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ABSTRACT

While machine learning models today can achieve high accuracies on classifica-
tion tasks, they can be deceived by minor imperceptible distortions to the data.
These are known as adversarial attacks and can be lethal in the black-box set-
ting which does not require knowledge of the target model type or its parameters.
Binary neural networks that have sign activation and are trained with gradient de-
scent have been shown to be harder to attack than conventional sigmoid activation
networks but their improvements are marginal. We instead train sign activation
networks with a novel gradient-free stochastic coordinate descent algorithm and
propose an ensemble of such networks as a defense model. We evaluate the ro-
bustness of our model (a hard problem in itself) on image, text, and medical ECG
data and find it to be more robust than ensembles of binary, full precision, and
convolutional neural networks, and than random forests while attaining compara-
ble clean test accuracy. In order to explain our model’s robustness we show that
an adversary targeting a single network in our ensemble fails to attack (and thus
non-transferable to) other networks in the ensemble. Thus a datapoint requires a
large distortion to fool the majority of networks in our ensemble and is likely to be
detected in advance. This property of non-transferability arises naturally from the
non-convexity of sign activation networks and randomization in our gradient-free
training algorithm without any adversarial defense effort.

1 INTRODUCTION

State of the art machine learning algorithms can achieve high accuracies in classification tasks but
misclassify minor perturbations in the data known as as adversarial attacks Goodfellow et al. (2015);
Papernot et al. (2016b); Kurakin et al. (2016); Carlini & Wagner (2017); Brendel et al. (2018). Ad-
versarial examples have been shown to transfer across models which makes it possible to perform
transfer-based (substitute model) black box attacks Papernot et al. (2016a). To counter adversar-
ial attacks many defense methods been proposed with adversarial training being the most popular
Szegedy et al. (2014); Tramèr et al. (2018). However this tends to lower accuracy on clean test data
that has no perturbations Raghunathan et al. (2019); Zhang et al. (2019) and can still be attacked with
better transfer based methods Wu et al. (2020); Xie et al. (2019a); Dong et al. (2019). Many previ-
ously proposed defenses have also been shown to be vulnerable Carlini & Wagner (2017); Athalye
et al. (2018); Ghiasi et al. (2020) thus leaving adversarial robustness an open problem in machine
learning.

A more lethal and practical attack than substitute model training is a boundary based one that re-
quires only the prediction of the model Brendel et al. (2018). These attacks are aimed at finding the
minimum distortion to an image such that it will fool a classifier. This is in fact an NP-hard problem
for ReLu activated neural networks Katz et al. (2017); Sinha et al. (2018) and tree ensemble clas-
sifiers Kantchelian et al. (2016). Even approximating the minimum distortion for ReLu activated
neural networks is NP-hard Weng et al. (2018). Boundary based black box attacks such as Hop-
SkipJump Chen et al., Boundary Attack Brendel et al. (2018) and RayS Chen & Gu (2020) give an
upper bound on the minimum adversarial distortion.
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Binary neural networks that have sign activation and binary weights were originally proposed as
lightweight models. These are trained with gradient descent by approximating the sign activation.
Recent work has shown that they tend to be more adversarially robust than full precision networks
but the improvements are marginal (see Tables 4 and 5 in Galloway et al. (2018) and Table 8 in
Panda et al. (2019)).

In this paper we propose a gradient free stochastic coordinate descent algorithm for training sign
activation networks with and without binary weights similar to recent work Xue et al. (2020a;b);
Xie et al. (2019b). While our original intention was to study the accuracy of a sign activation net-
work trained directly without any approximation we make an interesting finding on the adversarial
robustness of our model. We find that ensembling our model gives a high minimum distortion (as
measured by HopSkipJump) compared to full precision, binary, and convolutional neural networks.
We explain this phenomena by measuring the transferability between networks in an ensemble.

In summary we make the following observations in our paper:

• Our single hidden layer sign activation network has higher minimum distortion than en-
sembles of full precision and binary neural networks, than random forests that have the
advantage of bootstrapping and random feature selection, and than ensembles of convolu-
tional networks that have the advantage of convolutions and several layers.

• Our model’s robustness stems from non-transferability of adversarial examples between
networks in our ensemble and its robustness increases as we add more networks to the
ensemble.

• Substitute model black box attacks require a much greater distortion to bring our model to
zero adversarial accuracy compared to ensembles of full precision and binary networks.

• Text classification black box attacks are less effective on our model than on convolutional
networks, random forests, and ensembles of full precision and binary networks.

• In a medical diagnosis setting, attacks on ECG data on our model have a higher distortions
and are visually distinguishable compared to attacks on ensembles of full precision and
convolutional networks, and on random forests.

2 METHODS

2.1 GRADIENT-FREE STOCHASTIC COORDINATE DECENT

Suppose we are given binary class data xi ∈ Rd and yi ∈ {−1,+1} for i = 0...n − 1. Consider
the objective function of a single hidden layer neural network with sign activation and 01 loss given
below. We employ a stochastic coordinate descent algorithm shown in Algorithm 1 (similar to recent
work Xue et al. (2020a;b); Xie et al. (2019b)) to minimize this objective.

1

2n
argmin

W,W0,w,w0

∑
i

(1− sign(yi(wT (sign(WTxi +W0)) + w0))) (1)

We can train sign activation networks with and without binary weights using our SCD training pro-
cedure above. In the case of binary weights we don’t need a learning rate. We apply GPU parallelism
to simultaneously update features and other heuristics to speed up runtimes (with additional details
given in the Supplementary Material).

2.2 IMPLEMENTATION, TEST ACCURACY, AND RUNTIME

We implement our training procedure in Python, numpy, and Pytorch Paszke et al. (2019) and make
our code freely available from https://github.com/zero-one-loss/scd_github.
We train three types of sign activation networks with our algorithm: (1) SCD01: 01-loss in the
final node, (2) SCDCE: cross-entropy loss in the final node, and (3) SCDCEBNN: cross-entropy in
the final node with binary weights throughout the model. Since sign activation is non-convex and
our training starts from a different random initialization we run it a 100 times and output the majority
vote.
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Algorithm 1 Stochastic coordinate descent for single hidden layer network
Procedure:

1. Initialize all network weights W,w to random values from the Normal distribution N(0, 1).
2. Set network thresholds W0 to the median projection value on their corresponding weight
vectors and w0 to the projection value that minimizes our network objective.
while i < epochs do

1. Randomly sample a batch of data equally from each class. (We set this to 75% of the training
data in image and text data experiments and 25% in the ECG data.)
2. Perform coordinate descent separately first on the final node w and then a randomly selected
hidden node u (a random column from the hidden layer weight matrix W )
3. Suppose we are performing coordinate descent on nodew. We select a random set of features
(coordinates) from w called F . For each feature wi ∈ F we add/subtract a learning rate η and
then determine the w0 that optimizes the loss (done in parallel on a GPU). We consider all
possible values of w0 = wT xi+wT xi+1

2 for i = 0...n− 2 and select the one that minimizes the
loss (also performed in parallel on a GPU).
4. After making the update above we evaluate the loss on the full dataset (performed on a GPU
for parallel speedups) and accept the change if it improves the loss.

end while

To illustrate our real runtimes and clean test accuracies we compare our models with a single hid-
den layer of 20 nodes to the equivalent network with sigmoid activation and logistic loss (denoted as
MLP) and the binary neural network (denoted as BNN) Hubara et al. (2016). We used the MLPClas-
sifier in scikit-learn Pedregosa et al. (2011) to implement MLP and the Larq library Geiger & Team
(2020) with the approx approximation to the sign activation. This has shown to achieve a higher test
accuracy than the original straight through estimator (STE) of the sign activation Liu et al. (2018b).

We perform a 1000 iterations of SCD01 and SCDCE and 10000 of SCDCEBNN. In Table 1 we show
the runtimes of a single run of all models on CIFAR10 Krizhevsky (2009) (32× 32× 3, 10K train,
2K test), CelebA facial attributes black hair vs brown hair Liu et al. (2015) (96×96×3, 1K train, 1K
test), GTSRB street sign recognition 60 vs 120 speed limit signs Stallkamp et al. (2011) (48×48×3,
2816 train, 900 test), and ImageNet class 0 vs. 1 Russakovsky et al. (2015) (256 × 256 × 3, 2580
train, 100 test). Our training runtimes are comparable to gradient descent in MLP and BNN and thus
practically usable. We can trivially parallelize training an ensemble by doing multiple runs on CPU
and GPU cores at the same time. We also show test accuracies of 100 vote ensembles of all models
and find our model accuracies to be comparable to MLP and BNN.

Table 1: Training runtimes of single run in seconds and test accuracies of 100 vote ensembles in
parenthesis for binary classification

SCD01 SCDCE SCDCEBNN MLP BNN

CIFAR10 64 (87%) 56 (88%) 422 (87%) 13 (90%) 106 (83%)
CelebA 20 (79%) 18 (81%) 111 (72%) 41 (78%) 32 (76%)
GTSRB 22 (97%) 22 (97%) 92 (98%) 8 (99%) 42 (96%)
ImageNet 77 (72%) 54 (73%) 338 (71%) 115 (72%) 78 (66%)

3 RESULTS

Going forward we compare the adversarial robustness of ensembles of our three models SCD01,
SCDCE, and SCDCEBNN, their full precision and binary gradient descent trained equivalent
counterparts MLP and BNN, two convolutional neural networks: LeNet LeCun et al. (1998) and
ResNet50 He et al. (2016), and random forests Breiman (2001) (denoted as RF). For each model we
use the majority vote output of 100 votes each with different initial parameters except for ResNet50
where we use 10 votes. In random forest we use an ensemble of 100 trees.
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We use a single hidden layer of 20 nodes in our three models and in MLP and BNN throughout the
paper. The convolutional networks and random forest are not a fair comparison to our model since
it has fewer parameters and does not perform bootstrapping or random feature selection as random
forest. We include them nevertheless since convolutional neural networks serve as state of the art
references and random forest serves as an alternative ensemble method.

3.1 ADVERSARIAL DISTORTION ON IMAGE DATA

The minimum distortion required to make a datapoint adversarial is an indicator of a model’s ad-
versarial and even corruption/general robustness Gilmer et al. (2019). We consider 10 randomly
selected datapoints from the CIFAR10 benchmark Krizhevsky (2009) and report their minimal ad-
versarial distortion as given by HopSkipJump Chen et al., Boundary Attack Brendel et al. (2018)
and RayS Chen & Gu (2020).

We use the HopSkipJump and Boundary Attack implementation in the IBM Adversarial Robustness
Toolkit (ART) Nicolae et al. (2018) In order to obtain as accurate an estimate as possible we run both
mthods 10 times each with an initial pool size of 1000 random datapoints and maximum iterations
of 100 and report the minimum value. For a single datapoint this typically takes several hours to
finish and thus we are able to report the distortion of only 10 random points in this study. We use
the RayS implementation from their GitHub site https://github.com/uclaml/RayS and
run it with default parameters of 40,000 queries to obtain a distortion estimate.

In Table 2 first row we show the clean test accuracy of all models on CIFAR10 class 0 vs. 1. The
convolutional networks LeNet and ResNet50 have higher accuracies since they have the advantage
of convolutions. In the following three rows of Table 2 we see the minimum adversarial distortion of
models as estimate by three boundary attack methods. We were unable to attack some models with
Boundary Attack and RayS due to time constraints and mark them as NA. We see that HopSkipJump
gives the lowest distortion for each model except for SCD01 and SCDCE where it is comparable to
RayS.

Amongst HopSkipJump distortions our sign activation trained models have the highest adversarial
distortion with the binary weights cross-entropy variant as the winner. All other neural networks
lag far behind and have distortion even lower than random forest. Even though BNN also has sign
activations its distortions are similar to MLP possibly due to its approximation of the sign activation
and gradient descent search. If we use the the straight through estimator and swish approximations
Darabi et al. (2018) the distortions remain similar to what we report here.

Table 2: Mean minimum L2 distortion of 10 random test images from CIFAR10 class 0 vs. 1 as
estimated by three different boundary attack methods. Highest distortion by HopSkipJump shown
in bold.

SCD01 SCDCE SCDCEBNN MLP BNN ResNet50 LeNet RF

Clean acc 87 88 88 90 83 98 96 88
HSJ 3.2 3.36 3.6 0.77 0.76 0.76 1.73 1.91
Boundary 7.69 8.23 NA 2.47 NA 3.44 7.29 6.63
RayS 3.14 3.08 NA 0.99 NA NA 2.54 6.77

To further validate the distortions above we run HopSkipJump on SCD01, MLP, LeNet, and RF
with 10 maximum iterations on the first 100 CIFAR10 test datapoints. We used a fixed image as
the initial one in these experiments. In Table 3 we see that SCD01 distortions are the highest and
the relative ranking is the same as we saw for the 10 images above with 100 maximum iterations of
HopSkipJump.

In Table 4 below we show HopSkipJump distortions (min of 10 runs 100 max iterations each) on a
single random image from CelebA, GTSRB, and ImageNet datasets. We find our SCD models to
have a higher distortion on both CelebA and GTSRB but comparable to MLP on ImageNet.

To illustrate our model’s scalability we show HopSkipJump distortion values for our SCD01 model
with different number of hidden nodes.
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Table 3: Mean minimum L2 distortion of first 100 test images from CIFAR10 class 0 vs. 1 as
estimated by HopSkipJump with 10 maximum iterations starting from fixed initial images. Highest
distortion in bold.

SCD01 MLP LeNet RF

HSJ 6.25 0.83 2.98 4.64

Table 4: Minimum L2 adversarial distortion of a single random test image from CelebA, GTSRB,
and ImageNet class 0 vs. 1. In bold are the largest distortion values for each dataset.

Celeba
SCD01 SCDCE SCDCEBNN MLP BNN ResNet50 LeNet RF

Image 0 8.77 8.6 14.13 1.02 .22 1.68 3.3 2.82
GTSRB

SCD01 SCDCE SCDCEBNN MLP BNN LeNet RF
Image 0 .6 .82 1.24 .62 .87 .33 .01

ImageNet
SCD01 SCDCE SCDCEBNN MLP BNN ResNet50 RF

Image 0 20.9 16.17 3.26 24.1 5.68 2.01 5.78

Table 5: Mean minimum L2 distortion of a single test image from CIFAR10 class 0 vs. 1 for
different number of hidden nodes in our SCD01 ensemble model. Highest distortion in bold.

SCD01

Hidden nodes 4 16 20 32 64
Distortion 2.22 1.98 2.21 2.27 3.45

3.2 TRANSFERABILITY WITHIN ENSEMBLES AND EFFECT OF ENSEMBLE SIZE

To understand the above phenomena we estimate the probability that an adversarial example target-
ing a single model in the ensemble will also be adversarial to other models in the ensemble. We can
estimate this by first performing a HopSkipJump attack on each model in the ensemble separately.
Let x′i be the adversary obtained by targeting model mi in the ensemble. Let ki be the number of
models in the ensemble that are also misclassified by the adversary x′i (thus transferable). We sum
ki for i = 0...n− 1 and divide by 9900 which is the maximum value of this sum (obtained when the
adversary attacks all models in the ensemble excluding the target of course).

We average this probability for Images 0 through 7 for each method. In Table 6 we see that this
probability is lowest for our models and highest for MLP and BNN. The fact that this probability
is very low for our models indicates that for several of the networks in our ensemble the adversary
targeting a fixed network does not transfer to other ones. The low transferability of our models
indicates that a greater distortion is required for an image to be adversarial.

Table 6: Estimated probability that an adversarial image targeting a single model in the ensemble
(of 100 models) will transfer to other models. Lowest probability in bold.

SCD01 SCDCE SCDCEBNN MLP BNN ResNet50 LeNet RF

Prob .006 .004 .002 .39 .2 .02 .01 .07

In fact as we see in Figure 1 the robustness of our models increases as we increase the ensemble size
to a much larger degree than ensembles of MLP and BNN, and than RF. We use ensemble sizes of
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100 in this study but the figure suggests that increasing our ensemble size is likely to further increase
robustness.

Figure 1: Minimum L2 image distortion as a function of ensemble size

3.3 SUBSTITUTE MODEL BLACK-BOX ATTACKS

Our model’s high distortion in CIFAR10 is reflected in substitute model black box attacks on this
dataset Papernot et al. (2016a). We train a two hidden layer neural network each with 200 nodes as
the substitute using the standard adversarial augmented algorithm Papernot et al. (2017) (described
fully in the Supplementary Material). In Figure 2 we that our models require a much higher dis-
tortion than their gradient descent trained equivalents MLP and BNN in order to reach zero percent
adversarial accuracy. We also see that all models attacked with random Gaussian noise of the same
distortion added to the test examples are barely affected thus showing the effectiveness of the black
box adversarial examples.

3.4 TEXT BLACK-BOX ATTACKS

The TextFooler Jin et al. (2020) method is designed to find syntactically and semantically similar
adversarial documents by replacing important words with similar ones until the document is mis-
classified. We apply this to all ensemble models on four document classification datasets: Internet
Movie Database (25K train, 25K test, mean words per document: 215) and Yelp (560K train, 38K
test, mean words per document: 152) positive and negative reviews (IMDB and Yelp), sentence
classification of positive and negative sentiments (9K train, 1K test, mean words per document:
20, denoted as MR), and sentence-level classification of news items in World and Sports categories
(120K train, 7.6K test, mean words per document: 43, denoted as AG) Jin et al. (2020).

WordCNN stacks word vectors Pennington et al. (2014) of each word in a document into a matrix to
treat it as 2D image Kim (2014). In the other models that take feature vectors as inputs we consider
the averaged word vector of all words in a document Lilleberg et al. (2015). For all models we
use 200 dimensional Glove word embeddings pre-trained on 6 billion tokens from Wikipedia and
Gigawords Pennington et al. (2014). This gives a lower clean test accuracy than WordCNN but still
above an acceptable level in practice.

In Table 7 we see that ensembles of our models give the highest adversarial accuracy on all four
datasets and require the greatest number of queries. If a smaller limit was placed on the allowed
queries (for example imposed by the system being attacked) we can expect a higher adversarial
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Figure 2: Accuracy of adversarial examples and test data with Gaussian noise (denoted as -GN
for each model) for various distortion thresholds on CIFAR10. The substitute model adversarial
examples are far more effective than random noise. At distortion 0.125 both MLP and BNN have
near 0% accuracy whereas SCD01 has 40%.

accuracy for our models. Here we show ensembles of 8 votes for each model. If we increase the
ensemble size to 100 we find the adversarial accuracy of our models, BNN, and RF slightly drop but
their relative difference remains the same.

Table 7: Accuracy of clean and TextFooler black-box adversarial examples denoted by Cl and Adv
respectively. All models shown here are 8 votes instead of 100 as we did for CIFAR10 images above.
Also shown are the number of queries made by the attacker denoted as Que. We round accuracies
and queries to the nearest integer. For each dataset highest adversarial accuracy shown in bold.

IMDB Yelp MR AG
Cl Adv Que Cl Adv Que Cl Adv Que Cl Adv Que

SCD01 82 51 3279 85 54 1908 74 14 186 99 93 672
SCDCE 84.8 52.4 3255 86 56.7 1903 75.8 16.7 189 99 94.5 687
CNN 89.2 0 524 94 1.1 492 78 2.8 123 96.5 49.1 258
MLP 85 0 686 87.3 . 2 500 75 2.3 123 99 51.4 366
BNN 83.8 21.5 2301 85 32.3 1622 73.2 5.8 150 99.1 75.6 564
RF 76.7 11 1823 77.7 7.5 935 68.1 2.1 115 96.7 72.2 532

3.5 ECG BLACK-BOX ATTACKS

ECG time-series data is increasingly being used in automatic diagnosis by machine learning systems
Ribeiro et al. (2020). Tailored adversarial attacks have recently been proposed Han et al. (2020);
Chen et al. (2020) but HopSkipJump can also be used to produce adversarial ECG examples. To
illustrate this and evaluate our model’s robustness on this data we consider the PTB Diagnostic
ECG dataset Bousseljot et al. (1995); Goldberger et al. (2000) available from this URL https:
//www.kaggle.com/shayanfazeli/heartbeat. We randomly split this dataset into an
80:20 train test split (yielding 13096 train and 1456 test points).
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We train 100-model ensembles of SCD01, SCDCE, and MLP. We also train an ensemble of 10
convolutional neural networks (CNN) with 1D convolutional kernels, random forest (RF) with 100
trees, and a 10-model ensemble of BNN (as opposed to a 100-model ensemble which is slow to
attack and did not show a better distortion on selected datapoints). Each of our CNNs has the
following structure: 64 1x16 Conv1D kernels → MaxPool 1x4 → 128 1x16 Conv1D kernels →
MaxPool 1x4 → 256 1x16 Conv1D kernels → MaxPool 1x2 → FullyConnected → Output. In
Table 8 we see the clean test accuracy of our model is slightly lower than gradient-descent trained
models and random forest. We picked 37 random datapoints from the test and attacked all models
on these points. We attack each point 10 times and report the minimum with the same parameters as
we did in our CIFAR10 attacks described above.

In Table 8 second row we show the average min L2 distortion and find SCD01 to have the high-
est one. The L2 difference between SCD01 and the next best RF (after SCDCE) turns out to be
statistically significant with a p-value of .008.

Table 8: Clean test accuracy and minimum L2 adversarial distortion on the PTB Diagnostic ECG
dataset. Highest distortion shown in bold.

SCD01 SCDCE MLP BNN CNN RF

Clean acc 91.1 93.3 96.1 80.4 99.6 97.6
Average min L2 distortion .19 .14 .08 .14 .1 .14

In Figure 3 we visualize an original ECG sample and its adversarial versions targeting SCD01,
CNN, and RF. The SCD01 adversary is rigid and has many more bumps compared to the CNN
and RF adversaries and is thus likely to be detected by an observer or a system that checks for
smoothness (that we expect to see as in the original sample).

Original ECG SCD01 adversary L2 = .35

CNN adversary L2 = .07 RF adversary L2 = .01

Figure 3: Original and adversarial ECG examples

3.6 DISCUSSION

Using ensembles of neural networks and promoting diverse ensembles has been previously proposed
as a defense against adversarial attacks. Studies using ensembles with different initializations (like
we do), bootstrapping, and Gaussian noise have shown robustness but only in the white box setting
Strauss et al. (2017) (which is somewhat unrealistic since it assumes the attacker has full knowledge
of the model and its parameters). Other studies combine the loss of all models in the classifier and
add a regularizer that promotes diversity.

For example we could try to maximize the angle between gradients of models in the ensemble
Kariyappa & Qureshi (2019) to make them misaligned. In their diversity training they use a Gaus-
sian noise augmented dataset which raises concerns about the effectiveness of their method since
augmentation alone has been shown to be effective in ensemble training Strauss et al. (2017). An-
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other study maximizes diversity between classes Pang et al. (2019) and thus does not apply to our
work here that focuses on binary classes only. Even for multiple classes their method is computation-
ally expensive as it uses a joint loss function. Other methods inject noise to models in the ensemble
Liu et al. (2018a) but their evaluation is only in the white box setting. Various measures for ensem-
ble diversity have been previously proposed for deep networks Liu et al. (2019) and evaluated in the
white-box setting.

We can apply all of the above diversity training methods to our ensemble of sign networks. Our
work, however, is not explicitly aimed at enhancing diversity. As we show it is naturally diverse
and we conjecture this is due to the non-convexity of sign activation and our randomized training
method. Even sigmoid activation networks have a non-convex search space but we can imagine that
sign activation gives a greater degree of freedom. This can easily be seen in the case of a linear
classifier with logistic or hinge loss vs. 01 loss Xue et al. (2020b).

Our model accuracy is not the same as convolutional networks understandably due to lack of convo-
lutions in our networks. But they are close to sigmoid activated networks and random forests, and
better than binary neural networks in most cases. It is possible to extend our training procedure to al-
low for convolutions and this may increase accuracy making our model comparable to convolutional
networks and much more robust.

It is hard to make a general claim of robustness with only 100 images from CIFAR10. We would
need to show more images from CIFAR10 and other image benchmarks as well but our preliminary
experiments on CelebA, GTSRB and ImageNet (shown in Table 4) suggest higher distortion on
other image data as well. Due to computational limitations we are unable to show more image data
here but instead we take another route to show generality of our results. We show that our model
is robust even to text classification black box attacks and on ECG data attacks. Both of these are
outside the domain of images and our model’s robustness there suggests a greater generalization.
Future work entails extending our training to sign activated convolutions and multi-class networks.

3.7 CONCLUSION

We show that our ensemble of gradient-free sign activation networks are harder to attack than en-
sembles of several other networks and random forests on images, text, and medical data.
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