AGC-Drive: A Large-Scale Dataset for Real-World Aerial-Ground Collaboration in Driving Scenarios

Yunhao Hou¹, Bochao Zou^{1,*}, Min Zhang², Ran Chen¹, Shangdong Yang², Yanmei Zhang² Junbao Zhuo¹, Siheng Chen³, Jiansheng Chen¹, Huimin Ma^{1,*}

¹University of Science and Technology Beijing

²Xiamen NEVC Advanced Electric Powertrain Technology Innovation Center

³Shanghai Jiao Tong University

*Corresponding author: {zoubochao, mhmpub}@ustb.edu.cn

Abstract

By sharing information across multiple agents, collaborative perception helps autonomous vehicles mitigate occlusions and improve overall perception accuracy. While most previous work focus on vehicle-to-vehicle and vehicle-to-infrastructure collaboration, with limited attention to aerial perspectives provided by UAVs, which uniquely offer dynamic, top-down views to alleviate occlusions and monitor large-scale interactive environments. A major reason for this is the lack of highquality datasets for aerial-ground collaborative scenarios. To bridge this gap, we present AGC-Drive, the first large-scale real-world dataset for Aerial-Ground Cooperative 3D perception. The data collection platform consists of two vehicles, each equipped with five cameras and one LiDAR sensor, and one UAV carrying a forward-facing camera and a LiDAR sensor, enabling comprehensive multi-view and multi-agent perception. Consisting of approximately 80K LiDAR frames and 360K images, the dataset covers 14 diverse real-world driving scenarios, including urban roundabouts, highway tunnels, and on/off ramps. Notably, 17% of the data comprises dynamic interaction events, including vehicle cut-ins, cutouts, and frequent lane changes. AGC-Drive contains 350 scenes, each with approximately 100 frames and fully annotated 3D bounding boxes covering 13 object categories. We provide benchmarks for two 3D perception tasks: vehicleto-vehicle collaborative perception and vehicle-to-UAV collaborative perception. Additionally, we release an open-source toolkit, including spatiotemporal alignment verification tools, multi-agent visualization systems, and collaborative annotation utilities. The dataset and code are available at https://github.com/PercepX/AGC-Drive.

1 Introduction

Perception serves as a critical foundation for decision-making and safety in autonomous driving and multi-agent systems, especially in dynamic scenes with occlusions, long-range detection, and rapid response needs. To enhance perception completeness, existing cooperative perception systems mainly focus on Vehicle-to-Vehicle (V2V) [1–3][4, 5] and Vehicle-to-Infrastructure (V2I) [3–5][6–8][9–11] frameworks. V2V cooperative perception mitigates local occlusion issues by enabling information exchange among nearby vehicles. However, as all sensors remain at ground level, V2V systems struggle with dense traffic, occlusions, complex intersections, and limited perception range [6, 12]. Their performance is highly dependent on vehicle distribution and communication reliability. V2I cooperative perception utilizes roadside units (RSUs) to enhance sensing capabilities at critical points such as intersections and road segments [6, 8, 9]. Nevertheless, V2I systems face inherent

limitations in deployment cost, fixed coverage, and adaptability to dynamic environments, making them unsuitable for large-scale open roads or rapidly evolving traffic scenarios.

Unlike V2V and V2I systems, Aerial-Ground Cooperative (AGC) Perception introduces overhead Unmanned Aerial Vehicle (UAV)-based sensing, offering dynamic, adaptive, and high-altitude global perspectives to complement ground-based systems. UAVs can flexibly cover target areas, dynamically alleviate perception blind spots, enhance long-range target observation, and improve multi-object occlusion reasoning in complex traffic environments. This makes AGC perception a valuable complement to existing V2X systems, particularly in scenarios involving open roads, dynamic intersections, dense traffic, and emergency scenarios.

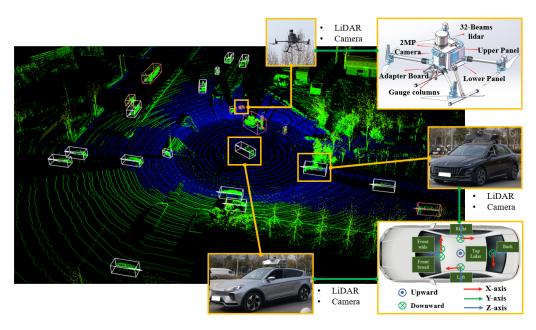


Figure 1: Collaborative data collection with two vehicles and a UAV. Each vehicle is equipped with one LiDAR and five cameras. The UAV carries a LiDAR and a camera system. The top-right inset shows the custom UAV sensor setup, and the bottom-right inset illustrates the vehicle's sensor layout.

Although several datasets [13–16, 12] have introduced UAVs into collaborative perception, they either focus on UAV-to-UAV cooperation [13, 14] or are collected in simulated environments [13–15, 12]. The only available real-world dataset [16] provides 2D annotations, but it is not collected in driving scenarios. Due to hardware limitations, none of these existing datasets include LiDAR-equipped UAVs. To bridge this gap, we introduce AGC-Drive, a dataset collected by a system consisting of two vehicles and one UAV (Figure 1) over approximately three months. From over 80 hours of collected data, we selected 350 sequences covering 14 scene categories. Each sequence contains 100 sets of data sampled at 10 Hz, with each set including 14 LiDAR frames and image frames, resulting in over 720K annotated 3D bounding boxes. Notably, we carefully designed the data collection routes to ensure a wide range of road conditions and vehicle interaction scenarios, covering high-risk environments such as urban roundabouts, highway tunnels, on/off ramps, and rural construction zones. Approximately 17% of the data involves dynamic events like vehicle cut-ins, cut-outs, and dense lane changes.

To support broad research in collaborative perception, we organized our dataset into two dedicated sub-collections: AGC-V2V for vehicle-to-vehicle collaboration, and AGC-VUC for vehicle-to-UAV collaboration. Additionally, to address the lack of UAV-based 3D object detection datasets using airborne LiDAR, we plan to introduce AGC-U3D, a carefully curated subset for UAV 3D object detection tasks.

Our main contributions are summarized as follows:

- We present AGC-Drive, the first real-world vehicle-vehicle-UAV collaborative perception dataset for driving scenarios, featuring time-synchronized multi-agent data collection and fused 360° ground and aerial views. It includes two sub-datasets: AGC-V2V and AGC-VUC.
- We provide over 720K annotated 3D bounding boxes for 13 categories, covering 80K LiDAR frames and 360K multi-view images, collected across 14 types of road environments and dynamic interaction scenarios such as lane changes and overtaking.
- We report benchmarks for two 3D perception tasks and release an open-source toolkit for spatiotemporal alignment, multi-agent visualization, and collaborative annotation.

2 Related work

With the rapid development of collaborative perception, an increasing number of high-quality datasets have been released. OPV2V [1] was the first collaborative perception dataset, featuring vehicle-to-vehicle (V2V) synthetic data. V2X-Sim [3] and V2XSet [4] extended this to vehicle-to-infrastructure (V2I) and V2V scenarios, but remained in simulated environments. DAIR-V2X [6] introduced the first large-scale, multi-modal, multi-view real-world V2I collaborative perception dataset. V2X-Seq [7] further contributed the first large-scale sequential collaborative dataset. Subsequently, five large-scale real-world datasets — V2V4Real [2], RCooper [8], TUMTraf-V2X [9], HoloVIC [10], and V2X-Real [5] have advanced research in vehicle-centric collaborative perception. Most recently, V2X-R [11] became the first dataset to incorporate 4D radar into collaborative perception.

Meanwhile, recent releases such as CoPerception-UAV [13] and UAV3D [14] reflect growing interest in incorporating UAVs into collaborative perception. However, both focus solely on UAV-to-UAV collaboration in simulated environments. More recently, V2U-COO [17] and Griffin [12] proposed aerial-ground collaborative datasets, but they are also synthetic and lack UAV LiDAR data due to hardware limitations. Although CoPeD [16] is a real-world aerial-ground collaborative dataset, it only provides monocular camera data with simple 2D annotations automatically generated by baseline models.

In contrast, AGC-Drive is a large-scale real-world dataset designed to support collaborative perception between aerial UAVs and ground vehicles. The UAV platforms are custom-designed and carefully equipped with LiDAR sensors. Table 1 summarizes the comparison with related datasets. It is worth noting that, similar to nuScenes [18], We annotate occlusion levels for each object, a detail often neglected in prior collaborative perception datasets. Moreover, our dataset covers 14 diverse scene categories under varying lighting conditions, with a day-to-night ratio of 8:2, significantly enhancing data diversity and robustness for perception tasks.

Table 1: Comparison of representative single-UAV and cooperative perception datasets. V/Veh = Vehicle, I/Inf = Infrastructure, U = UAV. "V2V&I" = V2V+V2I, "V2V&U" = V2V+V2U. C, L, R = Camera, Lidar, Radar. "MvCamera" = Multi-view Camera, "UAV-L" = UAV with LiDAR.

Mode	Dataset	Year	Source	Agent	Sensor	scenario types	3D boxes	Classes	MvCams	Driving	UAV-L
V2V	OPV2V [1] V2V4Real [2]	2022 2023	Sim Real	Veh Veh	C & L C & L	6	230K 240K	1 5	√	√	×
									√	√	×
	DAIR-V2X [6]	2022	Real	Veh & Inf	C & L	-	464K	10	×	✓	×
	V2X-Seq [7]	2023	Real	Veh & Inf	C & L	-	-	9	×	✓	×
V2I	Rcooper [8]	2024	Real	Veh & Inf	C & L	-	-	10	×	✓	×
V 21	TUMTraf-V2X [9]	2024	Real	Veh & Inf	C & L	-	29.3K	8	×	✓	×
	HoloVIC [10]	2024	Real	Veh & Inf	C & L	-	11.4M	3	×	✓	×
	V2X-R [11]	2025	Real	Veh & Inf	C & L & R	-	-	5	×	\checkmark	×
	V2X-Sim [3]	2022	Sim	Veh & Inf	C & L	-	26.6K	1	√	√	×
V2V&I	V2XSet [4]	2022	Sim	Veh & Inf	C & L	5	230K	1	✓	✓	×
	V2X-Real [5]	2024	Real	Veh & Inf	C & L	-	1.2M	10	✓	✓	×
UAV	VisDrone [19]	2018	Real	UAV	С	-	10.2K	10	×	×	×
UAV	UAVDT [20]	2018	Real	UAV	C	-	841.5K	3	✓	✓	×
U2U	CoPerception-UAV [13]	2023	Sim	UAV	С	-	1.6M	21	√	√	×
020	UAV3D [14]	2023	Sim	UAV	C	-	3.3M	17	✓	\checkmark	×
	V2U-COO [17]	2024	Sim	Veh & UAV	С	-	-	4	×	✓	×
V2U	CoPeD [16]	2024	Real	Veh & UAV	C & L	2	×	1	×	×	×
	Griffin [12]	2025	Sim	Veh & UAV	C & L	4	-	3	✓	✓	×
V2V&U	AGC-Drive(Ours)	2025	Real	Veh & UAV	C & L & R	14	720K	13	✓	✓	✓

3 The AGC-Drive Dataset

To bridge collaborative vehicle-to-vehicle and aerial-ground perception research and to establish a comprehensive 3D traffic perception framework, we present AGC-Drive — a large-scale, multimodal, multi-view, and multi-scenario dataset featuring well-annotated 3D bounding boxes for innovative research on UAV-vehicle collaboration. In this section, we describe the data acquisition devices, coordinate system design, multi-sensor calibration, scene selection strategies, detailed data collection, annotation processes and pose refinement, as well as privacy protection considerations.

3.1 Setup

Sensors. The data acquisition system consists of two instrumented vehicles and one UAV: a) Vehicle-mounted sensors. Each vehicle is equipped with a 128-beam LiDAR and five high-resolution cameras. Notably, the front-facing cameras are configured with two different focal lengths to capture both detailed road surface information and broader traffic scene context; b) UAV-mounted sensors. The UAV platform is based on a modified DJI M350 RTK, equipped with a 32-beam LiDAR and a high-resolution downward-facing camera. The sensor configuration is illustrated in Fig.1, with detailed specifications summarized in Table 2.

Agent Sensor Sensor Model 128 beams, 10Hz capture frequency, 360°horizontal FOV, LiDAR RoboSense Ruby Plus(*1) -25°to +15° vertical FOV, < 200m range front-wide: SG8S-AR0820C-5300-G2A-Hxxx, 8MP, HFOV30°, front-broad: SG8S-AR0820C-5300-G2A-Hxxx, 8MP, HFOV120°, 2*Vehicle Camera Sensing Cmaera(*5) left&right: SG2-AR0231C-0202-GMSL-Hxxx, 2MP, HFOV100°, back: SG2-AR0233C-5200-G2A-Hxxx, 2mp, HFOV121° GPS&IMU Intelligent Car Built-in GPS System(*1) 100HZ 32 beams, 10Hz capture frequency, 360°horizontal FOV, LiDAR RoboSense Helios32(*1) -55°to +15° vertical FOV, < 150m range UAV Camera USB Camera(*1) front: RER-USBGS1200P02, 2MP, HFOV120° DJI M350 RTK Built-in GPS System(*1) GPS&IMU GPS + GLONASS + BeiDou + Galileo, 100HZ

Table 2: Key Sensor Specifications in AGC-Drive.

Coordinate System. The AGC-Drive dataset defines four types of coordinate systems: LiDAR coordinate system, camera coordinate system, image coordinate system, and world coordinate system. Each agent is equipped with its own LiDAR and camera coordinate systems. The camera coordinate system is aligned to the corresponding LiDAR frame via a camera-to-LiDAR calibration process. Then, the pose information from each agent's GPS/IMU is used as an initial transformation, and all LiDAR coordinate systems are registered to a unified world coordinate system through point cloud registration. The calibration results are illustrated in Fig. 1.

Calibration. To ensure accurate spatial alignment between the LiDAR point cloud and multiple cameras, we perform extrinsic calibration for each camera with respect to the LiDAR sensor. First, the intrinsic parameters of each camera are obtained using a standard checkerboard calibration. Then, we collect synchronized images and LiDAR data of a calibration target visible in both modalities. 3D-2D correspondences are established by detecting feature points in the images and extracting the corresponding points from the LiDAR point cloud. Finally, the extrinsic transformation matrices are estimated using a Perspective-n-Point (PnP) algorithm [21], followed by visual verification through point cloud projection onto the image plane.

Scenario Planning. To ensure the representativeness and utility of our dataset, we follow the Task-driven Scenario Taxonomy [22] and Operational Design Domain (ODD) definitions [23]. We also reference popular autonomous driving datasets such as Waymo Open Dataset [24] and nuScenes [18]. Scenarios are designed based on common driving tasks including lane keeping, lane changing, car-following, intersection crossing, roundabout navigation, construction detours, and ramp merging. Combined with ODD, they are categorized into urban, highway, and rural environments, further covering typical cases like straight roads, curves, intersections, construction zones, tunnels, and frequent lane changes. In total, 14 representative driving scenarios are constructed (Fig. 2), providing comprehensive coverage for both routine and high-risk conditions.

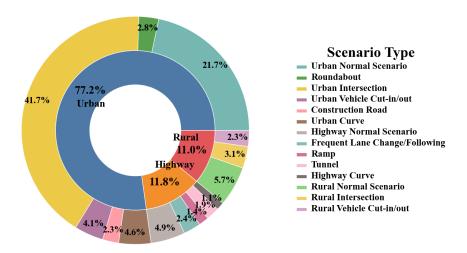


Figure 2: Distribution of Driving Environment and Scenario Types.

3.2 Data Acquisition

Collection. We deployed two equipped vehicles and a UAV operated by professional pilots to collect synchronized data. Each agent locally records data frames, with timestamps aligned to its GPS time, achieving unified time sources across all agents. Data were collected along predefined routes over 2 months under varying day and night conditions, accumulating over 80 hours of driving logs. From the raw data, we curated 350 representative segments (10s each) across 14 scenarios, resulting in 80K LiDAR frames and 360K camera images with annotations. Keyframes were extracted at 10 Hz to construct AGC-V2V, while segments involving UAV participation were used to create AGC-VUC for vehicle-UAV collaborative perception tasks. Additionally, we plan to extracted UAV LiDAR data to support UAV-based 3D perception research.

Annotation. We customized an annotation platform based on the open-source tool Xtreme1 [25] to meet the specific needs of our dataset. A team of 100 annotators was recruited, with multiple rounds of expert review to ensure annotation quality. On average, each frame underwent two rounds of review and revision. Our dataset provides 3D annotations for 13 object categories, including pedestrian, rider, motorcycle, bicycle, tricycle, car, truck, van, bus, road obstacles, traffic cones, and traffic signs. Each object is labeled with a 9-DoF 3D bounding box, consisting of (x, y, z) for the box center, (l, w, h) for size, and roll, pitch, yaw for orientation. Furthermore, each 3D bounding box is projected onto the corresponding camera images to generate two types of 2D annotations: an 8-vertex 2D polygon representing the projected 3D box corners, and a 4-vertex 2D rectangle corresponding to the minimum enclosing rectangle of the projected box. Additionally, each object is assigned one of three occlusion levels: visible (0–20%), partially occluded (20–50%), or heavily occluded (over 50%).

Relative Pose. In this work, we estimate the relative poses between three agents: two vehicles and a UAV, using their respective GPS, IMU, and LiDAR data. Initially, GPS and IMU data provide the initial pose estimates for each agent. These initial poses serve as the starting input for the Iterative Closest Point (ICP) algorithm [26]. The ICP algorithm is then used to perform pairwise point cloud registration, aligning the LiDAR point clouds of the vehicles and UAV. This process calculates the relative poses between each pair of agents based on the aligned point clouds. After ICP registration, the relative poses are refined and corrected to improve accuracy. Finally, the corrected poses are transformed into the ego vehicle's coordinate frame, ensuring consistent spatial alignment across all agents. This method enables robust and accurate relative pose estimation, which is crucial for multi-agent cooperative perception tasks.

Privacy Protection. Prior to public release, all sensitive information in the dataset was anonymized. We removed all location metadata, including road names, map data, and GPS information, to comply with legal and ethical regulations. In addition, a professional annotation tool was used to blur potential privacy-related content, such as traffic signs, license plates, and human faces, to ensure protection of personal privacy.

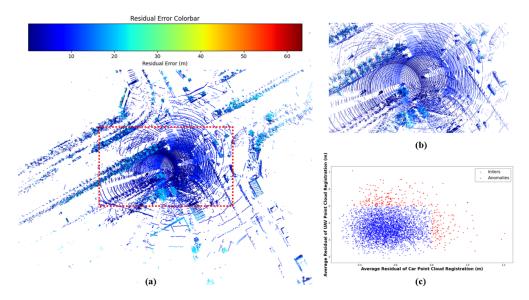


Figure 3: (a) Residual heatmap of registration results (blue: high accuracy, red: low accuracy). (b) Zoomed view of the dense object region in (a). (c) Scatter plot of average residuals for 4000 randomly sampled points after registering both drone and vehicle point clouds to the ego vehicle.

4 Task and Benchmark

We benchmark AGC-Drive on collaborative 3D object detection tasks, including vehicle-to-vehicle cooperation, vehicle-UAV cooperative(VUC) 3D object detection.

Dataset Format and Split. Our AGC-Drive dataset follows the OPV2V [1] format, containing 14 road types with multiple scenes per type (distribution shown in Fig. 2). Each scene consists of 100 groups of synchronized multi-agent data, collected by 1 drone and 2 vehicles equipped with a total of 14 sensors. In total, we collect 350 scenes, with 320 for training, 30 for validation and testing.

Input and Ground Truth. For each agent, the input includes synchronized LiDAR point clouds captured at 10 Hz. The shared data from neighboring vehicles are fused in the bird's eye view (BEV) space for cooperative perception. The ground truth consists of 9-DoF 3D bounding boxes annotated for 13 categories (car, truck, pedestrian, cyclist, etc.) with additional occlusion status labels (visible, partially occluded, heavily occluded) following the nuScenes convention [18].

Benchmark Frameworks. We benchmark six representative cooperative perception frameworks, all of which adopt PointPillars [27] as the detection backbone for a fair comparison:

- Late Fusion: Directly shares raw point cloud data among agents before feature extraction.
- Early Fusion: Independently detects objects and shares detection results among agents.
- V2VNet [1]: A multi-agent cooperative detection framework using intermediate feature fusion.
- **Cobevt** [28]: A cooperative BEV semantic segmentation framework based on sparse transformers, employing a feature aggregation module (FAX) to effectively fuse multiview and multi-agent features.
- Where2comm [13]: A communication-efficient cooperative perception framework that guides agents to share only spatially sparse yet perception-critical information using a spatial confidence map, achieving a balance between perception performance and communication bandwidth.
- V2X-ViT [4]: A recent transformer-based cooperative perception framework leveraging BEV feature fusion with attention mechanisms.

Experiments Details. For all tasks, the models are adapted to support the AGC-V2V and AGC-VUC data format and sensor configurations. We adopt a unified BEV (Bird's Eye View) representation.

The perception range is set to $[-140.8 \, \text{m}, 140.8 \, \text{m}]$ along both the X and Y axes. All baseline models were trained with a batch size of 4 for 60 epochs, with a per-GPU batch size of 1 on a computing server equipped with 8 Nvidia L40 GPUs. We use the Adam optimizer with an initial learning rate of 0.001 and apply a cosine learning rate schedule. Each training run takes approximately 6 hours.

Following the evaluation protocols of nuScenes [18] and OPV2V [1], we report standard metrics including mAP@0.5 and mAP@0.7 for 3D object detection. Furthermore, to analyze the influence of UAV participation, we define the metric $\Delta_{\rm UAV}$ as:

$$\Delta_{\rm UAV} = \frac{1}{2} \left[\left(m_{0.5}^{V2U} - m_{0.5}^{V2V} \right) + \left(m_{0.7}^{V2U} - m_{0.7}^{V2V} \right) \right],$$

which represents the average performance improvement achieved by incorporating aerial perception.

4.1 Benchmark for V2V 3D object detection

Problem Definition and AGC-V2V. The goal of this task is to perform cooperative 3D object detection by leveraging information from multiple connected vehicles to enhance perception performance, especially in challenging scenarios such as long-range detection and occlusions. We construct the AGC-V2V benchmark by selecting collaborative scenes from the AGC-Drive dataset where two vehicles participate without UAV involvement. Each vehicle is equipped with a LiDAR sensor and five cameras. A total of 350 scenes, comprising 70K frames, are included for this benchmark.

Quantitative Results. Table 3 presents the 3D object detection results on AGC-V2V. As expected, early fusion achieves slightly better performance than late fusion, benefiting from access to fully aggregated features. Among intermediate fusion methods, Cobevt and V2X-ViT outperform others, indicating their stronger capability in feature aggregation. In contrast, V2VNet performs poorly at higher IoU thresholds, suggesting sensitivity to feature misalignment. Overall, performance remains moderate across all methods, likely due to challenges such as time delays and pose estimation errors in cooperative perception. The late fusion baseline exhibits the lowest accuracy, reflecting error accumulation during post-fusion processing.

Co-Mode	Model	mAP@0.5	mAP@0.7	
Late	PointPillars[27]	17.7	13.5	
Early	PointPillars[27]	19.6	14.1	
Intermediate	V2VNet [1] Cobevt [28] Where2comm [13] V2X-ViT [4]	18.4 46.1 39.3 44.1	5.7 41.7 31.5 36.6	

Table 3: 3D Detection Performance (%) on AGC-V2V.

Qualitative results. Figure 4 presents qualitative 3D object detection results of four intermediate collaborative baselines under several challenging scenarios, including highway tunnel occlusions, intersection occlusions with long-range targets, and complex road occlusions. We see that V2V cooperative perception effectively alleviates the challenges posed by long-range perception and occlusions. However, due to unaddressed pose errors and time delays, the localization accuracy of the predicted results is lower than that of single-vehicle detection, leading to a decline in overall performance metrics.

4.2 Benchmark for VUC 3D object detection

Problem Definition and AGC-VUC. This task aims to improve 3D object detection by leveraging the complementary perception capabilities of ground vehicles and UAVs. Unlike traditional V2V cooperation, the UAV provides a global top-down view that enhances occlusion handling and longrange detection. To support this, we construct the AGC-VUC benchmark by selecting cooperative scenarios in AGC-Drive that involve two vehicles and one UAV. Each scenario lasts approximately 10 seconds, sampled at 10Hz, resulting in 100 cooperative sequences.

Quantitative Results. Table 4 presents the 3D detection performance on AGC-VUC after incorporating the UAV into the cooperative system. A new column, denoted as $\Delta_{\rm UAV}$, is added to quantify the

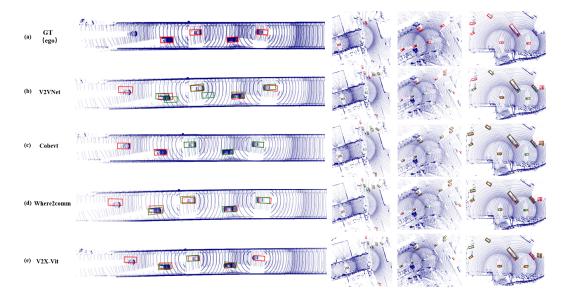


Figure 4: Point cloud visualization of V2V cooperative object detection results on the AGC-V2V dataset. Green bounding boxes denote predicted objects, and red bounding boxes indicate ground truth annotations.

impact of the UAV's participation on the perception performance. It can be observed that introducing the UAV improves the performance of all cooperative frameworks across all metrics. Notably, V2VNet achieves the largest improvement, with a $\Delta_{\rm UAV}$ of +11.5. This is because V2VNet has the lowest baseline performance without the UAV, leaving more room for the UAV to enhance its perception capabilities.

Table 4: 3D Detection Performance (%) on AGC-VUC.

Co-Mode	Model	V	2V	V2U			
CO-MOGC	Wodel	mAP@0.5	mAP@0.7	mAP@0.5	mAP@0.7	Δ_{UAV}	
	V2VNet [1]	30.5	14.6	40.1	27.9	+11.5	
Intermediate	Cobevt [28]	42.3	36.9	42.9	37.5	+0.6	
miermediate	Where2comm [13]	42.6	30.7	44.2	32.0	+1.5	
	V2X-ViT [4]	38.3	28.7	42.6	33.9	+4.8	

Qualitative results. Figure 5 presents qualitative 3D object detection results of four intermediate collaborative baselines under several challenging scenarios. By comparing the visualization results with V2V baselines, we observe that integrating UAV perspective data effectively improves the ego vehicle's perception performance, particularly for distant and occluded objects in a larger area of the same scene.

5 Limitations

Since this is the first attempt to mount a vehicle-mounted LiDAR sensor on a UAV for real-time object detection data collection, we carefully considered factors such as the UAV's flight altitude, the LiDAR's weight, and the blind zone beneath the UAV caused by the LiDAR's vertical field of view during the system design. However, there were still some aspects that were insufficiently addressed. In our experimental validation, although the point cloud data collected from the UAV perspective contributed to a more comprehensive perception of large-scale scenes, its relatively sparse nature limited its ability to provide fine-grained perception assistance for collaborative tasks. We have recognized this issue and plan to explore potential upgrades or replacements for the UAV-mounted LiDAR before conducting large-scale dataset collection in the future. Our goal is for the UAV's point clouds not only to enhance large-scale scene awareness but also to offer more detailed, object-level perception information to support ground vehicles.

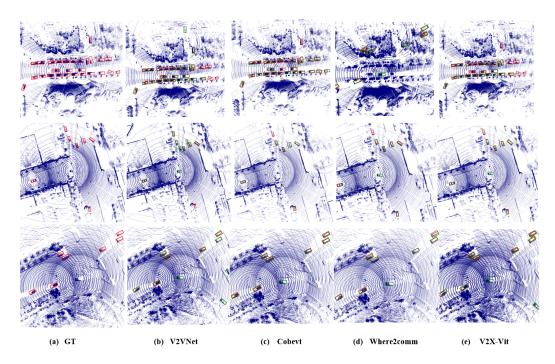


Figure 5: Point cloud visualization of VUC object detection results on the AGC-VUC dataset. Green bounding boxes denote predicted objects, and red bounding boxes indicate ground truth annotations.

6 Conclusion

We present AGC-Drive, a large-scale, multimodal dataset for collaborative perception between aerial UAVs and ground vehicles, collected in real-world environments. Compared to existing aerialground collaborative perception datasets, AGC-Drive is built upon real-world data with annotated 3D bounding boxes. Notably, it includes point cloud data collected from the UAV perspective, enabling collaborative perception at scene level. We further adapt several representative collaborative perception frameworks to our dataset and provide comprehensive benchmark results. It is worth noting that we retain data containing time delays and pose errors caused by point cloud registration, in order to better reflect the challenges encountered in real-world scenarios. All associated resources, including benchmark code, annotation tools, pose correction toolkits, and the complete AGC-Drive dataset, are publicly released. In addition, our raw data includes synchronized multi-modal signals such as 4D radar, in-cabin steering wheel status, brake signals, and driver-facing cameras. We hope this work will benefit the broader community working on aerial-ground collaborative perception. Future work includes refining the UAV LiDAR dataset, collecting larger-scale datasets with dense multi-UAV point cloud collaboration scenarios, expanding data collection under various weather conditions, and annotating for additional vision-action tasks. However, misuse of the dataset or models trained on it could lead to overreliance on imperfect perception systems in safety-critical applications, especially given the inclusion of time delays and pose errors that reflect real-world challenges. This could potentially result in incorrect decisions in autonomous driving scenarios. We emphasize the importance of responsible use, adherence to ethical guidelines, and the implementation of safeguards to mitigate such risks.

Acknowledgments and Disclosure of Funding

This work was supported by the National Science and Technology Major Project (2022ZD0117901), the National Natural Science Foundation of China (62206015, 62376024), the Beijing Natural Science Foundation (L257003), and the Young Scientist Program of the National New Energy Vehicle Technology Innovation Center (Xiamen Branch). We thank the anonymous reviewers for insightful discussions.

References

- [1] Runsheng Xu, Hao Xiang, Xin Xia, Xu Han, Jinlong Li, and Jiaqi Ma. Opv2v: An open benchmark dataset and fusion pipeline for perception with vehicle-to-vehicle communication. In 2022 International Conference on Robotics and Automation (ICRA), page 2583–2589. IEEE Press, 2022.
- [2] Runsheng Xu, Xin Xia, Jinlong Li, Hanzhao Li, Shuo Zhang, Zhengzhong Tu, Zonglin Meng, Hao Xiang, Xiaoyu Dong, Rui Song, et al. V2v4real: A real-world large-scale dataset for vehicle-to-vehicle cooperative perception. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 13712–13722, 2023.
- [3] Yiming Li, Dekun Ma, Ziyan An, Zixun Wang, Yiqi Zhong, Siheng Chen, and Chen Feng. V2x-sim: Multi-agent collaborative perception dataset and benchmark for autonomous driving. *IEEE Robotics and Automation Letters*, 7(4):10914–10921, 2022.
- [4] Runsheng Xu et al. V2x-vit: Vehicle-to-everything cooperative perception with vision transformer. In *ECCV Proceedings*, 2022.
- [5] Hao Xiang, Zhaoliang Zheng, Xin Xia, Runsheng Xu, Letian Gao, Zewei Zhou, Xu Han, Xinkai Ji, Mingxi Li, Zonglin Meng, et al. V2x-real: a largs-scale dataset for vehicle-to-everything cooperative perception. In *European Conference on Computer Vision*, pages 455–470. Springer, 2024.
- [6] Haibao Yu, Yizhen Luo, Mao Shu, Yiyi Huo, Zebang Yang, Yifeng Shi, Zhenglong Guo, Hanyu Li, Xing Hu, Jirui Yuan, et al. Dair-v2x: A large-scale dataset for vehicle-infrastructure cooperative 3d object detection. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 21361–21370, 2022.
- [7] Haibao Yu, Wenxian Yang, Hongzhi Ruan, Zhenwei Yang, Yingjuan Tang, Xu Gao, Xin Hao, Yifeng Shi, Yifeng Pan, Ning Sun, et al. V2x-seq: A large-scale sequential dataset for vehicle-infrastructure cooperative perception and forecasting. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 5486–5495, 2023.
- [8] Ruiyang Hao, Siqi Fan, Yingru Dai, Zhenlin Zhang, Chenxi Li, Yuntian Wang, Haibao Yu, Wenxian Yang, Yuan Jirui, and Zaiqing Nie. Rcooper: A real-world large-scale dataset for roadside cooperative perception. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pages 22347–22357, 2024.
- [9] Walter Zimmer, Gerhard Arya Wardana, Suren Sritharan, Xingcheng Zhou, Rui Song, and Alois C Knoll. Tumtraf v2x cooperative perception dataset. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pages 22668–22677, 2024.
- [10] Cong Ma, Lei Qiao, Chengkai Zhu, Kai Liu, Zelong Kong, Qing Li, Xueqi Zhou, Yuheng Kan, and Wei Wu. Holovic: Large-scale dataset and benchmark for multi-sensor holographic intersection and vehicle-infrastructure cooperative. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 22129–22138, 2024.
- [11] Xun Huang, Jinlong Wang, Qiming Xia, Siheng Chen, Bisheng Yang, Xin Li, Cheng Wang, and Chenglu Wen. V2x-r: Cooperative lidar-4d radar fusion with denoising diffusion for 3d object detection. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pages 27390–27400, 2025.
- [12] Jiahao Wang, Xiangyu Cao, Jiaru Zhong, Yuner Zhang, Haibao Yu, Lei He, and Shaobing Xu. Griffin: Aerial-ground cooperative detection and tracking dataset and benchmark. *arXiv preprint arXiv:2503.06983*, 2025.
- [13] Yue Hu, Shaoheng Fang, Zixing Lei, Yiqi Zhong, and Siheng Chen. Where2comm: Communication-efficient collaborative perception via spatial confidence maps. *Advances in neural information processing systems*, 35:4874–4886, 2022.
- [14] Rajshekhar Sunderraman, Jonathan Shihao Ji, et al. Uav3d: A large-scale 3d perception benchmark for unmanned aerial vehicles. *Advances in Neural Information Processing Systems*, 37:55425–55442, 2024.
- [15] Zhechao Wang, Peirui Cheng, Minxing Chen, Pengju Tian, Zhirui Wang, Xinming Li, Xue Yang, and Xian Sun. Drones help drones: A collaborative framework for multi-drone object trajectory prediction and beyond. *Advances in Neural Information Processing Systems*, 37:64604–64628, 2024.
- [16] Yang Zhou, Long Quang, Carlos Nieto-Granda, and Giuseppe Loianno. Coped-advancing multi-robot collaborative perception: A comprehensive dataset in real-world environments. *IEEE Robotics and Automation Letters*, 9(7):6416–6423, 2024.

- [17] Yuchao Wang, Zhirui Wang, Peirui Cheng, Pengju Tian, Ziyang Yuan, Jing Tian, Wensheng Wang, and Liangjin Zhao. Uvcpnet: A uav-vehicle collaborative perception network for 3d object detection. *IEEE Transactions on Geoscience and Remote Sensing*, 2025.
- [18] Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora, Venice Erin Liong, Qiang Xu, Anush Krishnan, Yu Pan, Giancarlo Baldan, and Oscar Beijbom. nuscenes: A multimodal dataset for autonomous driving. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pages 11621–11631, 2020.
- [19] Pengfei Zhu, Longyin Wen, Dawei Du, Xiao Bian, Heng Fan, Qinghua Hu, and Haibin Ling. Detection and tracking meet drones challenge. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 44(11):7380–7399, 2021.
- [20] Dawei Du, Yuankai Qi, Hongyang Yu, Yifan Yang, Kaiwen Duan, Guorong Li, Weigang Zhang, Qingming Huang, and Qi Tian. The unmanned aerial vehicle benchmark: Object detection and tracking. In *Proceedings of the European conference on computer vision (ECCV)*, pages 370–386, 2018.
- [21] Martin A Fischler and Robert C Bolles. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. *Communications of the ACM*, 24(6):381–395, 1981.
- [22] International Organization for Standardization. ISO 34502:2022 Road vehicles Test scenarios for automated driving systems Scenario based safety evaluation framework, 2022. Available: https://www.iso.org/standard/78951.html.
- [23] Robert Trypuz, Piotr Kulicki, and Mirek Sopek. Ontology of autonomous driving based on the sae j3016 standard. *Semantic Web*, 15(5):1837–1862, 2024.
- [24] Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien Chouard, Vijaysai Patnaik, Paul Tsui, James Guo, Yin Zhou, Yuning Chai, Benjamin Caine, et al. Scalability in perception for autonomous driving: Waymo open dataset. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pages 2446–2454, 2020.
- [25] LF AI Data Foundation. Xtreme1 the next gen platform for multisensory training data, 2023. Software available from https://github.com/xtreme1-io/xtreme1/.
- [26] Paul J Besl and Neil D McKay. Method for registration of 3-d shapes. In *Sensor fusion IV: control paradigms and data structures*, volume 1611, pages 586–606. Spie, 1992.
- [27] Alex H Lang, Sourabh Vora, Holger Caesar, Lubing Zhou, Jiong Yang, and Oscar Beijbom. Pointpillars: Fast encoders for object detection from point clouds. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pages 12697–12705, 2019.
- [28] Hao Xiang Wei Shao Bolei Zhou Jiaqi Ma Runsheng Xu, Zhengzhong Tu. Cobevt: Cooperative bird's eye view semantic segmentation with sparse transformers. In *Conference on Robot Learning (CoRL)*, 2022.
- [29] Shinpei Kato, Shota Tokunaga, Yuya Maruyama, Seiya Maeda, Manato Hirabayashi, Yuki Kitsukawa, Abraham Monrroy, Tomohito Ando, Yusuke Fujii, and Takuya Azumi. Autoware on board: Enabling autonomous vehicles with embedded systems. In 2018 ACM/IEEE 9th International Conference on Cyber-Physical Systems (ICCPS), pages 287–296. IEEE, 2018.
- [30] A. Dhall, K. Chelani, V. Radhakrishnan, and K. M. Krishna. LiDAR-Camera Calibration using 3D-3D Point correspondences. *ArXiv e-prints*, May 2017.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: The main claims are stated in Abstract (Page 1) and Introduction (Section 1, Page 2), and are reported by experimental results in Section 4 and discussed in Section 6.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The limitations of this work are discussed in Section 5.

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [NA]

Justification: The paper does not contain theoretical results.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and crossreferenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide all experimental details including collection equipment, data preprocessing steps, model backbone, training details, and evaluation metrics in Section 3 and Section 4.

Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
- (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
- (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
- (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
- (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: We provide open access to the code and dataset at https://github.com/PercepX/AGC-Drive. All necessary details are provided in Section 3 and Section 4 of the main paper.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- The authors should provide instructions on data access and preparation, including how
 to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: We provide detailed descriptions of data splits, hyperparameters, optimizer types, and training procedures in Section 4.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [NA]

Justification: Our experiments have followed the existing related works to report the results. Guidelines:

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.

- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error
 of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: Details on the computing resources including GPU models, memory, and training times are provided in **Experiments Details** of Section 4.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research presented in this paper conforms to the NeurIPS Code of Ethics in all respects. Data anonymization and privacy protection measures for the released dataset are detailed in **Protection** of Section 3.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a
 deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [Yes]

Justification: The paper discusses both the potential positive and negative societal impacts of this work in Section 6.

Guidelines:

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [Yes]

Justification: The paper describes the safeguards in place for responsible data release in Section 3, including data anonymization and usage restrictions for academic research only.

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with necessary safeguards to allow for controlled use of the model, for example by requiring that users adhere to usage guidelines or restrictions to access the model or implementing safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do not require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: The paper uses publicly available baseline implementations, properly cited in Section 3, Section 4 and listed in References [27, 1, 28, 13, 4, 25] and so on. All licenses and terms of use have been reviewed and respected.

Guidelines:

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.

- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the
 package should be provided. For popular datasets, paperswithcode.com/datasets
 has curated licenses for some datasets. Their licensing guide can help determine the
 license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [Yes]

Justification: The new dataset introduced in this paper is well documented in Section 3, including details of data structure, collection process, and so on. Additional documentation will be provided alongside the released dataset.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: This work does not involve crowdsourcing experiments or research with human subjects.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: This work does not involve study participants or human subjects, thus there are no associated participant risks or IRB approvals.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: LLMs are not used as part of the core methods in this research.

Guidelines:

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what should or should not be described.

A Technical Appendices and Supplementary Material

A.1 Coordinate Systems and Transformation

To achieve spatial synchronization between different sensors, vehicle-vehicle-UAV collaboration requires using sensor parameter information to perform coordinate system transformations. The relationships between the coordinate systems are illustrated in Fig. S 6.

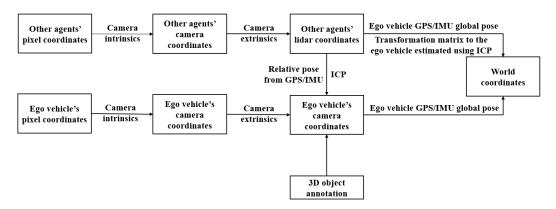


Figure 6: Relationship between coordinate systems.

Pixel Coordinates. The pixel coordinate system refers to a two-dimensional coordinate system defined on the image plane, typically represented as (u,v), with units in pixels. In this system, the origin is located at the top-left corner of the image, the u-axis points to the right along the horizontal direction, and the v-axis points downward along the vertical direction. This coordinate system is used to describe the position of points on the two-dimensional image captured by the camera.

A 3D point in the camera coordinate system, denoted as (x_c, y_c, z_c) , can be projected onto the pixel coordinate system through the camera's intrinsic matrix. The transformation process can be expressed as:

$$\begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} f_x & 0 & c_x \\ 0 & f_y & c_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{x_c}{z_c} \\ \frac{y_c}{z_c} \\ 1 \end{bmatrix}$$
 (1)

where f_x and f_y represent the focal lengths along the image's x and y axes (in pixel units), and (c_x, c_y) denote the principal point (the intersection of the optical axis with the image plane, in pixel coordinates).

Camera Coordinate System and LiDAR-to-Camera Calibration. The camera coordinate system is defined as a three-dimensional right-handed Cartesian coordinate system, with its origin located at the optical center of the camera. In this system, the *x*-axis points to the right along the image plane, the *y*-axis points downward along the image plane, and the *z*-axis extends forward along the optical axis of the camera.

To determine the spatial relationship between the LiDAR and each camera, we employed a point correspondence-based calibration procedure [29, 30]. Specifically, for each individual camera view, several corresponding feature points were manually selected in both the image and the LiDAR point cloud. Based on these correspondences, an initial extrinsic transformation matrix from the camera to the LiDAR was estimated using a least-squares fitting approach.

To improve calibration accuracy, the initial matrix was further refined through iterative manual adjustment and validation by visually checking the alignment of projected LiDAR points on the image plane. In order to ensure long-term calibration reliability, considering possible sensor shifts and mechanical vibrations, this calibration procedure was performed once every four hours during continuous data collection.

The final extrinsic parameters for each camera were stored as a 4×4 homogeneous transformation matrix, representing the coordinate transformation from the LiDAR coordinate system to the corresponding camera coordinate system, as expressed by:

$$\begin{bmatrix} x_c \\ y_c \\ z_c \\ 1 \end{bmatrix} = \mathbf{T}_{\text{LiDAR2Cam}} \begin{bmatrix} x_l \\ y_l \\ z_l \\ 1 \end{bmatrix}$$
 (2)

where $\mathbf{T}_{\text{LiDAR2Cam}}$ denotes the extrinsic matrix obtained from the calibration process, and (x_l, y_l, z_l) and (x_c, y_c, z_c) are the point coordinates in the LiDAR and camera coordinate systems, respectively.

A visualization of the LiDAR-to-camera calibration results for all recording platforms is provided in Fig. S7 S8 S9. The visualizations show the LiDAR point clouds projected onto the corresponding camera images using the estimated extrinsic parameters. Our dataset includes two ground vehicles, each equipped with five cameras providing full 360° coverage, and a UAV equipped with a single front-facing camera. The calibration results for each vehicle and the UAV are displayed separately, demonstrating the alignment quality across all viewpoints. The consistency between the projected LiDAR points and the visible object boundaries in the images effectively verifies the accuracy and robustness of our calibration process.

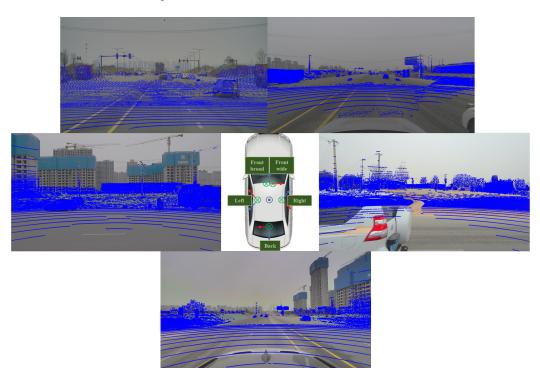


Figure 7: Visualization of the LiDAR-to-camera calibration for Ground Vehicle A equipped with five cameras covering 360°. Projected LiDAR points align well with image features across all camera views.

LiDAR Coordinate System and World Coordinate System. The LiDAR coordinate system for each platform is defined relative to the sensor's installation frame on that platform. We adopt a right-handed coordinate system, where the geometric center of the LiDAR sensor is set as the origin. The x-axis points forward, the y-axis points to the left, and the z-axis points upward. The world coordinate system is established as a global East-North-Up (ENU) frame derived from GPS measurements, which provides a consistent geodetic reference for all platforms.

Point clouds collected from each platform are initially represented in their respective LiDAR coordinate systems. Using GPS and IMU data, the pose of each platform is obtained relative to the global ENU world coordinate system. In our implementation, we approximate the LiDAR-to-world

Figure 8: Visualization of the LiDAR-to-camera calibration for Ground Vehicle B equipped with five cameras covering 360°. Projected LiDAR points align well with image features across all camera views.

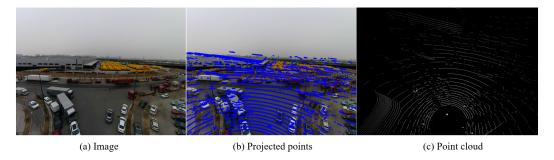


Figure 9: Multi-modal data alignment from a UAV perspective. (a) Aerial image captured by the UAV-mounted camera. (b) LiDAR point cloud projected onto the image plane for visualizing alignment accuracy. (c) Top-down view of the LiDAR point cloud acquired from the UAV.

transformation using the GPS/IMU-derived vehicle pose, assuming negligible displacement between the LiDAR sensor and the localization reference point.

The transformation of a point \mathbf{p}_{lidar} in the LiDAR coordinate system to the world coordinate system is performed as:

$$P_{\rm w} \approx T_{\rm w}^{\rm vehicle} P_{\rm l} \tag{3}$$

where $\mathbf{T}_{\rm w}^{\rm vehicle} \in SE(3)$ is the vehicle pose in the world coordinate frame obtained from GPS/IMU localization.

To compensate for residual misalignments caused by the approximation, an Iterative Closest Point (ICP) [26] algorithm is applied to refine the registration of point clouds from different platforms relative to the ego vehicle's LiDAR frame before transforming them to the world coordinate system.

The final transformation for a point cloud from another platform is given by:

$$P_{\rm w}^i = {\rm T}_{\rm w}^{\rm ego}\,{\rm T}_{\rm ego}^i\,P_i \tag{4}$$

where $\mathbf{T}_{\text{ego}}^{i}$ is the ICP-refined relative pose between platform i and the ego vehicle.

A.2 Multi-agent Time Synchronization

Time Source Synchronization. In our multi-agent system, all platforms achieve unified time source synchronization through GPS-based timing signals. Each platform's onboard clock is disciplined by the GPS receiver, providing a highly accurate and stable global time reference. This approach effectively eliminates clock drift and offset among different agents, ensuring that all sensors across vehicles and the UAV are synchronized to the same absolute time base. As a result, temporal consistency is maintained across heterogeneous sensors and platforms, which is critical for tasks such as sensor fusion, data alignment, and multi-agent cooperative perception.

Timestamp Synchronization. Although all platforms in our system share a common GPS-based time source, the sensors operate at different sampling frequencies, and their measurements are not necessarily captured at exactly the same timestamps. To address this, we employ the message_filters package in ROS to perform precise timestamp synchronization. This framework matches sensor messages based on their timestamps by finding the temporally nearest frames across heterogeneous data streams. In doing so, it compensates for both acquisition frequency differences and minor delays, ensuring accurate temporal alignment for multi-sensor fusion and multi-agent cooperative perception.

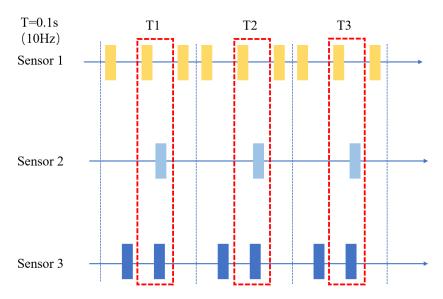


Figure 10: At 10 Hz, timestamp synchronization is performed for sensor data with different frequencies. The nearest frame within the red dashed box is regarded as the data corresponding to the same timestamp within this sampling period.

The combination of GPS-based time source synchronization and message-level timestamp synchronization enables reliable multi-sensor fusion and cooperative perception across heterogeneous platforms.

A.3 AGC-Drive Dataset Statistics

3D Bounding Box Category Distribution. To provide a comprehensive overview of the dataset, we present the number of annotated 3D bounding boxes for each object category. The dataset defines a total of 13 categories, which we group into two main groups: Vehicle and Other. The Vehicle group includes four subcategories: *Car*, *Bus*, *Truck*, and *Van*, while the Other group covers nine subcategories: *Person*, *Bicycle*, *Tricycle*, *Motorcycle*, *Rider*, *Traffic Sign*, *Barrier*, *Cone*, and *Others*.

The detailed number of 3D bounding boxes for each subcategory is illustrated in Fig. S11. As shown in the figure, *Car* is the most frequently annotated category with over 650K instances, followed by *Sign*, *Truck*, and *Rider*. This distribution reflects the typical composition of cooperative driving environments, which feature a high density of vehicles and static traffic infrastructures like traffic

signs and barriers. In comparison, dynamic vulnerable road users such as *Bicycles*, *Motorcycles*, and *Persons* are less commonly observed.

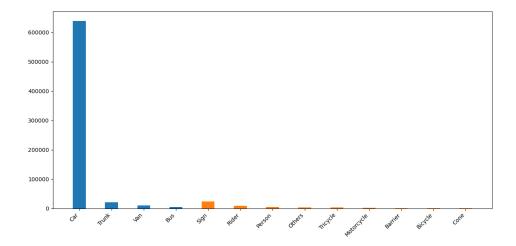


Figure 11: The number of annotated 3D bounding boxes for each object subcategory in our dataset.

A.4 AGC-Drive vs. CoPeD

Table S5 summarizes the comparison between AGC-Drive and CoPeD [16] datasets. Both datasets provide real-world, multi-agent cooperative perception data, integrating LiDAR, camera, and GNSS/IMU sensors to support collaborative tasks in diverse environments. Additionally, both support ground and aerial agents, enabling cross-platform multi-robot cooperation.

However, significant differences exist. AGC-Drive focuses on real driving environments (rural, urban, highway) with higher vehicle speeds, while CoPeD covers mixed indoor and outdoor robot scenarios at lower speeds. AGC-Drive uniquely offers aerial LiDAR data from UAVs, in-cabin cameras, and 3D bounding box annotations with occlusion labels, providing richer multi-view and multi-modal data. In contrast, CoPeD provides 2D bounding boxes only and relies on automatic annotation methods. Furthermore, AGC-Drive contributes a larger scale of point clouds and images, with available source code, enhancing its value as an open benchmark for autonomous driving research.

Table 5: Comparison between CoPeD and AGC-Drive.

	AGC-Drive	CoPeD
Source	Real	Real
scenario types	14 Diverse driving scenarios	Mixed indoor and outdoor environments
Agents	2*Veh & 1*UAV	3*Ground robots & 2*Aerial robots
Sensors	Camera, Lidar, IMU/GPS, Radar, In-cabin camera	Camera, Lidar, IMU/GPS
Aerial LiDAR Support	\checkmark	×
Cams (/Agent)	Multiple	Single
Height	15 to 20m	2m, 2 to 10m
Vehicle speed	30(Rural), 30 to 50(Urban), 80(highway) km/h	1.8(Indoor), 5.4(Outdoor) km/h
Categories	13	-
Labels	3D Boxes & Occlusion	2D Boxes
Images	360,000	203,400
Pointclouds	80,000	-
Source code	\checkmark	only calibration