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Abstract

We introduce Bi-SimCut: a simple but effec-001
tive strategy to boost neural machine translation002
(NMT) performance. It consists of two train-003
ing procedures: bidirectional pretraining and004
unidirectional finetuning. Both procedures uti-005
lize SimCut, a simple regularization method006
that forces the consistency between the output007
distributions of the original and the cutoff sam-008
ples. Without utilizing extra dataset via back-009
translation or integrating large-scale pretrained010
model, Bi-SimCut achieves strong translation011
performance across five translation benchmarks012
(data sizes range from 160K to 20.1M): BLEU013
scores of 31.16 for en → de and 38.37 for014
de → en on the IWSLT14 dataset, 30.78015
for en → de and 35.15 for de → en on016
the WMT14 dataset, and 27.17 for zh → en017
on the WMT17 dataset. SimCut is not a new018
method, but a version of Cutoff (Shen et al.,019
2020) simplified and adapted for NMT, and it020
could be considered as a perturbation-based021
method. Given the universality and simplic-022
ity of Bi-SimCut and SimCut, we believe they023
can serve as strong baselines for future NMT024
research.025

1 Introduction026

The state of the art in machine translation has027

been dramatically improved over the past decade028

thanks to the neural machine translation (NMT)029

(Wu et al., 2016), and transformer-based models030

(Vaswani et al., 2017) often deliver state-of-the-art031

performance with large-scale corpora (Ott et al.,032

2018). Along with the development in the NMT033

field, consistency training has been widely adopted034

and shown great promise to improve NMT perfor-035

mance. It simply regularizes NMT model predic-036

tions to be invariant to either small perturbations037

applied to the inputs (Sano et al., 2019; Shen et al.,038

2020) and hidden states (Chen et al., 2021) or the039

model randomness and variance existed in the train-040

ing procedure (Liang et al., 2021).041

Specifically, Shen et al. (2020) introduced a set 042

of cutoff data augmentation methods and utilized 043

Jensen-Shannon (JS) divergence loss to force the 044

consistency between the output distributions of the 045

original and the cutoff augmented samples in the 046

training procedure. Despite its impressive perfor- 047

mance, finding the proper values for the four addi- 048

tional hyper-parameters introduced in cutoff aug- 049

mentation seems to be time-consuming if there are 050

limited resources available, which hinders its prac- 051

tical value in the NMT field. 052

In this paper, our main goal is to provide a sim- 053

ple, easy-to-reproduce, but tough-to-beat strategy 054

for training NMT models. Inspired by cutoff aug- 055

mentation (Shen et al., 2020) and virtual adversar- 056

ial regularization (Sano et al., 2019) for NMT, we 057

firstly introduce a simple yet effective regulariza- 058

tion method named SimCut. Technically, SimCut 059

is not a new method and can be viewed as a simpli- 060

fied version of Token Cutoff proposed in Shen et al. 061

(2020). We show that bidirectional backpropaga- 062

tion in Kullback-Leibler (KL) regularization plays 063

a key role in improving NMT performance. We 064

also regard SimCut as a perturbation-based method 065

and discuss its robustness to the noisy inputs. At 066

last, we present Bi-SimCut, a two-stage training 067

strategy consisting of bidirectional pretraining and 068

unidirectional finetuning equipped with SimCut 069

regularization. 070

The contributions of this paper can be summa- 071

rized as follows: 072

• We propose a simple but effective regulariza- 073

tion method, SimCut, for improving the gen- 074

eralization of NMT models. SimCut could be 075

regarded as a perturbation-based method and 076

serves as a strong baseline for the methods of 077

perturbations. 078

• We propose Bi-SimCut, a training strategy for 079

NMT that consists of bidirectional pretrain- 080

ing and unidirectional finetuning with SimCut 081

1



regularization.082

• Our experimental results show that NMT train-083

ing with Bi-SimCut achieves significant im-084

provements over the transformer model on085

five translation benchmarks (data sizes range086

from 160K to 20.1M), and outperforms the087

current state-of-the-art method BiBERT (Xu088

et al., 2021) on several benchmarks.089

2 Background090

2.1 Neural Machine Translation091

The NMT model refers to a neural network with092

an encoder-decoder architecture, which receives093

a sentence as input and returns a correspond-094

ing translated sentence as output. Assume x =095

x1, ..., xI and y = y1, ..., yJ that correspond to096

the source and target sentences with lengths I097

and J respectively. Note that yJ denotes the spe-098

cial end-of-sentence symbol ⟨eos⟩. The encoder099

first maps a source sentence x into a sequence100

of word embeddings e(x) = e(x1), ..., e(xI),101

where e(x) ∈ Rd×I , and d is the embedding102

dimension. The word embeddings are then en-103

coded to the corresponding hidden representations104

h. Similarly, the decoder maps a shifted copy105

of the target sentence y, i.e., ⟨bos⟩, y1, ..., yJ−1,106

into a sequence of word embeddings e(y) =107

e(⟨bos⟩), e(y1), ..., e(yJ−1), where ⟨bos⟩ denotes a108

special beginning-of-sentence symbol, and e(y) ∈109

Rd×J . The decoder then acts as a conditional lan-110

guage model that operates on the word embeddings111

e(y) and the hidden representations h learned by112

the encoder.113

Given a parallel corpus S = {xi,yi}|S|i=1, the114

standard training objective is to minimize the em-115

pirical risk:116

Lce(θ) = E
(x,y)∈S

[ℓ(f(x,y; θ), ÿ)], (1)117

where ℓ denotes the cross-entropy loss, θ is a set118

of model parameters, f(x,y; θ) is a sequence of119

probability predictions, i.e.,120

fj(x,y; θ) = P (y|x,y<j ; θ), (2)121

and ÿ is a sequence of one-hot label vectors for y.122

2.2 Cutoff Augmentation123

Shen et al. (2020) introduced a set of cutoff meth-124

ods which augments the training by creating the125

partial views of the original sentence pairs and126

proposed Token Cutoff for the machine transla- 127

tion task. Given a sentence pair (x,y), N cut- 128

off samples {xi
cut,y

i
cut}Ni=1 are constructed by ran- 129

domly setting the word embeddings of x1, ..., xI 130

and y1, ..., yJ to be zero with a cutoff probability 131

pcut. For each sentence pair, the training objective 132

of Token Cutoff is then defined as: 133

Ltokcut(θ) = Lce(θ) + αLcut(θ) + βLkl(θ), (3) 134

where 135

Lce(θ) = ℓ(f(x,y; θ), ÿ), 136

Lcut(θ) =
1

N

N∑
i=1

ℓ(f(xi
cut,y

i
cut; θ), ÿ), 137

Lkl(θ) =
1

N + 1
{

N∑
i=1

KL(f(xi
cut,y

i
cut; θ)∥pavg) 138

+ KL(f(x,y; θ)∥pavg)}, 139

pavg =
1

N + 1
{

N∑
i=1

f(xi
cut,y

i
cut; θ) + f(x,y; θ)}, 140

in which KL(·∥·) denotes the Kullback-Leibler 141

(KL) divergence of two distributions, and α and β 142

are the scalar hyper-parameters that balance Lce(θ), 143

Lcut(θ) and Lkl(θ). 144

3 Datasets and Baseline Settings 145

In this section, we describe the datasets used in 146

experiments as well as the model configurations. 147

For fair comparisons, we keep our experimental 148

settings consistent with previous works. 149

IWSLT WMT
en↔de en↔de zh→en

train 160239 4468840 20184941
valid 7283 6003 2002
test 6750 3003 2001

Table 1: Number of sentence pairs used in our machine
translation experiments.

Datasets We initially consider a low-resource 150

(IWSLT14 en↔de) scenario and then show fur- 151

ther experiments in standard (WMT14 en↔de) 152

and high (WMT17 zh→en) resource scenarios in 153

Sections 5 and 6. The detailed information of the 154

datasets are summarized in Table 1. We here con- 155

duct experiments on the IWSLT14 English-German 156

dataset, which has 160K parallel bilingual sentence 157
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pairs. Following the common practice, we lower-158

case all words in the dataset. We build a shared dic-159

tionary with 10K byte-pair-encoding (BPE) (Sen-160

nrich et al., 2016) types.161

Settings We implement our approach on top of162

the Transformer (Vaswani et al., 2017). We apply163

a 6-layer Transformer with 4 attention heads, em-164

bedding size 512, and FFN layer dimension 1024.165

We apply cross-entropy loss and set max tokens166

per batch to be 4096. We use Adam optimizer167

with Beta (0.9, 0.98), 4000 warmup updates, and168

inverse square root learning rate scheduler with169

initial learning rates 5e−4. We use dropout 0.3170

and beam search decoding with beam size 5 and171

length penalty 1.0. We apply the same training172

configurations in both pretraining and finetuning173

stages which will be discussed in the following174

sections. We use multi-bleu.pl1 for BLEU175

evaluation. We train all models until convergence176

on a single NVIDIA Tesla V100 GPU. All reported177

BLEU scores are from a single model. For all the178

experiments below, we select the saved model state179

with the best validation perplexity.180

4 Bi-SimCut181

In this section, we formally propose Bidirectional182

Pretrain and Unidirectional Finetune with Simple183

Cutoff Regularization (Bi-SimCut), a simple but184

effective training strategy that can greatly enhance185

the generalization of the NMT model. Bi-SimCut186

consists of a simple cutoff regularization and a two-187

phase pretrain and finetune strategy. We introduce188

the details of each part below.189

4.1 SimCut: A Simple Cutoff Regularization190

for NMT191

Despite the impressive performance reported in192

Shen et al. (2020), finding the proper hyper-193

parameters (pcut, α, β,N) in Token Cutoff seems194

to be time-consuming if there are limited resources195

available, which hinders its practical value in the196

NMT community. To reduce the burden in hyper-197

parameter searching, we propose SimCut, a simple198

regularization method that forces the consistency199

between the output distributions of the original sen-200

tence pairs and the cutoff samples.201

Our problem formulation is motivated by Vir-202

tual Adversarial Training (VAT), where Sano et al.203

(2019) introduces adversarial regularization that204

1https://github.com/moses-smt/mosesdecoder/blob/
master/scripts/generic/multi-bleu.perl

forces the output distribution of the samples with 205

adversarial perturbations δx and δy to be consis- 206

tent with that of the original samples: 207

KL(f(e(x), e(y); θ)∥f(e(x)+δx, e(y)+δy; θ)). 208

Instead of generating perturbed samples by 209

gradient-based adversarial methods, for each sen- 210

tence pair (x,y), we only generate one cutoff sam- 211

ple (xcut,ycut) by following the same cutoff strat- 212

egy used in Token Cutoff. For each sentence pair, 213

the training objective of SimCut is defined as: 214

Lsimcut(θ) = Lce(θ) + αLsimkl(θ), (4) 215

where 216

Lsimkl(θ) = KL(f(x,y; θ)∥f(xcut,ycut; θ)). 217

There are only two hyper-parameters α and pcut 218

in SimCut, which greatly simplify the hyper- 219

parameter searching step in Token Cutoff. Note 220

that VAT only allows the gradient to be backprop- 221

agated through the right-hand side of the KL di- 222

vergence term, while the gradient is designed to 223

be backpropagated through both sides of the KL 224

regularization in SimCut. We can see that the con- 225

straint introduced by Ltokcut(θ) and Lkl(θ) in (3) 226

still implicitly hold in (4): 227

• Ltokcut(θ) in Token Cutoff is designed to guar- 228

antee that the output of the cutoff sample 229

should close to the ground-truth to some ex- 230

tent. In SimCut, Lce(θ) requires the outputs 231

of the original sample close to the ground- 232

truth, and Lsimkl(θ) requires the output distri- 233

butions of the cutoff sample close to that of 234

the original sample. The constraint introduced 235

by Ltokcut(θ) then implicitly holds. 236

• Lkl(θ) in Token Cutoff is designed to guar- 237

antee that the output distributions of the orig- 238

inal sample and N different cutoff samples 239

should be consistent with each other. In Sim- 240

Cut, Lsimkl(θ) guarantees the consistency be- 241

tween the output distributions of the original 242

and cutoff samples. Even though SimCut only 243

generates one cutoff sample at each time, dif- 244

ferent cutoff samples of the same sentence 245

pair will be considered in different training 246

epochs. Such constraint raised by Lkl(θ) still 247

implicitly holds. 248
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Method en→de de→en

Transformer 28.70 34.99
VAT 29.45 35.52

R-Drop 30.73 37.30
Token Cutoff† - 37.60

SimCut 30.98 37.81

Table 2: SimCut achieves the superior or comparable
performance on IWSLT14 en ↔ de translation tasks
over the strong baselines such as VAT, R-Drop, and
Token Cutoff. † denotes the number is reported from
Shen et al. (2020), others are based on our runs.

4.2 Analysis on SimCut249

4.2.1 How Does the Simplification Affect250

Performance?251

We here investigate whether our simplification on252

Token Cutoff hurts its performance on machine253

translation tasks. We compare SimCut with VAT,254

Token Cutoff, and R-Drop (Liang et al., 2021), a255

strong regularization baseline that forces the output256

distributions of different sub-models generated by257

dropout to be consistent with each other. Table258

2 shows that SimCut achieves superior or compa-259

rable performance over VAT, R-Drop, and Token260

Cutoff, which clearly shows the effectiveness of our261

method. Due to the tedious and time-consuming262

hyper-parameter searching in Token Cutoff, we will263

not include its results in the following sections and264

show the results of SimCut directly.265

Figure 1 shows the evolution of different train-266

ing methods’ validation BLEU scores. On the267

IWSLT14 de→en validation set, the performance268

of all methods stop increasing before 250 epochs269

except for SimCut. The results on VAT are consis-270

tent with the previous studies on adversarial over-271

fitting, i.e., virtual adversarial training easily suffer-272

ing from overfitting (Rice et al., 2020). Note that273

the BLEU score of SimCut continuously increases274

in the first 500 epochs.275

4.2.2 How Does the Bidirectional276

Backpropagation Affect Performance?277

Even though the problem formulation of SimCut278

is similar to that of VAT, one key difference is that279

the gradients are allowed to be backpropagated280

bidirectionally in the KL regularization in SimCut.281

We here investigate the impact of the bidirectional282

backpropagation in the regularization term on the283

performance of the NMT model. Table 3 shows284

the translation results of VAT and SimCut with285

Figure 1: On the IWSLT14 de→en validation set, the
BLEU score increases monotonously over epoch num-
ber in model training using SimCut. In contrast, the
BLEU scores of the other three baselines all stop in-
creasing before 250 epochs. The results suggest that
the use of SimCut can effectively alleviate the model
training from overfitting.

Method en→de de→en

VAT 29.45 35.52
+ Bi-backpropagation 29.69 36.26

SimCut 30.98 37.81
- Bi-backpropagation 30.29 36.91

Table 3: Bidirectional backpropagation achieves better
performance on IWSLT14 en ↔ de translation tasks
compared with unidirectional backpropagation in the
KL regularization.

or without bidirectional backpropagation. We can 286

see that both VAT and SimCut benefit from the 287

bidirectional gradient backpropagation in the KL 288

regularization. 289

4.2.3 Performance on Perturbed Inputs 290

Given the similar problem formulations of VAT 291

and SimCut, it is natural to regard cutoff operation 292

as a special perturbation and consider SimCut as 293

a perturbation-based method. We here investigate 294

the robustness of NMT models on the perturbed 295

inputs. As discussed in Takase and Kiyono (2021), 296

simple techniques such as word replacement and 297

word drop can achieve comparable performance 298

to sophisticated perturbations. We hence include 299

them as baselines to show the effectiveness of our 300

method. 301

• UniRep: Word replacement approach constructs 302

a new sequence whose tokens are randomly re- 303

placed with sampled tokens. For each token in 304

the source sentence x, we sample x̂i uniformly 305

from the source vocabulary, and use it for the 306
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Input
wir denken (festgelegten), dass wir in der realität nicht so gut
sind wie in spielen.

Reference we feel that we are not as good in reality as we are in games.
Vaswani et al. (2017) on Input we think we’re not as good in reality as we are in games.

on Noisy Input we realized that we weren’t as good as we were in real life.
SimCut on Input we think in reality, we’re not as good as we do in games.
on Noisy Input we realized that we’re not as good in reality as we are in games.

Table 4: SimCut is more robust to small perturbations in an authentic context. SimCut captures the translation of
“in spielen” under the noisy input while the vanilla Transformer ignores the translation of “in spielen” due to the
replacement of “denken” with “festgelegten”.

new sequence x′ with probability 1− p′:307

x′i =

{
xi, with probability p′,

x̂i, with probability 1− p′.
(5)308

We construct y′ from the target sentence y in the309

same manner. Following the curriculum learning310

strategy used in Bengio et al. (2015), we adjust311

p′ with the inverse sigmoid decay:312

p′t = max(q,
k

k + exp ( tk )
), (6)313

where q and k are hyper-parameters. p′t decreases314

to q from 1, depending on the training epoch num-315

ber t. We use p′t as p′ in epoch t. We set q and k316

to be 0.9 and 25 respectively in the experiments.317

• WordDrop: Word drop randomly applies the318

zero vector instead of the word embedding e(xi)319

or e(yi) for the input token xi or yi (Gal and320

Ghahramani, 2016). For each token in both321

source and target sentences, we keep the orig-322

inal embedding with the probability β and set it323

to be the zero vector otherwise. We set β to be324

0.9 in the experiments.325

We construct noisy inputs by randomly replac-326

ing words in the source sentences based on a pre-327

defined probability. If the probability is 0.0, we328

use the original source sentence. If the probabil-329

ity is 1.0, we use completely different sentences330

as source sentences. We set the probability to be331

0.00, 0.01, 0.05, and 0.10 in our experiments. We332

randomly replace each word in the source sentence333

with a word uniformly sampled from the vocabu-334

lary. We apply this procedure to IWSLT14 de→en335

test set. Table 5 shows the BLEU scores of each336

method on the perturbed test set. Note that the337

BLEU scores are calculated against the original338

reference sentences. We can see that all methods339

Method probability
0.00 0.01 0.05 0.10

Transformer 34.99 34.01 30.38 25.70
UniRep 35.67 34.91 31.54 27.24

WordDrop 35.65 34.73 31.22 26.46
VAT 35.52 34.65 30.48 25.44

R-Drop 37.30 36.24 32.27 27.19
SimCut 37.81 36.94 33.16 27.93

Table 5: The model trained by SimCut achieves high ro-
bustness on the perturbed test set and high performance
on the clean test set. Entries represent BLEU scores on
IWSLT14 de→en test set when we inject perturbations
to source sentences with different probability.

improve the robustness of the NMT model, and 340

SimCut achieves the best performance among all 341

the methods on both the clean and perturbed test 342

sets. The performance results indicate that SimCut 343

could be considered as a strong baseline for the 344

perturbation-based method for the NMT model. 345

As shown in Table 4, the baseline model com- 346

pletely ignores the translation of “in spielen (in 347

games)” due to the replacement of “denken (think)” 348

with “festgelegten (determined)” in the source sen- 349

tence. In contrast, our model successfully captures 350

the translation of “in spielen” under the noisy input. 351

This result shows that our model is more robust to 352

small perturbations in an authentic context. 353

4.2.4 Effects of α and pcut 354

We here investigate the impact of the scalar hyper- 355

parameters α and pcut in SimCut. α is a penalty 356

parameter that controls the regularization strength 357

in our optimization problem. pcut controls the 358

percentage of the cutoff perturbations in SimCut. 359

We here vary α and pcut in {1, 2, 3, 4, 5} and 360

{0.00, 0.05, 0.10, 0.15, 0.20} respectively and con- 361

duct the experiments on the IWSLT14 de→en 362
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dataset. Note that SimCut is simplified to R-Drop363

approximately when pcut = 0.00. The test BLEU364

scores are reported in Figure 2. By checking model365

performance under different combinations of α and366

pcut, we have the following observations: 1) A too367

small α (e.g., 1) cannot achieve as good perfor-368

mance as larger α (e.g., 3), indicating a certain de-369

gree of regularization strength during NMT model370

training is conducive to generalization. Mean-371

while, an overwhelming regularization (α = 5)372

is not plausible for learning NMT models. 2)373

When α = 3, the best performance is achieved374

when pcut = 0.05, and pcut = 0.00 performs sub-375

optimal among all selected probabilities. Such an376

observation demonstrates that the cutoff perturba-377

tion in SimCut can effectively promote the general-378

ization compared with R-Drop.379

Figure 2: BLEU scores with different α and pcut on
IWSLT14 de→en dataset.

4.3 Training Strategy: Bidirectional Pretrain380

and Unidirectional Finetune381

Bidirectional Pretrain is shown to be very ef-382

fective to improve the translation performance383

of the unidirectional NMT system (Ding et al.,384

2021; Xu et al., 2021). The main idea is to385

pretrain a bidirectional NMT model at first and386

use it as the initialization to finetune a unidi-387

rectional NMT model. Assume we want to388

train an NMT model for “English→German”, we389

first reconstruct the training sentence pairs to390

“English+German→German+English”, where the391

training dataset is doubled. We then firstly train392

a bidirectional NMT model with the new training393

Method en→de de→en

Transformer 28.70 34.99
Bi-Pretrain 28.94 35.64
+ Finetune 28.82 35.66

Bi-R-Drop Pretrain 30.30 37.01
+ R-Drop Finetune 30.85 37.55
Bi-SimCut Pretrain 30.57 37.70
+ SimCut Finetune 31.16 38.37

Table 6: Bidirectional pretrain and unidirectional fine-
tune results on IWSLT14 en ↔ de datasets. Note that
the results of bidirectional pretrain are from one model
for dual-directional translations.

Method en→de de→en Average
Transformer 28.70 34.99 31.85

VAT 29.45 35.52 32.49
Mixed Rep† 29.93 36.41 33.17
UniDrop† 29.99 36.88 33.44
R-Drop 30.73 37.30 34.02

BiBERT† 30.45 38.61 34.53
Bi-SimCut 31.16 38.37 34.77

Table 7: Our method achieves the superior performance
over the existing methods on the IWSLT14 en↔de
translation benchmark. † denotes the numbers are re-
ported from the papers, others are based on our runs.

sentence pairs: 394

E
(x,y)∈S

[ℓ(f(x,y; θ), ÿ) + ℓ(f(y,x; θ), ẍ)], (7) 395

and finetune the model with “English→German” 396

direction. We follow the same training strategy 397

and apply SimCut regularization to both pretrain- 398

ing and finetuning procedures. Table 6 shows that 399

our training strategy with SimCut could achieve su- 400

perior performance compared with strong baseline 401

such as R-Drop. 402

Comparison with Existing Methods We sum- 403

marize the recent results of several existing works 404

on IWSLT14 en↔de benchmark in Table 7. The 405

existing methods vary from different aspects, in- 406

cluding Virtual Adversarial Training (Sano et al., 407

2019), Mixed Tokenization for NMT (Wu et al., 408

2020), Unified Dropout for the transformer model 409

(Wu et al., 2021), Regularized Dropout (Liang et al., 410

2021), and BiBERT (Xu et al., 2021). We can see 411

that our approach achieves an improvement of 2.92 412

BLEU score over Vaswani et al. (2017) and sur- 413

pass the current state-of-the-art (SOTA) method 414

BiBERT that incorporates large-scale pretrained 415
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model, stochastic layer selection, and bidirectional416

pretraining. Given the simplicity of Bi-SimCut, we417

believe it could be considered as a strong baseline418

for the NMT task.419

5 Standard Resource Scenario420

We here investigate the performance of Bi-SimCut421

on the larger translation benchmark compared with422

the IWSLT14 benchmark.423

5.1 Dataset Description and Model424

Configuration425

For the standard resource scenario, we evaluate426

NMT models on the WMT14 English-German427

dataset, which contains 4.5M parallel sentence428

pairs. We combine newstest2012 and newstest2013429

as the validation set and use newstest2014 as the430

test set. We collect the pre-processed data from Xu431

et al. (2021)’s release2, where a shared dictionary432

with 52K BPE types is built. We apply a standard433

Transformer Big model with 16 attention heads,434

embedding size 1024, and FFN layer dimension435

4096. We apply cross-entropy loss and set max to-436

kens per batch to be 4096. We use Adam optimizer437

with Beta (0.9, 0.98), 4000 warmup updates, and438

inverse square root learning rate scheduler with ini-439

tial learning rates 1e−3. We decrease the learning440

rate to 5e−4 in the finetuning stage. We select the441

dropout rate from 0.3, 0.2, and 0.1 based on the442

validation performance. We use beam search de-443

coding with beam size 4 and length penalty 0.6. We444

train all models until convergence on 8 NVIDIA445

Tesla V100 GPUs. All reported BLEU scores are446

from a single model.447

5.2 Results448

We report test BLEU scores of all comparison meth-449

ods and our approach on the WMT14 dataset in450

Table 8. With Bi-SimCut pretraining and finetun-451

ing procedures, our model achieves strong or state-452

of-the-art BLEU scores on en→de and de→en453

translation benchmarks. We fix pcut to be 0.05 and454

tune the hyperparameter α in both R-Drop and Sim-455

Cut based on the performance on the validation set.456

Note that the BLEU scores of R-Drop are lower457

than that reported in Liang et al. (2021). Such gap458

might be due to the different prepossessing steps459

used in Liang et al. (2021) and Xu et al. (2021). It460

is worth mentioning that Bi-SimCut outperforms461

2https://github.com/fe1ixxu/BiBERT

BiBERT on de→en direction even though BiB- 462

ERT incorporates bidirectional pretraining, large- 463

scale pretrained contextualized embeddings, and 464

stochastic layer selection mechanism. 465

6 High Resource Scenario 466

To investigate the performance of Bi-SimCut on the 467

distant language pairs which naturally do not share 468

dictionaries, we here discuss the effectiveness of 469

Bi-SimCut on the Chinese-English translation task. 470

6.1 Dataset Description and Model 471

Configuration 472

For the high resource scenario, we evaluate NMT 473

models on the WMT17 Chinese-English dataset, 474

which consists of 20.1M training sentence pairs, 475

and we use devtest-2017 as the validation set and 476

newstest-2017 as the test set. We firstly build the 477

source and target vocabularies with 32K BPE types 478

separately and treat them as separated or joined 479

dictionaries in our experiments. We apply the 480

same Transformer Big model and training configu- 481

rations used in the WMT14 experiments. We use 482

beam search decoding with beam size 5 and length 483

penalty 1. We train all models until convergence on 484

8 NVIDIA Tesla V100 GPUs. All reported BLEU 485

scores are from a single model. 486

6.2 Results 487

We report test BLEU scores of the baselines and our 488

approach on the WMT17 dataset in Table 9. The 489

NMT models with separated dictionaries perform 490

slightly better than those with the shared dictio- 491

nary. We can see that our approach significantly 492

improves translation performance. In particular, 493

Bi-SimCut achieves more than 1.5 BLEU improve- 494

ment over Vaswani et al. (2017), showing the ef- 495

fectiveness and universality of Bi-SimCut on the 496

distant language pair. 497

7 Related Work 498

Adversarial Perturbation SimCut could be re- 499

garded as a perturbation base method. Adversarial 500

perturbation was firstly introduced in the field of 501

computer vision (Szegedy et al., 2014; Goodfellow 502

et al., 2015). Miyato et al. (2017) considered ad- 503

versarial perturbations in the embedding space and 504

showed its effectiveness on the text classification 505

tasks. In the NMT field, Sano et al. (2019) and 506

Wang et al. (2019) applied adversarial perturba- 507

tions in the embedding space during training of the 508
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Method en→de de→en Average
Transformer + Large Batch† (Ott et al., 2018) 29.30 - -

Evolved Transformer† (So et al., 2019) 29.80 - -
BERT Initialization (12 layers)† (Rothe et al., 2020) 30.60 33.60 32.10

BERT-Fuse† (Zhu et al., 2020) 30.75 - -
R-Drop (Liang et al., 2021) 30.13 34.54 32.34
BiBERT† (Xu et al., 2021) 31.26 34.94 33.10

SimCut 30.56 34.86 32.71
Bi-SimCut Pretrain 30.10 34.42 32.26
+ SimCut Finetune 30.78 35.15 32.97

Table 8: Our method achieves the superior or comparable performance over the existing methods on the WMT14
en↔de translation benchmark. † denotes the numbers are reported from Xu et al. (2021), others are based on our
runs.

Method share zh→en

Transformer x 25.53
Transformer ✓ 25.31

SimCut x 26.86
SimCut ✓ 26.74

Bi-SimCut Pretrain ✓ 26.13
+ SimCut Finetune ✓ 27.17

Table 9: Our method achieves strong performance on
the WMT17 zh→en translation benchmark. share
denotes whether a shared dictionary is applied.

encoder-decoder NMT model. Cheng et al. (2019)509

leveraged adversarial perturbations and generated510

adversarial examples by replacing words in both511

source and target sentences. They introduced two512

additional language models for both sides and a513

candidate word selection mechanism for replacing514

words in the sentence pairs. Takase and Kiyono515

(2021) compared perturbations for the NMT model516

in view of computational time and showed that517

simple perturbations are sufficiently effective com-518

pared with complicated adversarial perturbations.519

Consistency Training Besides perturbation-520

based methods, our approach also highly relates to521

a few works of consistency training in the NMT522

field on dropout models and data augmentation.523

Among them, the most representative methods are524

R-Drop (Liang et al., 2021) and Cutoff (Shen et al.,525

2020). R-Drop only considers the output consis-526

tency between two dropout sub-models with the527

same inputs. Cutoff considers consistency training528

from a data perspective by regularizing the incon-529

sistency between the original sample and the aug-530

mented samples with part of the information within531

the input sentence pair being dropped. Note that532

Cutoff takes the dropout sub-models into account 533

during the training procedure as well. We want to 534

emphasize that SimCut is not a new method, but a 535

version of Cutoff simplified and adapted for NMT 536

tasks. 537

8 Conclusion 538

In this paper, we propose Bi-SimCut: a simple 539

but effective two-stage training strategy to improve 540

NMT performance. Bi-SimCut consists of bidi- 541

rectional pretraining and unidirectional finetuning 542

procedures equipped with SimCut regularization 543

for improving the generality of the NMT model. 544

Experiments on low (IWSLT14 en↔de), standard 545

(WMT14 en↔de), and high (WMT17 zh→en) 546

resource translation benchmarks demonstrate Bi- 547

SimCut and SimCut’s capabilities to improve trans- 548

lation performance and robustness. Given the uni- 549

versality and simplicity of Bi-SimCut and Sim- 550

Cut, we believe: a) SimCut could be regarded as a 551

perturbation-based method, and it could be used as 552

a strong baseline for the robustness research. b) Bi- 553

SimCut outperforms many complicated methods 554

which incorporate large-scaled pretrained models 555

or sophisticated mechanisms, and it could be used 556

as a strong baseline for future NMT research. We 557

hope researchers of perturbations and NMT could 558

use SimCut and Bi-SimCut as strong baselines to 559

make the usefulness and effectiveness of their pro- 560

posed methods clear. For future work, we will 561

explore the effectiveness of SimCut and Bi-SimCut 562

on more sequence learning tasks, such as text clas- 563

sification, natural language understanding, etc. 564
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