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Abstract. The current GAN inversion methods typically can only edit
the appearance and shape of a single object and background while over-
looking spatial information. In this work, we propose a 3D editing frame-
work, 3D-GOI to enable multifaceted editing of affine information (scale,
translation, and rotation) on multiple objects. 3D-GOI realizes the com-
plex editing function by inverting the abundance of attribute codes (ob-
ject shape/ appearance/ scale/ rotation/ translation, background shape/
appearance, and camera pose) controlled by GIRAFFE, a renowned 3D
GAN. Accurately inverting all the codes is challenging, 3D-GOI solves
this challenge following three main steps. First, we segment the ob-
jects and the background in a multi-object image. Second, we use a
custom Neural Inversion Encoder to obtain coarse codes of each ob-
ject. Finally, we use a round-robin optimization algorithm to get pre-
cise codes to reconstruct the image. To the best of our knowledge, 3D-
GOI is the first framework to enable multifaceted editing on multi-
ple objects. Both qualitative and quantitative experiments demonstrate
that 3D-GOI holds immense potential for flexible, multifaceted editing
in complex multi-object scenes. Our project and code are released at
https://3d-goi.github.io.

1 Introduction

The development of generative 3D models has attracted increasing attention to
automatic 3D objects and scene generation and edition. Most existing works are
limited to a single object, such as 3D face generation [7] and synthesis of facial
viewpoints [41]. There are few methods for generating multi-object 3D scenes
while editing such scenes remains unexplored. In this paper, we propose 3D-
GOI to edit images containing multiple objects with complex spatial geometric
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Fig. 1: The first row shows the editing results of traditional 2D/3D GAN inversion
methods on multi-object images. The second row showcases 3D-GOI, which can per-
form multifaceted editing on complex images with multiple objects. ’bg’ stands for
background. The red crosses in the upper right figures indicate features that cannot be
edited with current 2D/3D GAN inversion methods.

relationships. 3D-GOI not only can change the appearance and shape of each
object and the background, but also can edit the spatial position of each object
and the camera pose of the image as shown by Figure 1.

Existing 3D multi-object scene generation methods can be mainly classified
into two categories: those based on Generative Adversarial Networks (GANs) [10]
and those [22] based on diffusion models [13], besides a few based on VAE or
Transformer [3,39]. GAN-based methods, primarily represented by GIRAFFE [28]
and its derivatives, depict complex scene images as results of multiple foreground
objects, controlled by shape and appearance, subjected to affine transformations
(scaling, translation, and rotation), and rendered together with a background,
which is also controlled by shape and appearance, from a specific camera view-
point. Diffusion-based methods [23] perceive scene images as results of multi-
ple latent NeRF [24], which can be represented as 3D models, undergoing affine
transformations, optimized with SDS [30], rendered from a specific camera view-
point. Both categories represent scenes as combinations of multiple codes. To
realize editing based on these generative methods, it’s imperative to invert the
complex multi-object scene images to retrieve their representative codes. After
modifying these codes, regeneration can achieve diversified editing of complex
images. Most inversion methods study the inversion of a single code based on
its generation method. However, each multi-object image is the entangled re-
sult of multiple codes, thus inverting all codes from an image requires precise
disentangling of the codes, which is extremely difficult and largely overlooked.
Moreover, the prevailing inversion algorithms primarily employ optimization ap-
proaches. Attempting to optimize all codes simultaneously often leads to chaotic
optimization directions and less accurate inversion outcomes.

Therefore, we propose 3D-GOI, a framework capable of inverting multiple
codes to achieve a comprehensive inversion of multi-object images. Given cur-
rent open-source 3D multi-object scene generation methods, we have chosen GI-
RAFFE [28] as our generative model. In theory, our framework can be applied
to other generative approaches as well. We address these challenges as follows.
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First, we categorize different codes based on object attributes, background
attributes, and pose attributes. Through qualitative verification, we found that
segmentation methods can roughly separate the codes pertaining to different
objects. For example, the codes controlling an object’s shape, appearance, scale,
translation, and rotation predominantly relate to the object itself. So, during
the inversion process, we only use the segmented image of this object to reduce
the impact of the background and other objects on its codes.

Second, we get the attributes’ codes from the segmented image. Inspired by
the Neural Rendering Block in GIRAFFE, we design a custom Neural Inversion
Encoder network to coarsely disentangle and estimate the code values.

Finally, we obtain precise values for each code through optimization. We
observed that optimizing all codes simultaneously tends to get stuck in local
minima. Therefore, we propose a round-robin optimization algorithm that em-
ploys a ranking function to determine the optimization order for different codes.
The algorithm enables a stable and efficient optimization process for accurate
image reconstruction. Our contributions can be summarized as follows.

– To our best knowledge, 3D-GOI is the first multi-code inversion framework
in generative models, achieving multifaceted editing of multi-object images.

– We introduce a three-stage inversion process: 1) separate the attribute codes
of different objects via segmentation; 2) obtain coarse codes using a custom
Neural Inversion Encoder; 3) optimize the reconstruction using a round-robin
optimization strategy.

– Our method outperforms existing methods on both 3D and 2D tasks.

2 Related Work

2D/3D GANs. 2D GAN maps a distribution from the latent space to the im-
age space using a generator and a discriminator and has been widely explored.
For example, BigGAN [6] increases the batch size and uses a simple truncation
trick to finely control the trade-off between sample fidelity and variety. Cycle-
GAN [45] feeds an input image into the generator and loops the output back
to the generator. It achieves style transfer by minimizing the consistency loss
between the input and its result. StyleGAN [17] maps a latent code into multi-
ple style codes, allowing for detailed style control of images. 3D GANs usually
combine 2D GANs with some 3D representation, such as NeRF [25], and have
demonstrated excellent abilities to generate complex scenes with multi-view con-
sistency. Broadly, 3D GANs can be classified into explicit and implicit models.
Explicit models like HoloGAN [26] enable explicit control over the object pose
through rigid body transformations of the learned 3D features. BlockGAN [27]
generates foreground and background 3D features separately, combining them
into a complete 3D scene representation. On the other hand, implicit models gen-
erally perform better. Many of these models take inspiration from NeRF [25],
representing images as neural radiance fields and using volume rendering to gen-
erate photorealistic images in a continuous view. EG3D [7] introduces an explicit-
implicit hybrid network architecture that produces high-quality 3D geometries.
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(a) 2D GANs (b) 3D GANs (c) GIRAFFE

Fig. 2: Different GANs and GAN Inversion methods utilize codes differently.ω repre-
sents the latent code and c represents the camera pose.

GRAF [34] integrates shape and appearance coding within the generation pro-
cess, which facilitates independent manipulation of the shape and appearance
of the generated vehicle and furniture images. Moreover, the presence of 3D
information provides additional control over the camera pose, contributing to
the flexibility of the generated outputs. GIRAFFE [28] extends GRAF to multi-
object scenes by considering an image as the composition of multiple objects in
the foreground through affine transformation and the background rendered at
a specific camera viewpoint. In this work, we select GIRAFFE as the 3D GAN
model to be inverted.

2D/3D GAN Inversion. GAN inversion obtains the latent code of an input
image under a certain generator and modifies the latent code to perform im-
age editing operations. Current 2D GAN inversion methods can be divided into
optimization-based, encoder-based, and hybrid methods. Optimization-based meth-
ods [1, 14, 44] directly optimize the initial code, requiring very accurate initial
values. Encoder-based methods [29,31,37] can map images directly to latent code
but generally cannot achieve full reconstruction. Hybrid-based methods [4, 43]
combine these two approaches: first employ an encoder to map the image to a
suitable latent code, then perform optimization. Currently, most 2D GANs only
have one latent code to generate an image 5. Therefore, the 2D GAN inversion
task can be represented as:

ω∗ = argmin
ω

L(G(ω, θ), I), (1)

where ω is the latent component, G denotes the generator, θ denotes the param-
eters of the generator, I is the input image, and L is the loss function measuring
the difference between the generated and input image.

Typically, 3D GANs have an additional camera pose parameter compared
to 2D GANs, making it more challenging to obtain latent codes during inver-
sion. Current methods like SPI [41] use a symmetric prior for faces to generate
images with different perspectives, while [19] employs a pre-trained estimator
to achieve better initialization and utilizes pixel-level depth calculated from the
NeRF parameters for improved image reconstruction.

Currently, there are only limited works on 3D GAN inversion [9,21,38] which
primarily focus on creating novel perspectives of human faces using specialized
5 Although StyleGAN can be controlled by multiple style codes, these codes are all generated from

a single initial latent code, indicating their interrelations. Hence only one encoder is needed to
predict all the codes during inversion.
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face datasets considering generally only two codes: camera pose code and the
latent code. Hence its inversion task can be represented as:

ω∗, c∗ = argmin
ω,c

L(G(ω, c, θ), I). (2)

A major advancement of 3D-GOI is the capability to invert more independent
codes compared with other inversion methods, as Figure 2 shows, in order to
perform multifaceted edits on multi-object images.

3 Preliminary

GIRAFFE [28] represents individual objects as a combination of feature field
and volume density. Through scene compositions, the feature fields of multiple
objects and the background are combined. Finally, the combined feature field is
rendered into an image using volume rendering and neural rendering.

For a coordinate x and a viewing direction d in scene space, the affine trans-
formation T (s, t, r) (scale, translation, rotation) is used to transform them back
into the object space of each individual object. Following the implicit shape
representations used in NeRF, a multi-layer perceptron (MLP) hθ is used to
map the transformed x and d, along with the shape-controlling code zs and
appearance-controlling code za, to the feature field f and volume density σ:

(T (s, t, r;x)), T (s, t, r;d)), zs, za)
hθ−→ (σ,f). (3)

Then, GIRAFFE defines a Scene Composite Operator: at a given x and d, the
overall density is the sum of the individual densities (including the background).
The overall feature field is represented as the density-weighted average of the
feature field of each object:

C(x,d) = (σ,
1

σ

N∑
i=1

σifi), where σ =

N∑
i=1

σi, (4)

where N denotes the background plus (N-1) objects.
The rendering phase is divided into two stages. Similar to volume rendering

in NeRF, given a pixel point, the rendering formula is used to calculate the
feature field of this pixel point from the feature fields and the volume density
of all sample points in a camera ray direction. After calculating all pixel points,
a feature map is obtained. Neural rendering (Upsampling) is then applied to
get the rendered image. Please refer to the Supplementary Material 1 for the
detailed preliminary and formulas.

4 3D-GOI

4.1 Problem Definition

The problem we target is similar to the general definition of GAN inversion, with
the difference being that we need to invert many more codes than existing meth-
ods (1 or 2) shown in Figure 2. The parameter W in GIRAFFE, which controls
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Fig. 3: The overall framework of 3D-GOI. As shown in the upper half, the encoders are
trained on single-object scenes, each time using Lenc to predict one w,w ∈ W , while
other codes use real values. The lower half depicts the inversion process for the multi-
object scene. We first decompose objects and background from the scene, then use the
trained encoder to extract coarse codes, and finally use the round-robin optimization
algorithm to obtain precise codes. The green blocks indicate required training and the
yellow blocks indicate fixed parameters.

the generation, can be divided into object attributes, background attributes, and
pose attributes, denoted by O, B, and C. Then, W can be expressed as follows:

W = {Oshape
i ,Oapp

i ,Os
i ,O

t
i ,O

r
i ,B

shape ,Bapp ,C}, i = 1, ..., n, (5)

where Oshape
i is the object shape latent code, Oapp

i is the object appearance
latent code, Os

i is the object scale code, O t
i is the object translation code, Or

i

is the object rotation code, B shape is the background shape latent code, Bapp

is the background appearance latent code and C is the camera pose matrix. n
denotes the n objects. The reconstruction part can be expressed as:

W ∗ = argmin
W

L(G(W, θ), I). (6)

According to Equation 5, we need to invert a total of (5n+ 3) codes. Then,
we are able to replace or interpolate any inverted code(s) to achieve multifaceted
editing of multiple objects.

4.2 Scene Decomposition

As mentioned, the GIRAFFE generator differs from typical GAN generators in
that a large number of codes are involved and not a single code controls all the
generated parts. Therefore, it is challenging to transform all codes using just one
encoder or optimizer as in typical GAN Inversion methods. While a human can
easily distinguish each object and some of its features (appearance, shape), a
machine algorithm requires a large number of high-precision annotated samples
to understand what code is expressed at what position in the image.
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(a) Input (b) Car A (c) Car B (d) Background

Fig. 4: Scene decomposition. (a) The input image. (b) The feature weight map of car A,
where the redder regions indicate a higher opacity and the bluer regions lower opacity.
(c) The feature weight map of car B. (d) The feature weight map of the background.
By integrating these maps, it becomes apparent that the region corresponding to car A
predominantly consists of the feature representation of cars A and B. The background’s
visible area solely contains the background’s feature representation.

A straightforward idea is that the attribute codes of an object will map to
the corresponding position of the object in the image. For example, translation
(O t) and rotation (Or ) codes control the relative position of an object in the
scene, scaling (Os) and shape (Oshape) codes determine the contour and shape of
the object, and appearance (Oapp) codes control the appearance representation
at the position of the object. The image obtained from segmentation precisely
encompasses these three types of information, allowing us to invert it and ob-
tain the five attribute codes for the corresponding object. Similarly, for codes
(B shape ,Bapp) that generate the background, we can invert them using the seg-
mented image of the background. Note that obtaining C requires information
from the entire rendered image.

We can qualitatively validate this idea. In Equation 3, we can see that an
object’s five attribute codes are mapped to the object’s feature field and volume
density through hθ. As inferred from Equation 4, the scene’s feature field is syn-
thesized by weighting the feature fields of each object by density. Therefore, an
object appears at its position because its feature field has a high-density weight
at the corresponding location. Figure 4 displays the density of different objects
at different positions during GIRAFFE’s feature field composition process. The
redder the higher the density, while the bluer the lower the density. As discussed,
car A exhibits a high-density value within its area and near-zero density else-
where - a similar pattern is seen with car B. The background, however, presents
a non-uniform density distribution across the scene. we can consider that both
car A and B and the background mainly manifest their feature fields within their
visible areas. Hence, we apply a straightforward segmentation method to sepa-
rate each object’s feature field and get the codes. Segmenting each object also
allows our encoder to pay more attention to each input object or background.
As such, we can train the encoder on single-object scenes and then generalize
it to multi-object scenes instead of directly training in multi-object scenes that
involve more codes, to reduce computation cost.
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(a) Neural Rendering Block (b) Neural Inversion Encoder

Fig. 5: Neural Inversion Encoder. (a) The Neural Rendering Block in GIRAFFE [28],
an upsampling process to generate image Î. (b) The Neural Inversion Encoder opposes
(a), which is a downsampling process. I is the input image, H,W are image height
and width. Iv is the heatmap of the image, Hv,Wv and Mf are the dimensions of
Iv, w is the code to be predicted, and wf is the dimension of w. Up/Down means
upsampling/downsampling.

4.3 Coarse Estimation

The previous segmentation step roughly disentangles the codes. Unlike typical
encoder-based methods, it’s difficult to predict all codes using just one encoder.
Therefore, we assign an encoder to each code, allowing each encoder to focus
solely on predicting one code. Hence, we need a total of eight encoders. As
shown in Figure 3, we input the object segmentation for the object attribute
codes (Oshape ,Oapp ,Os ,O t ,Or ), the background segmentation for the back-
ground attribute codes (B shape ,Bapp), and the original image for pose attribute
code (C ). Different objects share the same encoder for the same attribute code.

We allocate an encoder called Neural Inversion Encoder with a similar struc-
ture to each code. Neural Inversion Encoder consists of three parts as Figure 5(b)
shows. The first part employs a standard feature pyramid over a ResNet [12]
backbone like in pSp [31] to extract the image features. The second part, in
which we designed a structure opposite to GIRAFFE’s Neural rendering Block
based on its architecture as Figure 5(a) shows, downsamples the images layer
by layer using a CNN and then uses skip connections [12] to combine the layers,
yielding a one-dimensional feature. The third layer employs an MLP structure
to acquire the corresponding dimension of different codes.

Training multiple encoders simultaneously is difficult to converge due to the
large number of parameters. Hence, we use the dataset generated by GIRAFFE
to retain the true values of each code and train an encoder for one code at a time,
to keep the other codes at their true values, greatly smoothing the training.

During encoder training, we use the Mean Squared Error (MSE) loss, per-
ceptual loss (LPIPS) [42], and identity loss (ID) [11] between the reconstructed
image and the original image, to be consistent with most 2D and 3D GAN inver-
sion training methodologies. When training the affine codes (scale s, translation
t, rotation r), we find that different combinations of values produce very similar
images, e.g., moving an object forward and increasing its scale yield similar re-
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Algorithm 1: Round-robin Optimization
Data: all codes w ∈ W predicted by encoders, fixed GIRAFFE generator G,

input image I;
1 Initialize lr_w = 10−3, w ∈ W ;
2 while any lr_w > 10−5 do
3 foreach w ∈ W do
4 Sample δw;
5 Compute δL(w) using Eq. 8;
6 end
7 Compute rank_list using Eq. 9;
8 foreach w ∈ rank_list and lr_w > 10−5 do
9 Optimization w with Lopt in Eq. 10 of I and G(W ; θ);

10 if the Lopt ceases to decrease for five consecutive iterations then
11 lr_w = lr_w/2;
12 end
13 end
14 end

sults. However, the encoder can only predict one value at a time, hence we add
the MSE loss of the predicted s,t,r values, and their true values, to compel the
encoder to predict the true value.

Lenc = λ1L2 + λ2Llpips + λ3Lid, (7)

where λi, i = 1, 2, 3 represent the ratio coefficient between various losses. When
training Os ,O t ,Or code, the L2 loss includes the MSE loss between the real
values of Os ,O t ,Or and their predicted values.

4.4 Precise Optimization

Pre-trained segmentation models have some segmentation errors and all encoder-
based GAN inversion networks [31,35,36] usually cannot accurately obtain codes,
necessitating refinements. Next, we optimize the coarse codes. Through experi-
ments, we have found that using a single optimizer to optimize all latent codes
tends to converge to local minima. Hence, we employ multiple optimizers, each
handling a single code. The optimization order is crucial due to the variance of
the disparity between the predicted and actual values across different encoders,
and the different impact of code changes on the image, e.g., changes to B shape

and Bapp codes controlling background generation mostly would have a larger
impact on overall pixel values. Prioritizing the optimization of codes with sig-
nificant disparity and a high potential for changing pixel values tends to yield
superior results in our experiments. Hence, we propose an automated round-
robin optimization algorithm (Algorithm 1) to sequentially optimize each code
based on the image reconstructed in each round.

Algorithm 1 aims to add multiple minor disturbances to each code, and calcu-
late the loss between the images reconstructed before and after the disturbance
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and the original image. A loss increase indicates that the current code value
is relatively accurate, hence its optimization order can be postponed, and vice
versa. For multiple codes that demand prioritized optimization, we compute their
priorities using the partial derivatives of the loss variation and perturbation. We
do not use backpropagation automatic differentiation here to ensure the current
code value remains unchanged.

δL(w) = L(G(W − {w}, w + δw, θ), I)− L(G(W, θ), I), (8)

rank_list = Frank(δL(w),
δL(w)
δw

), (9)

where w ∈ W is one of the codes and δw represents the minor disturbance of w.
For the rotation angle r, we have found that adding a depth loss can accelerate
its optimization. Thus, the loss L during optimization can be expressed as:

Lopt = λ1L2 + λ2Llpips + λ3Lid + λ4Ldeep. (10)

This optimization method allows for more precise tuning of the codes for
more accurate reconstruction and editing of the images.

5 Implementation

Neural Inversion Encoder. The first part of our encoder uses ResNet50 to
extract features. In the second part, we downsample the extracted features (512-
dimensional) and the input RGB image (3-dimensional) together. The two fea-
tures are added together through skip connections, as shown in Figure 3. In the
downsampling module, we use a 2D convolution with a kernel of 3 and a stride
of 1, and the LeakyReLU activation function, to obtain a 256-dimensional inter-
mediate feature. For object shape/appearance attributes, the output dimension
is 256, and we use four Fully Connected Layers {4× FCL(256, 256)} to get the
codes. For background shape/appearance attributes, the output dimension is
128, we use {FCL(256, 128) + 3× FCL(128, 128)} to get the codes. For object
scale/translation attributes, the output dimension is 3, and we use the network
{FCL(2i, 2i−1) + FCL(8, 3), i = 8, .., 4} to get the codes. For camera pose and
rotation attributes, the output dimension is 1, and we use a similar network
{FCL(2i, 2i−1) + FCL(8, 1), i = 8, .., 4} to get the codes.

Training and Optimization are carried out on a single NVIDIA A100 SXM
GPU with 40GB of memory, using the Adam optimizer. The initial learning rate
is set to 10−4 and 10−3, respectively. Encoder training employs a batch size of
50. Each encoder took about 12 hours to train, and optimizing a single image
of a complex multi-object scene took about 1 minute. For rotation features,
it is difficult for the encoder to make accurate predictions for some images.
Therefore, we uniformly sampled 20 values in the range of [0, 360°] for the



3D-GOI 11

rotation parameters with large deviations. We selected the value that minimizes
the loss in Equation 7 as the initial value for the optimization stage.

For LPIPS loss, we employ a pre-trained AlexNet [20]. For ID calculation, we
employ a pre-trained Arcface [8] model in human face datasets and a pre-trained
ResNet-50 [33] model in the car dataset. For depth loss, we use the pre-trained
Dense Prediction Transformer model. We set λ1 = 1, λ2 = 0.8, and λ3 = 0.2 in
Equation 7, as well as in Equation 10, in which λ4 = 1.

6 Experiment

Datasets. To obtain the true values of the 3D information in GIRAFFE for
stable training performance, we use the pre-trained model of GIRAFFE on
CompCars [40] and Clevr [15] dataset to generate training datasets. For test-
ing datasets, we also use GIRAFFE to generate images for multi-car datasets
denoted as G-CompCars (CompCars is a single car image dataset) and use the
original Clevr dataset for multi-geometry dataset (Clevr is a dataset that can
be simulated to generate images of multiple geometries). We follow the codes
setup in GIRAFFE. For CompCars, we use all the codes from Equation 5. For
Clevr, we fixed the rotation, scale, and camera pose codes of the objects. For
experiments on facial data, we utilized the FFHQ [17] dataset for training and
the CelebA-HQ [16] dataset for testing.

(a) Input, Co-R, Pre-R (b) Edit Shape (c) Edit Appearance (d) Edit Bg Shape

(e) Edit Bg Appearance (f) Edit Scale (g) Edit Translation (h) Edit Rotation

Fig. 6: Single-object editing on G-CompCars dataset. Co-R: coarse reconstruction.
Pre-R: precise reconstruction.

(a) Input, Co-R, Pre-R (b) Edit Appearance (c) Edit Translation (d) Add Object

Fig. 7: Single-object editing on Clevr dataset.

Baselines. In the comparative experiments for our Neural Inversion Encoder,
we benchmarked encoder-based inversion methods such as e4e [35] and pSp [31],
which use the 2D GAN StyleGAN2 [18] as the generator, and E3DGE [21] and
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(a) Input, Co-R, Pre-R (b) Edit Shape (c) Edit Appearance (d) Edit Bg Shape

(e) Edit Bg Appearance (f) Edit Scale (g) Edit Translation (h) Edit Rotation

Fig. 8: Multi-object editing on G-CompCars dataset.

(a) Input, Co-R, Pre-R (b) Edit Appearance (c) Edit Translation (d) Add/Remove Objects

Fig. 9: Multi-object editing on Clevr dataset.

TriplaneNet [5] that employ the 3D GAN EG3D [7] as the generator, on the
generator of GIRAFFE. Additionally, we compared our encoder on StyleGAN2
with SOTA inversion methods HyperStyle [2] and HFGI [36] for StyleGAN2.
Metrics. We use Mean Squared Error (MSE), perceptual similarity loss (LPIPS)
[42], and identity similarity (ID) to measure the quality of image reconstruction.

6.1 3D GAN Omni-Inversion

Single-object Multifaceted Editing. In Figure 6 and Figure 7, (a) depict
the original images, the coarsely reconstructed images produced by the Neural
Inversion Encoder, and the precisely reconstructed images obtained via round-
robin optimization. As Figure 7 shows, the simple scene structure of the Clevr
dataset allows us to achieve remarkably accurate results using only the encoder
(Co-Recon). However, for car images in Figure 6, predicting precise codes us-
ing the encoder only becomes challenging, necessitating the employment of the
round-robin optimization algorithm to refine the code values for precise recon-
struction (Pre-Recon). Figure 6 (b)-(h) and Figure 7 (b)-(d) show the editing
results for different codes. As noted in Section 4.3, moving an object forward
and increasing its scale yield similar results. Please refer to the Supplementary
Material 3.1 for more results like camera pose and shape editing.

Multi-object Multifaceted Editing. We notice that the prediction for some
object parameters (Oshape ,Oapp ,Os ,O t) are quite accurate. However, the pre-
diction for the background codes deviates significantly. We speculate this is due
to the significant differences in segmentation image input to the background
encoder between multi-object scenes and single-object scenes. Therefore, back-
ground reconstruction requires further optimization. Figure 8 and Figure 9 de-
pict the multifaceted editing outcomes for two cars and multiple Clevr objects,
respectively. The images show individual edits of two objects in the left and mid-
dle images and collective edits at the right images in Figure 8 (b-c) and (f-h).
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(a) Reconstruction results of different GAN
inversion encoders using the generator of GI-
RAFFE.

(b) Reconstruction results of different GAN in-
version encoders using the generator of Style-
GAN2.

Fig. 10: Reconstruction quality of different GAN inversion encoders.

As shown in Figure 8, the predictive discrepancy between the car’s background
and rotation angle on the left is considerable, requiring adjustments through
the round-robin optimization. As illustrated in Figure 1, 2D/3D GAN inver-
sion methods can not inverse multi-object scenes. More images pertaining to
multi-object editing can be found in Supplementary Material 3.2.

6.2 Comparison Experiment of Neural Inversion Encoder

For fair comparison and to eliminate the impact of the generator on the qual-
ity of the inverted image generation, we trained the encoders from the baseline
methods by connecting them to the GIRAFFE generator using our Neural Inver-
sion Encoder training approach and compared them with our Neural Inversion
Encoder. At the same time, we also connected our encoder to StyleGAN2 and
compared it with inversion methods based on StyleGAN2, thereby demonstrat-
ing the efficiency of our encoder design. Table 1 and Figure 10 quantitatively
and qualitatively displays the comparison results on both the GIRAFFE and
StyleGAN2 generators respectively. The results show that our Neural Inversion
Encoder consistently outperforms baseline methods.

6.3 Ablation Study

We conducted ablation experiments separately for the proposed Neural Inver-
sion Encoder and the Round-robin Optimization algorithm. Table 2 displays the
average ablation results of the Neural Inversion Encoder on various attribute
codes, where NIB refers to Neural Inversion Block (the second part of the en-
coder) and MLP is the final part of the encoder. The results clearly show that
our encoder structure is extremely effective and can predict code values more
accurately. Please find the complete results in the Supplementary Material.

For the Round-robin optimization algorithm, we compared it with three fixed
optimization order algorithms on both single-object and multi-object scenarios.
The three fixed sequences are as follows:

Order1 : B shape ,Bapp , {Or
i ,O

t
i ,O

s
i }Ni=1, {O

shape
i ,Oapp

i }Ni=1,C
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Table 1: Reconstruction quality of different GAN inversion encoders using the gener-
ator of GIRAFFE and StyleGAN2. ↓ indicates the lower the better and ↑ indicates the
higher the better.

Method GIRAFFE for Generator StyleGAN2 for Generator
MSE ↓ LPIPS ↓ ID↑ MSE ↓ LPIPS ↓ ID↑

e4e [35] 0.031 0.306 0.867 0.052 0.200 0.502
pSp [31] 0.031 0.301 0.877 0.034 0.172 0.561

HyperStyle [2] - - - 0.019 0.091 0.766
HFGI [36] - - - 0.023 0.124 0.705

TriplaneNet [5] 0.029 0.296 0.870 - - -
E3DGE [21] 0.031 0.299 0.881 - - -

3D-GOI(Ours) 0.024 0.262 0.897 0.017 0.098 0.769

Table 2: Ablation Study of the Neu-
ral Inversion Encoder.

Method MSE ↓ LPIPS↓ ID ↑
w/o NIB 0.023 0.288 0.856
w/o MLP 0.015 0.183 0.878
3D-GOI 0.010 0.141 0.906

Table 3: The quantitative metrics
of ablation study of the Round-robin
Optimization algorithm.

Method MSE ↓ LPIPS ↓ ID↑
Order1 0.016 0.184 0.923
Order2 0.019 0.229 0.913
Order3 0.019 0.221 0.911
3D-GOI 0.008 0.128 0.938

Order2 : {Or
i ,O

t
i ,O

s
i }Ni=1, {O

shape
i ,Oapp

i }Ni=1,B
shape ,Bapp ,C

Order3 : C , {Oshape
i ,Oapp

i }Ni=1, {Or
i ,O

t
i ,O

s
i }Ni=1,B

shape ,Bapp

{}Ni=1 indicates that the elements inside {} are arranged in sequence from 1
to N. There are many possible sequence combinations, and here we chose the
three with the best results for demonstration. As Table 3 shows, our method
achieves the best results on all metrics, demonstrating the effectiveness of our
Round-robin optimization algorithm. As mentioned in Section 4.4, optimizing
features like the background first can enhance the optimization. Hence, Order1
performs much better than Order2 and Order3. Please see the Supplementary
Material 3.5 for qualitative comparisons of these four methods on images.

7 Conclusion

This paper introduces a 3D GAN inversion method, 3D-GOI, that enables mul-
tifaceted editing of scenes containing multiple objects. By using a segmentation
approach to separate objects and background, then carrying out a coarse esti-
mation followed by a precise optimization, 3D-GOI can accurately obtain the
codes of the image. These codes are then used for multifaceted editing. To the
best of our knowledge, 3D-GOI is the first method to attempt multi-object &
multifaceted editing. We anticipate that 3D-GOI holds immense potential for
future applications in fields such as VR/AR, and the Metaverse.
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Supplementary Material

8 Preliminary

NeRF [25] is a recently rising approach for 3D reconstruction tasks that em-
ploys a neural radiance field to represent a scene. It allows for mapping high-
dimensional positional codes from any viewing direction d and spatial coordi-
nates x to color c and opacity values σ and then synthesizes images correspond-
ing to the specified view using a volume rendering equation. We use Equation 11
to succinctly describe this process:

(γ(x), γ(d))
fθ−→ (σ, c)

RLx × RLd
fθ−→ R+ × R3

(11)

where γ represents the positional encoding function utilized to incorporate high-
dimensional information into x and d and obtained the output γ(x), γ(d) of
dimension Lx, Ld, respectively. γ is typically represented using trigonometric
functions, such as γ(t, L) = (sin(20tπ), cos(20tπ), ..., sin(2L−1tπ), cos(2L−1tπ)).
θ represents the parameters of the mapping function f .

Equation 12 delineates the volume rendering formula that predicts color C(r)
for a camera ray r(t) = o+ td within the near and far bounds tn and tf . Here,
T (t) signifies the cumulative transmittance along the ray from tn to t.

C(r) =
∫ tf

tn

T (t)σ(r(t))c(r(t), d)dt,

where T (t) = exp(−
∫ t

tn

σ(r(s))ds)

(12)

GRAF [34] is a generative neural radiance field adding additional latent
codes like object shape zs and appearance za to NeRF, allowing control not
only the shape and appearance of the object but also the camera pose of the
image. zs, za ∼ N (0, I) and the mapping function gθ of the radiance field of
GRAF can be expressed as follows:

(γ(x), γ(d), zs, za)
gθ−→ (σ, c)

RLx × RLd × RMs × RMa
gθ−→ R+ × R3,

(13)

where Ms and Ma are the dimensions of zs and za, respectively. GRAF renders
images using a volume rendering formula similar to that of NeRF.

GIRAFFE [28] perceives an image scene as a composition of the background
and multiple foreground objects, each subjected to affine transformations. Each
object can be manipulated and placed at a specific location k(x) in the image
through operations of scaling S, translation t, and rotation R:

k(x) = R · S · x+ t, (14)
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where x is the spatial coordinate in the object space.
To better compose scenes, GIRAFFE replaces the three-dimensional color

output in GRAF’s Equation 13 with a high-dimensional feature field. GIRAFFE
renders in scene space and evaluates the feature field in the object space. Hence,
the mapping function of radiance field hθ of GIRAFFE in object space can be
expressed as follows:

(γ(k−1(x)), γ(k−1(d)), zs, za)
hθ−→ (σ,f)

RLx × RLd × RMs × RMa
hθ−→ R+ × RMf ,

(15)

where k−1 is the inverse function of k, Mf is the dimension of the feature field
f .

In the construction of multi-object scenes, GIRAFFE employs a compositing
operation C to merge the feature fields of multiple objects and the background
together. The features at (x,d) can be expressed as:

C(x,d) = (σ,
1

σ

N∑
i=1

σifi), where σ =

N∑
i=1

σi, (16)

where N is the number of objects plus one (the background), σi and fi represent
the density value and feature field of the i− th object (or the background).

The rendering process of GIRAFFE can be divided into two stages. In the
first stage, feature fields are used instead of color for volume rendering like in
NeRF to get a low-resolution feature map:

f =

Ns∑
i=1

τjαjfj , τj =

j−1∏
k=1

(1− αk), αj = 1− e−σjδj , (17)

where αj is the alpha value of the coordinates xj , τj represents the transmit-
tance, and δj = ||xj+1 − xj ||2 is the distance between the neighboring sam-
pled points xj+1 and xj . The second stage is called neural rendering, which
transforms low-resolution feature maps into high-resolution images through an
upsampling network.

9 Implementation

The round-robin optimization algorithm works well when the discrepancy be-
tween the coarse estimation of the Neural Inversion Encoder and the actual
results is not too large. This is because in the presence of a slight perturbation
in the codes, an increase in the loss of Equation 8 in the paper doesn’t necessar-
ily conclude that the code has reached its true value. Otherwise, if the encoder
cannot make a rough prediction of the code, or if one wishes to forgo using
the encoder and rely solely on the optimization method, we offer a program for
manually selecting the current optimization code interactively. This allows the
image to be manually optimized to a certain degree of difference from the orig-
inal image before using the round-robin optimization algorithm for automatic
optimization.
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Table 4: Architecture comparison for different GAN inversion methods. SG2 indicates
StyleGAN2. “2D/3D” indicates whether 2D or 3D editing is possible. “object” indicates
whether the method can edit a single object or multiple objects. “code” indicates the
number of codes that the method can invert.

Method Generator 2D/3D Object Code
e4e [35] SG2 2D single 1
pSp [31] SG2 2D single 1
PTI [32] SG2 2D single 1

HyperStyle [2] SG2 2D single 1
HFGI [36] SG2 2D single 1

TriPlaneNet [5] EG3D 3D single 2
E3DGE [21] EG3D 3D single 2

SPI [41] EG3D 3D single 2
3D-GOI GIRAFFE 2D/3D single/multi 5n+3

10 Additional Results

Baselines. We added another 2D GAN inversion method PTI [32] based on
StyleGAN2 [18], and a 3D GAN inversion method SPI [41] based on EG3D [7],
to validate the performance of our method in the novel viewpoint synthesis
task. Table 4 compares the structures and capabilities of various GAN Inversion
methods.

10.1 Single-object multifaceted editing

Figure 11 and 12 depict the additional results of our multifaceted edits on a
single object.

(a) Input, Co-R, Pre-R (b) Edit Shape (c) Edit Appearance (d) Edit Bg Shape

(e) Edit Bg Appearance (f) Edit Scale (g) Edit Translation (h) Edit Rotation

(i) Edit Camera Pose

Fig. 11: Single-object editing performance on G-CompCars dataset.

10.2 Multi-object multifaceted editing

As shown in the Figure 13 and 14, we demonstrate the additional results of our
multifaceted edits on multiple objects.



3D-GOI 21

(a) Input, Co-R, Pre-R (b) Edit Shape (c) Edit Appearance (d) Edit Translation

(e) Add Objects

Fig. 12: Single-object editing performance on Clevr dataset.

(a) Input, Co-R, Pre-R (b) Edit Shape (c) Edit Appearance (d) Edit Bg Shape

(e) Edit Bg Appearance (f) Edit Scale (g) Edit Translation (h) Edit Rotation

(i) Edit Camera Pose

Fig. 13: Multi-object editing performance on G-CompCars dataset.

(a) Input, Co-R, Pre-R (b) Edit Shape (c) Edit Appearance (d) Edit Translation

(e) Add Objects (f) Remove Objects

Fig. 14: Multi-object editing performance on Clevr dataset.
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Fig. 15: Novel views synthesis for human faces of different GAN inversion methods.

Fig. 16: The figure of the reconstruction result of inaccurate segmentation.

10.3 Novel views synthesis for human faces

We also test the synthesis of novel views of the face, which is a minor ability of
3D-GOI yet the major ability of existing 3D GAN inversion methods. Figure 15
shows that our method has better performance than the latest 3D inversion
method SPI [41] and some advanced 2D inversion methods that can generate
novel views such as PTI [32] and SG2(StyleGAN2) [18].

10.4 Inaccurate segmentation

Figure 16 shows the reconstruction result of 3D-GOI with inaccurate segmen-
tation. Both accurate and inaccurate segmentation can reconstruct the original
image well with only minor differences, which demonstrates the robustness of
our model.

10.5 Ablation Study

Table 5 shows the results of the ablation experiments on each attribute encoder.
It shows that our added NIB structure can greatly improve the prediction ac-
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Table 5: Ablation Study of the Neural Inversion Encoder of different attribute codes.

Method attribute codes MSE ↓ LPIPS↓ ID ↑

3D-GOI
(w/o NIB)

Oshape 0.046 0.412 0.811
Oapp 0.006 0.092 0.907
Os 0.025 0.269 0.856
O t 0.036 0.340 0.848
Or 0.031 0.343 0.805

B shape 0.030 0.400 0.812
Bapp 0.009 0.155 0.881
C 0.001 0.289 0.929

average 0.023 0.288 0.856

3D-GOI
(w/o MLP)

Oshape 0.030 0.286 0.850
Oapp 0.004 0.075 0.916
Os 0.012 0.157 0.889
O t 0.016 0.199 0.877
Or 0.025 0.280 0.827

B shape 0.022 0.316 0.837
Bapp 0.006 0.120 0.898
C 0.001 0.029 0.929

average 0.015 0.183 0.878

3D-GOI

Oshape 0.008 0.116 0.913
Oapp 0.005 0.084 0.931
Os 0.005 0.084 0.924
O t 0.010 0.138 0.905
Or 0.022 0.257 0.855

B shape 0.021 0.332 0.853
Bapp 0.005 0.116 0.922
C 0.001 0.002 0.941

average 0.010 0.141 0.906

curacy, and that Oshape , B shape and Or are more difficult to predict than other
codes.

Figure 17 shows the result of using only one optimizer for all codes. For
a single object image, even though our encoder can estimate the codes more
accurately as shown in Figure 10 in the paper, the optimizer is still unable to
reconstruct the image accurately, which is even more obvious for multi-object
codes that require more codes to be controlled.

Figure 18 is a comparison of the four methods. As shown, our method achieves
the best results on all metrics, demonstrating the effectiveness of our round-robin
optimization algorithm. Figure 18 clearly shows that using a fixed order makes
it difficult to optimize back to the image, especially in multi-object images. As
mentioned in Section 4.4, optimizing features like the image background first
can enhance the optimization results. Hence, Order1 performs much better than
Order2 and Order3.
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Fig. 17: The result of optimizing all codes using only one optimizer.

Table 6: The comparison of encoder-based 3D inversion methods for computational
costs.

Method parameter numbers FLOPs time(s)
E3DGE (single encoder) 90M 50G 0.07

TriplaneNet (single encoder) 247M 112G 0.11
3D-GOI(multi encoders) 169M 165G 0.08

10.6 Computational costs

We believe it is reasonable that for editing images with multiple objects in a
multifaceted manner, the computational cost is positively correlated with the
number of objects in the image. Furthermore, in tasks of reconstructing single
objects, all our Neural Inversion encoders indeed incur more computational cost
compared to the baselines E3DGE [21] and TriplaneNet [5] as shown in Table 6.
That is due to our goal of editing multiple objects diversely so it necessitates
separate encoding predictions for various attributes of objects and backgrounds
in the image, especially for affine transformation attributes, which most inver-
sion works fail to achieve. In practice, in our experiments, the time consumed for
encoding is minimal, with all codes outputted within 0.1 second. Our main time
consumption is in the optimization part, but since we optimize all codes directly,
even using a per-code round-robin optimization strategy is faster than the cur-
rent mainstream algorithms SPI [41] and PTI [32] that require optimization of
generator parameters as shown in Table 7.

11 Limitations

Despite the impressive generative capabilities of GIRAFFE, we encountered sev-
eral notable issues in the tests. Notably, there was a gap between the data dis-
tribution generated by GIRAFFE and that of the original datasets, which is
the main problem faced by current complex scene generation methods, making
it difficult to inverse in-the-wild images. Additionally, we observed interaction
effects among different codes in some of the GIRAFFE-generated images, which
further complicated our inversion targets.
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Table 7: The comparison of hybrid-based 3D inversion methods for time costs.

Method time(s)
PTI 55
SPI 550

3D-GOI 30

Fig. 18: The figure of ablation study of the round-robin Optimization algorithm.

We believe that with the advancement of complex multi-object scene gen-
eration methods, our editing method 3D-GOI will hold immense potential for
future 3D applications such as VR/AR and Metaverse.

12 Futuer work

As the first work in this new field, our current primary focus is on the accuracy
of reconstruction. Our present encoding and optimization strategies are mainly
aimed at achieving more precise reconstruction, while we have not given enough
consideration to computational cost. Moving forward, we will continue to design
the structure of the encoder to enable it to predict codes more quickly and ac-
curately. Additionally, we need to address the entanglement issue in GIRAFFE,
allowing each code to independently control the image, which may simplify our
entire method process. Lastly, we need to solve the generalization issue in GAN
inversion, which may require training on more real-world datasets.
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13 Ethical considerations

Generative AI models in general, including our proposal, face the risk to be used
for spreading misinformation. The authors of this paper do not condone such
behaviors.
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