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Abstract—How the visual imitation learning models can gener-
alize to novel unseen visual observations is a highly challenging
problem. Such a generalization ability is very crucial for their real-
world applications. Since this generalization problem has many
different aspects, we focus on one case called spatial generalization,
which refers to generalization to unseen setup of object (entity)
locations in a task, such as a novel setup of object locations in
the robotic manipulation problem. In this case, previous works
observe that the visual imitation learning models will overfit
to the absolute information (e.g., coordinates) rather than the
relational information between objects, which is more important
for decision making. As a result, the models will perform poorly
in novel object location setups. Nevertheless, so far, it remains
unclear how we can solve this problem effectively. Our insight
into this problem is to explicitly remove the absolute information
from the features learned by imitation learning models so that the
models can use robust, relational information to make decisions.
To this end, we propose a novel, position-invariant regularizer
called POINT for generalization. The proposed regularizer will
penalize the imitation learning model when its features contain
absolute, positional information of objects. Various experiments
demonstrate the effectiveness of our method.

I. INTRODUCTION

Imitation learning is a class of algorithms that enable robots
to acquire behaviors from human demonstrations [8]. The
recent advance in deep learning has boosted the development
of visual imitation learning and supported its applications like
autonomous driving, robotic manipulation, and human-robot
interaction [8].

In spite of its success, visual imitation learning methods
still face many practical challenges. One major challenge is its
ability to generalize to novel unseen visual observations, which
is very common when we deploy the trained models [15, 11].
In the literature, this generalization problem is also known as
the robustness problem. The problem covers many different
aspects. For example, here we can identify two basic general-
ization capabilities: observational generalization and spatial
generalization (Figure 1). Observational generalization refers
to the generalization to novel visual textures. The changes in
background color, object texture, or ambient light in the robotic
manipulation task are examples of observational generalization.
Such kind of visual change does not affect the underlying task
structure (e.g., the position of object and targets) and only
requires the robot to reason about semantic meanings correctly.
In contrast, spatial generalization refers to the generalization
to unseen setup of objects’ (entities) locations in one task,
which instead requires physical common sense about space and
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Fig. 1: Left and Middle: Two kinds of visual generalization.
The examples are based on the MAGICAL benchmark provided
by [15], in which a robot is required to relocate a box to a
target region. The left figure shows an example of observational
generalization, in which the only change during the testing
phase is the visual texture of objects. The middle figure shows
an example of spatial generalization. The object setup in the
testing phase is unseen. Right: To achieve spatial generalization,
we suggest that absolute information should be removed from
the feature while the relational information should be kept. We
propose a novel, position-invariant regularizer for this purpose.

object. Consider the task of letting a warehouse robot move
a box to some target region. If we set the initial position of
the box to a place that is not covered by the demonstration
dataset, then the imitation learning methods must be able to
perform spatial generalization so as to succeed. In reality, the
generalization challenge usually emerges as a combination of
different generalization capabilities. In this paper, we focus on
the study of spatial generalization.

For better spatial generalization, the visual imitation learning
models should be able to obtain knowledge about objects and
their spatial relations with proper inductive biases. Some work
finds that vanilla deep visual imitation learning models strongly
overfit to the absolute position of objects [15], which suggests
that they do not extract relational information of objects to
make decisions like humans [4]. Based on this observation,
our main insight into this problem is to explicitly remove
the absolute, positional information from the learned features
in the visual imitation learning models. Note that this does
not mean that the decision-making process is not dependent
on absolute information. Rather, we expect that the model
can extract the relational information (e.g., distance, direction)
from the absolute information to make robust decisions. To this
end, we propose a novel position-invariant regularizer called
POINT. This regularizer will penalize the imitation learning
model when it finds that the learned feature highly correlates
with absolute, positional information. As a result, the imitation



learning model has to discover more robust relational features,
and can generalize better in unseen scenarios.

II. PRELIMINARIES

a) Notations: We model the sequential decision making
problem as a Markov Decision Process M = (S,A,R, T ). S
is the state space. A is the action space. R is the reward
function. T is the transition dynamics. The agent’s state
at timestep t is st ∈ S. The agent takes action at and
receives reward rt = R(st, at). Its state at timestep t + 1
is then st+1 ∼ T (st, at). The objective of the agent is to
maximize the return

∑T
t=0 γ

trt, where γ ∈ (0, 1] is a discount
factor. For the imitation learning problem studied here, the
agent has no access to R and T , but it is provided with
a fixed expert demonstration dataset D = {τi}. Here, each
τi = (sE0 , a

E
0 , s

E
1 , a

E
1 , ...s

E
T , a

E
T ) is an expert trajectory that can

achieve high performance (return) in M. Therefore, the agent
should learn the behavior by leveraging the given demonstration
dataset.

b) Behavioral Cloning: One classical imitation learning
algorithm is the Behavioral Cloning (BC). BC turns the
imitation learning problem into a supervised learning problem.
It fits the expert’s action ai given the observation si. For
the visual imitation learning problem, the BC model can be
divided into two consecutive parts: a vision encoder fθ (which
is usually a convolutional neural network), and a policy head
π. The fθ first encodes si to the feature fi = fθ(si), and the
π then uses it to predict the expert’s action. The BC algorithm
minimizes the following negative log-likelihood objective:

LBC = E(si,ai)∈D [− log π(ai|fθ(si))] . (1)

Due to its simplicity, BC is widely used in visual imitation
learning. Therefore, we study the spatial generalization of BC
in this paper.

III. METHOD

A. Formulation and Challenges

For the tasks that involve spatial generalization, there usually
exist multiple objects in the observed states, such as the agent,
the target object, and the goal. For the state si, we denote each
of these objects in si as oji , and their positions as (xj

i , y
j
i ).

Then, our idea can be formulated as the minimization problem
of each I((xj ,yj), f), where I is the mutual information. Note
that we use the notation xj ,yj , f to indicate the corresponding
random variables of xj

i , y
j
i , fi. However, this formulation leads

to many practical challenges. First, since each (xj
i , y

j
i ) is not

provided directly by si and should be inferred, we have to either
train some object key-point detectors to detect the underlying
objects in the training set, or annotate the objects by ourselves.
However, both of these approaches can be difficult and tedious
in practice. Second, even if we have ideal key-point detectors,
we have to deal with a hard optimization problem in the
summation form

∑
j I((x

j ,yj), f). This can be intractable
when there are many objects in the observed state.

Fortunately, we find that the previous works on the interpre-
tation of deep learning models like GradCAM provide useful
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Fig. 2: Overview of our method. The blue branch above is
the common imitation learning (BC) pipeline. Our proposed
regularizer is shown in the light pink box at the bottom. The
regularizer first uses the GradCAM++ algorithm to find out
the important areas based on which the latest BC model
makes decisions. Then it samples the coordinates from the
discovered important areas and trains a discriminator network
D to calculate whether these sampled coordinates are paired
with the feature fi. The BC model (encoder fθ) is then trained
to fool the discriminator D. When the encoder fθ is able to
fool D, the absolute positional information is removed from
the feature as desired.

tools to handle these challenges. It can reduce the problem to
a much simpler form. We discuss our observations as follows.

B. Problem Reduction with GradCAM

GradCAM [13] is an interpretation method that can tell
which part of the image is crucial in the decision process
of a deep learning model. Given a BC model (fθ, π) and
input s, GradCAM outputs an importance heatmap of the same
resolution as the input s. The heatmap indicates the importance
of each pixel when we use this BC model for prediction. One
nice property of this generated heatmap is that it is smooth
and usually coincides with the meaningful objects in the input
s. Therefore, we can consider the GradCAM as a rough object
detector here.

We propose to sample pi = (xi, yi) from the generated
heatmap, and then minimize the I(p, f). We find that this
new objective can act as a proxy for the original objective in
practice. Concretely, if pi is always far from a specific object
like ok, then we know that ok is irrelevant to the decision
process of the current model. In this case, we conjecture that
I((xk,yk), f) should be low enough to meet our requirement.
On the contrary, if pi always coincides with a certain object
like ol, then we actually minimize I(p, f) ≈ I((xl,yl), f) as
we want.

C. Loss Functions

Now, our remaining work is to reduce the mutual infor-
mation I(p, f). However, we find that jointly estimating and
minimizing the mutual information in our vision-based tasks
is hard in practice. Since our ultimate goal is to minimize
the information of p in f , we instead propose an adversarial
training framework to achieve this goal.



Specifically, we introduce a discriminator network D to play
a two-player min-max game with the BC model as follows.

min
fθ

max
D

E(si,ai)∼D,(sj ,aj)∼D (2)

[logD(pi, fi) + log(1−D(pj , fi))] . (3)

In this min-max game, the discriminator D tries to tell the
joint distribution of p and f , denoted as Pp,f , from the product
of their marginal distributions Pp⊗f . Meanwhile, the BC model
is trying to fool the discriminator by removing the information
of p from f . Applying the convergence theory of the generative
adversarial network (GAN) [6], we know that when fθ is a
global minimizer of Equation 2, Pp,f = Pp⊗f , which implies
that I(p, f) = 0. Therefore this min-max game fulfills our
requirement.

In practice, we train D to minimize the following binary
classification loss function:

LD = −E(si,ai)∼D,(sj ,aj)∼D (4)

[logD(pi, fi) + log(1−D(pj , fi))] . (5)

However, for the encoder fθ, we find that using −LD as
the loss function for training will result in instabilities. We
assume this is because the fi term is present in both of the
two terms in Equation 2, which is different from that in the
original GAN objective. Therefore, we propose to use the
following loss function for optimization, which we find works
well empirically:

Lreg = E(si,ai)∼D [logD(pi, fi)] . (6)

Combining the BC loss, the loss function to train the fθ and
π is then

L = LBC + λLreg (7)
= E(si,ai)∼D [− log π(ai|fθ(si)) + λ logD(pi, fi)] . (8)

IV. EXPERIMENTS

In the experiments, we first test the performance of our
method on the MAGICAL benchmark. We study the general-
ization according to the IID protocol [9]. This means that the
training and testing task distributions are the same, though the
test instance will be unseen. Then, we provide an analysis of
our algorithm through both qualitative and quantitive studies.
Finally, we extend our method to a real robot manipulation
problem.

A. Task Setup

a) MAGICAL: The MAGICAL benchmark simulates a
2D robotic manipulation problem in a warehouse room. The
tasks provided by the MAGICAL involve complex interactions
between the agent and multiple objects, which require effective
spatial generalization. In the experiments, we use a variant of
its MatchRegion task. In this task, a robot is required to go
across a square room to move some objects to a target region
specified by a dashed rectangle. We set up several task instances
of the MatchRegion task: MatchRegion-Target-1, MatchRegion-
Target-2, MatchRegion-Target-2-Distract, MatchRegion-Target-
3, MatchRegion-Target-3-Distract. We provide an illustration
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Fig. 3: The MAGICAL tasks used in our experiments. The
grey robot is required to move the target objects (we mark
them with red dots) to the target region. The red curve shows a
possible plan to solve the task (the interaction details like
releasing box are omitted). The long horizontal nature of
this task brings additional challenges aside from the spatial
generalization problem.

of these tasks in Figure 3. For each MatchRegion-Target-X
task (MR-TX), there is no distractor object in the room, so the
robot only needs to move all the X objects into the target
location. However, for the MatchRegion-Target-X-Distract
task (MR-TXD), there is an additional distractor object in
the room. This object is also randomly placed in the room
during testing. The existence of this distractor object not only
increases the risk of learning spurious features but also adds
to the difficulty of learning secure motions. As we will discuss
later, even the existence of one distractor object can lead to a
significant increase of generalization difficulty. The study of
more distractors is carried out in the analysis part.

For each of the tasks above, we collect its human demon-
stration dataset by ourselves. For each demonstration trajectory,
we randomly set up the initial position of the objects, target
region, and the robot. For MR-T1, we collect 50 trajectories.
For each of the other tasks, we collect 100 trajectories. The
collection of all these trajectories takes 2 hours. We also study
the outcome of using a different number of trajectories in the
later analysis part.

B. Baselines

For the vanilla BC policy, we train an IMPALA [5] policy,
whose encoder is a residual convolutional neural network. We
also try vision-transformer [3] and relational network [12] that
have relational biases, but we find that they perform worse than
IMPALA and do not report their results here. Then, we im-
plement the following baselines for comparison: Dropout [14],
Crop [17, 10], Cutout [2], MixReg [16], OREO [11], and
CLOP [1].

C. Results

a) MAGICAL: The result on MAGICAL is shown in
Table I. The performance is defined by the success rate of the
trained policy, which is the number of target objects that are
successfully transferred to the target region, divided by the total
number of target objects. We observe that our method is able to
achieve state-of-the-art results and outperform the baselines by
a large margin. Concretely, it improves the success rate by about
30%. Besides, we find that most of the previous regularization
methods do increase the success rate of the vanilla version and
their results are similar to each other. This shows that they



TABLE I: Evaluation result on the MAGICAL benchmark. We show the average score on three random seeds. Our method can
achieve state-of-the-art results compared with the baselines.

Method Vanilla Dropout Crop Cutout MixReg OREO CLOP Ours

MR-T1 0.09
±0.02

0.28
±0.04

0.42
±0.03

0.19
±0.03

0.26
±0.02

0.21
±0.03

0.16
±0.06

0.63
±0.05

MR-T1D 0.19
±0.06

0.32
±0.11

0.44
±0.03

0.27
±0.03

0.41
±0.10

0.27
±0.06

0.21
±0.02

0.60
±0.08

MR-T2 0.25
±0.03

0.48
±0.03

0.46
±0.04

0.43
±0.05

0.44
±0.05

0.37
±0.05

0.32
±0.07

0.75
±0.07

MR-T2D 0.27
±0.06

0.35
±0.03

0.38
±0.04

0.32
±0.03

0.33
±0.03

0.27
±0.03

0.23
±0.04

0.70
±0.04

MR-T3 0.23
±0.02

0.51
±0.03

0.47
±0.05

0.32
±0.04

0.48
±0.05

0.42
±0.04

0.35
±0.07

0.66
±0.03

OursDropout

Fig. 4: The GradCAM++ importance heatmap of the dropout
model (left) and our model (right) on the MatchRegion-Target-
1-Distract task. The red region indicates the most important
region, while the dark blue indicates the least important region.
The results suggest that the dropout model attends to the red
distractor and is not robust. In contrast, our model is able to
attend to correct objects.

may solve some common issues in the generalization problem.
However, their performance gap from our method suggests
that we tackle a different issue here, which is overfitting to
absolute positions.

D. Analysis

a) Qualitative Results: To understand whether our method
learns more robust features, we use GradCAM++ to visualize
the learned model. For simplicity, we show the result on the
MatchReigion-Target-1-Distract task. We compare the result of
our model to the model trained with dropout here (Figure 4).
We notice that the dropout model tends to focus on the red
distractor object rather than the correct target object. In contrast,
our model is able to focus on the correct objects. Even when
the distance between the agent and the object is large, it
can attend to the agent and the object simultaneously. The
visualization results suggest that our regularizer indeed leads
to robust relational features even when the vision network
IMPALA does not have an explicit relational inductive bias.
This accounts for the improvement of generalization.

b) Unseen Number of Distractors: A robust model should
base its decision on robust relational information. As a result,
for the MAGICAL tasks, it should be able to ignore the
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Fig. 6: The variation of per-
formance on MAGICAL us-
ing the datasets of different
sizes.

distractor and generalize to an unseen number of distractors.
Therefore, we test whether our model trained on MR-T1D
(where only one distractor presents) can generalize to MR-T1D
with the unseen number of distractors (e.g., 0, 2, 3). We also
compare the results with the previous models. The result is
shown in Figure 5. We find that our model is able to generalize
to the case of 0, 2, 3, though the performance is lower than
the case of 1 (training scenario). In contrast, the prior model,
such as the dropout model, fails in these unseen cases totally.
This also echoes our qualitative analysis results.

c) Number of Demonstrations: We also study whether
the proposed method works when the amount of expert
demonstrations is limited. For this purpose, we test our
method on the MAGICAL with 25%, 50%, 75% of expert
demonstrations. We show the averaged performance in Figure 6.
We find that our method can achieve consistent improvement,
though the performance decreases as the dataset becomes
smaller. This result suggests that we still require a certain
amount of diverse data to achieve spatial generalization.

V. CONCLUSION

We studied the spatial generalization problem of imitation
learning. We proposed POINT, a novel position-invariant
regularizer to remove the absolute positional information from
the features to tackle this problem. Through experiments on
the MAGICAL benchmark as well as a robot manipulation
system, we confirmed that previous methods do overfit to the
absolute position and showed that our proposed approach can
effectively help generalization.
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VI. APPENDIX

A. Real-World Experiments

We also test whether our method scales to the real-world pick-
and-place manipulation problem. We extend the MR-T1D to a
UR10 robot arm with a Robotiq parallel-jaw gripper (Figure 7).
As suggested by [7], we use a gripper camera and a workspace
camera to provide observation. For the BC model, we use
two separate IMPALA encoders to process each camera image,
concatenate their output features along with the z-coordinate
of gripper, and feed them into an MLP. We use the proposed
regularizer to regularize the workspace branch. We collect 75
human demonstrations for training. We compare our method
to dropout with different numbers of distract objects. The
result is shown in Table II. Our method also achieves a large
improvement in this problem. The qualitative results are shown
in the Appendix Section VI-B.

Gripper 
Camera

Workspace
Camera

Fig. 7: The setup of real-world robot manipulation experiments.

TABLE II: The success rate of the real-world experiments. Our
method is also effective here. Each test consists of 20 trials.

Method Dropout Ours

0 Dis. Obj 35% 55%

1 Dis. Obj 35% 60%

2 Dis. Obj 20% 50%

3 Dis. Obj 10% 45%

B. Qualitative Results of the Manipulation Problem

In this section, we provide some qualitative results of the real-
world manipulation problem. Recall that in this task, the robot
is required to move a red cube to a target location specified by
a green area. We show the importance heatmap of the dropout
model (Figure 8) and our model (Figure 9). As is shown in the
figures, we find that dropout model tends to attend more to the
round distractor object compared with our model. However,

Fig. 8: The GradCAM++ importance heatmap of dropout model
in the real-world manipulation problem. The dropout model
tends to attend the round distractor object.

Fig. 9: The GradCAM++ importance heatmap of our model
in the real-world manipulation problem. Our model attends
less to the round distractor object. However, due to the visual
complexity, we find that our model sometimes may attend the
shadow in the background.

due to the visual complexity, we find that our model sometimes
may attend the shadow in the background.
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