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Abstract

Training at the edge utilizes continuously evolving data generated at different locations.
Privacy concerns prohibit the co-location of this spatially as well as temporally distributed
data, deeming it crucial to design training algorithms that enable efficient continual learn-
ing over decentralized private data. Decentralized learning allows serverless training with
spatially distributed data. A fundamental barrier in such setups is the high bandwidth
cost of communicating model updates between agents. Moreover, existing works under
this training paradigm are not inherently suitable for learning a temporal sequence of tasks
while retaining the previously acquired knowledge. In this work, we propose CoDeC, a novel
communication-efficient decentralized continual learning algorithm that addresses these chal-
lenges. We mitigate catastrophic forgetting while learning a distributed task sequence by
incorporating orthogonal gradient projection within a gossip-based decentralized learning
algorithm. Further, CoDeC includes a novel lossless communication compression scheme
based on the gradient subspaces. We theoretically analyze the convergence rate for our
algorithm and demonstrate through an extensive set of experiments that CoDeC success-
fully learns distributed continual tasks with minimal forgetting. The proposed compression
scheme results in up to 4.8× reduction in communication costs without any loss in perfor-
mance. 1

1 Introduction

Deep neural networks have demonstrated exceptional performance for many visual recognition tasks over the
past decade. This has been fueled by the explosive growth of available training data and powerful comput-
ing resources. Edge devices such as smartphones, drones, and Internet-of-Things (IoT) sensors contribute
towards generating this massive amount of data (Shi et al., 2020). Interestingly, this data is spatially dis-
tributed, while continuously evolving over time. Large-scale deep neural network training has traditionally
relied upon the availability of a humongous amount of data at a central server. This mainly poses three

1The PyTorch implementation can be found at https://github.com/Sakshi09Ch/CoDeC
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Figure 1: An overview of CoDeC. (a) Data for each incoming task is independently and identically distributed
(IID) over the decentralized agents. Each agent has a GPM (Gradient Projection Memory) which is updated
after learning each task. (b) Based on the sparse graph topology, the agents communicate coefficients
associated with the model updates at each training iteration. (c) GPM partitions each layer’s subspace into
two orthogonal subspaces.

challenges: (1) high network bandwidth requirements to collect this dispersed data from numerous learning
agents, (2) data privacy concerns for locally-generated data accessed by the central server and (3) adapting
to changing data distributions without expensive training from scratch. This motivates the need for learning
algorithms to enable efficient distributed training by utilizing spatially and temporally distributed data.

Centralized distributed learning (i.e. federated learning) has emerged to train models over spatially dis-
tributed data without compromising on user privacy Konečný et al. (2016). This approach relies upon a
central parameter server to collect local model updates, process, and send the global updates back to the
agents. However, the central server may lead to a single point of failure and network bandwidth issues (As-
sran et al., 2019). To address these concerns, several decentralized learning algorithms have been developed
(Bianchi et al., 2013; Lan et al., 2017; Lian et al., 2017; Assran et al., 2019). Decentralized learning is a
peer-to-peer learning paradigm, where agents communicate only with their neighbors without the need for a
central server. Each agent learns a global generalized model by aggregating locally computed model updates
shared by neighbors. However, decentralized learning algorithms are not inherently equipped to thrive in
dynamic learning environments with a temporal sequence of changing data distributions.

Gradient-based optimization methods like plain SGD and DPSGD (Lian et al., 2017) inherently update
model parameters by minimizing the loss function with respect to the current data distribution. This results
in overwriting of parameters learned for the previous task(s), leading to catastrophic forgetting (Mccloskey
& Cohen, 1989; Ratcliff, 1990). Hence, continual learning techniques focus on learning consecutive tasks
without forgetting the past acquired knowledge (Lee et al., 2017; Lopez-Paz & Ranzato, 2017; Saha et al.,
2021a; Mallya et al., 2018; Kirkpatrick et al., 2017; Farajtabar et al., 2020; Wang et al., 2021; Saha et al.,
2021).

Table 1 summarizes previous works that address the challenges of learning with spatially and/or temporally
distributed data. In this paper, we propose CoDeC to enable serverless training with data distributed
across space as well as time. To the best of our knowledge, this is the first work that demonstrates such
a decentralized continual learning setup. Our algorithm has three components: (1) SGD combined with
gossip averaging (Xiao & Boyd, 2003) as shown in (Lian et al., 2017) to learn with spatially distributed
private data,(2) Gradient Projection Memory (GPM) (Saha et al., 2021) to continually learn a temporal
task sequence with minimal forgetting and (3) a novel lossless communication compression scheme to reduce
the bandwidth requirements during training. Our setup is illustrated in figure 1.

GPM partitions each layer’s gradient space into two orthogonal subspaces: Core Gradient Space (CGS) and
Residual Gradient Space (RGS) as shown in 1(c). Important gradient directions (CGS) for previous tasks

2



Published in Transactions on Machine Learning Research (03/2024)

Table 1: Comparison with prior works in Continual Learning (CL), Federated Learning (FL) and Decentral-
ized Learning (DL) paradigm. Note that FL techniques require a server, while DL techniques are serverless.
(†) denotes decentralized agents independently learning different tasks at a given time, and communicating
via a fully-connected topology.

Technique CL FL DL
FedOpt (Konečný et al., 2016) ✓

DPSGD (Lian et al., 2017) ✓
EWC (Kirkpatrick et al., 2017) ✓

GPM (Saha et al., 2021) ✓
FedWeIT (Yoon et al., 2021) ✓ ✓

FLwF-2T (Usmanova et al., 2021) ✓ ✓
DCIL (Zhang et al., 2022) ✓ ✓
SKILL (Ge et al., 2023) ✓ †

CoDeC(ours) ✓ ✓

are stored in gradient projection memory (GPM), and gradient updates for the new tasks are taken along
RGS to minimize interference. We find the basis vectors that span RGS and represent model updates as
a linear combination of these vectors. We communicate the coefficients associated with these basis vectors
instead of the model updates and achieve lossless communication compression. Further, theoretical insights
into the convergence rate of CoDeC prove that it is possible to achieve similar rates as the state-of-the-
art decentralized learning approaches such as DPSGD (Lian et al., 2017). We provide empirical evidence
by performing experiments over various standard image-classification datasets, networks, graph sizes, and
topologies. We also extend our analysis by designing and evaluating a decentralized continual learning
benchmark MedMNIST-5 using biomedical image-classification datasets from MedMNIST-v2 (Yang et al.,
2021). This imitates a practical real-world application where multiple healthcare organizations aim to learn
a global generalized model without sharing the locally accessible patients’ data. These models need to be
updated with the emergence of variants of a disease, new diseases, or new diagnostic methods in a continual
manner.

Contributions: We summarize our contributions as follows:

• We propose CoDeC, a communication-efficient decentralized continual learning algorithm that ad-
dresses a challenging problem: leveraging spatially and temporally distributed data to optimize a
global model while preserving data privacy.

• We introduce a novel lossless communication compression scheme based on gradient subspaces.
• We theoretically show that our algorithm converges at the rate of O(1/

√
NK), where N is the

number of agents and K is the number of training iterations.
• Experiments over a variety of image-classification datasets, networks, graph sizes, and topolo-

gies demonstrate minimal forgetting and up to 4.8× reduction in communication costs with iso-
performance relative to the full communication baseline.

2 Related Work

2.1 Decentralized Learning

Several works exist in the decentralized learning paradigm which enable distributing training without utilizing
a central server (Bianchi et al., 2013; Lan et al., 2017; Lian et al., 2017; Assran et al., 2019; Balu et al., 2021).
DPSGD (Lian et al., 2017) provides theoretical analysis for the convergence rate of decentralized learning
algorithms, proving it to be similar to their centralized counterpart (Dean et al., 2012). In CoDeC, we utilize
DPSGD (Lian et al., 2017) and modify it to send model updates instead of model parameters. Note, these
existing works are not equipped to learn a temporal task sequence without forgetting past knowledge.
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To reduce the communication overhead for decentralized learning, several compression techniques (Koloskova
et al., 2019; Tang et al., 2019; Aketi et al., 2021) have been explored. DeepSqueeze (Tang et al., 2019) in-
troduced error-compensated communication compression to decentralized training. Choco-SGD (Koloskova
et al., 2019) communicates compressed model updates rather than parameters and achieves better perfor-
mance than Tang et al. (2019). However, it is orthogonal to the compression scheme we present and can be
used in synergy with our approach. Moreover, all of the above-mentioned compression techniques are lossy
and require additional hyperparameter tuning.

2.2 Continual Learning

The majority of continual learning works fall into three categories (Wickramasinghe et al., 2023): network
expansion, replay and regularization-based methods. Network expansion based methods (Rusu et al., 2016;
Lee et al., 2017) overcome catastrophic forgetting by dedicating different model parameters to each task.
Replay-based methods store training samples from the past tasks in the memory or synthesize old data from
generative models for rehearsal (Chaudhry et al., 2019; Rebuffi et al., 2017; Shin et al., 2017). Regularization-
based methods penalize changes to parameters (Kirkpatrick et al., 2017; Zenke et al., 2017), or constrain
gradient directions (Saha et al., 2021; Wang et al., 2021; Saha & Roy, 2023) important for previous tasks.
These methods rely on the availability of centrally located training data and hence fail to be directly ap-
plicable to a distributed learning scenario. Network expansion based methods in a decentralized continual
learning setup may give rise to model heterogeneity across agents over time, while replay-based methods can
lead to privacy concerns. Thus, we explore regularization based methods like GPM (Saha et al., 2021), SGP
(Saha & Roy, 2023), EWC (Kirkpatrick et al., 2017) and SI (Zenke et al., 2017) in this work. We utilize
GPM in CoDeC and show superior performance than D-EWC and D-SI, decentralized continual learning
baselines we implemented with EWC and SI respectively. We further extend CoDeC to incorporate scaled
gradient updates as shown in SGP.

2.3 Distributed Continual Learning

FedWeIT (Yoon et al., 2021) tackled the problem of federated continual learning through the decomposition
of model parameters at each client into global and local task-adaptive parameters. FLwF-2T (Usmanova
et al., 2021) developed a distillation-based method for class-incremental federated continual learning. Unlike
our serverless training setup, these works utilize a central server to aggregate and send global updates to the
agents. CoLLA (Rostami et al., 2017) focused on multi-agent distributed lifelong learning and proposed a
distributed optimization algorithm for a network of synchronous learning agents. Note that it uses parametric
models and is not directly applicable to modern deep neural networks. SKILL (Ge et al., 2023) proposes a
distributed lifelong learning mechanism, where each agent uses a common pre-trained backbone and learns
a task-specific head module. After training, these task-specific heads are shared among agents via a fully
connected graph. However, each SKILL agent is independently learning a different task at a given time,
lacking the concept of collaborative learning as demonstrated in CoDeC.

3 Methodology

3.1 Problem Formulation

In this work, we optimize a DNN model to learn from spatially and temporally distributed data. The
communication topology is modeled as a graph G = ([N ], W), where N is the number of learning agents
and W is the mixing matrix indicating the graph’s connectivity. wij encodes the effect of agent j on agent
i, and wij = 0 implies there is no direct communication link between the two agents.

Consider a learning scenario where T tasks are learned sequentially. Now, for any task τ ∈ {1, .., T},
the corresponding dataset Dτ is independently and identically distributed (IID) across the N agents as
{Dτ,1, Dτ,2, Dτ,3.....Dτ,N }. For each τ , we aim to minimize the global loss function Fτ (x) given in equation 1.
Here, Fτ,i(dτ,i, x) is the local loss function per task at agent i and fτ,i(x) is the expected value of Fτ,i(dτ,i, x)
over the dataset Dτ,i.
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min
x∈Rd

Fτ (x) = 1
N

N∑
i=1

fτ,i(x),

where fτ,i(x) = Edτ,i∼Dτ,i [Fτ,i(dτ,i, x)] ∀i

(1)

Decentralized optimization of this global loss function Fτ (x) is based on the current dataset Dτ . A crucial
challenge is to optimize Fτ (x) such that the past information acquired from tasks 1, 2, .., (τ − 1) is retained.
Inspired by Saha et al. (2021), we define a subspace that contains important gradient directions associated
with all the past tasks and modify the local gradient updates of the current task to be orthogonal to this
subspace i.e., to lie in RGS. This ensures minimal catastrophic forgetting.

Typically, decentralized agents communicate the model parameters with their neighbors in each training
iteration (Lian et al., 2017). Note that in the proposed algorithm the model updates lie in RGS, which
is a smaller vector subspace compared to the entire gradient space. To utilize this property for enabling
lossless communication compression, we communicate model updates with neighbors similar to Koloskova
et al. (2019) rather than the model parameters.

3.2 Approach

We demonstrate the flow of CoDeC in Algorithm 1. All hyperparameters are synchronized between the
agents at the beginning of the training. Each agent i computes the gradient update gi = (▽fτ,i(dτ,i; xi))
with respect to model parameters xi, evaluated on mini-batch dτ,i. We obtain g̃i, the orthogonal projection
of the local gradients using GPM memory M (line 6, algorithm 1). The parameters of each agent are updated
using this g̃i which ensures minimal forgetting. Then, each agent performs a gossip averaging step using xi

and x̂j (line 8, algorithm 1). x̂j represent the copies of xj maintained by all the neighbors of agent j and
in general xj = x̂j . The computed model updates (denoted by qk

i ) lie in the RGS subspace spanned by the
basis vectors contained in Ol. Therefore, we express them as a linear combination of these basis vectors and
find the associated coefficients, ci to communicate with the neighbors (line 10, algorithm 1). Upon receiving
these coefficients, the agents reconstruct the neighbors’ updates without any loss in information (line 13,
algorithm 1). Communicating the coefficients (ci) leads to lossless compression, which we elaborate upon
in section 3.3. The local copy x̂j is updated using the reconstructed model updates qj (line 14, algorithm
1). Note that our algorithm requires each agent to only store the sum of neighbors’ models

∑
j∈N (i) wijx̂j

resulting in O(1) memory overhead, independent of the number of neighbors.

At the end of each task, important gradient directions are obtained using a Singular Value Decomposition
(SVD) representation of the input activations of each layer (Saha et al., 2021). These gradient directions are
added as basis vectors to the CGS matrix M and subsequently removed from the RGS Matrix O. SVD is
calculated using a subset of training data at any randomly chosen agent and communicated to other agents
iteratively using the communication graph.

3.3 Lossless Compression

Stochastic Gradient Descent (SGD) updates lie in the span of input data points (Zhang et al., 2017). Lever-
aging this fact, GPM (Saha et al., 2021) performs SVD on a representation matrix Rl

τ and finds basis vectors
corresponding to the important gradient directions for previous tasks. Rl

τ is constructed by performing a
forward pass of ns samples from the training dataset for task τ through the network and concatenating the
input activations for each layer l (equation 2). Subsequently, the SVD of representation, Rl

τ in equation 2 is
used to obtain the matrix Ul

τ containing a set of orthonormal basis vectors which span the entire gradient
space.

Rl
τ = [xl

1,τ , xl
2,τ .., xl

ns,τ ]
SV D(Rl

τ ) = Ul
τ Σ(Vl

τ )T
(2)

The threshold hyperparameter ϵth determines the number of basis vectors chosen from Ul
τ to represent

important gradient directions for any particular task. These vectors span a subspace in the gradient space
which we define as the Core Gradient Space (CGS). They are added to the GPM matrix M = {(Ml)L

l=1}.
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Algorithm 1 Communication-Efficient Decentralized Continual Learning (CoDeC )
Input: Each agent i ∈ [1, N ] initializes model parameters xi

0, step size η, mixing matrix W = [wij ]i,j∈[1,N ], x̂i
(0)= xi

0,
Ml = [ ] and Ol = [I] for all layers l = 1, 2, ...L, GPM Memory M = {(Ml)L

l=1}, RGS Matrix O = {(Ol)L
l=1},

N (i): neighbors of agent i (including itself), T : total tasks, K: training iterations

Each agent simultaneously implements the TRAIN( ) procedure
1. procedure TRAIN( )
2. for τ = 1, . . . , T do
3. for k = 0, 1, . . . , K − 1 do
4. dτ,i ∼ Dτ,i

5. gi
k = ∇fτ,i(dτ,i; xi

k)
6. g̃i

k = gi
k − (Ml(Ml)T )gi

k # for each layer l
7. xi

(k+ 1
2 ) = xi

k − ηg̃i
k

8. xi
k+1 = xi

(k+ 1
2 ) +

∑
j∈N (i) wij(x̂j

k − xi
k)

9. qi
k = xi

k+1 − xi
k

10. ci
k = (Ol)T qi

k

11. for each j ∈ N (i) do
12. Send ci

k and receive cj
k

13. qj
k = (Ol)cj

k

14. x̂j
(k+1) = qj

k + x̂j
k

15. end
16. end

# GPM Update
17. p = random(1, 2, ...N)
18. if i == p do
19. Update Ml, Ol for each layer l ∈ L
20. Update M = {(Ml)L

l=1}
21. Update O = {(Ol)L

l=1}
22. Send M, O to all agents
23. end
24. end
25. return

For task τ > 1, we ensure that the CGS vectors being added to the GPM matrix in round τ are orthogonal
to all the CGS vectors in stored in M. Before performing SVD on the representation matrix Rl

τ for each
layer l, we perform the following projection step:

R̂l
τ = Rl

τ − (Ml(Ml)T )Rl
τ (3)

SVD is then performed on R̂l
τ and new orthogonal basis vectors are added to M. This ensures that the

newly added basis vectors for task τ are unique and orthogonal to the vectors already present in M.

The following update rule is used to obtain orthogonal gradient update g̃i for the later tasks:

g̃i = gi − (Ml(Ml)T )gi (4)

Here, gi is the original local gradient update at agent i at layer l, and the projection of gi on CGS is
(MlMlT )gi. Let the input space for a layer be of dimension nl. This implies that Ul

τ contains nl orthonormal
basis vectors. Now based on ϵth, after every task, a set of rl basis vectors corresponding to the top rl singular
values are stored in M. Hence, g̃i lies in a (nl −rl) dimensional orthogonal subspace denoted as the Residual
Gradient Space (RGS).

The basis vectors which span RGS are the remaining (nl − rl) vectors contained in Ul
τ . We store them in

the RGS Matrix O = {(Ol)L
l=1}. nl − rl< nl, and rl increases as the task sequence progresses. We note that

the gradient updates tend to lie in a smaller subspace (i.e. RGS) whose dimensionality decreases based on
ϵth and the number of tasks.
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In algorithm 1, model updates qi
k are computed at every training iteration k. Since all the local gradients

g̃i
k lie in RGS, the updates qi

k also lie in RGS (refer to A.6 for the proof). Therefore, we express layer-wise
qi

k as a linear combination of the basis vectors in Ol and find the associated coefficients ci
k. The neighbors

of agent i reconstruct the updates qi
k from the received ci

k. This encoding and decoding of qi
k require two

additional matrix multiplications (lines 10 and 13 in algorithm 1). Our approach ensures that all agents have
the same M and O matrices so that the reconstruction is exact. Hence, we achieve lossless communication
compression by the virtue of taking orthogonal gradient updates to avoid catastrophic forgetting.

4 Convergence Rate Analysis

In this section, we provide a convergence analysis for our algorithm. In particular, we provide an upper
bound for ∥∇F (x̄k) ∥2, where ∇F (x̄k) is the average gradient achieved by the averaged model across all
agents. Since our claims are valid for each task, the task subscript is dropped for the following analysis. We
make the following assumptions:

Assumption 1 - Lipschitz Gradients: Each function fi(x) is L-smooth.

Assumption 2 - Bounded Variance: The variance of the stochastic gradients is assumed to be bounded.
There exist constants σ and δ such that

Ed∼Di
||∇Fi(x; d) − ∇fi(x)||2 ≤ σ2 (5)

1
N

N∑
i=1

||∇fi(x) − ∇F(x)||2 ≤ δ2 ∀i, x (6)

Assumption 3 - Doubly Stochastic Mixing Matrix: W is a real doubly stochastic matrix with λ1(W) =
1 and max{|λ2(W)|, |λN (W)|} ≤ √

ρ < 1 , where λi(W) is the ith largest eigenvalue of W and ρ is a constant.

The above assumptions are commonly used in most decentralized learning works (Lian et al., 2017; Tang
et al., 2019; Esfandiari et al., 2021). Since we modify the original gradient update gi, we introduce an
additional assumption:
Assumption 4 - Bounded Orthogonal Updates: For each agent i, we have:

∥g̃i∥ ≤ µ∥gi∥ (7)

where µ ∈ (0, 1] signifies how constrained the gradient space is. In particular, µ encapsulates the average
impact of the dimension of RGS subspace during training.

To ensure that the gradient update after projection is in the descent direction, we provide the following
lemma:
Lemma 1. Given the original gradient update -gi is in the descent direction, the orthogonal gradient update
-g̃i is also in the descent direction.

Please refer to Appendix A.1 for the proof. Theorem 2 presents the convergence of CoDeC (proof in Appendix
A.3).
Theorem 2. Given assumptions 1-4, let step size η satisfy the following condition:

1
L

< η ≤
√

(1 − √
ρ)2 + 12µ2 − (1 − √

ρ)
6Lµ2

(8)

For all K ≥ 1, we have

1
K

K−1∑
k=0

E
[
∥∇F (x̄k)∥2

]
≤ 1

C1K

(
E [F (x̄0) − F∗]

)
+

C2
σ2

N
+ C3 η2µ2

(
3σ2

(1 − √
ρ)2 + 3δ2

(1 − √
ρ)2

) (9)

where C1 = 1
2 (η − 1

L ), C2 = Lη2/2C1, C3 = L2η/2C1.
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The result of theorem 2 shows that the norm of the average gradient achieved by the consensus model is
upper-bounded by the suboptimality gap (F (x̄0) − F∗), the sampling variance (σ), the gradient variations
(δ), and the constraint on the gradient space (µ). The suboptimality gap signifies how good the model
initialization is. σ indicates the variation in gradients due to stochasticity, while δ is related to gradient
variations across the agents. From equation 9, we observe that µ appears in the last term and effectively
scales σ and δ. A detailed explanation of the constraints on step size η is presented in Appendix A.4. We
present a corollary to show the convergence rate of CoDeC in terms of the training iterations. Note that we
denote an = O(bn) if an ≤ cbn, where c > 0 is a constant.

Corollary 3. Suppose that the step size satisfies η = O
(√

N
K

)
. For a sufficiently large K and some constant

C > 0,

1
K

K−1∑
k=0

E
[
∥∇F (x̄k)∥2

]
≤ C

(
1√
NK

+ 1
K

)
(10)

The proof for Corollary 3 is detailed in Appendix A.5. It indicates that CoDeC achieves a convergence
rate of O( 1√

NK
) for each task. This rate is similar to the well-known best result in decentralized SGD

algorithms (Lian et al., 2017). Since µ2 appears only in the higher order term 1
K , it does not affect the order

of the convergence rate.

5 Experimental Setup

Implementation details: For each task, the data distribution is IID across the agents. The agents
communicate with their neighbors after every mini-batch update. We present results for different graph
topologies and sizes: directed ring with 4/8/16 agents and undirected torus with 8/16 agents. In the directed
ring topology, each agent has only 1 neighbor. Meanwhile, the torus topology has higher connectivity, with
3 and 4 neighbors for graph sizes of 8 and 16 agents respectively. We evaluate CoDeC on three well-known
continual learning benchmark datasets: 10-Split CIFAR-100 (Krizhevsky, 2009), 20-Split MiniImageNet
(Vinyals et al., 2016) and a sequence of 5-Datasets (Ebrahimi et al., 2020). 10-Split CIFAR-100 is constructed
by splitting CIFAR-100 into 10 tasks, where each task comprises of 10 classes. We use a 5-layer AlexNet
for experiments with Split CIFAR-100. 20-Split miniImageNet has 20 sequential tasks, where each task
comprises 5 classes. The sequence of 5-Datasets includes CIFAR-10, MNIST, SVHN (Netzer et al., 2011),
notMNIST (Bulatov, 2011) and Fashion MNIST (Xiao et al., 2017). For Split miniImageNet and 5-Datasets,
we use a reduced ResNet18 architecture similar to Lopez-Paz & Ranzato (2017). We design MedMNIST-5, a
biomedical decentralized continual learning benchmark based on the datasets in MedMNIST-v2 (Yang et al.,
2021). MedMNIST-5 consists of the following sequential classification tasks: TissueMNIST, OrganAMNIST,
OCTMNIST, PathMNIST, BloodMNIST. ResNet-18 architecture is used to evaluate the performance. For
all experiments, batch normalization parameters are learned for the first task and frozen for subsequent tasks.
We use ‘multi-head’ setting, where each task has a separate final classifier with no constraints on gradient
updates. Please refer to Appendix A.7, A.8, A.9 for details related to architectures, dataset statistics, and
training hyperparameters, respectively.

Baselines: To the best of our knowledge, our proposed setup is unique and hence there are no directly
comparable baselines. Therefore, for a fair comparison we implement two baselines D-EWC and D-SI based
on well known continual learning techniques Elastic Weight Consolidation (EWC) (Kirkpatrick et al., 2017)
and Synaptic Intelligence (SI) (Zenke et al., 2017) respectively. Please refer to algorithm 2 and 3 for the
detailed implementation. At the end of each task, these methods compute statistics to penalize the pa-
rameter updates to mitigate forgetting. D-EWC computes Fisher information matrix F , while D-SI utilizes
parameter specific contribution to changes in the total loss to compute importance measure Ω. To provide
an upper bound on performance, we add two baselines: STL and D-STL. Single Task Learning (STL) rep-
resents a setting where all the tasks are learned sequentially in a centralized setup without any constraints.
Decentralized Single Task Learning (D-STL) baseline extends STL to a decentralized setting.

Performance Metrics: We mainly focus on these metrics: (1) Average Accuracy (ACC): measures the
average test classification accuracy of all tasks (2) Backward Transfer (BWT): indicates the impact on
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the past knowledge after learning new tasks where negative BWT implies forgetting (3) Communication
Compression (CC): measures the relative reduction in the communication cost achieved through our lossless
compression scheme. ACC and BWT can be formally defined as:

ACC = 1
T

T∑
i=1

AT,i; BWT = 1
T − 1

T −1∑
i=1

AT,i − Ai,i (11)

Here, T is the total number of tasks and AT,i is the accuracy of the model on ith task after learning T tasks
sequentially.

6 Results and Discussions

Continual Learning Statistics Aggregation: We implement two versions for each technique based on
how continual learning statistics are computed and consolidated at the end of each task: broadcast and all-
gather. In broadcast, an agent is randomly chosen and the corresponding statistics are calculated and sent
to all the other agents. In all-gather, all agents compute these statistics using their local data, and the global
average of these statistics is utilized to mitigate forgetting. Note that all-gather incurs more computational
cost as compared to broadcast. D-SI and D-EWC give a sub-optimal performance with broadcast, while
CoDeC gives a similar performance for both versions as shown in Table 2 (refer to Table 11 in Appendix for
additional results). Hence, for results in Table 3, 4, 5 and 6 we choose all-gather for D-EWC and D-SI, and
broadcast for CoDeC.

Table 2: Impact of broadcast and all-gather for continual learning for Split miniImageNet over 8 agent
directed ring.

Setup ACC(%) BWT(%)
D-SI (broadcast) 36.14 ± 1.61 -12.90 ± 1.15
D-SI (all-gather) 45.58 ± 1.24 -3.67 ± 1.27

D-EWC (broadcast) 37.20 ± 0.58 0.27 ± 0.15
D-EWC (all-gather) 46.39 ± 1.54 -1.64 ± 1.11
CoDeC(broadcast) 53.22 ± 1.82 0.08 ± 0.45
CoDeC (all-gather) 53.25 ± 1.48 0.50 ± 0.21

Performance Comparison: We present two versions of our approach: CoDeC, which uses the lossless
compression scheme, and CoDeC(f), an implementation with full communication. As shown in Table 3, for
Split CIFAR-100 we obtain 3-4% better ACC than D-EWC with a similar order of BWT. CoDeC achieves
12-13% better ACC than D-SI, with marginally better BWT. Our proposed compression technique results
in a 1.86x reduction in the communication cost on average without any performance degradation.

Table 4 demonstrates learning a longer task sequence Split MiniImageNet, and we outperform both D-
EWC and D-SI by 6-11% in terms of ACC with better BWT in some cases. We achieve 1.43x reduction
in communication cost on average over a range of graph sizes. Learning dynamics of task 1 after learning
each task in Split miniImageNet are shown in figure 2. Note that for D-SI, the training converges only for
a lower learning rate as compared to D-EWC and CoDeC (details in Appendix A.9). Results on 5-Datasets
demonstrate learning across diverse datasets. As shown in Table 5, although we report better BWT for D-
EWC and D-SI in most cases, we achieve 0.5-5% better accuracy and upto 2.2x reduced communication cost.
We believe that final average accuracy (ACC) and backward transfer (BWT) are both equally important in
continual learning scenarios. It is possible to achieve zero BWT by freezing the model weights after learning
the first task. However, that leads to sub-optimal ACC due to lack of ability to learn the subsequent tasks
effectively. In our setup, we strive to achieve a balance between these two metrics by tuning the threshold
hyperparameter ϵth accordingly. It is possible to use a higher ϵth and achieve a lower BWT, but at the cost
of lower ACC. Hence, ϵth can be tuned to achieve lower BWT or higher ACC as required.

Additionally, we present results on MedMNIST-5, a decentralized continual learning benchmark we propose
to imitate a scenario where healthcare organizations aim to optimize a global model while maintaining
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Table 3: Split CIFAR-100 over AlexNet using directed ring and torus. (∗): methods that don’t adhere to
CL setup and provide an upper-bound on the performance.

Agents Setup Directed Ring Torus
ACC(%) BWT(%) CC ACC(%) BWT(%) CC

STL∗ 70.56 ± 0.20 - - - - -
D-STL∗ 69.22 ± 0.10 - - - - -

D-SI 44.90 ± 0.10 -0.83 ± 0.64 1x - - -
D-EWC 53.12 ± 0.62 0.24 ± 0.18 1x - - -

CoDeC(f) 57.54 ± 0.25 -1.22 ± 0.22 1x - - -4

CoDeC 57.83 ± 0.25 -0.95 ± 0.05 1.86x - - -
D-STL∗ 64.99 ± 0.41 - - 65.17 ± 0.44 - -

D-SI 39.54 ± 0.16 -1.08 ± 0.85 1x 39.36 ± 0.40 -1.25 ± 0.65 -
D-EWC 50.52 ± 0.58 0.51 ± 0.09 1x 49.41 ± 0.88 0.29 ± 0.27 1x

CoDeC(f) 53.57 ± 0.38 -0.65 ± 0.52 1x 53.54 ± 0.35 -1.15 ± 0.41 1x8

CoDeC 53.63 ± 0.25 -0.43 ± 0.33 1.85x 53.62 ± 0.29 -0.64 ± 0.36 1.86x
D-STL∗ 58.31 ± 0.49 - - 59.29 ± 0.12 - -

D-SI 34.66 ± 1.15 -1.23 ± 0.4 1x 34.86 ± 0.68 -1.16 ± 0.54 1x
D-EWC 45.52 ± 0.60 0.22 ± 0.34 1x 44.53 ± 0.77 -0.20 ± 0.56 1x

CoDeC(f) 48.05 ± 0.45 -0.38 ± 0.12 1x 48.19 ± 0.27 -0.29 ± 0.11 1x16

CoDeC 48.16 ± 0.33 -0.18 ± 0.28 1.84x 48.36 ± 0.04 -0.26 ± 0.31 1.84x

Table 4: Split MiniImagenet over ResNet-18 using directed ring and torus. (∗): methods that don’t adhere
to CL setup.

Agents Setup Directed Ring Torus
ACC(%) BWT(%) CC ACC(%) BWT(%) CC

STL∗ 70.18 ± 2.75 - -
D-STL∗ 69.36 ± 0.78 - - - - -

D-SI 51.01 ± 0.86 -4.00 ± 0.61 1x - - -
D-EWC 52.81 ± 2.80 -1.07 ± 2.03 1x - - -

CoDeC(f) 60.03 ± 0.75 0.36 ± 1.01 1x - - -4

CoDeC 59.00 ± 2.56 -0.79 ± 0.27 1.51x - - -
D-STL∗ 63.13 ± 0.86 - - 66.27 ± 1.47 - -

D-SI 45.58 ± 1.24 -3.67 ± 1.27 1x 46.00 ± 0.73 -3.21 ± 0.51 1x
D-EWC 46.39 ± 1.54 -1.64 ± 1.11 1x 48.23 ± 3.14 -1.02 ± 1.16 1x

CoDeC(f) 53.22 ± 1.82 0.08 ± 0.45 1x 59.90 ± 0.48 0.37 ± 0.24 1x8

CoDeC 53.30 ± 1.25 -0.46 ± 0.48 1.37x 59.97 ± 0.87 -0.19 ± 0.98 1.53x
D-STL∗ 57.09 ± 1.55 - - 63.51 ± 0.61 - -

D-SI 39.55 ± 0.87 -2.03 ± 0.69 1x 39.96 ± 0.47 -1.74 ± 0.96 1x
D-EWC 39.67 ± 1.37 -1.32 ± 1.18 1x 45.14 ± 0.18 -0.64 ± 0.23 1x

CoDeC(f) 45.29 ± 3.58 -0.99 ± 1.40 1x 51.03 ± 2.51 -0.01 ± 0.67 1x16

CoDeC 45.68 ± 0.77 0.61 ± 0.79 1.42x 51.32 ± 1.05 0.26 ± 0.56 1.39x

patient’s privacy. Results in Table 6 show that CoDeC outperforms D-EWC and D-SI by 7% and 1%
respectively in terms of ACC while incurring minimum BWT. The lossless compression scheme results in
a 2x reduction in the communication cost. In all our experiments, we observe that ACC decreases as we
increase the graph size, while BWT remains of the similar order.

We also compare CoDeC with SKILL, a distributed lifelong learning algorithm (results in Table 12). Fur-
thermore, we present results on non-IID data distribution across the agents in Table 13.

Task-wise Communication Costs: The reduction in communication cost is a reflection of the constraints
on the direction of gradient updates. As the gradient updates are not constrained for the first task, they
occupy the entire gradient space. However, gradient updates after learning task 1 are constrained to the
RGS subspace, whose dimensionality decreases as the task sequence progresses. This implies an increase
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Table 5: 5-Datasets over ResNet-18 using directed ring and torus. (∗): methods that don’t adhere to CL
setup.

Agents Setup Directed Ring Torus
ACC(%) BWT(%) CC ACC(%) BWT(%) CC

STL∗ 92.79 ± 0.08 - - - - -
D-STL∗ 92.51 ± 0.18 - - - - -

D-SI 82.44 ± 0.29 -1.52 ± 0.13 1x - - -
D-EWC 86.82 ± 0.25 -3.37 ± 0.80 1x - - -

CoDeC(f) 87.24 ± 0.23 -4.05 ± 0.05 1x - - -4

CoDeC 87.41 ± 0.44 -4.03 ± 0.30 2.13x - - -
D-STL∗ 92.31 ± 0.06 - - 92.32 ± 0.15 - -

D-SI 80.36 ± 0.15 -2.64 ± 0.07 1x 79.55 ± 0.33 -3.07 ± 0.13 1x
D-EWC 85.69 ± 0.19 -0.92 ± 0.14 1x 82.99 ± 3.25 -2.10 ± 1.60 1x

CoDeC(f) 86.54 ± 0.04 -4.37 ± 0.17 1x 85.92 ± 0.18 -5.10 ± 0.17 1x8

CoDeC 86.23 ± 0.22 -4.61 ± 0.32 2.17x 86.15 ± 0.17 -4.85 ± 0.26 2.19x
D-STL∗ 92.16 ± 0.16 - - 91.76 ± 0.09 - -

D-SI 78.53 ± 0.62 -5.2 ± 0.56 1x 77.00 ± 0.11 -5.76 ± 0.22 1x
D-EWC 82.19 ± 0.45 -0.18 ± 0.05 1x 81.48 ± 0.12 -0.56 ± 0.14 1x

CoDeC(f) 86.36 ± 0.15 -4.36 ± 0.19 1x 84.91 ± 0.20 -5.48 ± 0.22 1x16

CoDeC 86.41 ± 0.16 -4.37 ± 0.24 2.16x 85.00 ± 0.55 -5.52 ± 0.35 2.23x

Table 6: MedMNIST-5 over ResNet-18 using 16 agent directed ring topology.

Setup ACC(%) BWT(%) CC
D-STL∗ 76.55 ± 0.70 - -

D-SI 61.53 ± 0.49 -7.51 ± 0.72 1x
D-EWC 55.62 ± 1.23 -0.72 ± 0.25 1x

CoDeC(f) 62.51 ± 0.46 -0.37 ± 0.27 1x
CoDeC 62.47 ± 0.13 -0.07 ± 0.44 2.03x

in compression ratios, which is clearly reflected in our results highlighting task-wise CC in figure 3. In
essence, as the gradient space becomes more constrained, it suffices for agents to communicate less with
their neighbors. Hence, we achieve a CC of 2.1x for task 2, with this increasing up to 4.8x for task 5.

Scope of ACC-CC Trade-off: It is possible to get better ACC with CoDeC, albeit at the cost of reduced
CC. This is achieved by relaxing the orthogonal gradient constraint and allowing gradient updates along
some CGS basis vectors, as demonstrated in Scaled Gradient Projection (SGP) (Saha & Roy, 2023). The
gradient update along each CGS basis vector is scaled according to its importance λ for the past tasks.
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Table 7: Split CIFAR-100 over AlexNet using directed ring and torus topologies with scaled gradient updates.

Agents Setup Directed Ring Torus
ACC(%) BWT(%) CC ACC(%) BWT(%) CC

CoDeC(f) 59.07 ± 0.51 -2.19 ± 0.25 1x - - -4 CoDeC 59.20 ± 0.6 -1.95 ± 0.26 1.42x - - -
CoDeC(f) 55.33 ± 0.21 -1.02 ± 0.59 1x 56.02 ± 0.4 -0.88 ± 0.35 1x8 CoDeC 55.68 ± 0.36 -1.10 ± 0.27 1.42x 55.69 ± 0.27 -1.01 ± 0.06 1.42x
CoDeC(f) 49.68 ± 0.51 -0.51 ± 0.37 1x 50.15 ± 0.12 -0.09 ± 0.19 1x16 CoDeC 49.56 ± 0.90 -0.57 ± 0.30 1.42x 50.00 ± 0.49 -0.88 ± 0.23 1.42x
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Figure 4: Impact of α on CC for Split CIFAR-100 over
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The lower the λ, the lesser the importance of the cor-
responding basis direction. λ=1 implies no gradient
steps can be taken along that basis direction. The
following update rule is used to obtain the scaled
gradient update g̃i:

g̃i = gi − (MlΛ(Ml)T )gi (12)

Here, Λ is a diagonal matrix containing λ in its di-
agonal. Note that Λ = I corresponds to the GPM
update rule in equation 4. The computation of λ in-
volves a scale coefficient α. λ tends to 1 for large α
values, and SGP converges to GPM. To incorporate
gradient scaling in CoDeC, the basis vectors in M
with λ < 1 are appended to O at the end of each task. This provides us with a knob to achieve an ACC-CC
trade-off, as shown in figure 4. We find that ACC increases as α decreases, albeit at the cost of lower CC.
This is the result of the gradient updates lying in a larger subspace for smaller values of α. For α=1000,
the results are similar to the ones presented in Table 3, where we allow only orthogonal gradient updates.
The best performance in terms of ACC is obtained at α=10 with CC=1.42x, and we report these results in
Table 7.
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Figure 5: Average consensus error (CE) for Split CIFAR-100 (left) and Split MiniImageNet (right) over
an 8 agent ring topology. Task ‘τ ’ DPSGD (CoDeC) denotes CE when τ th task is learned without (with)
orthogonal gradient constraints.

Consensus Error: We also investigate the effect of taking orthogonal gradient updates upon the average
consensus error, which we formally define as:

CE = 1
N

N∑
i=1

∥x̄k − xi
k∥2 (13)

Here, x̄k represents the global average of the model parameters xi
k at any given iteration k. We provide

an upper bound for the consensus error in Appendix A.2. CE is a measure of the effectiveness of gossip
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averaging in the decentralized learning scenario. In particular, a lower CE implies that the agents are closer
to achieving a global consensus. In figure 5, we show CE with and without orthogonal updates for task 2
and 9 after each training epoch for Split CIFAR-100 and Split miniImageNet. As the training progresses,
CE consistently reduces as expected. We observe that the rate of achieving consensus is similar for the
two cases. In other words, CoDeC enables decentralized continual learning without hindering the gossip
averaging mechanism.

7 Conclusion

This work proposes CoDeC, a novel communication-efficient decentralized continual learning algorithm.
CoDeC enables serverless training with spatially and temporally distributed private data and mitigates
catastrophic forgetting by taking gradient steps orthogonal to the gradient directions important for previous
tasks. These orthogonal gradient updates, and hence the model updates, lie in a lower dimensional gradient
subspace. We exploit this fact to achieve lossless communication compression without requiring any addi-
tional hyperparameters. Further, we provide theoretical insights into the convergence rate of our algorithm.
Our results demonstrate that CoDeC is very effective in learning distributed continual tasks with minimal
backward transfer and up to 4.8x reduced communication overhead during training.
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A Appendix

Proofs for the lemma, theorem and corollary presented in the main paper are detailed in A.1, A.2, A.3, A.4
and A.5 sections. Details related to the network architectures and datasets used in our experiments are
presented in A.7 and A.8 respectively. We list all our training hyperparameters in A.9. We also provide
details about implementation of our baselines D-EWC and D-SI in A.10. Some additional results are available
in A.11. We perform our experiments on a single machine with 4 NVIDIA GeForce GTX 1080 Ti GPUs.
All the agents in our experiments are distributed evenly over these 4 GPUs. For instance, in the case of a
16-agent ring/torus topology, each GPU is utilized by 4 agents.

A.1 Proof of Lemma 1

The orthogonal projection g̃i of the original gradient update gi with respect to GPM is obtained as:

g̃i = gi − (Ml(Ml)T )gi (14)

From the above equation we can write:

gi = g̃i + (Ml(Ml)T )gi (15)

We have:
⟨gi, g̃i⟩ = ⟨g̃i + (Ml(Ml)T )gi, g̃i⟩ = ⟨g̃i, g̃i⟩ + ⟨(Ml(Ml)T )gi, g̃i⟩ (16)

Since g̃i and Ml(Ml)T )gi are orthogonal to each other:

⟨(Ml(Ml)T )gi, g̃i⟩ = 0 (17)

Substituting equation 17 into equation 16:

⟨gi, g̃i⟩ = ⟨g̃i, g̃i⟩ = ∥g̃i∥2 > 0 (18)

We make sure ∥g̃i∥ ≠ 0 by using ϵth < 1. From the above equation, we see that the dot product is greater
than 0. This implies that if -gi is in the descent direction, -g̃i is also in the descent direction.

A.2 Bounds on Consensus Error

This section provides an upper bound on the consensus error. We follow the same approach as Esfandiari
et al. (2021). The update rule for our algorithm is as follows:

x̄k = x̄k−1 − η
1
N

N∑
i=1

g̃i
k−1 (19)

x̄k denotes the averaged model across all the agents at a given iteration k. For the rest of the analysis, the
initial value will be directly set to 0. From equation 19 we have:

x̄k+1 − x̄k = −η
1
N

N∑
i=1

g̃i
k (20)

We introduce some key notations and properties:

Q = 1
N

11⊤

G̃k ≜ [g̃1
k, g̃2

k, ..., g̃N
k ]

Xk ≜ [x1
k, x2

k, ..., xN
k ]

Gk ≜ [g1
k, g2

k, ..., gN
k ]

Hk ≜ [∇f1(x1
k), ∇f2(x2

k), ..., ∇fN (xN
k )]

(21)
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For all the above matrices, ∥A∥2
F =

∑N
i=1 ∥ai∥2, where ai is the i-th column of the matrix A. Thus, we

obtain:

∥Xk(I − Q)∥2
F =

N∑
i=1

∥xi
k − x̄k∥2. (22)

For each doubly stochastic matrix W, the following properties hold true

• QW = WQ;

• (I − Q)W = W(I − Q);

• For any integer k ≥ 1, ∥(I − Q)W∥S ≤ (√ρ)k, where ∥ · ∥S is the spectrum norm of a matrix.

For N arbitrary real square matrices Ai, i ∈ {1, 2, ..., N},

∥
N∑

i=1
Ai∥2

F ≤
N∑

i=1

N∑
j=1

∥Ai∥F∥Aj∥F. (23)

We are now ready to provide a bound on the consensus error. Since Xk = Xk−1W − ηG̃k we have:

Xk(I − Q) = Xk−1(I − Q)W − ηG̃k(I − Q) (24)

Applying the above equation k times we have:

Xk(I − Q) = X0(I − Q)Wk −
k∑

τ=1
ηG̃τ (I − Q)Wk−τ = −η

k∑
τ=1

G̃τ (I − Q)Wk−τ (25)

E
[∥∥∥∥Xk(I − Q)

∥∥∥∥2

F

]
= η2 E

[∥∥∥∥ k−1∑
τ=0

G̃τ (I − Q)Wk−1−τ

∥∥∥∥2

F

]
︸ ︷︷ ︸

I

(26)

We find the upper bound for term I.

E
[∥∥∥∥ k−1∑

τ=0
G̃τ (I − Q)Wk−1−τ

∥∥∥∥2

F

]
a
≤

k−1∑
τ=0

k−1∑
τ ′=0

E
[∥∥∥∥G̃τ (I − Q)Wk−1−τ

∥∥∥∥
F

∥∥∥∥G̃τ ′(I − Q)Wk−1−τ ′
∥∥∥∥
F

]

≤
k−1∑
τ=0

k−1∑
τ ′=0

ρ(k−1− τ+τ′
2 )E[∥G̃τ ∥F∥G̃τ ′∥F]

b
≤

k−1∑
τ=0

k−1∑
τ ′=0

µ2ρ(k−1− τ+τ′
2 )E[∥Gτ ∥F∥Gτ ′∥F]

c
≤

k−1∑
τ=0

k−1∑
τ ′=0

µ2ρ(k−1− τ+τ′
2 )
(

1
2E[∥Gτ ∥2

F] + 1
2E[∥Gτ ′∥2

F]
)

=
k−1∑
τ=0

k−1∑
τ ′=0

µ2ρ(k−1− τ+τ′
2 )E[∥Gτ ∥2

F]
d
≤ µ2

(1 − √
ρ)

k−1∑
τ=0

ρ( k−1−τ
2 )E[∥Gτ ∥2

F]

(27)

(a) follows from equation 23.
(b) follows from assumption 4.
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(c) follows from the inequality xy ≤ 1
2 (x2 + y2) for any two real numbers x, y.

(d) is derived from
∑k−1

τ1=0 ρk−1− τ1+τ
2 ≤ ρ

k−1−τ
2

1−√
ρ .

We proceed with finding the bounds for E[∥Gτ ∥2
F]:

E[∥Gτ ∥2
F] = E[∥Gτ − Hτ + Hτ − Hτ Q + Hτ Q∥2

F]

≤ 3E[∥Gτ − Hτ ∥2
F] + 3E[∥Hτ (I − Q)∥2F] + 3E[∥Hτ Q∥2

F]
a
≤ 3Nσ2 + 3Nδ2 + 3E[∥ 1

N

N∑
i=1

∇fi(xi
τ )∥2]

(28)

(a) holds because E[∥Hτ Q∥2
F] ≤ E[∥ 1

N

∑N
i=1 ∇fi(xi

τ )∥2]
Substituting (28) in (27):

E
[∥∥∥∥ k−1∑

τ=0
G̃τ (I − Q)Wk−1−τ

∥∥∥∥2

F

]
≤ µ2

(1 − √
ρ)

k−1∑
τ=0

ρ( k−1−τ
2 )

[
3Nσ2 + 3Nδ2 + 3E[∥ 1

N

N∑
i=1

∇fi(xi
τ )∥2]

]

≤ 3Nµ2(σ2 + δ2)
(1 − √

ρ)2 + 3Nµ2

(1 − √
ρ)

k−1∑
τ=0

ρ( k−1−τ
2 )E[∥ 1

N

N∑
i=1

∇fi(xi
τ )∥2]

(29)

Substituting (29) into the main inequality (26):

E
[∥∥∥∥Xk(I − Q)

∥∥∥∥2

F

]
≤ η2µ2

(
3Nσ2

(1 − √
ρ)2 + 3Nδ2

(1 − √
ρ)2

)
+ 3Nη2µ2

(1 − √
ρ)

k−1∑
τ=0

ρ( k−1−τ
2 )E[∥ 1

N

N∑
i=1

∇fi(xi
τ )∥2] (30)

Summing over k ∈ {1, . . . , K − 1} and noting that E
[∥∥∥∥X0(I − Q)

∥∥∥∥2

F

]
= 0:

K−1∑
k=1

E
[∥∥∥∥Xk(I − Q)

∥∥∥∥2

F

]
≤ CK + 3Nη2µ2

(1 − √
ρ)

K−1∑
k=1

k−1∑
τ=0

ρ( k−1−τ
2 )E[∥ 1

N

N∑
i=1

∇fi(xi
τ )∥2] ≤

CK + 3Nη2µ2

(1 − √
ρ)

K−1∑
k=0

1 − ρ( K−1−k
2 )

1 − √
ρ

E[∥ 1
N

N∑
i=1

∇fi(xi
k)∥2] ≤ CK + 3Nη2µ2

(1 − √
ρ)

K−1∑
k=0

E[∥ 1
N

N∑
i=1

∇fi(xi
k)∥2]

where C = η2µ2
(

3Nσ2 + 3Nδ2

(1 − √
ρ)2

)
(31)

Dividing both sides by N :

K−1∑
k=1

1
N

E
[∥∥∥∥Xk(I − Q)

∥∥∥∥2

F

]
≤η2µ2

(
3σ2

(1 − √
ρ)2 + 3δ2

(1 − √
ρ)2

)
K + 3η2µ2

(1 − √
ρ)

K−1∑
k=0

E[∥ 1
N

N∑
i=1

∇fi(xi
k)∥2] (32)

This directly implies:

K−1∑
k=0

1
N

N∑
i=1

E
[∥∥∥∥x̄k − xi

k

∥∥∥∥2]
≤ η2µ2

(
3σ2

(1 − √
ρ)2 + 3δ2

(1 − √
ρ)2

)
K + 3η2µ2

(1 − √
ρ)

K−1∑
k=0

E[∥ 1
N

N∑
i=1

∇fi(xi
k)∥2] (33)
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A.3 Proof for Theorem 2

When F is L-smooth, we have:

E[F(x̄k+1)] ≤ E[F(x̄k)] + E[⟨∇F(x̄k), x̄k+1 − x̄k⟩]︸ ︷︷ ︸
I

+L

2 E[∥x̄k+1 − x̄k∥2] (34)

We proceed by analysing I:

E[⟨∇F(x̄k), x̄k+1 − x̄k⟩] = E[⟨∇F(x̄k), −η

(
1
N

N∑
i=1

g̃i
k

)
⟩] (35)

E[⟨∇F (x̄k) , −η

(
1
N

N∑
i=1

g̃i
k

)
⟩] =E[⟨∇F (x̄k) , −η

(
1
N

N∑
i=1

g̃i
k − gi

k + gi
k

)
⟩]

= E[⟨∇F (x̄k) , −η

(
1
N

N∑
i=1

g̃i
k − gi

k

)
⟩]︸ ︷︷ ︸

II

+E[⟨∇F (x̄k) , −η

(
1
N

N∑
i=1

gi
k

)
⟩]︸ ︷︷ ︸

III

(36)

We first analyse II:

−ηE[⟨∇F (x̄k) ,
1
N

N∑
i=1

(
g̃i

k − gi
k

)
⟩] ≤ 1

2L
E[∥∇F(x̄k)∥2] + Lη2

2 E[∥ 1
N

N∑
i=1

(g̃i
k − gi

k)∥2] (37)

This holds as ⟨a, b⟩ ≤ 1
2 ∥a∥2 + 1

2 ∥b∥2.
Analysing III:

E
[
⟨∇F (x̄k) , −η

(
1
N

N∑
i=1

gi
k

)
⟩
]

= −ηE
[
⟨∇F(x̄k), 1

N

N∑
i=1

∇fi(xi
k)⟩
]

(38)

With the aid of the equity ⟨a, b⟩ = 1
2 [∥a∥2 + ∥b∥2 − ∥a − b∥2], we have :

⟨∇F (x̄k) ,
1
N

N∑
i=1

∇fi

(
xi

k

)
⟩ = 1

2

∥∇F (x̄k) ∥2 + ∥ 1
N

N∑
i=1

∇fi(xi
k)∥2 − ∥∇F(x̄k) − 1

N

N∑
i=1

∇fi(xi
k)∥2

︸ ︷︷ ︸
⋆

 (39)

Analysing ⋆:

∥∇F(x̄k) − 1
N

N∑
i=1

∇fi(xi
k)∥2 = ∥ 1

N

N∑
i=1

∇fi(x̄k) − 1
N

N∑
i=1

∇fi(xi
k)∥2

≤ 1
N

N∑
i=1

∥∇fi(x̄k) − ∇fi(xi
k)∥2 ≤ 1

N

N∑
i=1

L2∥x̄k − xi
k∥2

(40)

Substituting (40) back into (39), we have:

⟨∇F (x̄k) ,
1
N

N∑
i=1

∇fi

(
xi

k

)
⟩≥1

2

(
∥∇F(x̄k)∥2 + ∥ 1

N

N∑
i=1

∇fi(xi
k)∥2 − L2 1

N

N∑
i=1

∥x̄k − xi
k∥2

)
(41)
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Substituting (37) and (41) into (36), and (36) into (35):

E[⟨∇F(x̄k), x̄k+1 − x̄k⟩] ≤
(

1
2L

− η

2

)
E[∥∇F(x̄k)∥2] + Lη2

2 E[∥ 1
N

N∑
i=1

(g̃i
k − gi

k)∥2]

− η

2

(
E[∥ 1

N

N∑
i=1

∇fi(xi
k)∥2] − L2E[ 1

N

N∑
i=1

∥x̄k − xi
k∥2]

) (42)

From equation (20), we have:

E[∥x̄k+1 − x̄k∥2] = η2E[∥ 1
N

N∑
i=1

g̃i
k∥2]. (43)

Substituting (42) and (43) in (34):

E[F(x̄k+1)] ≤ E[F(x̄k)] +
(

1
2L

− η

2

)
E[∥∇F(x̄k)∥2] + Lη2

2 E[∥ 1
N

N∑
i=1

(g̃i
k − gi

k)∥2]

− η

2E[∥ 1
N

N∑
i=1

∇fi(xi
k)∥2] + ηL2

2 E[ 1
N

N∑
i=1

∥x̄k − xi
k∥2] + η2L

2 E[∥ 1
N

N∑
i=1

g̃i
k∥2]

(44)

Rearranging the terms and dividing by C1 =
(

η
2 − 1

2L

)
> 0 to find the bound for E[∥∇F(x̄k)∥2]:

E[∥∇F(x̄k)∥2] ≤ 1
C1

(
E[F(x̄k)] − E[F(x̄k+1)]

)
+ C2

(
E[∥ 1

N

N∑
i=1

(g̃i
k − gi

k)∥2] + E[∥ 1
N

N∑
i=1

g̃i
k∥2]︸ ︷︷ ︸

⋆

)

+ C3 E[ 1
N

N∑
i=1

∥x̄k − xi
k∥2] − C4 E[∥ 1

N

N∑
i=1

∇fi(xi
k)∥2]

where C2 = Lη2/2C1, C3 = L2η/2C1, C4 = η/2C1.

(45)

We first analyze ⋆:

E[∥ 1
N

N∑
i=1

(g̃i
k − gi

k)∥2] + E[∥ 1
N

N∑
i=1

g̃i
k∥2] = 1

N2E[∥
N∑

i=1
(g̃i

k − gi
k)∥2] + ∥

N∑
i=1

g̃i
k∥2]

a= 1
N2E[∥

N∑
i=1

(MMTgi
k)∥2] + ∥

N∑
i=1

((I − MMT)gi
k)∥2] b= 1

N2E[∥MMT
N∑

i=1
(gi

k)∥2] + ∥(I − MMT)
N∑

i=1
(gi

k)∥2]

= E[∥
N∑

i=1

1
N

gi
k∥2]

c
≤
(

σ2

N
+ E

[∥∥∥∥ 1
N

N∑
i=1

∇fi(xi)
∥∥∥∥2])

(46)

(a) follows from the fact that g̃i
k is an orthogonal projection of gi

k, and it is defined by the GPM matrix M.

(b) follows from all agents having the same GPM matrix M

(c) is the conclusion of Lemma 1 in Yu et al. (2019).
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Substituting (46) into (45) and summing over k ∈ {0, 1, . . . , K − 1}:

K−1∑
k=0

E
[
∥∇F (x̄k)∥2

]
≤ 1

C1

(
E [F (x̄0) − F (x̄k)]

)
+ C2

K−1∑
k=0

(
σ2

N
+ E

[∥∥∥∥ 1
N

N∑
i=1

∇fi(xi
k)
∥∥∥∥2])

+ C3

K−1∑
k=0

E

[
1
N

N∑
i=1

∥∥x̄k − xi
k

∥∥2
]

− C4

K−1∑
k=0

E

∥∥∥∥∥ 1
N

N∑
i=1

∇fi(xi
k)

∥∥∥∥∥
2 (47)

Dividing both sides by K:

1
K

K−1∑
k=0

E
[
∥∇F (x̄k)∥2

]
≤ 1

C1K

(
E [F (x̄0) − F∗]

)
+ C2

σ2

N
+ C2

K−1∑
k=0

1
K

(
E

[∥∥∥∥ 1
N

N∑
i=1

∇fi(xi
k)
∥∥∥∥2
])

+ C3

K

K−1∑
k=0

E

[
1
N

N∑
i=1

∥∥x̄k − xi
k

∥∥2
]

− C4

K−1∑
k=0

1
K

E

∥∥∥∥∥ 1
N

N∑
i=1

∇fi(xi
k)

∥∥∥∥∥
2 (48)

Using equation 33 in the above equation, we have:

1
K

K−1∑
k=0

E
[
∥∇F (x̄k)∥2

]
≤ 1

C1K

(
E [F (x̄0) − F∗]

)
+ C2

σ2

N
+ C2

K−1∑
k=0

1
K

(
E

[∥∥∥∥ 1
N

N∑
i=1

∇fi(xi
k)
∥∥∥∥2
])

+ C3

K

[
η2µ2

(
3σ2

(1 − √
ρ)2 + 3δ2

(1 − √
ρ)2

)
K + 3η2µ2

(1 − √
ρ)

K−1∑
k=0

E[∥ 1
N

N∑
i=1

∇fi(xi
k)∥2]

]

− C4

K−1∑
k=0

1
K

E

∥∥∥∥∥ 1
N

N∑
i=1

∇fi(xi
k)

∥∥∥∥∥
2

(49)

Rearranging the terms:

1
K

K−1∑
k=0

E
[
∥∇F (x̄k)∥2

]
≤ 1

C1K

(
E [F (x̄0) − F∗]

)
+ C2

σ2

N
+ C3 η2µ2

(
3σ2

(1 − √
ρ)2 + 3δ2

(1 − √
ρ)2

)

+
(

C2 + 3C3η2µ2

(1 − √
ρ) − C4

) (
1
K

K−1∑
k=0

E

[∥∥∥∥ 1
N

N∑
i=1

∇fi(xi
k)
∥∥∥∥2
]) (50)

When
(

C2 + 3C3η2µ2

(1−√
ρ) − C4

)
≤ 0, we have:

1
K

K−1∑
k=0

E
[
∥∇F (x̄k)∥2

]
≤ 1

C1K

(
E [F (x̄0) − F∗]

)
+ C2

σ2

N
+ C3 η2µ2

(
3σ2

(1 − √
ρ)2 + 3δ2

(1 − √
ρ)2

)
(51)

A.4 Discussion on the Step Size

Recall the condition C1 > 0. This implies η > 1
L .

The condition for equation (51) to be true is
(

C2 + 3C3η2µ2

(1−√
ρ) − C4

)
≤ 0. Therefore, we have:

3L2η2µ2

(1 − √
ρ) + ηL − 1 ≤ 0 (52)

Solving this inequality, combining the fact that η > 0, we have then the specific form of η∗:

η∗ =
√

(1 − √
ρ)2 + 12µ2 − (1 − √

ρ)
6Lµ2

(53)
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Hence, the step size η is defined as

1
L

< η ≤
√

(1 − √
ρ)2 + 12µ2 − (1 − √

ρ)
6Lµ2

(54)

A.5 Proof for Corollary 3

According to equation (51), on the right hand side, there are three terms with different coefficients with
respect to the step size η. We separately investigate each term:

η = O
(√

N
K

)
implies C1 = O

(√
N
K

)
. Therefore for the first term:

F(x̄0) − F∗

C1K
= O

(
1√
NK

)
(55)

For the second term:

C2

N
= O

(
1
N

√
N

K

)
= O

(
1√
NK

)
(56)

For the third term:

η2C3 = O
(

N

K

)
(57)

By omitting N in non-dominant terms, there exists a constant C > 0 such that the overall convergence rate
is as follows:

1
K

K−1∑
k=0

E
[
∥∇F (x̄k)∥2

]
≤ C

(
1√
NK

+ 1
K

)
, (58)

which suggests when N is fixed and K is sufficiently large, CoDeC enables the convergence rate of O( 1√
NK

).

A.6 Proof for qi
k Lying in RGS

Here, we prove that qi
k from line 9 in algorithm 1 lies in RGS.

Line 8 (Algorithm 1): xi
k+1 = xi

(k+ 1
2 ) +

∑
j∈N (i) wij(x̂j

k − xi
k)

Line 9 (Algorithm 1): qi
k = xi

k+1 − xi
k

After simplifying qi
k:

qi
k = xi

(k+ 1
2 ) +

∑
j∈N (i)

wij(x̂j
k − xi

k) − xi
k (59)

From line 7 in Algorithm 1 we have, xi
(k+ 1

2 ) = xi
k − ηg̃i

k

Substituting xi
(k+ 1

2 ) in equation 59, qi
k = −ηg̃i

k +
∑

j∈N (i) wij(x̂j
k − xi

k)

Now, we know that g̃i
k is the orthogonal gradient component of gi

k, and hence it lies in RGS subspace. If the
gossip update component i.e.

∑
j∈N (i) wij(x̂j

k − xi
k) also lies in RGS, we can conclude that qi

k lies in RGS
by linearity.

We prove this using the linearity property of the vector spaces and induction.

Say αi
k =

∑
j wij(x̂j

k − xi
k) =

∑
j wij(xj

k − xi
k). αi

0 lies in RGS as xj
0 = xi

0 (synchronized initialization). Now,
αi

k+1 =
∑

j wij(αj
k − η(g̃j

k − g̃i
k)).

GPM update ensures that gradients g̃j
k and g̃i

k lie in RGS and from induction, we have αj
k to lie in RGS.

From linearity, we conclude that αi
k+1 lies in RGS for any agent i. Hence, qi

k also lies in RGS.
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A.7 Network Architecture

• AlexNet-like architecture: For our experiments, we scale the output channels in each layer of
the architecture used in SerrÃ et al. (2018). The network consists of 3 convolutional layers of 16,
32, and 64 filters with 4 × 4, 3 × 3, and 2 × 2 kernel sizes, respectively and 2 fully connected layers
of 512 units each. A 2 × 2 max-pooling layer follows the convolutional layers. Rectified linear units
are used as activations. Dropout of 0.2 is used for the first two layers and 0.5 for the rest of the
layers.

• Reduced ResNet18 architecture: This is similar to the architecture used by Lopez-Paz & Ran-
zato (2017). We replace the 4 × 4 average-pooling layer with a 2 × 2 layer. For experiments with
miniImageNet, we use convolution with stride 2 in the first layer.

All the networks use ReLU in the hidden units and softmax with cross entropy loss in the final layer.

A.8 Datasets

Table 8 and 9 provide the details related to the datasets used in our experiments. For MedMNIST-5 dataset
statistics, please refer to table 2 in Yang et al. (2021). The training samples/tasks are independently and
identically distributed (IID) across agents without any data overlap. For instance, for a graph size of 4
agents, each agent has 5000/4 = 1250 training samples for a particular task in Split CIFAR-100.

Table 8: Dataset Statistics for Split CIFAR-100 and Split-miniImageNet

Split CIFAR-100 Split miniImageNet
num. of tasks 10 20
input size 3 × 32 × 32 3 × 84 × 84
# Classes/task 10 5
# Training samples/tasks 5,000 2,500
# Test samples/tasks 1,000 500

Table 9: 5-Datasets Statistics

CIFAR-10 MNIST SVHN Fashion MNIST notMNIST
Classes 10 10 10 10 10
# Training samples/tasks 50,000 60,000 73,257 60,000 16,853
# Test samples/tasks 10,000 10,000 26,032 10,000 1,873

A.9 Hyperparameters

All our experiments were run for three randomly chosen seeds. We decay the learning rate by a factor of 10
after 50% and 75% of the training, unless mentioned otherwise. For Split CIFAR-100, we use a mini-batch
size of 22 per agent, and we run all our experiments for a total of 100 epochs for each task. For Split
MiniImageNet, we use a mini-batch size of 10 per agent and 10 epochs for each task. For 5-Datasets and
MedMNIST-5, we use a mini-batch size of 32 per agent, and 50 epochs for each task. We list additional
hyperparameters in Table 10. For D-SI, in case of Split CIFAR-100 we use a lower learning rate of 0.0005 for
the last 2 tasks when number of agents is 8 or 16. Similarly for 5-Datasets, we lower the learning rate to 0.001
after the 1st task. This tuning is required for the training to converge in case of D-SI. The average consensus
error plots shown in figure 5 in the main paper were obtained with a cosine annealing based learning rate
scheduling instead of the step decay mentioned earlier.
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Table 10: List of hyperparameters for the baselines and our approach. ‘lr’ represents initial learning rate.
‘incre’ represents how the ϵth is incremented for each new task.

Dataset Setup Hyperparameters

Split CIFAR-100
D-SI lr: 0.001, c: 0.1

D-EWC lr: 0.05, λ: 5000
CoDeC lr: 0.01, ϵth: 0.97, incre: 0.003

Split MiniImageNet
D-SI lr: 0.001, c: 0.3

D-EWC lr: 0.03, λ: 5000
CoDeC lr: 0.1, ϵth: 0.985, incre: 0.0003

5-Datasets
D-SI lr: 0.01, c: 0.1

D-EWC lr: 0.03, λ: 5000
CoDeC lr: 0.1, ϵth: 0.965, incre: 0

MedMNIST-5
D-SI lr: 0.001, c: 0.5

D-EWC lr: 0.001, λ: 5000
CoDeC lr: 0.001, ϵth: 0.99, incre: 0

A.10 Baseline Implementation

Algorithm 2 and 3 demonstrate the flow of D-EWC and D-SI respectively, the baselines which extend EWC
(Kirkpatrick et al., 2017) and SI (Zenke et al., 2017) to a decentralized setting. The loss function minimized
in D-EWC is of the form f̃τ,i(di

τ,k; xi
k) shown in line 5, algorithm 2. Here, λ is a regularization coefficient

which signifies the importance given to the past tasks. xi,l
k and xi,l

τ−1 represent model parameters for a
particular layer l. Unlike CoDeC, here we generate the Fisher matrix F i at each agent and then do a global
averaging step before utilizing it for continually learning the next task. We do so because D-EWC performs
best when entire training data is used to generate the Fisher matrix.

SI aims to minimize the loss function f̃τ,i(di
τ,k; xi

k) of the form shown in line 5, algorithm 3. Here, c is a
dimensionless strength parameter which signifies the importance given to the past tasks. SI computes ω in
an online manner, which is used to update Ω at the end of each task. Ω is an importance estimate, which
scales the per-parameter regularization strength. Ω is generated at each agent and then globally averaged
before utilizing it for the next task.

STL and D-STL provide upper bounds on performance. These are not continual learning techniques and may
not be feasible in resource-constrained environments as they requires excessive number of model parameters.

A.11 Additional Results

Continual Learning Statistics Aggregation: Additional results in Table 11 demonstrate the impact of
broadcast and all-gather for continual learning statistics aggregation.

Task-wise CC: We present additional results for task-wise CC, similar to figure 3 in the paper. Figure
3(a) demonstrates that task-wise CC ranges from 1.2x to 1.8x for Split miniImageNet. Figure 3(b) shows
task-wise CC ranging from 1.2x to 4.45x for Split CIFAR-100.

Training Loss vs Epochs with and without compression: We present some results to emphasize the
lossless nature of our proposed communication compression scheme. Figure 7 shows training loss after each
epoch for a particular agent for task 2 and 9 in Split CIFAR-100 sequence with and without compression.
The convergence rate of the training loss is not affected by applying the proposed compression scheme.
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Table 11: Impact of all-gather and broadcast technique for continual learning over 8 agent directed ring.

Dataset Setup ACC BWT
D-SI (broadcast) 27.2 -14.14
D-SI (all-gather) 39.36 -1.98

D-EWC (broadcast) 46.66 -0.06
D-EWC (all-gather) 50.46 0.42
CoDeC(broadcast) 53.13 -1.00
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Figure 6: Task-wise CC for (a) Split MiniImageNet and (b) Split CIFAR-100 over a directed ring topology.
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Figure 7: Training loss vs epochs for (a) task 2 and (b) task 9 in Split CIFAR-100 sequence with CoDeC(f)
and CoDeC using AlexNet over a directed ring with 8 agents

CoDeC vs SKILL: Each agent in SKILL (Ge et al., 2023) uses a common pre-trained frozen backbone
built-in at initialization so that only the last layer (or head) and a unique set of bias parameters are learned
for each task. After training, these bias parameters and task-specific heads are shared among agents via a
fully connected graph. However, each SKILL agent is independently learning a different task at a given time,
lacking the concept of collaborative learning as demonstrated in CoDeC. The data for each task is spatially
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distributed in our setup, while SKILL assumes access to the entire data available in a centralized manner at
a single agent. Hence, in CoDeC it becomes essential to communicate with peers during training. Moreover,
we do not assume access to a pre-trained model at initialization, and update the weights for each task while
mitigating forgetting. Unlike SKILL where the number of learned parameters increases with each task, we
update the same set of weights for the entire task sequence. Hence, SKILL and CoDeC target two different
scenarios even though both utilize decentralized agents while continually learning a task sequence.

To compare SKILL with CoDeC, we employ SKILL in a scenario where each task’s data is distributed across
the agents. Similar to CoDeC, SKILL agents aim to learn a global generalized model with spatially and
temporally distributed data. For iso-comparison, both SKILL and CoDeC use ResNet-18 pre-trained on
ImageNet and perfect task oracle at test time. In SKILL, the agents do not communicate with their peers
during training and share the bias parameters and heads only at the end of the training. Meanwhile, the
agents in CoDeC communicate with their peers during training by utilizing the gossip averaging mechanism.
Results in Table 12 show the importance of collaborative learning in scenarios where each task’s data is spa-
tially distributed. CoDeC achieves about 5.6% better accuracy than SKILL by the virtue of communicating
while learning each task. As the number of agents increases from 8 to 16, SKILL performs much worse than
CoDeC because the number of available training samples at each agent also reduces.

Table 12: Comparison between SKILL and CoDeC for Split miniImageNet over ResNet-18 using directed
ring topology

Agents Setup ACC (%) BWT (%)
8 SKILL 79.21 0.00

CoDeC 83.81 1.15
16 SKILL 74.33 0.00

CoDeC 80.94 0.77

Table 13: Results for non-IID data with 0.5 skew for Split CIFAR-100 and Split miniImageNet over a directed
ring topology with 8 agents. D-STL is not a continual learning baseline and serves as an upper bound on
performance.

Dataset Setup ACC BWT CC

Split CIFAR-100
D-STL 62.40 ± 0.50 - -
D-SI 38.81 ± 0.72 -0.79 ± 0.54 1x

D-EWC 49.20 ± 0.35 -0.13 ± 0.21 1x
CoDeC(f) 50.71 ± 0.47 -0.46 ± 0.23 1x
CoDeC 50.60 ± 0.38 -0.41 ± 0.39 2.53x

Split miniImageNet
D-STL 60.89 ± 0.61 - -
D-SI 45.64 ± 0.51 -1.97 ± 0.32 1x

D-EWC 46.57 ± 2.07 -1.15 ± 0.64 1x
CoDeC(f) 51.28 ± 0.23 -0.08 ± 0.76 1x
CoDeC 50.93 ± 0.16 -0.88 ± 0.50 1.32x

Results on Non-IID Data: We conducted experiments with 50% label-wise non-IIDness across the agents
(i.e. skew=0.5) (Hsieh et al., 2019). CoDeC utilizes a variant of DPSGD (Lian et al., 2017) as the base
decentralized algorithm for IID data across the agents. However, DPSGD has been shown to perform poorly
with non-IID data. Techniques like Quasi-Global Momentum (QGM) (Lin et al., 2021) and Neighborhood
Gradient Mean (NGM) (Aketi et al., 2023) were introduced to improve decentralized learning performance
in the presence of data heterogeneity across the agents.
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For our experiments, we employ QGM for learning with non-IID data as it improves performance without
introducing extra communication overhead. Note that NGM performs better than QGM but at the cost of
2× communication.

Our results in Table 13 show that CoDeC outperforms D-EWC and D-SI by 1.5% and 11.8% respectively
for Split CIFAR-100. CoDeC achieves minimal backward transfer while achieving a CC of 2.53x. For Split
miniImageNet, CoDeC achieves about 4-5% better accuracy than D-EWC and D-SI while incurring low
BWT and CC of 1.32x.

Runtime Comparison: We present relative training runtimes in Table 14. For Split CIFAR-100 and Split
miniImageNet, CoDeC(f), D-EWC and D-SI have similar runtimes. For 5-Datasets, D-EWC and D-SI have
about 30% higher runtime than CoDeC(f).

CoDeC generally has the highest time due to the two extra matrix multiplications required for communication
compression. Specifically, line 10 in algorithm 1 encodes model updates into coefficients which are commu-
nicated to the neighbors by each agent. Line 11 in algorithm 1 decodes the received coefficients back into
model updates. Therefore, CoDeC achieves the highest accuracy and lossless communication compression
at the cost of increased runtime.

Table 14: Training time (relative) for Split CIFAR-100, Split miniImageNet and 5-Datasets over a directed
ring topology with 8 agents

Dataset Setup Training time

Split CIFAR-100
CoDeC(f) 1
CoDeC 1.27
D-EWC 1.09

D-SI 0.98

Split miniImageNet
CoDeC(f) 1
CoDeC 1.68
D-EWC 1

D-SI 0.92

5-Datasets
CoDeC(f) 1
CoDeC 1.61
D-EWC 1.30

D-SI 1.31
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Algorithm 2 Decentralized Elastic Weight Con-
solidation (D-EWC )
Input: Each agent i ∈ [1, N ] initializes model
parameters xi

0, step size η, mixing matrix
W = [wij ]i,j∈[1,N ], x̂i

(0) = 0, Fl = [ ] for all
layers l = 1, 2, ...L, Fisher Matrix F i = {(Fl)L

l=1},
old model parameters xi

(0) = 0, N (i): neighbors
of agent i (including itself), T : total tasks, K:
number of training iterations

Each agent simultaneously implements the TRAIN(
) procedure
1. procedure TRAIN( )
2. for τ = 1, . . . , T do
3. for k = 0, 1, . . . , K − 1 do
4. dτ,i ∼ Dτ,i

5. f̃τ,i(dτ,i; xi
k) = fτ,i(dτ,i; xi

k) +∑L
l=0

λ
2 Fl(xi,l

k − xi,l
τ−1)

6. gi
k = ∇f̃τ,i(dτ,i; xi

k)
7. xi

(k+ 1
2 ) = xi

k − ηgi
k

8. xi
k+1 = xi

(k+ 1
2 ) +

∑
j∈N (i) wij(x̂j

k − xi
k)

9. qi
k = xi

k+1 − xi
k

10. for each j ∈ N (i) do
11. Send qi

k and receive qj
k

12. x̂j
(k+1) = qj

k + x̂j
k

13. end
14. end
15. Save xi

τ

16. # EWC Update
17. Update Fl for each layer l
18. Update F i = {(Fl)L

l=1}
19. p = random(1, 2, ...N)
20. if i == p do
21. Gather F i from all agents
22. F = avg(F1, F2, ....FN )
23. Send F to all agents
24. end
25. end
26. return

Algorithm 3 Decentralized Synaptic Intelligence
(D-SI )
Input: Each agent i ∈ [1, N ] initializes model
parameters xi

0, step size η, mixing matrix
W = [wij ]i,j∈[1,N ], x̂i

(0) = 0, Ωl = [ ] for all layers
l = 1, 2, ...L, importance measure Ωi = {(Ωl)L

l=1},
running importance estimate ω= [ ], damping
parameter ξ = 10−3, old model parameters
xi

(0) = 0, N (i): neighbors of agent i (including
itself), T : total tasks, K: number of training
iterations

Each agent simultaneously implements the TRAIN(
) procedure
1. procedure TRAIN( )
2. for τ = 1, . . . , T do
3. for k = 0, 1, . . . , K − 1 do
4. dτ,i ∼ Dτ,i

5. f̃τ,i(dτ,i; xi
k) = fτ,i(dτ,i; xi

k) +
c
∑L

l=0 Ωl(xi,l
k − xi,l

τ−1)2

6. gi
k = ∇f̃τ,i(dτ,i; xi

k)
7. ωl = ωl − gi

k ∗ (xi,l
k − xi,l

k−1)
8. xi

(k+ 1
2 ) = xi

k − ηgi
k

9. xi
k+1 = xi

(k+ 1
2 ) +

∑
j∈N (i) wij(x̂j

k − xi
k)

10. qi
k = xi

k+1 − xi
k

11. for each j ∈ N (i) do
12. Send qi

k and receive qj
k

13. x̂j
(k+1) = qj

k + x̂j
k

14. end
15. end
16. Save xi

τ

17. # SI Update
18. Ωl = Ωl + ωl

(xi,l
τ −xi,l

τ−1)2+ξ
(for each layer

l)
19. Update Ωi = {(Ωl)L

l=1}
20. p = random(1, 2, ...N)
21. if i == p do
22. Gather Ωi from all agents
23. Ω = avg(Ω1, Ω2, ....ΩN )
24. Send Ω to all agents
25. end
26. end
27. return
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