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Abstract

By sharing information across multiple agents, collaborative perception helps
autonomous vehicles mitigate occlusions and improve overall perception accuracy.
While most previous work focus on vehicle-to-vehicle and vehicle-to-infrastructure
collaboration, with limited attention to aerial perspectives provided by UAVs,
which uniquely offer dynamic, top-down views to alleviate occlusions and monitor
large-scale interactive environments. A major reason for this is the lack of high-
quality datasets for aerial-ground collaborative scenarios. To bridge this gap,
we present AGC-Drive, the first large-scale real-world dataset for Aerial-Ground
Cooperative 3D perception. The data collection platform consists of two vehicles,
each equipped with five cameras and one LiDAR sensor, and one UAV carrying a
forward-facing camera and a LiDAR sensor, enabling comprehensive multi-view
and multi-agent perception. Consisting of approximately 80K LiDAR frames
and 360K images, the dataset covers 14 diverse real-world driving scenarios,
including urban roundabouts, highway tunnels, and on/off ramps. Notably, 17%
of the data comprises dynamic interaction events, including vehicle cut-ins, cut-
outs, and frequent lane changes. AGC-Drive contains 350 scenes, each with
approximately 100 frames and fully annotated 3D bounding boxes covering 13
object categories. We provide benchmarks for two 3D perception tasks: vehicle-
to-vehicle collaborative perception and vehicle-to-UAV collaborative perception.
Additionally, we release an open-source toolkit, including spatiotemporal alignment
verification tools, multi-agent visualization systems, and collaborative annotation
utilities. The dataset and code are available at https://github.com/PercepX/AGC+
Drive.

1 Introduction

Perception serves as a critical foundation for decision-making and safety in autonomous driving and
multi-agent systems, especially in dynamic scenes with occlusions, long-range detection, and rapid
response needs. To enhance perception completeness, existing cooperative perception systems mainly
focus on Vehicle-to-Vehicle (V2V) [1-3][4, 15]] and Vehicle-to-Infrastructure (V2I) [3H5)[6H8[9H11]]
frameworks. V2V cooperative perception mitigates local occlusion issues by enabling information
exchange among nearby vehicles. However, as all sensors remain at ground level, V2V systems
struggle with dense traffic, occlusions, complex intersections, and limited perception range [6} [12]].
Their performance is highly dependent on vehicle distribution and communication reliability. V2I
cooperative perception utilizes roadside units (RSUs) to enhance sensing capabilities at critical
points such as intersections and road segments [6} [8, 9]. Nevertheless, V2I systems face inherent
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limitations in deployment cost, fixed coverage, and adaptability to dynamic environments, making
them unsuitable for large-scale open roads or rapidly evolving traffic scenarios.

Unlike V2V and V2I systems, Aerial-Ground Cooperative (AGC) Perception introduces overhead
Unmanned Aerial Vehicle (UAV)-based sensing, offering dynamic, adaptive, and high-altitude
global perspectives to complement ground-based systems. UAVs can flexibly cover target areas,
dynamically alleviate perception blind spots, enhance long-range target observation, and improve
multi-object occlusion reasoning in complex traffic environments. This makes AGC perception
a valuable complement to existing V2X systems, particularly in scenarios involving open roads,
dynamic intersections, dense traffic, and emergency scenarios.
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Figure 1: Collaborative data collection with two vehicles and a UAV. Each vehicle is equipped with
one LiDAR and five cameras. The UAV carries a LIDAR and a camera system. The top-right inset
shows the custom UAV sensor setup, and the bottom-right inset illustrates the vehicle’s sensor layout.

Although several datasets [[13H16||12] have introduced UAVs into collaborative perception, they either
focus on UAV-to-UAYV cooperation [13}[14] or are collected in simulated environments [[13H15] [12].
The only available real-world dataset [[16] provides 2D annotations, but it is not collected in driving
scenarios. Due to hardware limitations, none of these existing datasets include LiDAR-equipped
UAVs. To bridge this gap, we introduce AGC-Drive, a dataset collected by a system consisting of two
vehicles and one UAV (Figure|[T) over approximately three months. From over 80 hours of collected
data, we selected 350 sequences covering 14 scene categories. Each sequence contains 100 sets
of data sampled at 10 Hz, with each set including 14 LiDAR frames and image frames, resulting
in over 720K annotated 3D bounding boxes. Notably, we carefully designed the data collection
routes to ensure a wide range of road conditions and vehicle interaction scenarios, covering high-risk
environments such as urban roundabouts, highway tunnels, on/off ramps, and rural construction
zones. Approximately 17% of the data involves dynamic events like vehicle cut-ins, cut-outs, and
dense lane changes.

To support broad research in collaborative perception, we organized our dataset into two dedicated
sub-collections: AGC-V2V for vehicle-to-vehicle collaboration, and AGC-VUC for vehicle-to-UAV
collaboration. Additionally, to address the lack of UAV-based 3D object detection datasets using
airborne LiDAR, we plan to introduce AGC-U3D, a carefully curated subset for UAV 3D object
detection tasks.

Our main contributions are summarized as follows:



* We present AGC-Dirive, the first real-world vehicle-vehicle-UAV collaborative perception
dataset for driving scenarios, featuring time-synchronized multi-agent data collection and
fused 360° ground and aerial views. It includes two sub-datasets: AGC-V2V and AGC-VUC.

* We provide over 720K annotated 3D bounding boxes for 13 categories, covering 80K LiDAR
frames and 360K multi-view images, collected across 14 types of road environments and
dynamic interaction scenarios such as lane changes and overtaking.

* We report benchmarks for two 3D perception tasks and release an open-source toolkit for
spatiotemporal alignment, multi-agent visualization, and collaborative annotation.

2 Related work

With the rapid development of collaborative perception, an increasing number of high-quality datasets
have been released. OPV2V [l1]] was the first collaborative perception dataset, featuring vehicle-to-
vehicle (V2V) synthetic data. V2X-Sim [3] and V2XSet [4]] extended this to vehicle-to-infrastructure
(V2I) and V2V scenarios, but remained in simulated environments. DAIR-V2X [6] introduced the
first large-scale, multi-modal, multi-view real-world V2I collaborative perception dataset. V2X-Seq
[7]] further contributed the first large-scale sequential collaborative dataset. Subsequently, five large-
scale real-world datasets — V2V4Real [2l], RCooper [8]], TUMTraf-V2X [9], HoloVIC [10], and
V2X-Real [5] have advanced research in vehicle-centric collaborative perception. Most recently,
V2X-R [[11]] became the first dataset to incorporate 4D radar into collaborative perception.

Meanwhile, recent releases such as CoPerception-UAV [13] and UAV3D [14] reflect growing interest
in incorporating UAVs into collaborative perception. However, both focus solely on UAV-to-UAV
collaboration in simulated environments. More recently, V2U-COQO [17] and Griffin [12] proposed
aerial-ground collaborative datasets, but they are also synthetic and lack UAV LiDAR data due to
hardware limitations. Although CoPeD [16] is a real-world aerial-ground collaborative dataset, it only
provides monocular camera data with simple 2D annotations automatically generated by baseline
models.

In contrast, AGC-Drive is a large-scale real-world dataset designed to support collaborative perception
between aerial UAVs and ground vehicles. The UAV platforms are custom-designed and carefully
equipped with LiDAR sensors. Table|l|summarizes the comparison with related datasets. It is worth
noting that, similar to nuScenes [18]], We annotate occlusion levels for each object, a detail often
neglected in prior collaborative perception datasets. Moreover, our dataset covers 14 diverse scene
categories under varying lighting conditions, with a day-to-night ratio of 8:2, significantly enhancing
data diversity and robustness for perception tasks.

Table 1: Comparison of representative single-UAV and cooperative perception datasets. V/Veh =
Vehicle, I/Inf = Infrastructure, U = UAV. "V2V&I" = V2V+V2I, "V2V&U" = V2V+V2U.C,L,R =
Camera, Lidar, Radar. "MvCamera" = Multi-view Camera, "UAV-L" = UAV with LiDAR.

scenario

Mode Dataset Year  Source Agent Sensor types 3D boxes Classes MvCams Driving UAV-L
vav OPV2V [1I 2022 Sim Veh C&L 6 230K 1 v v x
V2V4Real [2] 2023  Real Veh C&L - 240K 5 v v x
DAIR-V2X [6] 2022  Real Veh & Inf C&L - 464K 10 X v X
V2X-Seq [7 2023  Real Veh & Inf C&L - - 9 x v x
VoI Rcooper [§] 2024  Real Veh & Inf C&L - - 10 X v X
TUMTraf-V2X [9 2024  Real Veh & Inf C&L - 29.3K 8 X v X
HoloVIC [10] 2024  Real Veh & Inf C&L - 11.4M 3 X v x
V2X-R [11 2025  Real Veh& Inf C&L&R - 5 X ' X
V2X-Sim [3] 2022 Sim Veh & Inf C&L - 26.6K 1 v v x
V2V&I  V2XSet [4] 2022 Sim Veh & Inf C&L 5 230K 1 v v X
V2X-Real [5] 2024  Real Veh & Inf C&L - 1.2M 10 v v X
UAV VisDrone [19 2018  Real UAV C - 10.2K 10 X X X
UAVDT [20] 2018  Real UAV C - 841.5K 3 v v x
U2U CoPerception-UAV [13] 2023 Sim UAV C - 1.6eM 21 v v X
UAV3D [14] 2023 Sim UAV C - 3.3M 17 v v x
V2U-COO [17 2024  Sim Veh & UAV C - - 4 X v X
V2u CoPeD [16] 2024  Real  Veh & UAV C&L 2 x 1 X X X
Griffin [12] 2025 Sim Veh & UAV C&L 4 - 3 v v X
V2V&U  AGC-Drive(Ours) 2025 Real Veh&UAV C&L&R 14 720K 13 v v v




3 The AGC-Drive Dataset

To bridge collaborative vehicle-to-vehicle and aerial-ground perception research and to establish a
comprehensive 3D traffic perception framework, we present AGC-Drive — a large-scale, multimodal,
multi-view, and multi-scenario dataset featuring well-annotated 3D bounding boxes for innovative
research on UAV-vehicle collaboration. In this section, we describe the data acquisition devices,
coordinate system design, multi-sensor calibration, scene selection strategies, detailed data collection,
annotation processes and pose refinement, as well as privacy protection considerations.

3.1 Setup

Sensors. The data acquisition system consists of two instrumented vehicles and one UAV: a) Vehicle-
mounted sensors. Each vehicle is equipped with a 128-beam LiDAR and five high-resolution cameras.
Notably, the front-facing cameras are configured with two different focal lengths to capture both
detailed road surface information and broader traffic scene context; b) UAV-mounted sensors. The
UAV platform is based on a modified DJI M350 RTK, equipped with a 32-beam LiDAR and a
high-resolution downward-facing camera. The sensor configuration is illustrated in Fig[l] with
detailed specifications summarized in Table[2]

Table 2: Key Sensor Specifications in AGC-Drive.

Agent Sensor Sensor Model Detail

128 beams, 10Hz capture frequency, 360°horizontal FOV,
-25°to +15°vertical FOV, < 200m range
front-wide: SG8S-AR0820C-5300-G2A-Hxxx, 8MP, HFOV30°,

LiDAR RoboSense Ruby Plus(*1)

2*Vehicle Camera Sensing Cmacra(*5) front-broad: SG8S-AR0820C-5300-G2A-Hxxx, SMP, HFOV120°,
sing left&right: SG2-AR0231C-0202-GMSL-Hxxx, 2MP, HFOV100°,
back: SG2-AR0233C-5200-G2A-Hxxx, 2mp, HFOV121°
GPS&IMU  Intelligent Car Built-in GPS System(*1) ~ 100HZ
. . * 32 beams, 10Hz capture frequency, 360°horizontal FOV,
UAV LiDAR RoboSense Helios32(*1) -55°to +15°vertical FOV,< 150m range
Camera USB Camera(*1) front: RER-USBGS1200P02, 2MP, HFOV120°

GPS&IMU  DJI M350 RTK Built-in GPS System(*1)  GPS + GLONASS + BeiDou + Galileo, I00HZ

Coordinate System. The AGC-Drive dataset defines four types of coordinate systems: LiDAR
coordinate system, camera coordinate system, image coordinate system, and world coordinate system.
Each agent is equipped with its own LiDAR and camera coordinate systems. The camera coordinate
system is aligned to the corresponding LiDAR frame via a camera-to-LiDAR calibration process.
Then, the pose information from each agent’s GPS/IMU is used as an initial transformation, and all
LiDAR coordinate systems are registered to a unified world coordinate system through point cloud
registration. The calibration results are illustrated in Fig. [T}

Calibration. To ensure accurate spatial alignment between the LiDAR point cloud and multiple
cameras, we perform extrinsic calibration for each camera with respect to the LiDAR sensor. First,
the intrinsic parameters of each camera are obtained using a standard checkerboard calibration. Then,
we collect synchronized images and LiDAR data of a calibration target visible in both modalities.
3D-2D correspondences are established by detecting feature points in the images and extracting the
corresponding points from the LiDAR point cloud. Finally, the extrinsic transformation matrices are
estimated using a Perspective-n-Point (PnP) algorithm [21], followed by visual verification through
point cloud projection onto the image plane.

Scenario Planning. To ensure the representativeness and utility of our dataset, we follow the Task-
driven Scenario Taxonomy [22] and Operational Design Domain (ODD) definitions [23]]. We also
reference popular autonomous driving datasets such as Waymo Open Dataset [24] and nuScenes
[L8]. Scenarios are designed based on common driving tasks including lane keeping, lane changing,
car-following, intersection crossing, roundabout navigation, construction detours, and ramp merging.
Combined with ODD, they are categorized into urban, highway, and rural environments, further
covering typical cases like straight roads, curves, intersections, construction zones, tunnels, and
frequent lane changes. In total, 14 representative driving scenarios are constructed (Fig. [2), providing
comprehensive coverage for both routine and high-risk conditions.
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Figure 2: Distribution of Driving Environment and Scenario Types.

3.2 Data Acquisition

Collection. We deployed two equipped vehicles and a UAV operated by professional pilots to collect
synchronized data. Each agent locally records data frames, with timestamps aligned to its GPS time,
achieving unified time sources across all agents. Data were collected along predefined routes over 2
months under varying day and night conditions, accumulating over 80 hours of driving logs. From
the raw data, we curated 350 representative segments (10s each) across 14 scenarios, resulting in 80K
LiDAR frames and 360K camera images with annotations. Keyframes were extracted at 10 Hz to
construct AGC-V2V, while segments involving UAV participation were used to create AGC-VUC for
vehicle-UAV collaborative perception tasks. Additionally, we plan to extracted UAV LiDAR data to
support UAV-based 3D perception research.

Annotation. We customized an annotation platform based on the open-source tool Xtremel [23]
to meet the specific needs of our dataset. A team of 100 annotators was recruited, with multiple
rounds of expert review to ensure annotation quality. On average, each frame underwent two rounds
of review and revision. Our dataset provides 3D annotations for 13 object categories, including
pedestrian, rider, motorcycle, bicycle, tricycle, car, truck, van, bus, road obstacles, traffic cones, and
traffic signs. Each object is labeled with a 9-DoF 3D bounding box, consisting of (X, y, z) for the box
center, (I, w, h) for size, and roll, pitch, yaw for orientation. Furthermore, each 3D bounding box is
projected onto the corresponding camera images to generate two types of 2D annotations: an §-vertex
2D polygon representing the projected 3D box corners, and a 4-vertex 2D rectangle corresponding
to the minimum enclosing rectangle of the projected box. Additionally, each object is assigned one
of three occlusion levels: visible (0-20%), partially occluded (20-50%), or heavily occluded (over
50%).

Relative Pose. In this work, we estimate the relative poses between three agents: two vehicles and a
UAV, using their respective GPS, IMU, and LiDAR data. Initially, GPS and IMU data provide the
initial pose estimates for each agent. These initial poses serve as the starting input for the Iterative
Closest Point (ICP) algorithm [26]). The ICP algorithm is then used to perform pairwise point cloud
registration, aligning the LiDAR point clouds of the vehicles and UAV. This process calculates the
relative poses between each pair of agents based on the aligned point clouds. After ICP registration,
the relative poses are refined and corrected to improve accuracy. Finally, the corrected poses are
transformed into the ego vehicle’s coordinate frame, ensuring consistent spatial alignment across
all agents. This method enables robust and accurate relative pose estimation, which is crucial for
multi-agent cooperative perception tasks.

Privacy Protection. Prior to public release, all sensitive information in the dataset was anonymized.
We removed all location metadata, including road names, map data, and GPS information, to comply
with legal and ethical regulations. In addition, a professional annotation tool was used to blur potential
privacy-related content, such as traffic signs, license plates, and human faces, to ensure protection of
personal privacy.
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Figure 3: (a) Residual heatmap of registration results (blue: high accuracy, red: low accuracy). (b)
Zoomed view of the dense object region in (a). (c) Scatter plot of average residuals for 4000 randomly
sampled points after registering both drone and vehicle point clouds to the ego vehicle.

4 Task and Benchmark

We benchmark AGC-Drive on collaborative 3D object detection tasks, including vehicle-to-vehicle
cooperation, vehicle-UAV cooperative(VUC) 3D object detection.

Dataset Format and Split. Our AGC-Drive dataset follows the OPV2V [1]] format, containing 14
road types with multiple scenes per type (distribution shown in Fig. [2). Each scene consists of 100
groups of synchronized multi-agent data, collected by 1 drone and 2 vehicles equipped with a total of
14 sensors. In total, we collect 350 scenes, with 320 for training, 30 for validation and testing.

Input and Ground Truth. For each agent, the input includes synchronized LiDAR point clouds
captured at 10 Hz. The shared data from neighboring vehicles are fused in the bird’s eye view (BEV)
space for cooperative perception. The ground truth consists of 9-DoF 3D bounding boxes annotated
for 13 categories (car, truck, pedestrian, cyclist, etc.) with additional occlusion status labels (visible,
partially occluded, heavily occluded) following the nuScenes convention [18].

Benchmark Frameworks. We benchmark six representative cooperative perception frameworks, all
of which adopt PointPillars as the detection backbone for a fair comparison:

* Late Fusion: Directly shares raw point cloud data among agents before feature extraction.
» Early Fusion: Independently detects objects and shares detection results among agents.

* V2VNet [1]]: A multi-agent cooperative detection framework using intermediate feature
fusion.

» Cobevt [28]: A cooperative BEV semantic segmentation framework based on sparse
transformers, employing a feature aggregation module (FAX) to effectively fuse multi-
view and multi-agent features.

* Where2comm [13]]: A communication-efficient cooperative perception framework that
guides agents to share only spatially sparse yet perception-critical information using a spatial
confidence map, achieving a balance between perception performance and communication
bandwidth.

e V2X-ViT [4]: A recent transformer-based cooperative perception framework leveraging
BEV feature fusion with attention mechanisms.

Experiments Details. For all tasks, the models are adapted to support the AGC-V2V and AGC-VUC
data format and sensor configurations. We adopt a unified BEV (Bird’s Eye View) representation.



The perception range is set to [—140.8 m, 140.8 m] along both the X and Y axes. All baseline models
were trained with a batch size of 4 for 60 epochs, with a per-GPU batch size of 1 on a computing
server equipped with 8 Nvidia L40 GPUs. We use the Adam optimizer with an initial learning rate of
0.001 and apply a cosine learning rate schedule. Each training run takes approximately 6 hours.

Following the evaluation protocols of nuScenes [18] and OPV2V [1]], we report standard metrics
including mAP@0.5 and mAP@0.7 for 3D object detection. Furthermore, to analyze the influence of
UAV participation, we define the metric Ayay as:
1
Avav = 5 [(mg3” =mg5") + (mg7” —mg7")],
which represents the average performance improvement achieved by incorporating aerial perception.

4.1 Benchmark for V2V 3D object detection

Problem Definition and AGC-V2V. The goal of this task is to perform cooperative 3D object detec-
tion by leveraging information from multiple connected vehicles to enhance perception performance,
especially in challenging scenarios such as long-range detection and occlusions. We construct the
AGC-V2V benchmark by selecting collaborative scenes from the AGC-Drive dataset where two
vehicles participate without UAV involvement. Each vehicle is equipped with a LiDAR sensor and
five cameras. A total of 350 scenes, comprising 70K frames, are included for this benchmark.

Quantitative Results. Table 3| presents the 3D object detection results on AGC-V2V. As expected,
early fusion achieves slightly better performance than late fusion, benefiting from access to fully
aggregated features. Among intermediate fusion methods, Cobevt and V2X-ViT outperform others,
indicating their stronger capability in feature aggregation. In contrast, V2VNet performs poorly at
higher IoU thresholds, suggesting sensitivity to feature misalignment. Overall, performance remains
moderate across all methods, likely due to challenges such as time delays and pose estimation errors
in cooperative perception. The late fusion baseline exhibits the lowest accuracy, reflecting error
accumulation during post-fusion processing.

Table 3: 3D Detection Performance (%) on AGC-V2V.

Co-Mode Model mAP@0.5 mAP@0.7
Late PointPillars[27]] 17.7 13.5
Early PointPillars[27]] 19.6 14.1
V2VNet [1] 18.4 5.7
Intermediate Cobevt [28]] 46.1 41.7
Where2comm [[13]] 39.3 31.5
V2X-ViT 4] 44.1 36.6

Qualitative results. Figure | presents qualitative 3D object detection results of four intermediate
collaborative baselines under several challenging scenarios, including highway tunnel occlusions,
intersection occlusions with long-range targets, and complex road occlusions. We see that V2V
cooperative perception effectively alleviates the challenges posed by long-range perception and
occlusions. However, due to unaddressed pose errors and time delays, the localization accuracy of
the predicted results is lower than that of single-vehicle detection, leading to a decline in overall
performance metrics.

4.2 Benchmark for VUC 3D object detection

Problem Definition and AGC-VUC. This task aims to improve 3D object detection by leveraging
the complementary perception capabilities of ground vehicles and UAVs. Unlike traditional V2V
cooperation, the UAV provides a global top-down view that enhances occlusion handling and long-
range detection. To support this, we construct the AGC-VUC benchmark by selecting cooperative
scenarios in AGC-Drive that involve two vehicles and one UAV. Each scenario lasts approximately
10 seconds, sampled at 10Hz, resulting in 100 cooperative sequences.

Quantitative Results. Table ] presents the 3D detection performance on AGC-VUC after incorporat-
ing the UAV into the cooperative system. A new column, denoted as Ay ay, is added to quantify the
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Figure 4: Point cloud visualization of V2V cooperative object detection results on the AGC-V2V
dataset. Green bounding boxes denote predicted objects, and red bounding boxes indicate ground
truth annotations.

impact of the UAV’s participation on the perception performance. It can be observed that introduc-
ing the UAV improves the performance of all cooperative frameworks across all metrics. Notably,
V2VNet achieves the largest improvement, with a Ayay of +11.5. This is because V2VNet has
the lowest baseline performance without the UAV, leaving more room for the UAV to enhance its
perception capabilities.

Table 4: 3D Detection Performance (%) on AGC-VUC.

Vav V2U
Co-Mode  Model mAP@0.5 mAP@0.7 mAP@05 mAP@0.7 Ayay
V2VNet 30.5 14.6 40.1 279 +115
Intermediae Cobevt (28] 023 36.9 42.9 375 +0.6
Where2comm 42.6 30.7 44.2 32.0 +1.5
V2X-ViT 38.3 28.7 42.6 33.9 +4.8

Qualitative results. Figure [5] presents qualitative 3D object detection results of four intermediate
collaborative baselines under several challenging scenarios. By comparing the visualization results
with V2V baselines, we observe that integrating UAV perspective data effectively improves the ego
vehicle’s perception performance, particularly for distant and occluded objects in a larger area of the
same scene.

5 Limitations

Since this is the first attempt to mount a vehicle-mounted LiDAR sensor on a UAV for real-time
object detection data collection, we carefully considered factors such as the UAV’s flight altitude, the
LiDAR’s weight, and the blind zone beneath the UAV caused by the LiDAR’s vertical field of view
during the system design. However, there were still some aspects that were insufficiently addressed.
In our experimental validation, although the point cloud data collected from the UAV perspective
contributed to a more comprehensive perception of large-scale scenes, its relatively sparse nature
limited its ability to provide fine-grained perception assistance for collaborative tasks. We have
recognized this issue and plan to explore potential upgrades or replacements for the UAV-mounted
LiDAR before conducting large-scale dataset collection in the future. Our goal is for the UAV’s point
clouds not only to enhance large-scale scene awareness but also to offer more detailed, object-level
perception information to support ground vehicles.
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Figure 5: Point cloud visualization of VUC object detection results on the AGC-VUC dataset. Green
bounding boxes denote predicted objects, and red bounding boxes indicate ground truth annotations.

6 Conclusion

We present AGC-Drive, a large-scale, multimodal dataset for collaborative perception between aerial
UAVs and ground vehicles, collected in real-world environments. Compared to existing aerial-
ground collaborative perception datasets, AGC-Drive is built upon real-world data with annotated
3D bounding boxes. Notably, it includes point cloud data collected from the UAV perspective,
enabling collaborative perception at scene level. We further adapt several representative collaborative
perception frameworks to our dataset and provide comprehensive benchmark results. It is worth
noting that we retain data containing time delays and pose errors caused by point cloud registration,
in order to better reflect the challenges encountered in real-world scenarios. All associated resources,
including benchmark code, annotation tools, pose correction toolkits, and the complete AGC-Drive
dataset, are publicly released. In addition, our raw data includes synchronized multi-modal signals
such as 4D radar, in-cabin steering wheel status, brake signals, and driver-facing cameras. We hope
this work will benefit the broader community working on aerial-ground collaborative perception.
Future work includes refining the UAV LiDAR dataset, collecting larger-scale datasets with dense
multi-UAV point cloud collaboration scenarios, expanding data collection under various weather
conditions, and annotating for additional vision-action tasks. However, misuse of the dataset or
models trained on it could lead to overreliance on imperfect perception systems in safety-critical
applications, especially given the inclusion of time delays and pose errors that reflect real-world
challenges. This could potentially result in incorrect decisions in autonomous driving scenarios. We
emphasize the importance of responsible use, adherence to ethical guidelines, and the implementation
of safeguards to mitigate such risks.
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* The claims made should match theoretical and experimental results, and reflect how
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2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
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Justification: The paper does not contain theoretical results.
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Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
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perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide all experimental details including collection equipment, data
preprocessing steps, model backbone, training details, and evaluation metrics in Section 3]
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The answer NA means that the paper does not include experiments.
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the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide open access to the code and dataset at https://github.com/
PercepX/AGC-Drive, All necessary details are provided in Section [3|and Section [4]of the
main paper.
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* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
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* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide detailed descriptions of data splits, hyperparameters, optimizer
types, and training procedures in Section 4}
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» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]
Justification: Our experiments have followed the existing related works to report the results.
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* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

14


https://github.com/PercepX/AGC-Drive
https://github.com/PercepX/AGC-Drive
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.
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* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Details on the computing resources including GPU models, memory, and
training times are provided in Experiments Details of Section 4]

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: The research presented in this paper conforms to the NeurIPS Code of Ethics
in all respects. Data anonymization and privacy protection measures for the released dataset
are detailed in Protection of Section[3l

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper discusses both the potential positive and negative societal impacts
of this work in Section
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* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: The paper describes the safeguards in place for responsible data release in
Section 3] including data anonymization and usage restrictions for academic research only.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The paper uses publicly available baseline implementations, properly cited in
Section[3] Sectiond]and listed in References [27, 11,28 [13, 4, 23] and so on. All licenses
and terms of use have been reviewed and respected.

Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.
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 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The new dataset introduced in this paper is well documented in Section [3}
including details of data structure, collection process, and so on. Additional documentation
will be provided alongside the released dataset.

Guidelines:

» The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This work does not involve crowdsourcing experiments or research with human
subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
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Justification: This work does not involve study participants or human subjects, thus there
are no associated participant risks or IRB approvals.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: LLMs are not used as part of the core methods in this research.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Technical Appendices and Supplementary Material

A.1 Coordinate Systems and Transformation

To achieve spatial synchronization between different sensors, vehicle-vehicle-UAV collaboration
requires using sensor parameter information to perform coordinate system transformations. The
relationships between the coordinate systems are illustrated in Fig. S[6]

Other agents® Camera Other agents’ Camera Other agents® | Ego vehicle GPS/IMU global pose

pixel coordinates intrinsics cofj‘gli;l::es extrinsics | lidar coordinates | Transformation matrix to the
ego vehicle estimated using ICP
Relative pose ICP World
from GPS/IMU coordinates

Ego vehicle’s Camera Ego vehicle’s Camera Ego vehicle’s | gg vehicle GPS/IMU global pose I

pixel coordinates | intrinsics camera extrinsics camera
coordinates coordinates
3D object

annotation

Figure 6: Relationship between coordinate systems.

Pixel Coordinates. The pixel coordinate system refers to a two-dimensional coordinate system
defined on the image plane, typically represented as (u, v), with units in pixels. In this system, the
origin is located at the top-left corner of the image, the u-axis points to the right along the horizontal
direction, and the v-axis points downward along the vertical direction. This coordinate system is used
to describe the position of points on the two-dimensional image captured by the camera.

A 3D point in the camera coordinate system, denoted as (x, y., z¢), can be projected onto the pixel
coordinate system through the camera’s intrinsic matrix. The transformation process can be expressed
as:

u f: 0 ¢ %
vl =10 fy, ¢ Z—: )]
1 0O 0 1 1

where f, and f, represent the focal lengths along the image’s « and y axes (in pixel units), and
(¢z, ¢y) denote the principal point (the intersection of the optical axis with the image plane, in pixel
coordinates).

Camera Coordinate System and LiDAR-to-Camera Calibration. The camera coordinate system
is defined as a three-dimensional right-handed Cartesian coordinate system, with its origin located at
the optical center of the camera. In this system, the z-axis points to the right along the image plane,
the y-axis points downward along the image plane, and the z-axis extends forward along the optical
axis of the camera.

To determine the spatial relationship between the LiDAR and each camera, we employed a point
correspondence-based calibration procedure [29,130]. Specifically, for each individual camera view,
several corresponding feature points were manually selected in both the image and the LiDAR point
cloud. Based on these correspondences, an initial extrinsic transformation matrix from the camera to
the LiDAR was estimated using a least-squares fitting approach.

To improve calibration accuracy, the initial matrix was further refined through iterative manual
adjustment and validation by visually checking the alignment of projected LiDAR points on the
image plane. In order to ensure long-term calibration reliability, considering possible sensor shifts
and mechanical vibrations, this calibration procedure was performed once every four hours during
continuous data collection.
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The final extrinsic parameters for each camera were stored as a 4 x 4 homogeneous transforma-
tion matrix, representing the coordinate transformation from the LiDAR coordinate system to the
corresponding camera coordinate system, as expressed by:

X Xy

Ye| _ . Ui

2| = TLipAR2Cam o )
1 1

where TLipar2cam denotes the extrinsic matrix obtained from the calibration process, and (x;, y;, z;)
and (x., y., z.) are the point coordinates in the LIDAR and camera coordinate systems, respectively.

A visualization of the LiDAR-to-camera calibration results for all recording platforms is provided in
Fig. 7|58 O] The visualizations show the LiDAR point clouds projected onto the corresponding
camera images using the estimated extrinsic parameters. Our dataset includes two ground vehicles,
each equipped with five cameras providing full 360° coverage, and a UAV equipped with a single
front-facing camera. The calibration results for each vehicle and the UAV are displayed separately,
demonstrating the alignment quality across all viewpoints. The consistency between the projected
LiDAR points and the visible object boundaries in the images effectively verifies the accuracy and
robustness of our calibration process.

Figure 7: Visualization of the LIDAR-to-camera calibration for Ground Vehicle A equipped with five
cameras covering 360°. Projected LiDAR points align well with image features across all camera
views.

LiDAR Coordinate System and World Coordinate System. The LiDAR coordinate system for
each platform is defined relative to the sensor’s installation frame on that platform. We adopt a right-
handed coordinate system, where the geometric center of the LiDAR sensor is set as the origin. The
x-axis points forward, the y-axis points to the left, and the z-axis points upward. The world coordinate
system is established as a global East-North-Up (ENU) frame derived from GPS measurements,
which provides a consistent geodetic reference for all platforms.

Point clouds collected from each platform are initially represented in their respective LiDAR co-
ordinate systems. Using GPS and IMU data, the pose of each platform is obtained relative to the
global ENU world coordinate system. In our implementation, we approximate the LiDAR-to-world
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Figure 8: Visualization of the LiDAR-to-camera calibration for Ground Vehicle B equipped with five
cameras covering 360°. Projected LiDAR points align well with image features across all camera
views.

(a) Image (b) Projected points (¢) Point cloud

Figure 9: Multi-modal data alignment from a UAV perspective. (a) Aerial image captured by the UAV-
mounted camera. (b) LiDAR point cloud projected onto the image plane for visualizing alignment
accuracy. (c¢) Top-down view of the LiDAR point cloud acquired from the UAV.

transformation using the GPS/IMU-derived vehicle pose, assuming negligible displacement between
the LiDAR sensor and the localization reference point.

The transformation of a point pjig,r in the LiIDAR coordinate system to the world coordinate system
is performed as:
Pw ~ vaehlcle ]31 (3)

where TYhicle ¢ SF(3) is the vehicle pose in the world coordinate frame obtained from GPS/IMU
localization.

To compensate for residual misalignments caused by the approximation, an Iterative Closest Point
(ICP) [26] algorithm is applied to refine the registration of point clouds from different platforms
relative to the ego vehicle’s LiDAR frame before transforming them to the world coordinate system.
The final transformation for a point cloud from another platform is given by:

P. =TT, P 4)

ego
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where Tigo is the ICP-refined relative pose between platform 7 and the ego vehicle.

A.2 Multi-agent Time Synchronization

Time Source Synchronization. In our multi-agent system, all platforms achieve unified time source
synchronization through GPS-based timing signals. Each platform’s onboard clock is disciplined
by the GPS receiver, providing a highly accurate and stable global time reference. This approach
effectively eliminates clock drift and offset among different agents, ensuring that all sensors across
vehicles and the UAV are synchronized to the same absolute time base. As a result, temporal
consistency is maintained across heterogeneous sensors and platforms, which is critical for tasks such
as sensor fusion, data alignment, and multi-agent cooperative perception.

Timestamp Synchronization. Although all platforms in our system share a common GPS-based time
source, the sensors operate at different sampling frequencies, and their measurements are not neces-
sarily captured at exactly the same timestamps. To address this, we employ the message_filters
package in ROS to perform precise timestamp synchronization. This framework matches sensor
messages based on their timestamps by finding the temporally nearest frames across heterogeneous
data streams. In doing so, it compensates for both acquisition frequency differences and minor delays,
ensuring accurate temporal alignment for multi-sensor fusion and multi-agent cooperative perception.

1=0.1s T1 T T3
(10Hz) .  pe=—-- e e I .

Sensor 1 —
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1

Figure 10: At 10 Hz, timestamp synchronization is performed for sensor data with different frequen-
cies. The nearest frame within the red dashed box is regarded as the data corresponding to the same
timestamp within this sampling period.

The combination of GPS-based time source synchronization and message-level timestamp syn-
chronization enables reliable multi-sensor fusion and cooperative perception across heterogeneous
platforms.

A.3 AGC-Drive Dataset Statistics

3D Bounding Box Category Distribution. To provide a comprehensive overview of the dataset, we
present the number of annotated 3D bounding boxes for each object category. The dataset defines
a total of 13 categories, which we group into two main groups: Vehicle and Other. The Vehicle
group includes four subcategories: Car, Bus, Truck, and Van, while the Other group covers nine
subcategories: Person, Bicycle, Tricycle, Motorcycle, Rider, Traffic Sign, Barrier, Cone, and Others.

The detailed number of 3D bounding boxes for each subcategory is illustrated in Fig. STI] As shown
in the figure, Car is the most frequently annotated category with over 650K instances, followed
by Sign, Truck, and Rider. This distribution reflects the typical composition of cooperative driving
environments, which feature a high density of vehicles and static traffic infrastructures like traffic
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signs and barriers. In comparison, dynamic vulnerable road users such as Bicycles, Motorcycles, and
Persons are less commonly observed.
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Figure 11: The number of annotated 3D bounding boxes for each object subcategory in our dataset.

A.4 AGC-Drive vs. CoPeD

Table §5|summarizes the comparison between AGC-Drive and CoPeD [[16] datasets. Both datasets pro-
vide real-world, multi-agent cooperative perception data, integrating LiDAR, camera, and GNSS/IMU
sensors to support collaborative tasks in diverse environments. Additionally, both support ground and
aerial agents, enabling cross-platform multi-robot cooperation.

However, significant differences exist. AGC-Drive focuses on real driving environments (rural, urban,
highway) with higher vehicle speeds, while CoPeD covers mixed indoor and outdoor robot scenarios
at lower speeds. AGC-Drive uniquely offers aerial LIDAR data from UAVs, in-cabin cameras, and 3D
bounding box annotations with occlusion labels, providing richer multi-view and multi-modal data.
In contrast, CoPeD provides 2D bounding boxes only and relies on automatic annotation methods.
Furthermore, AGC-Drive contributes a larger scale of point clouds and images, with available source
code, enhancing its value as an open benchmark for autonomous driving research.

Table 5: Comparison between CoPeD and AGC-Dirive.

AGC-Drive CoPeD
Source Real Real
scenario types 14 Diverse driving scenarios Mixed indoor and outdoor environments
Agents 2*Veh & 1*UAV 3*Ground robots & 2*Aerial robots
Sensors Camera, Lidar, IMU/GPS, Radar, In-cabin camera Camera, Lidar, IMU/GPS
Aerial LiDAR Support v X
Cams (/Agent) Multiple Single
Height 15 to 20m 2m, 2 to 10m
Vehicle speed 30(Rural), 30 to 50(Urban), 80(highway) km/h 1.8(Indoor), 5.4(Outdoor) km/h
Categories 13 -
Labels 3D Boxes & Occlusion 2D Boxes
Images 360,000 203,400
Pointclouds 80,000 -
Source code v only calibration
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