cutoff. { denotes the number is reported from
Shen et al. (2020), others are based on our runs.

4.2 Analysis on SimCut

4.2.1 How Does the Simplification Affect
Performance?

We here investigate whether our simplification on
Token Cutoff hurts its performance on machine
translation tasks. We compare SimCut with VAT,
Token Cutoff, and R-Drop (Liang et al., 2021), a
strong regularization baseline that forces the output
distributions of different sub-models generated by
dropout to be consistent with each other. Table
2 shows that SimCut achieves superior or compa-
rable performance over VAT, R-Drop, and Token
Cutoff, which clearly shows the effectiveness of our
method. Due to the tedious and time-consuming
hyper-parameter searching in Token Cutoff, we will
not include its results in the following sections and
show the results of SimCut directly.

Figure 1 shows the evolution of different train-
ing methods’ validation BLEU scores. On the
IWSLT14 de—en validation set, the performance
of all methods stop increasing before 250 epochs
except for SimCut. The results on VAT are consis-
tent with the previous studies on adversarial over-
fitting, i.e., virtual adversarial training easily suffer-
ing from overfitting (Rice et al., 2020). Note that
the BLEU score of SimCut continuously increases
in the first 500 epochs.

4.2.2 How Does the Bidirectional
Backpropagation Affect Performance?

Even though the problem formulation of SimCut
is similar to that of VAT, one key difference is that
the gradients are allowed to be backpropagated
bidirectionally in the KL regularization in SimCut.
We here investigate the impact of the bidirectional
backpropagation in the regularization term on the
performance of the NMT model. Table 3 shows
the translation results of VAT and SimCut with
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Figure 1: On the IWSLT14 de—en validation set, the
BLEU score increases monotonously over epoch num-
ber in model training using SimCut. In contrast, the
BLEU scores of the other three baselines all stop in-
creasing before 250 epochs. The results suggest that
the use of SimCut can effectively alleviate the model
training from overfitting.

Method en—de | de—en
VAT 29.45 35.52
+ Bi-backpropagation | 29.69 36.26
SimCut 30.98 37.81
- Bi-backpropagation 30.29 36.91

Table 3: Bidirectional backpropagation achieves better
performance on IWSLT14 en ¢ de translation tasks
compared with unidirectional backpropagation in the
KL regularization.

or without bidirectional backpropagation. We can
see that both VAT and SimCut benefit from the
bidirectional gradient backpropagation in the KL
regularization.

4.2.3 Performance on Perturbed Inputs

Given the similar problem formulations of VAT
and SimCut, it is natural to regard cutoff operation
as a special perturbation and consider SimCut as
a perturbation-based method. We here investigate
the robustness of NMT models on the perturbed
inputs. As discussed in Takase and Kiyono (2021),
simple techniques such as word replacement and
word drop can achieve comparable performance
to sophisticated perturbations. We hence include
them as baselines to show the effectiveness of our
method.

* UniRep: Word replacement approach constructs
a new sequence whose tokens are randomly re-
placed with sampled tokens. For each token in
the source sentence x, we sample &; uniformly
from the source vocabulary, and use it for the



Input

wir denken (festgelegten), dass wir in der realitét nicht so gut
sind wie in spielen.

Reference

we feel that we are not as good in reality as we are in games.

Vaswani et al. (2017) on Input

we think we’re not as good in reality as we are in games.

on Noisy Input

we realized that we weren’t as good as we were in real life.

SimCut on Input

we think in reality, we’re not as good as we do in games.

on Noisy Input

we realized that we’re not as good in reality as we are in games.

Table 4: SimCut is more robust to small perturbations in an authentic context. SimCut captures the translation of
“in spielen” under the noisy input while the vanilla Transformer ignores the translation of “in spielen” due to the

replacement of “denken” with “festgelegten”.

new sequence x’ with probability 1 — p/:

, x;, with probability p/,
T =9 . . o , (%)
Z;, with probability 1 — p'.

We construct y’ from the target sentence y in the
same manner. Following the curriculum learning
strategy used in Bengio et al. (2015), we adjust
p’ with the inverse sigmoid decay:

, k

py = max(q, k;—i—eixp(%))’ (6)

where g and k are hyper-parameters. p, decreases
to g from 1, depending on the training epoch num-
ber t. We use p) as p’ in epoch ¢t. We set ¢ and k
to be 0.9 and 25 respectively in the experiments.

* WordDrop: Word drop randomly applies the
zero vector instead of the word embedding e(x;)
or e(y;) for the input token z; or y; (Gal and
Ghahramani, 2016). For each token in both
source and target sentences, we keep the orig-
inal embedding with the probability 3 and set it
to be the zero vector otherwise. We set /3 to be
0.9 in the experiments.

We construct noisy inputs by randomly replac-
ing words in the source sentences based on a pre-
defined probability. If the probability is 0.0, we
use the original source sentence. If the probabil-
ity is 1.0, we use completely different sentences
as source sentences. We set the probability to be
0.00, 0.01, 0.05, and 0.10 in our experiments. We
randomly replace each word in the source sentence
with a word uniformly sampled from the vocabu-
lary. We apply this procedure to IWSLT14 de—en
test set. Table 5 shows the BLEU scores of each
method on the perturbed test set. Note that the
BLEU scores are calculated against the original
reference sentences. We can see that all methods

Method probability
0.00 | 0.01 | 0.05 | 0.10
Transformer | 34.99 | 34.01 | 30.38 | 25.70
UniRep 35.67 | 3491 | 31.54 | 27.24
WordDrop | 35.65 | 34.73 | 31.22 | 26.46
VAT 35.52 | 34.65 | 30.48 | 25.44
R-Drop 37.30 | 36.24 | 32.27 | 27.19
SimCut 37.81 | 36.94 | 33.16 | 27.93

Table 5: The model trained by SimCut achieves high ro-
bustness on the perturbed test set and high performance
on the clean test set. Entries represent BLEU scores on
IWSLT14 de—en test set when we inject perturbations
to source sentences with different probability.

improve the robustness of the NMT model, and
SimCut achieves the best performance among all
the methods on both the clean and perturbed test
sets. The performance results indicate that SimCut
could be considered as a strong baseline for the
perturbation-based method for the NMT model.

As shown in Table 4, the baseline model com-
pletely ignores the translation of “in spielen (in
games)” due to the replacement of “denken (think)”
with “festgelegten (determined)” in the source sen-
tence. In contrast, our model successfully captures
the translation of “in spielen” under the noisy input.
This result shows that our model is more robust to
small perturbations in an authentic context.

4.2.4 Effects of o and pc,t

We here investigate the impact of the scalar hyper-
parameters o and peyt in SimCut. « is a penalty
parameter that controls the regularization strength
in our optimization problem. p.y; controls the
percentage of the cutoff perturbations in SimCut.
We here vary « and pey in {1,2,3,4,5} and
{0.00,0.05,0.10,0.15,0.20} respectively and con-
duct the experiments on the IWSLT14 de—en



dataset. Note that SimCut is simplified to R-Drop
approximately when p., = 0.00. The test BLEU
scores are reported in Figure 2. By checking model
performance under different combinations of o and
Peut, We have the following observations: 1) A too
small « (e.g., 1) cannot achieve as good perfor-
mance as larger o (e.g., 3), indicating a certain de-
gree of regularization strength during NMT model
training is conducive to generalization. Mean-
while, an overwhelming regularization (« = 5)
is not plausible for learning NMT models. 2)
When o = 3, the best performance is achieved
when peyt = 0.05, and peyt = 0.00 performs sub-
optimal among all selected probabilities. Such an
observation demonstrates that the cutoff perturba-
tion in SimCut can effectively promote the general-
ization compared with R-Drop.

37.5

37.0

F36.5

F36.0

F35.5

0.00 0.05 0.10 0.15 0.20
Pcut

Figure 2: BLEU scores with different o and pc,+ on
IWSLT14 de—en dataset.

4.3 Training Strategy: Bidirectional Pretrain
and Unidirectional Finetune

Bidirectional Pretrain is shown to be very ef-
fective to improve the translation performance
of the unidirectional NMT system (Ding et al.,
2021; Xu et al.,, 2021). The main idea is to
pretrain a bidirectional NMT model at first and
use it as the initialization to finetune a unidi-
rectional NMT model. Assume we want to
train an NMT model for “English—German”, we
first reconstruct the training sentence pairs to
“English+German—German+English”, where the
training dataset is doubled. We then firstly train
a bidirectional NMT model with the new training

Method en—de | de—en

Transformer 28.70 34.99
Bi-Pretrain 28.94 35.64

+ Finetune 28.82 35.66
Bi-R-Drop Pretrain | 30.30 37.01
+ R-Drop Finetune 30.85 37.55
Bi-SimCut Pretrain 30.57 37.70
+ SimCut Finetune 31.16 38.37

Table 6: Bidirectional pretrain and unidirectional fine-
tune results on IWSLT14 en <> de datasets. Note that
the results of bidirectional pretrain are from one model
for dual-directional translations.

Method en—de | de—en | Average
Transformer | 28.70 34.99 31.85
VAT 29.45 35.52 32.49
Mixed Rep’ 29.93 36.41 33.17
UniDrop| 29.99 36.88 33.44
R-Drop 30.73 37.30 34.02
BiBERT' 30.45 38.61 34.53
Bi-SimCut 31.16 38.37 34.77

Table 7: Our method achieves the superior performance
over the existing methods on the IWSLT14 en<«>de
translation benchmark. { denotes the numbers are re-
ported from the papers, others are based on our runs.

sentence pairs:

E [(f(xy;0),y) +(f(y,x0),%)], (]
(x,y)eS

and finetune the model with “English—German”
direction. We follow the same training strategy
and apply SimCut regularization to both pretrain-
ing and finetuning procedures. Table 6 shows that
our training strategy with SimCut could achieve su-
perior performance compared with strong baseline
such as R-Drop.

Comparison with Existing Methods We sum-
marize the recent results of several existing works
on IWSLT14 en<>de benchmark in Table 7. The
existing methods vary from different aspects, in-
cluding Virtual Adversarial Training (Sano et al.,
2019), Mixed Tokenization for NMT (Wu et al.,
2020), Unified Dropout for the transformer model
(Wuetal., 2021), Regularized Dropout (Liang et al.,
2021), and BiBERT (Xu et al., 2021). We can see
that our approach achieves an improvement of 2.92
BLEU score over Vaswani et al. (2017) and sur-
pass the current state-of-the-art (SOTA) method
BiBERT that incorporates large-scale pretrained



model, stochastic layer selection, and bidirectional
pretraining. Given the simplicity of Bi-SimCut, we
believe it could be considered as a strong baseline
for the NMT task.

5 Standard Resource Scenario

We here investigate the performance of Bi-SimCut
on the larger translation benchmark compared with
the IWSLT14 benchmark.

5.1 Dataset Description and Model
Configuration

For the standard resource scenario, we evaluate
NMT models on the WMT14 English-German
dataset, which contains 4.5M parallel sentence
pairs. We combine newstest2012 and newstest2013
as the validation set and use newstest2014 as the
test set. We collect the pre-processed data from Xu
et al. (2021)’s release?, where a shared dictionary
with 52K BPE types is built. We apply a standard
Transformer Big model with 16 attention heads,
embedding size 1024, and FFN layer dimension
4096. We apply cross-entropy loss and set max to-
kens per batch to be 4096. We use Adam optimizer
with Beta (0.9,0.98), 4000 warmup updates, and
inverse square root learning rate scheduler with ini-
tial learning rates 1le~3. We decrease the learning
rate to 5e~* in the finetuning stage. We select the
dropout rate from 0.3, 0.2, and 0.1 based on the
validation performance. We use beam search de-
coding with beam size 4 and length penalty 0.6. We
train all models until convergence on 8 NVIDIA
Tesla V100 GPUs. All reported BLEU scores are
from a single model.

5.2 Results

We report test BLEU scores of all comparison meth-
ods and our approach on the WMT14 dataset in
Table 8. With Bi-SimCut pretraining and finetun-
ing procedures, our model achieves strong or state-
of-the-art BLEU scores on en—de and de—en
translation benchmarks. We fix pcyy, to be 0.05 and
tune the hyperparameter « in both R-Drop and Sim-
Cut based on the performance on the validation set.
Note that the BLEU scores of R-Drop are lower
than that reported in Liang et al. (2021). Such gap
might be due to the different prepossessing steps
used in Liang et al. (2021) and Xu et al. (2021). It
is worth mentioning that Bi-SimCut outperforms

Zhttps://github.com/felixxu/BiBERT

BiBERT on de—en direction even though BiB-
ERT incorporates bidirectional pretraining, large-
scale pretrained contextualized embeddings, and
stochastic layer selection mechanism.

6 High Resource Scenario

To investigate the performance of Bi-SimCut on the
distant language pairs which naturally do not share
dictionaries, we here discuss the effectiveness of
Bi-SimCut on the Chinese-English translation task.

6.1 Dataset Description and Model
Configuration

For the high resource scenario, we evaluate NMT
models on the WMT17 Chinese-English dataset,
which consists of 20.1M training sentence pairs,
and we use devtest-2017 as the validation set and
newstest-2017 as the test set. We firstly build the
source and target vocabularies with 32K BPE types
separately and treat them as separated or joined
dictionaries in our experiments. We apply the
same Transformer Big model and training configu-
rations used in the WMT14 experiments. We use
beam search decoding with beam size 5 and length
penalty 1. We train all models until convergence on
8 NVIDIA Tesla V100 GPUs. All reported BLEU
scores are from a single model.

6.2 Results

We report test BLEU scores of the baselines and our
approach on the WMT17 dataset in Table 9. The
NMT models with separated dictionaries perform
slightly better than those with the shared dictio-
nary. We can see that our approach significantly
improves translation performance. In particular,
Bi-SimCut achieves more than 1.5 BLEU improve-
ment over Vaswani et al. (2017), showing the ef-
fectiveness and universality of Bi-SimCut on the
distant language pair.

7 Related Work

Adversarial Perturbation SimCut could be re-
garded as a perturbation base method. Adversarial
perturbation was firstly introduced in the field of
computer vision (Szegedy et al., 2014; Goodfellow
et al., 2015). Miyato et al. (2017) considered ad-
versarial perturbations in the embedding space and
showed its effectiveness on the text classification
tasks. In the NMT field, Sano et al. (2019) and
Wang et al. (2019) applied adversarial perturba-
tions in the embedding space during training of the



Method ‘ en—de | de—en | Average

Transformer + Large Batch' (Ott et al., 2018) 29.30 - -
Evolved Transformer' (So et al., 2019) 29.80 - -

BERT Initialization (12 layers)T (Rothe et al., 2020) 30.60 33.60 32.10
BERT-Fuse! (Zhu et al., 2020) 30.75 - -

R-Drop (Liang et al., 2021) 30.13 34.54 32.34

BiBERT' (Xu et al., 2021) 31.26 34.94 33.10

SimCut 30.56 34.86 32.71

Bi-SimCut Pretrain 30.10 34.42 32.26

+ SimCut Finetune 30.78 35.15 32.97

Table 8: Our method achieves the superior or comparable performance over the existing methods on the WMT14
en<>de translation benchmark.  denotes the numbers are reported from Xu et al. (2021), others are based on our

runs.

Method \ share \ zh—en
Transformer X 25.53
Transformer v 25.31

SimCut X 26.86

SimCut v 26.74

Bi-SimCut Pretrain v 26.13
+ SimCut Finetune v 27.17

Table 9: Our method achieves strong performance on
the WMT17 zh—en translation benchmark. share
denotes whether a shared dictionary is applied.

encoder-decoder NMT model. Cheng et al. (2019)
leveraged adversarial perturbations and generated
adversarial examples by replacing words in both
source and target sentences. They introduced two
additional language models for both sides and a
candidate word selection mechanism for replacing
words in the sentence pairs. Takase and Kiyono
(2021) compared perturbations for the NMT model
in view of computational time and showed that
simple perturbations are sufficiently effective com-
pared with complicated adversarial perturbations.

Consistency Training Besides perturbation-
based methods, our approach also highly relates to
a few works of consistency training in the NMT
field on dropout models and data augmentation.
Among them, the most representative methods are
R-Drop (Liang et al., 2021) and Cutoff (Shen et al.,
2020). R-Drop only considers the output consis-
tency between two dropout sub-models with the
same inputs. Cutoff considers consistency training
from a data perspective by regularizing the incon-
sistency between the original sample and the aug-
mented samples with part of the information within
the input sentence pair being dropped. Note that

Cutoff takes the dropout sub-models into account
during the training procedure as well. We want to
emphasize that SimCut is not a new method, but a
version of Cutoff simplified and adapted for NMT
tasks.

8 Conclusion

In this paper, we propose Bi-SimCut: a simple
but effective two-stage training strategy to improve
NMT performance. Bi-SimCut consists of bidi-
rectional pretraining and unidirectional finetuning
procedures equipped with SimCut regularization
for improving the generality of the NMT model.
Experiments on low IWSLT14 en<>de), standard
(WMT14 en<+de), and high (WMT17 zh—en)
resource translation benchmarks demonstrate Bi-
SimCut and SimCut’s capabilities to improve trans-
lation performance and robustness. Given the uni-
versality and simplicity of Bi-SimCut and Sim-
Cut, we believe: a) SimCut could be regarded as a
perturbation-based method, and it could be used as
a strong baseline for the robustness research. b) Bi-
SimCut outperforms many complicated methods
which incorporate large-scaled pretrained models
or sophisticated mechanisms, and it could be used
as a strong baseline for future NMT research. We
hope researchers of perturbations and NMT could
use SimCut and Bi-SimCut as strong baselines to
make the usefulness and effectiveness of their pro-
posed methods clear. For future work, we will
explore the effectiveness of SimCut and Bi-SimCut
on more sequence learning tasks, such as text clas-
sification, natural language understanding, etc.
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